JP4181036B2 - Composite structure steel plate excellent in hole expansibility and its manufacturing method - Google Patents

Composite structure steel plate excellent in hole expansibility and its manufacturing method Download PDF

Info

Publication number
JP4181036B2
JP4181036B2 JP2003515697A JP2003515697A JP4181036B2 JP 4181036 B2 JP4181036 B2 JP 4181036B2 JP 2003515697 A JP2003515697 A JP 2003515697A JP 2003515697 A JP2003515697 A JP 2003515697A JP 4181036 B2 JP4181036 B2 JP 4181036B2
Authority
JP
Japan
Prior art keywords
less
steel plate
steel
composite structure
chemical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003515697A
Other languages
Japanese (ja)
Other versions
JP2004536965A (en
Inventor
治 河野
武弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2004536965A publication Critical patent/JP2004536965A/en
Application granted granted Critical
Publication of JP4181036B2 publication Critical patent/JP4181036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は乗用車、トラック等の自動車や産業用機械等に使用することを企図した穴拡げ性に優れた複合組織鋼板及びその製造方法に関するものである。   The present invention relates to a composite structure steel plate excellent in hole expansibility intended for use in automobiles such as passenger cars and trucks, industrial machines, and the like, and a method for producing the same.

近年、自動車車体の軽量化と衝突時の乗員安全確保を主な背景として、高強度鋼板の需要が増大してきた。特に引張強さTS590MPa級(60kgf/mm2級)の適用が急速に拡大しつつある。 In recent years, the demand for high-strength steel sheets has increased mainly due to the light weight of automobile bodies and ensuring passenger safety in the event of a collision. In particular, the application of tensile strength TS590 MPa class (60 kgf / mm 2 class) is rapidly expanding.

かかる用途に供される鋼板として、残留オーステナイトやマルテンサイトを有する複合組織鋼板が広く知られている。例えば、特開平9−104947号公報に記載されているように残留オーステナイトを適量含有させることにより、優れた強度-伸びバランス(引張強さ60〜69kgf/mm2では全伸び33.8〜40.5%)を有するものが得られている。しかしながら、強度-穴拡げバランスに対する技術は不十分であり、特に極低P化、ミクロ組織や介在物の最大長制御、ミクロ組織硬さ制御に対する技術要件は全く考慮されていないため、その特性レベルも低く(引張強さ60〜69kgf/mm2では穴拡げ比d/d0で1.46〜1.68、穴拡げ率に換算して46〜68%)、適用用途が限定されていた。 As steel plates used for such applications, composite steel plates having retained austenite and martensite are widely known. For example, as described in JP-A-9-104947, by containing an appropriate amount of retained austenite, an excellent strength-elongation balance (when the tensile strength is 60 to 69 kgf / mm 2 , the total elongation is 33.8 to 40.40). 5%) is obtained. However, the technology for strength-hole expansion balance is inadequate, and in particular, technical requirements for ultra-low P, maximum length control of microstructures and inclusions, and microstructure hardness control are not considered at all. However, when the tensile strength was 60 to 69 kgf / mm 2 , the hole expansion ratio d / d0 was 1.46 to 1.68, and the hole expansion ratio was 46 to 68%, and the application was limited.

一方、強度-穴拡げバランスに優れた鋼板として特開平3−180426号公報に記載されているようなベイナイト鋼板(引張強さ60〜67kgf/mm2では穴拡げ比d/d0で1.72〜2.02、穴拡げ率に換算して72〜102%)があるが、穴拡げ率向上のため複合組織を回避し組織の均一化(ベイナイトの単一組織化)を指向しているため、逆に強度-伸びバランスが不十分であり(引張強さ60〜67kgf/mm2では全伸び27〜30%)、同様に適用用途が限定されているのが実情である。 On the other hand, a bainite steel sheet as described in JP-A-3-180426 as a steel sheet having an excellent strength-hole expansion balance (at a tensile strength of 60 to 67 kgf / mm 2 , a hole expansion ratio d / d0 of 1.72 to 2.02 and 72 to 102% in terms of the hole expansion rate), but because the hole expansion rate is improved, the composite structure is avoided and the structure is homogenized (single organization of bainite). On the contrary, the strength-elongation balance is insufficient (the total elongation is 27-30% at a tensile strength of 60-67 kgf / mm 2 ), and the application is similarly limited.

即ち、自動車部品のプレス成形においては強度-伸びバランスに代表される張り出し成形と強度-穴拡げバランスに代表される伸びフランジ成形が二大成形要素でありながら、その両者を両立するものがなく、その両者に秀でることが適用用途拡大の鍵であった。   In other words, in press molding of automotive parts, there are two major molding elements, namely, stretch molding represented by strength-elongation balance and stretch flange molding represented by strength-hole expansion balance. Being superior to both was the key to expanding application.

近年、地球環境問題から高強度鋼板への置換が加速度的に進む中、成形難度の高い部品への適用が検討されるに及び強度-伸びバランスと強度-穴拡げバランスの両者に優れた鋼板、換言すれば優れた強度-穴拡げバランスを有する複合組織鋼板が渇望されていたのである。   In recent years, as the replacement of high-strength steel sheets has accelerated due to global environmental problems, steel sheets that are excellent in both strength-elongation balance and strength-hole expansion balance are being considered for application to parts with high forming difficulty. In other words, there has been a strong demand for a composite steel sheet having an excellent strength-hole expansion balance.

本発明は上記した従来の鋼板が持つ問題点を解消し、優れた強度-穴拡げバランス(引張強さ×穴拡げ率で35000MPa・%以上、好ましくは46000MPa・%以上)と優れた強度-伸びバランス(引張強さ×全伸びで18500MPa・%以上、好ましくは20000MPa・%以上)を兼備した鋼板、すなわち穴拡げ性に優れた複合組織鋼板及びその製造方法を提供することを課題としている。   The present invention eliminates the problems of the conventional steel sheet described above, and has an excellent strength-hole expansion balance (tensile strength x hole expansion ratio of 35,000 MPa ·% or more, preferably 46000 MPa ·% or more) and excellent strength-elongation. It is an object of the present invention to provide a steel sheet having a balance (tensile strength × total elongation of 18500 MPa ·% or more, preferably 20000 MPa ·% or more), that is, a composite structure steel plate excellent in hole expansibility and a method for producing the same.

強度−穴広げバランス(MPa・%)、強度−伸びバランス(MPa・%)はプレス成形性の指標であり、値が大きい程、優れた特性を有する。強度−穴広げバランスは引張試験による引張強さ(MPa)と穴広げ試験による穴広げ率(%)の積で表現され、強度−伸びバランスは引張試験による引張強さ(MPa)と同じく引張試験による全伸び(%)の積で表現される。一般的な鋼板では引張強さが増大すると穴広げ率は劣化、伸びも劣化し、強度−穴広げバランス(MPa・%)、強度−伸びバランス(MPa・%)は低レベルにとどまるが、本発明では引張強さの増大に伴う穴広げ率と伸びの劣化を抑制し、強度−穴広げバランス(MPa・%)、強度−伸びバランス(MPa・%)で高い値が得られるのである。   Strength-hole expansion balance (MPa ·%) and strength-elongation balance (MPa ·%) are indicators of press formability, and the larger the value, the better the characteristics. Strength-hole expansion balance is expressed as the product of tensile strength (MPa) by tensile test and hole expansion ratio (%) by hole expansion test, and strength-elongation balance is the same as tensile strength (MPa) by tensile test. It is expressed as the product of total elongation (%). In general steel plates, when the tensile strength increases, the hole expansion ratio deteriorates and the elongation also deteriorates, and the strength-hole expansion balance (MPa%) and the strength-elongation balance (MPa%) remain at low levels. In the invention, deterioration of the hole expansion ratio and elongation accompanying the increase in tensile strength is suppressed, and high values are obtained in the strength-hole expansion balance (MPa ·%) and strength-elongation balance (MPa ·%).

本発明者らは、製鋼〜熱延の一貫製造の視点から、鋭意検討を加え、穴拡げ性に優れた複合組織鋼板とその製造方法を発明するに到った。   The inventors of the present invention have intensively studied from the viewpoint of integrated manufacturing from steelmaking to hot rolling, and have come to invent a composite structure steel plate excellent in hole expansibility and its manufacturing method.

その手段は以下の通りである。   The means is as follows.

(1) 化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板であって、
該鋼板断面のミクロ組織として、
残留オーステナイトとマルテンサイトの内の1種又は2種を合計面積率で3〜30%、
残部ミクロ組織がフェライトとベイナイトの内の1種又は2種よりなるとともに、
ミクロ組織の結晶粒の最大長が10ミクロン以下であり、
さらに、鋼板断面内に20ミクロン以上の介在物が1mm2当たり0.3個以下であることを特徴とする穴拡げ性に優れた複合組織鋼板。
(1) As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A steel plate composed of the remaining Fe and inevitable impurities,
As the microstructure of the steel sheet cross section,
One or two of the retained austenite and martensite in a total area ratio of 3 to 30%,
The balance microstructure consists of one or two of ferrite and bainite,
The maximum length of the microstructure grain is 10 microns or less,
Furthermore, the composite structure steel plate excellent in the hole expansibility characterized by the inclusion of 0.3 or less inclusions per 1 mm 2 in the cross section of the steel plate.

(2) 化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板であって、
鋼板断面のミクロ組織として、
残留オーステナイトとマルテンサイトの内の1種又は2種を合計面積率で3〜30%、
パーライト面積率が0%超〜3%であり、
残部ミクロ組織がフェライトとベイナイトの内の1種又は2種よりなるとともに、
ミクロ組織の結晶粒の最大長が10ミクロン以下であり、
さらに、鋼板断面内に20ミクロン以上の介在物が1mm2当たり0.3個以下であることを特徴とする穴拡げ性に優れた複合組織鋼板。
(2) As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A steel plate composed of the remaining Fe and inevitable impurities,
As the microstructure of the steel sheet cross section,
One or two of the retained austenite and martensite in a total area ratio of 3 to 30%,
The pearlite area ratio is over 0% to 3%,
The balance microstructure consists of one or two of ferrite and bainite,
The maximum length of the microstructure grain is 10 microns or less,
Furthermore, the composite structure steel plate excellent in the hole expansibility characterized by the inclusion of 0.3 or less inclusions per 1 mm 2 in the cross section of the steel plate.

(3) ベイナイトのミクロビッカ−ス硬さが240未満であることを特徴とする上記(1)または(2)に記載の穴拡げ性に優れた複合組織鋼板。   (3) The composite structure steel plate having excellent hole expansibility according to the above (1) or (2), wherein the bainite has a micro Vickers hardness of less than 240.

(4) 化学成分として、質量%で、さらに、
Nb、V、Tiの内の1種又は2種以上を合計量で0.3%以下含むことを特徴とする上記(1)〜(3)のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。
(4) As a chemical component in mass%,
One or more of Nb, V, and Ti are included in a total amount of 0.3% or less, and the hole expandability according to any one of the above items (1) to (3) is excellent. Composite steel sheet.

(5) 化学成分として、質量%で、さらに、
Bを0.01%以下含むことを特徴とする上記(1)〜(4)のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。
(5) As a chemical component, in mass%,
The composite structure steel plate excellent in hole expansibility according to any one of the above (1) to (4), wherein B is contained in an amount of 0.01% or less.

(6) 化学成分として、質量%で、さらに、Ca、REMの内の1種又は2種を、Caにおいては0.01%以下、REMにおいては0.05%以下、含むことを特徴とする上記(1)〜(5)のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。   (6) The chemical component is characterized by containing, in mass%, one or two of Ca and REM, 0.01% or less in Ca and 0.05% or less in REM. The composite structure steel plate excellent in hole expansibility as described in any one of said (1)-(5).

(7) 化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%を含み、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板の製造方法であって、
前記成分の溶鋼を溶製するに際し、溶鋼脱硫時の脱硫用フラックス添加後に1.5回以上の溶鋼を環流させ、
さらに該溶鋼の鋳造後に得られた鋼片を熱間圧延して鋼板を製造するに際し、仕上圧延を仕上入側温度≧950℃、かつ仕上出側温度=780〜920℃で実施し、500℃以下で得られた鋼板を巻き取ることを特徴とする穴拡げ性に優れた複合組織鋼板の製造方法。
(7) As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
Including S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A method for producing a steel sheet comprising the balance Fe and inevitable impurities,
When melting the molten steel of the above components, the molten steel is refluxed 1.5 times or more after the desulfurization flux addition at the time of molten steel desulfurization,
Further, when the steel slab obtained after casting the molten steel is hot-rolled to produce a steel plate, finish rolling is performed at a finish entry temperature ≧ 950 ° C. and a finish exit temperature = 780 to 920 ° C., and 500 ° C. The manufacturing method of the composite structure steel plate excellent in the hole expansibility characterized by winding up the steel plate obtained below.

(8) 化学成分として、質量%で、さらに、
Nb、V、Tiの内の1種又は2種以上を合計量で0.3%以下含むことを特徴とする上記(7)に記載の穴拡げ性に優れた複合組織鋼板の製造方法。
(8) As a chemical component, in mass%,
One or more of Nb, V, and Ti are included in a total amount of 0.3% or less. The method for producing a composite structure steel plate having excellent hole expansibility according to (7) above.

(9) 化学成分として、質量%で、さらに、
Bを0.01%以下含むことを特徴とする上記(7)または(8)に記載の穴拡げ性に優れた複合組織鋼板の製造方法。
(9) As a chemical component, in mass%,
The method for producing a composite structure steel plate having excellent hole expansibility according to the above (7) or (8), wherein B is contained in an amount of 0.01% or less.

(10) 化学成分として、質量%で、さらに、Ca、REMの1種又は2種を、Caにおいては0.01%以下、REMにおいては0.05%以下、含むことを特徴とする上記(7)〜(9)のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板の製造方法。   (10) The chemical component as described above, wherein the chemical component further includes one or two of Ca and REM in 0.01% or less in Ca and 0.05% or less in REM. The manufacturing method of the composite structure steel plate excellent in the hole expansibility as described in any one of 7)-(9).

本発明により優れた強度-穴拡げ率バランスと優れた強度-伸びバランスを合わせ持つプレス成形性の優れた複合組織鋼板とその製造方法を低コストかつ安定的に提供することが可能となったため、使用用途・使用条件が格段に広がり、工業上、経済上の効果は非常に大きい。   According to the present invention, it has become possible to stably provide a low cost and stable composite steel sheet with excellent press formability having excellent strength-hole expansion ratio balance and excellent strength-elongation balance and its manufacturing method. The usage and conditions of use are greatly expanded, and the industrial and economic effects are very large.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

まず、化学成分について述べる。   First, chemical components will be described.

Cはオーステナイトを安定化し複合組織を得るために重要な元素であり、オーステナイトを安定化し、残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率で3%以上得るために、0.03質量%以上添加する。ただし、その上限は溶接性の劣化を避け、穴拡げ率への悪影響を避けるため、0.15質量%以下とする。好ましくは0.11%以下とする。   C is an important element for stabilizing austenite and obtaining a composite structure. To stabilize austenite and obtain a total area ratio of one or two of retained austenite and martensite of 3% or more. Add 03% by mass or more. However, the upper limit is 0.15% by mass or less in order to avoid deterioration of weldability and to avoid adverse effects on the hole expansion rate. Preferably it is 0.11% or less.

Pは本発明の添加元素において、非常にポイントとなる元素である。図1にその効果を示す。図1は表1の鋼番1の成分の鋼板を用いて、P濃度と鋼板の穴拡げ率の関係を調査した結果を示す。   P is a very important element in the additive element of the present invention. The effect is shown in FIG. FIG. 1 shows the result of investigating the relationship between the P concentration and the hole expansion ratio of a steel plate using a steel plate having the component No. 1 in Table 1.

Figure 0004181036
Figure 0004181036

穴拡げ率は日本鉄鋼連盟規格JFS T1001−1996より求めた。図1よりPを0.010%以下とすることにより穴拡げ率は指数関数的に顕著に向上し、従来の延長上では想定しえない穴拡げ率への効果が認められる。それによりプレス割れの回避が可能となるのである。その理由は未だ明らかでない面はあるが、Pの低減により打ち抜き穴端面性状が改善され(破断面の破面サイズ極小化や粗さ低減やミクロクラックの低減等、剪断面のミクロ組織の加工劣化抑制等)、穴拡げ率の向上につながったものと考えられる。   The hole expansion rate was obtained from the Japan Iron and Steel Federation standard JFS T1001-1996. As shown in FIG. 1, when P is 0.010% or less, the hole expansion rate is remarkably improved exponentially, and an effect on the hole expansion rate that cannot be assumed in the conventional extension is recognized. This makes it possible to avoid press cracks. The reason for this is still unclear, but the reduction of P improves the punch hole end face properties (such as minimizing the fracture surface size of the fracture surface, reducing roughness, reducing microcracks, etc. It is thought that this led to an improvement in the hole expansion rate.

Sは硫化物系介在物による穴拡げ率と溶接性の劣化防止の観点から、その含有量は0.003%以下(好ましくは≦0.001%)とする。   The content of S is 0.003% or less (preferably ≦ 0.001%) from the viewpoint of the hole expansion rate due to sulfide inclusions and the prevention of weldability deterioration.

Si、Alは複合組織を得るために有用な元素であり、フェライトの生成を促進し、炭化物の生成を抑制することにより、また、フェライトを強化しフェライトと硬質組織(ベイナイト、マルテンサイト等)との硬度差を減じ組織の一様性に寄与することにより、残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率で3%以上得て、穴拡げ率を改善する作用がある。また、脱酸元素としても作用する。上記観点から、SiとAlの内の1種もしくは2種の合計添加下限量は0.5質量%以上とする必要がある。コストと効果の兼ね合いから、その合計添加上限量は4質量%以下とする。   Si and Al are useful elements for obtaining a composite structure. By promoting the formation of ferrite and suppressing the formation of carbides, and strengthening ferrite, ferrite and hard structures (bainite, martensite, etc.) By contributing to the uniformity of the structure by reducing the difference in hardness, the total area ratio of one or two of the retained austenite and martensite can be 3% or more, and the hole expansion ratio can be improved. It also acts as a deoxidizing element. From the above viewpoint, the total addition lower limit amount of one or two of Si and Al needs to be 0.5% by mass or more. From the balance of cost and effect, the total addition upper limit amount is 4% by mass or less.

SiとAlの個別添加量については、下記を加味してもよい。   About the individual addition amount of Si and Al, the following may be considered.

特に優れた表面性状が要求される場合は、Si<0.1質量%(好ましくは0.01%)とすることによりSiスケールを回避するか、逆にSi>1.0質量%(好ましくは1.2%)とすることによりSiスケールを無害化(全面に発生させ目立たなくする)してもよい。   When particularly excellent surface properties are required, Si <0.1% by mass (preferably 0.01%) is avoided to avoid Si scale, or conversely, Si> 1.0% by mass (preferably 1.2%), the Si scale may be rendered harmless (generated on the entire surface and made inconspicuous).

SiとAlのフェライト強化作用の差を利用して引張強さを低くおさえたい場合等の材質上の観点から、Al添加量を増しSi添加量を減ずることも可能である。   From the viewpoint of the material, such as when it is desired to keep the tensile strength low by utilizing the difference in ferrite strengthening action between Si and Al, it is also possible to increase the Al addition amount and decrease the Si addition amount.

耐火物溶損やノズル閉塞等の製鋼上デメリットや材質との関連で、Al≦0.2%(好ましくは0.1%)としてもよい。   Al ≦ 0.2% (preferably 0.1%) may be used in relation to steelmaking disadvantages and materials such as refractory melting and nozzle clogging.

Mn、Ni、Cr、Mo、Cuは複合組織を得るために有用な元素であり、フェライト強化元素でもある。上記観点から、それらの内の1種もしくは2種以上の合計添加下限量は0.5質量%以上とする必要がある。ただし、コストと効果の兼ね合いから、その合計添加上限量は4質量%以下とする。   Mn, Ni, Cr, Mo, and Cu are useful elements for obtaining a composite structure, and are also ferrite reinforcing elements. From the above viewpoint, the total lower limit amount of one or more of them needs to be 0.5% by mass or more. However, from the balance of cost and effect, the total addition upper limit amount is 4% by mass or less.

さらに、選択元素として、Nb、V、Ti、B、Ca、REMの1種又は2種以上を添加してもよい。   Furthermore, you may add 1 type (s) or 2 or more types of Nb, V, Ti, B, Ca, and REM as a selection element.

Nb、V、Tiは高強度化に有効な元素であるが、効果とコストの兼ね合いから、それら添加量は1種又は2種以上を合計量で0.3%以下とする。   Nb, V, and Ti are effective elements for increasing the strength. However, from the balance between the effect and the cost, the amount added is one or two or more and the total amount is 0.3% or less.

Bは強化元素としての作用があり、0.01%以下添加してもよい。また、Pの悪影響を軽減する作用も有する。   B acts as a strengthening element and may be added in an amount of 0.01% or less. It also has the effect of reducing the adverse effects of P.

Caは硫化物系介在物の形態制御(球状化)により、穴拡げ率をより向上させるために0.01%以下添加してもよい。   Ca may be added in an amount of 0.01% or less in order to further improve the hole expansion rate by controlling the form (spheroidization) of sulfide inclusions.

また、REMも同様の理由から0.05%以下添加してもよい。   Further, REM may be added at 0.05% or less for the same reason.

なお、オーステナイトの安定化や高強度化等を狙って、必要に応じて、Nを0.02%以下、添加してもよい。   If necessary, N may be added in an amount of 0.02% or less for the purpose of stabilizing or increasing the strength of austenite.

次にミクロ組織について述べる。   Next, the microstructure will be described.

優れた穴拡げ率を得るためには、極低P化により改善された打ち抜き穴端面性状の破面サイズの均一性等を損なわないという観点から、ミクロ組織の結晶粒の最大長制御と介在物の量及びサイズの制御が特に重要なポイントであり、まず、これについて述べる。   In order to obtain an excellent hole expansion rate, the maximum length control and inclusions of the crystal grains of the microstructure are not made from the viewpoint of not impairing the uniformity of the fracture surface size of the punched hole end face properties improved by extremely low P. The control of the amount and size is an especially important point, which will be described first.

ミクロ組織の大きさは打ち抜き穴端面の破面サイズに影響を及ぼすため、穴拡げ率に大きく影響を及ぼす。ミクロ組織の平均粒径が微細であっても、その最大粒径が大きいと穴拡げ率に悪影響を及ぼす。ミクロ組織は多数の結晶粒で構成されているが、その平均粒径で穴拡げ率を律することはできず、多数の結晶粒の中に大きな結晶粒があれば、平均粒径が細かくても穴拡げ率に悪影響を及ぼす。さらに一つの結晶粒の大きさは円相当径ではなく、その最大長が穴拡げ率に影響を及ぼす。   Since the size of the microstructure affects the fracture surface size of the end face of the punched hole, it greatly affects the hole expansion rate. Even if the average particle size of the microstructure is fine, if the maximum particle size is large, the hole expansion rate is adversely affected. Although the microstructure is composed of a large number of crystal grains, the average grain size cannot regulate the hole expansion rate, and if there are large crystal grains in a large number of crystal grains, the average grain size is fine. It adversely affects the hole expansion rate. Furthermore, the size of one crystal grain is not the equivalent circle diameter, but its maximum length affects the hole expansion rate.

図2は表1の鋼番2の成分の鋼板を用いて、鋼板内のミクロ組織の最大長と鋼板の穴拡げ率の関係を調査した結果を示す。図2に示すようにミクロ組織の最大長を10ミクロン以下の場合に穴拡げ率は指数関数的に顕著に向上し、従来の延長上では想定しえない穴拡げ率への効果が認められる。それによりプレス割れの回避が可能となるのである。   FIG. 2 shows the result of investigating the relationship between the maximum length of the microstructure in the steel sheet and the hole expansion rate of the steel sheet, using the steel sheet having the component No. 2 in Table 1. As shown in FIG. 2, when the maximum length of the microstructure is 10 microns or less, the hole expansion rate is remarkably improved exponentially, and an effect on the hole expansion rate that cannot be assumed in the conventional extension is recognized. This makes it possible to avoid press cracks.

なお、ミクロ組織の最大長はナイタール試薬及び特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面を腐食した倍率400倍の光学顕微鏡写真から板厚方向の全断面を加味して、算出した。   The maximum length of the microstructure is determined by taking into account the entire cross section in the plate thickness direction from the optical micrograph at a magnification of 400 times that corrodes the cross section in the steel plate rolling direction with the Nital reagent and the reagent disclosed in JP-A-59-219473. Calculated.

また、介在物制御においては粗大介在物の個数を低減することにより穴拡げ率を改善できる。介在物は研磨仕上げした鋼板圧延方向断面を顕微鏡観察(倍率400倍)し、最大長が20ミクロン以上の粗大介在物の数を積算した。図3は表1の鋼番2の成分の鋼板を用いて鋼板内の粗大介在物(最大長20ミクロン以上)の個数と穴拡げ率の関係を調査した結果を示す。粗大介在物(最大長20ミクロン以上)が一定個数以下(1平方mm当たり0.3ケ以下)の場合に穴拡げ率が大幅に向上させ、プレス割れを回避することができることが判る。   In inclusion control, the hole expansion rate can be improved by reducing the number of coarse inclusions. The inclusions were polished and polished, and the cross section in the rolling direction of the steel sheet was observed with a microscope (400 times magnification), and the number of coarse inclusions having a maximum length of 20 microns or more was integrated. FIG. 3 shows the results of investigating the relationship between the number of coarse inclusions (maximum length of 20 microns or more) in the steel sheet and the hole expansion rate using the steel sheet of component No. 2 in Table 1. It can be seen that when the number of coarse inclusions (maximum length of 20 microns or more) is less than a certain number (0.3 or less per square mm), the hole expansion rate is greatly improved and press cracks can be avoided.

加えて、ベイナイトのマイクロビッカ−ス硬さを240未満とすることが穴広げ特性の向上に好ましく作用する。ベイナイト硬さの低減はフェライトとベイナイトの硬度差を減じ組織の一様性向上に寄与するが、ベイナイトのマイクロビッカ−ス硬さが240を超えるとフェライトとベイナイトの硬度差が穴広げ特性に好ましい範囲から逸脱し、さらにはベイナイト自体の加工性の劣化により、穴広げ特性の劣化を引き起こす。その効果の発現にはPの低減(0.01%以下)が大きく寄与しているが、詳細は定かではない。   In addition, making the bainite micro Vickers hardness less than 240 preferably acts to improve the hole expansion characteristics. The reduction of bainite hardness reduces the hardness difference between ferrite and bainite and contributes to the improvement of the uniformity of the structure. However, when the bainite micro Vickers hardness exceeds 240, the hardness difference between ferrite and bainite is preferable for the hole expanding property. It deviates from the range, and further deterioration of workability of bainite itself causes deterioration of hole expansion characteristics. Although the reduction of P (0.01% or less) greatly contributes to the manifestation of the effect, details are not clear.

なお、ベイナイトのマイクロビッカ−ス硬さは、特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面を腐食しベイナイトを同定し、1g〜10gの負荷を加えて測定した5点の平均値(7点測定し最大、最小を除いて平均)である。   The micro Vickers hardness of bainite was measured by applying a load of 1 to 10 g by identifying bainite by corroding the cross section in the rolling direction of the steel sheet with the reagent disclosed in JP-A-59-219473. The average value (measured 7 points, averaged excluding maximum and minimum).

さらに、優れた強度-穴拡げバランスに加え、優れた強度-伸びバランスを得るためには、複合組織の種類と面積率を制御することが必要である。   Furthermore, in order to obtain an excellent strength-elongation balance in addition to an excellent strength-hole expansion balance, it is necessary to control the type and area ratio of the composite structure.

残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率を3〜30%とすることにより優れた強度-伸びバランス(引張強さ×全伸びで18500MPa・%以上)と優れた強度-穴拡げバランス(引張強さ×穴拡げ率で35000MPa・%以上)が得られる。   Excellent strength-elongation balance (tensile strength x total elongation of 18500 MPa ·% or more) and excellent strength by adjusting the total area ratio of one or two of retained austenite and martensite to 3-30%- A hole expansion balance (tensile strength x hole expansion ratio of 35000 MPa ·% or more) is obtained.

残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率が3%未満では残留オーステナイトやマルテンサイトによる強度-伸びバランスの改善効果を安定して得ることができなくなるため、3%を下限とする。   If the total area ratio of one or two of retained austenite and martensite is less than 3%, the effect of improving the strength-elongation balance by retained austenite or martensite cannot be obtained stably, so 3% is the lower limit. And

残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率が30%超では、強度-伸びバランスの改善効果が飽和し、逆に穴拡げ率の劣化等を引き起こすため、プレス成形性の視点から、その合計は30%を上限とする。   If the total area ratio of one or two of the retained austenite and martensite exceeds 30%, the effect of improving the strength-elongation balance is saturated, and conversely, the deterioration of the hole expansion ratio is caused. From the viewpoint, the total is limited to 30%.

なお、パーライトは強度-伸びバランスや強度-穴拡げバランスを阻害するため含まれないことが好ましいが、多くともその面積率を3%以下(さらに好ましくは1%以下)とする。   Although pearlite is preferably not included because it impairs the strength-elongation balance and the strength-hole expansion balance, the area ratio is at most 3% (more preferably 1% or less).

より好ましくは上記に加えて、以下の制限を付加することが望ましい。   More preferably, in addition to the above, it is desirable to add the following restrictions.

特に優れた強度-伸びバランス(20000MPa・%以上)を得るためには、残留オーステナイト面積率を3%以上とすることが望まれる。   In order to obtain a particularly excellent strength-elongation balance (20,000 MPa ·% or more), it is desired that the retained austenite area ratio is 3% or more.

また、特に優れた強度-穴拡げバランス(引張強さ×穴拡げ率で46000MPa・%以上)を得るためには、マルテンサイト面積率を3%以下とすることが望まれる。   In order to obtain a particularly excellent strength-hole expansion balance (tensile strength × hole expansion ratio of 46000 MPa ·% or more), it is desired that the martensite area ratio is 3% or less.

逆に形状凍結性等の観点から、低い降伏比(降伏比YR=降伏応力/引張強さ×100で70%以下)が望まれる場合にはマルテンサイト面積率を3%以上とする。   On the other hand, when a low yield ratio (yield ratio YR = yield stress / tensile strength × 100, 70% or less) is desired from the viewpoint of shape freezing property, the martensite area ratio is set to 3% or more.

好ましくは、残留オーステナイトかつまたはマルテンサイトのミクロ組織の最大長を2ミクロン以下とすることにより、その効果は一層高まる。   Preferably, the effect is further enhanced by setting the maximum length of the retained austenite and / or martensite microstructure to 2 microns or less.

なお、残部組織はフェライトとベイナイトの内の1種又は2種で構成されるが、その合計面積率を80%以上とすることによりフェライトとベイナイト以外の硬質組織がネットワーク状に連結することに起因するプレス成形性劣化を抑制することができる。   The remaining structure is composed of one or two of ferrite and bainite. By making the total area ratio 80% or more, hard structures other than ferrite and bainite are connected in a network form. It is possible to suppress press formability deterioration.

以上述べた効果により、優れた強度-穴拡げバランス(引張強さ×穴拡げ率で35000MPa・%以上、好ましくは46000MPa・%以上)と優れた強度-伸びバランス(引張強さ×全伸びで18500MPa・%以上、好ましくは20000MPa・%以上)の両立が可能となり、プレス成形性が大幅に向上する。   Due to the effects described above, an excellent strength-hole expansion balance (tensile strength × hole expansion ratio of 35,000 MPa ·% or more, preferably 46000 MPa ·% or more) and an excellent strength-elongation balance (tensile strength × total elongation of 18500 MPa) % Or more, preferably 20000 MPa ·% or more), and the press formability is greatly improved.

なお、ミクロ組織の構成同定と面積率の測定、残留オーステナイトかつまたはマルテンサイトの最大長の測定はナイタール試薬、特開昭59−219473号公報に開示された試薬及び特開平5−163590号公報で開示された試薬により鋼板圧延方向断面を腐食した倍率1000倍の光学顕微鏡写真とX線解析により行った。   Incidentally, the structural identification of the microstructure and the measurement of the area ratio, the measurement of the maximum length of retained austenite and / or martensite are performed by the Nital reagent, the reagent disclosed in Japanese Patent Laid-Open No. 59-219473, and Japanese Patent Laid-Open No. 5-163590. It was performed by an optical micrograph at a magnification of 1000 times and X-ray analysis in which a steel plate rolling direction cross section was corroded by the disclosed reagent.

次に、その製造方法について述べる。   Next, the manufacturing method will be described.

まず製鋼工程においては、溶鋼を溶製するに際し、RH等の2次精練装置を用いた溶鋼脱硫時の脱硫用フラックス添加後に1.5回以上溶鋼を環流させることがポイントである。ここでの溶鋼の還流とは、単位時間当たりRH等の2次精練装置内を循環させる溶鋼量を示すものであり、種々の算出式があるが、例えば「大量生産規模における不純物元素の精練限界」((株)日本鉄鋼協会 高温精練プロセス部会精練フォーラム 日本学術振興会 製鋼第19委員会反応プロセス研究会,平成8年3月,184頁〜187頁)に開示されているように、下記式1で表される溶鋼還流量Qを1回と定義したものである。
還流量Q=11.4×V1/3×D4/3×{ln(P1/P0)}1/3×k…式1、
Q:溶鋼環流量(t/min)、V:環流ガス流量(Nl/min)
D:浸漬管内径(m) 、P0:真空槽内圧力(Pa)
P1:環流ガス吹込位置圧力(Pa)、
k:定数(2次精練装置による定数。今回は4とする)
ここで、RHを用いた場合の溶鋼溶製の模式図を図4に示すが、溶鋼鍋1中に脱ガス槽2の浸漬管3の2本浸漬をさせ、その一方の下方からガスを吹き込み(ここでは浸漬管の下方からインジェクションランス4からArを吹き込む)、溶鋼鍋1内の溶鋼が上昇して脱ガス槽2に入り、脱ガス処理後に他方の浸漬管3から溶鋼鍋に下降して戻るものである。なお、ここではRHによる2次精練装置を用いた例を示したが、他の2次精練装置(例えばDH)を用いても構わないことは言うまでもない。
First, in the steel making process, when melting molten steel, it is important to circulate the molten steel at least 1.5 times after adding desulfurization flux during molten steel desulfurization using a secondary smelting apparatus such as RH. The reflux of molten steel here indicates the amount of molten steel circulated in the secondary smelting apparatus such as RH per unit time, and there are various calculation formulas. For example, “refining limit of impurity elements in mass production scale” As shown in (Japan Steel Association, High Temperature Scouring Process Group Scouring Forum, Japan Society for the Promotion of Science, Steel Manufacturing 19th Committee Reaction Process Study Group, March 1996, pages 184 to 187) The molten steel reflux amount Q represented by 1 is defined as one time.
Amount of reflux Q = 11.4 × V 1/3 × D 4/3 × {ln (P1 / P0)} 1/3 × k Equation 1
Q: Flow rate of molten steel ring (t / min), V: Flow rate of circulating gas (Nl / min)
D: inner diameter of dip tube (m), P0: pressure inside vacuum chamber (Pa)
P1: Circulating gas injection position pressure (Pa)
k: Constant (constant by the secondary scouring device, this time set to 4)
Here, a schematic diagram of molten steel melting using RH is shown in FIG. 4, and two dip tubes 3 of the degassing tank 2 are immersed in the molten steel pan 1, and gas is blown from below one of them. (Ar is blown from the injection lance 4 from below the dip tube), the molten steel in the molten steel pan 1 rises and enters the degassing tank 2, and descends from the other dip tube 3 to the molten steel pan after degassing treatment. It is a return. In addition, although the example using the secondary scouring apparatus by RH was shown here, it cannot be overemphasized that another secondary scouring apparatus (for example, DH) may be used.

図5は表1の鋼番2の成分の溶鋼を溶製した際の脱硫フラックス添加後の溶鋼環流回数と、得られた溶鋼の鋳造後の鋳片から熱間圧延した後に鋼板断面1平方mm当たりの20ミクロン以上の介在物個数との関係を調査した結果を示す。図5に示すようにこれにより脱硫用フラックス系介在物の浮上が顕著に促進され、粗大介在物(20ミクロン以上)を一定個数以下(1平方mm当たり0.3ケ以下)とすることが可能となり、穴拡げ率を向上させ、プレス割れを回避することができるのである。   FIG. 5 shows the number of times of molten steel recirculation after addition of desulfurization flux when molten steel having the composition of steel No. 2 in Table 1 is melted, and a steel plate cross section of 1 mm 2 after hot rolling from a cast slab after the obtained molten steel is cast. The result of investigating the relationship with the number of inclusions of 20 microns or more per hit is shown. As shown in FIG. 5, this significantly promotes the rise of desulfurization flux inclusions, and allows the inclusion of coarse inclusions (20 microns or more) to a certain number or less (0.3 pieces or less per square mm). Thus, the hole expansion rate can be improved and press cracks can be avoided.

次に本発明鋼を熱延鋼板にて得る場合には、熱間圧延工程において、仕上圧延の温度条件について検討した。図6は表1の鋼番2の成分の鋳片を熱間圧延する際に仕上入側と仕上出側温度と、得られた鋼板断面のミクロ組織の結晶粒の最大長を整理した結果を示す。   Next, when the steel of the present invention was obtained from a hot-rolled steel sheet, the temperature conditions for finish rolling were examined in the hot rolling process. FIG. 6 shows the results of arranging the finishing side and finishing side temperatures and the maximum length of the crystal grain of the microstructure of the obtained steel plate cross section when the slab of the steel No. 2 component in Table 1 is hot-rolled. Show.

図6に示すように仕上入側温度≧950℃、且つ、仕上出側温度≧780℃とすることにより、ミクロ組織の最大長を確実に10ミクロン以下に制御できたため、穴拡げ率を向上させ、プレス割れを回避することができる。好ましくは、仕上入側温度を化学成分、仕上圧延速度、仕上出側温度に応じて規制することが望ましい。   As shown in FIG. 6, by setting the finishing side temperature ≧ 950 ° C. and the finishing side temperature ≧ 780 ° C., the maximum length of the microstructure can be controlled to 10 microns or less, thereby improving the hole expansion rate. , Press cracks can be avoided. Preferably, it is desirable to regulate the finish entry temperature according to the chemical composition, finish rolling speed, finish finish temperature.

なお、仕上出側温度が920℃を超えると、ミクロ組織が全体的に粗大化し、プレス成形性劣化、スケール疵の発生等のマイナス面が強く現れるため、該温度を上限とする。   If the finishing temperature exceeds 920 ° C., the microstructure becomes coarse as a whole, and negative aspects such as deterioration of press formability and generation of scale wrinkles appear strongly, so this temperature is set as the upper limit.

仕上圧延後の冷却テーブルに於ける条件は特に規定しないが、ミクロ組織面積率の制御、ミクロ組織の微細化、複合組織化の促進を狙って、一般的に知られている冷却速度の多段制御(急冷、緩冷、等温保持の組み合わせ)や仕上圧延出側での直後急冷を実施してもよい。   Conditions for the cooling table after finish rolling are not specified, but generally known multi-stage control of the cooling rate with the aim of controlling the microstructure area ratio, refining the microstructure, and promoting complex formation (Combination of rapid cooling, slow cooling, and isothermal holding) or rapid cooling immediately after finishing rolling may be performed.

巻取温度は残留オーステナイトとマルテンサイトの内の1種又は2種の合計面積率を3%以上得るために、その上限を500℃とする。巻取温度が500℃を超えると、その合計面積率を3%以上得ることができず、優れた強度-伸びバランス(引張強さ×全伸び)が得られなくなる。   The upper limit of the coiling temperature is 500 ° C. in order to obtain a total area ratio of one or two of retained austenite and martensite of 3% or more. When the coiling temperature exceeds 500 ° C., the total area ratio cannot be 3% or more, and an excellent strength-elongation balance (tensile strength × total elongation) cannot be obtained.

さらに、巻取り後の鋼板の冷却は放冷をおこなってもよいし、強制冷却でもよい。   Furthermore, the steel sheet after winding may be cooled by cooling or forced cooling.

なお、圧延に供する鋼片はいわゆる冷片再加熱、HCR、HDRのいずれであってもかまわない。また、いわゆる薄肉連続鋳造による鋼片であってもかまわない。   In addition, the steel piece to be used for rolling may be so-called cold piece reheating, HCR, or HDR. Further, a steel piece by so-called thin-wall continuous casting may be used.

また、本発明による鋼板にZn等のめっきを施し耐食性の向上を図ったり、潤滑剤等を塗布しプレス成形性の一層の向上を図っても良い。   Further, the steel sheet according to the present invention may be plated with Zn or the like to improve corrosion resistance, or may be coated with a lubricant or the like to further improve press formability.

供試鋼のFe以外の化学成分を表2に示す。   Table 2 shows chemical components other than Fe of the test steel.

供試鋼の製鋼及び熱間圧延における製造条件を表3に示す。得られた熱延鋼板のミクロ組織と材質を表4及び表5に示す。   Table 3 shows the production conditions in steelmaking and hot rolling of the test steel. Tables 4 and 5 show the microstructure and material of the obtained hot-rolled steel sheet.

Figure 0004181036
Figure 0004181036

Figure 0004181036
Figure 0004181036

Figure 0004181036
Figure 0004181036

Figure 0004181036
Figure 0004181036

なお、特性評価やミクロ組織評価は以下の方法で実施した。   In addition, characteristic evaluation and microstructure evaluation were implemented with the following method.

引張試験はJIS5号にて実施し、引張強度(TS)、降伏強度(YS)、降伏比(YR=YS/TS×100)、全伸び(T.EL)、強度-伸びバランス(TS×T.EL)を求めた。   The tensile test was carried out in accordance with JIS No. 5, and tensile strength (TS), yield strength (YS), yield ratio (YR = YS / TS × 100), total elongation (T.EL), strength-elongation balance (TS × T) .EL).

穴拡げ率は日本鉄鋼連盟規格JFS T1001−1996により求めた。   The hole expansion rate was determined according to the Japan Iron and Steel Federation standard JFS T1001-1996.

ミクロ組織の結晶粒の最大長はナイタール試薬及び特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面を腐食した倍率400倍の光学顕微鏡写真から算出した。   The maximum length of the crystal grains of the microstructure was calculated from an optical micrograph at a magnification of 400 times in which the steel plate rolling direction cross section was corroded by the Nital reagent and the reagent disclosed in JP-A-59-219473.

鋼板内の介在物は研磨仕上げした鋼板圧延方向断面を顕微鏡観察(倍率400倍)し、最大長が20ミクロン以上の粗大介在物の数を積算した。   The inclusions in the steel sheet were polished and polished, and the cross section in the rolling direction of the steel sheet was observed with a microscope (magnification 400 times), and the number of coarse inclusions having a maximum length of 20 microns or more was integrated.

ミクロ組織の構成同定と面積率の測定、残留オーステナイトかつまたはマルテンサイトの最大長の測定はナイタール試薬、特開昭59−219473号公報に開示された試薬及び特開平5−163590号公報で開示された試薬により鋼板圧延方向断面を腐食した倍率1000倍の光学顕微鏡写真とX線解析により行った。   Microstructure identification and area ratio measurement, maximum retained austenite and / or martensite length measurement are disclosed in Nital reagent, reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473 and Japanese Patent Application Laid-Open No. 5-163590. An X-ray analysis and an optical micrograph at a magnification of 1000 times in which a cross section in the rolling direction of the steel plate was corroded with the above reagent.

X線解析により残留オーステナイト面積率(Fγ:単位は%)を算出する場合
はMo−Kα線により次式に従い、算出した。
When calculating the retained austenite area ratio (Fγ: unit is%) by X-ray analysis, it was calculated according to the following formula using Mo-Kα rays.

Fγ(%)=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
但し、α(211)、γ(220)、α(211)、γ(311)は面強度を示す。
Fγ (%) = (2/3) {100 / (0.7 × α (211) / γ (220) +1)} + (1/3) {100 / (0.78 × α (211) / γ (311) +1)}
However, α (211), γ (220), α (211), and γ (311) indicate surface strength.

本発明例(No.1、2、6、8、10、14、15、20)では、表5に示すように、優れた強度-穴拡げバランス(引張強さ×穴拡げ率で35000MPa・%以上)と優れた強度-伸びバランス(引張強さ×全伸びで18500MPa・%以上)を兼備したプレス成形性の優れた熱延高強度鋼板が得られている。   In the present invention examples (Nos. 1, 2, 6, 8, 10, 14, 15, 20), as shown in Table 5, an excellent strength-hole expansion balance (tensile strength × hole expansion ratio of 35000 MPa ·%) As described above, a hot-rolled high-strength steel sheet having excellent press formability and an excellent strength-elongation balance (tensile strength × 18500 MPa ·% or more in total elongation) is obtained.

一方、比較例(No.3〜5、7、9、11〜13、16〜19)はそれぞれ表1〜表3の備考欄に記載のように本願発明範囲外であるため、機械的特性(強度-穴拡げバランスと強度-伸びバランスが共に優れた特性)が低いものしか得られなかった。   On the other hand, Comparative Examples (Nos. 3 to 5, 7, 9, 11 to 13, 16 to 19) are out of the scope of the present invention as described in the remarks column of Tables 1 to 3, respectively. Only those with low strength-hole expansion balance and strength-elongation balance) were obtained.

穴拡げ率に及ぼす化学成分Pの影響を示す図である。It is a figure which shows the influence of the chemical component P which acts on a hole expansion rate. 穴拡げ率に及ぼすミクロ組織の最大長の影響を示す図である。It is a figure which shows the influence of the maximum length of a microstructure on a hole expansion rate. 穴拡げ率に及ぼす介在物個数の影響を示す図である。It is a figure which shows the influence of the number of inclusions which acts on a hole expansion rate. RHを用いた場合の溶鋼溶製の模式図である。It is a schematic diagram of molten steel melting at the time of using RH. 介在物個数に及ぼす脱硫用フラックス添加後の溶鋼環流回数の影響を示す図である。It is a figure which shows the influence of the molten steel recirculation frequency after the flux for desulfurization having added on the number of inclusions. ミクロ組織の最大長に及ぼす熱間圧延の仕上圧延機の仕上入側温度と仕上出側温度の影響を示す図である。It is a figure which shows the influence of the finishing entry side temperature of a finishing mill of a hot rolling, and the finishing delivery side temperature on the maximum length of a microstructure.

Claims (10)

化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板であって、
該鋼板断面のミクロ組織として、
残留オーステナイトとマルテンサイトの内の1種又は2種を合計面積率で3〜30%、
残部ミクロ組織がフェライトとベイナイトの内の1種又は2種よりなるとともに、
ミクロ組織の結晶粒の最大長が10ミクロン以下であり、
さらに、鋼板断面内に20ミクロン以上の介在物が1mm2当たり0.3個以下であることを特徴とする穴拡げ性に優れた複合組織鋼板。
As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A steel plate composed of the remaining Fe and inevitable impurities,
As the microstructure of the steel sheet cross section,
One or two of the retained austenite and martensite in a total area ratio of 3 to 30%,
The balance microstructure consists of one or two of ferrite and bainite,
The maximum length of the microstructure grain is 10 microns or less,
Furthermore, the composite structure steel plate excellent in the hole expansibility characterized by the inclusion of 0.3 or less inclusions per 1 mm 2 in the cross section of the steel plate.
化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板であって、
鋼板断面のミクロ組織として、
残留オーステナイトとマルテンサイトの内の1種又は2種を合計面積率で3〜30%、
パーライト面積率が0%超〜3%であり、
残部ミクロ組織がフェライトとベイナイトの内の1種又は2種よりなるとともに、
ミクロ組織の結晶粒の最大長が10ミクロン以下であり、
さらに、鋼板断面内に20ミクロン以上の介在物が1mm2当たり0.3個以下であることを特徴とする穴拡げ性に優れた複合組織鋼板。
As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A steel plate composed of the remaining Fe and inevitable impurities,
As the microstructure of the steel sheet cross section,
One or two of the retained austenite and martensite in a total area ratio of 3 to 30%,
The pearlite area ratio is over 0% to 3%,
The balance microstructure consists of one or two of ferrite and bainite,
The maximum length of the microstructure grain is 10 microns or less,
Furthermore, the composite structure steel plate excellent in the hole expansibility characterized by the inclusion of 0.3 or less inclusions per 1 mm 2 in the cross section of the steel plate.
ベイナイトのミクロビッカ−ス硬さが240未満であることを特徴とする請求項1または2に記載の穴拡げ性に優れた複合組織鋼板。  The composite steel sheet having excellent hole expandability according to claim 1 or 2, wherein the bainite has a micro Vickers hardness of less than 240. 化学成分として、質量%で、さらに、
Nb、V、Tiの内の1種又は2種以上を合計量で0.3%以下含むことを特徴とする請求項1〜3のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。
As a chemical component, in mass%,
The composite structure excellent in hole expansibility according to any one of claims 1 to 3, characterized by containing one or more of Nb, V, and Ti in a total amount of 0.3% or less. steel sheet.
化学成分として、質量%で、さらに、
Bを0.01%以下含むことを特徴とする請求項1〜4のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。
As a chemical component, in mass%,
The composite structure steel plate excellent in hole expansibility according to any one of claims 1 to 4, wherein B is contained in an amount of 0.01% or less.
化学成分として、質量%で、さらに、Ca、REMの内の1種又は2種を、Caにおいては0.01%以下、REMにおいては0.05%以下、含むことを特徴とする請求項1〜5のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板。  2. The chemical component according to claim 1, further comprising one or two of Ca and REM in 0.01% by mass or less and 0.05% or less in REM by mass%. The composite structure steel plate excellent in the hole expansibility as described in any one of -5. 化学成分として、質量%で、
C:0.03〜0.15%、
P≦0.010%、
S≦0.003%を含み、
SiとAlの内の1種又は2種を合計量で0.5〜4%含み、
Mn、Ni、Cr、Mo、Cuの内の1種又は2種以上を合計量で0.5〜4%含み、
残部Fe及び不可避的不純物よりなる鋼板の製造方法であって、
前記成分の溶鋼を溶製するに際し、溶鋼脱硫時の脱硫用フラックス添加後に1.5回以上の溶鋼を環流させ、
さらに該溶鋼の鋳造後に得られた鋼片を熱間圧延して鋼板を製造するに際し、仕上圧延を仕上入側温度≧950℃、かつ仕上出側温度:780〜920℃で実施し、500℃以下で得られた鋼板を巻き取ることを特徴とする穴拡げ性に優れた複合組織鋼板の製造方法。
As a chemical component,
C: 0.03-0.15%,
P ≦ 0.010%,
Including S ≦ 0.003%,
Including one or two of Si and Al in a total amount of 0.5 to 4%,
Including one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.5 to 4%,
A method for producing a steel sheet comprising the balance Fe and inevitable impurities,
When melting the molten steel of the above components, the molten steel is refluxed 1.5 times or more after the desulfurization flux addition at the time of molten steel desulfurization,
Furthermore, when the steel slab obtained after casting of the molten steel is hot-rolled to produce a steel plate, finish rolling is performed at a finish entry temperature ≧ 950 ° C. and a finish exit temperature: 780 to 920 ° C., and 500 ° C. The manufacturing method of the composite structure steel plate excellent in the hole expansibility characterized by winding up the steel plate obtained below.
化学成分として、質量%で、さらに、
Nb、V、Tiの内の1種又は2種以上を合計量で0.3%以下含むことを特徴とする請求項7に記載の穴拡げ性に優れた複合組織鋼板の製造方法。
As a chemical component, in mass%,
The method for producing a composite steel sheet having excellent hole expansibility according to claim 7, comprising one or more of Nb, V, and Ti in a total amount of 0.3% or less.
化学成分として、質量%で
さらにBを0.01%以下含むことを特徴とする請求項7または8に記載の穴拡げ性に優れた複合組織鋼板の製造方法。
The method for producing a composite steel sheet having excellent hole expansibility according to claim 7 or 8, further comprising 0.01% or less B by mass% as a chemical component.
化学成分として、質量%で、さらに、Ca、REMの1種又は2種を、Caにおいては0.01%以下、REMにおいては0.05%以下、含むことを特徴とする請求項7〜9のいずれかの項に記載の穴拡げ性に優れた複合組織鋼板の製造方法。  The chemical component further includes one or two of Ca and REM in terms of mass%, 0.01% or less in Ca and 0.05% or less in REM. The manufacturing method of the composite structure steel plate excellent in the hole expansibility as described in any one of the items.
JP2003515697A 2001-07-25 2002-07-25 Composite structure steel plate excellent in hole expansibility and its manufacturing method Expired - Fee Related JP4181036B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001224750 2001-07-25
PCT/JP2002/007568 WO2003010351A1 (en) 2001-07-25 2002-07-25 Multi-phase steel sheet excellent in hole expandability and method of producing the same

Publications (2)

Publication Number Publication Date
JP2004536965A JP2004536965A (en) 2004-12-09
JP4181036B2 true JP4181036B2 (en) 2008-11-12

Family

ID=19057856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003515697A Expired - Fee Related JP4181036B2 (en) 2001-07-25 2002-07-25 Composite structure steel plate excellent in hole expansibility and its manufacturing method

Country Status (7)

Country Link
EP (1) EP1412548B1 (en)
JP (1) JP4181036B2 (en)
KR (1) KR100548117B1 (en)
CN (1) CN1243844C (en)
DE (1) DE60206771T2 (en)
TW (1) TW567231B (en)
WO (1) WO2003010351A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059024A1 (en) 2002-12-26 2004-07-15 Nippon Steel Corporation High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
JP4235030B2 (en) * 2003-05-21 2009-03-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet having excellent local formability and a tensile strength of 780 MPa or more with suppressed increase in hardness of the weld
DE102004025717B9 (en) * 2004-05-26 2011-05-26 Voestalpine Stahl Gmbh High-strength multiphase steel with improved properties
CN101906567B (en) 2005-03-28 2014-07-02 株式会社神户制钢所 High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
JP4819489B2 (en) 2005-11-25 2011-11-24 Jfeスチール株式会社 High strength steel plate with excellent uniform elongation characteristics and method for producing the same
JP4998756B2 (en) * 2009-02-25 2012-08-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4883216B2 (en) * 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
BR112012024642B1 (en) * 2010-03-29 2018-02-06 Arcelormittal Investigación Y Desarollo Sl STEEL PRODUCT BETTER RESISTANCE TO ATMOSPHERIC CORROSION IN A SALINE ENVIRONMENT AND USE OF A STEEL PRODUCT
JP4941619B2 (en) * 2010-08-23 2012-05-30 住友金属工業株式会社 Cold rolled steel sheet and method for producing the same
UA112771C2 (en) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS
KR101443447B1 (en) * 2012-07-30 2014-09-19 현대제철 주식회사 High strength steel sheet and method for manufacturing the same
CN103074548B (en) * 2013-01-24 2016-02-24 宝山钢铁股份有限公司 A kind of high corrosion resistant type high strength is containing Al weather-resistant steel plate and manufacture method thereof
CN103510008B (en) * 2013-09-18 2016-04-06 济钢集团有限公司 A kind of hot-rolled ferrite-bainite High Strength Steel Plate and manufacture method thereof
CN103627953B (en) * 2013-12-12 2016-04-27 首钢总公司 A kind of insensitive containing aluminium Multiphase Steel and production method thereof to isothermal time
CN105980591A (en) * 2014-02-05 2016-09-28 安赛乐米塔尔股份公司 Hot formable, air hardenable, weldable, steel sheet
MX2017012953A (en) * 2015-04-10 2018-02-01 Nanosteel Co Inc Improved edge formability in metallic alloys.
US10465260B2 (en) 2015-04-10 2019-11-05 The Nanosteel Company, Inc. Edge formability in metallic alloys
KR102109272B1 (en) * 2018-10-01 2020-05-11 주식회사 포스코 A hot rolled steel sheet having excellent blanking properties and uniforminty, and a manufacturing method thereof
US20220106656A1 (en) * 2019-12-18 2022-04-07 Posco High-strength hot-rolled steel sheet having excellent blanking properties and uniformity, and manufacturing method thereof
US20230416886A1 (en) * 2021-01-12 2023-12-28 Nippon Steel Corporation Hot-rolled steel sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853762B2 (en) * 1991-05-30 1999-02-03 新日本製鐵株式会社 High yield ratio type hot rolled high strength steel sheet with excellent formability or formability and spot weldability
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
JPH1060593A (en) * 1996-06-10 1998-03-03 Kobe Steel Ltd High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production
JP3172505B2 (en) * 1998-03-12 2001-06-04 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent formability
JP3790357B2 (en) * 1998-03-31 2006-06-28 新日本製鐵株式会社 Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3890748B2 (en) * 1998-06-19 2007-03-07 Jfeスチール株式会社 High strength steel plate with excellent stretch flangeability and delayed fracture resistance
JP3678018B2 (en) * 1998-09-11 2005-08-03 Jfeスチール株式会社 Manufacturing method of high workability high tensile hot rolled steel sheet with excellent material uniformity
JP3870627B2 (en) * 1999-10-05 2007-01-24 Jfeスチール株式会社 Method for producing high phosphorus extra low carbon steel
KR100441414B1 (en) * 2000-04-21 2004-07-23 신닛뽄세이테쯔 카부시키카이샤 High fatigue strength steel sheet excellent in burring workability and method for producing the same

Also Published As

Publication number Publication date
KR100548117B1 (en) 2006-02-02
CN1243844C (en) 2006-03-01
JP2004536965A (en) 2004-12-09
CN1535323A (en) 2004-10-06
KR20040013156A (en) 2004-02-11
DE60206771D1 (en) 2006-03-02
EP1412548B1 (en) 2005-10-19
EP1412548A1 (en) 2004-04-28
TW567231B (en) 2003-12-21
WO2003010351A1 (en) 2003-02-06
DE60206771T2 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4181036B2 (en) Composite structure steel plate excellent in hole expansibility and its manufacturing method
US20080202645A1 (en) Multi-phase steel sheet excellent in hole expandability and method of producing the same
JP6237900B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
RU2627068C2 (en) HIGH-STRENGTH MULTI-PHASE STEEL AND METHOD FOR STRIP MANUFACTURE FROM THIS STEEL WITH MINIMUM TENSILE STRENGTH AT 580 MPa
KR100595946B1 (en) High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
US8828154B2 (en) Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
KR100976889B1 (en) Hot rolled steel sheet for processing and method for manufacturing the same
CN109642292B (en) High-strength steel sheet and method for producing same
KR20090016500A (en) High-strength composite steel sheet having excellent moldability and delayed fracture resistance
KR20120099505A (en) High-strength hot-dip galvanized steel sheet with excellent processability and impact resistance and process for producing same
JP5920118B2 (en) High-strength steel sheet excellent in formability and manufacturing method thereof
JP2007231369A (en) High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
CN111247258A (en) High-strength multi-phase steel and method for producing a steel strip from such a multi-phase steel
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP3793490B2 (en) High-strength hot-rolled steel sheet for processing excellent in strength-hole expansion ratio balance and shape freezing property, and method for producing the same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
KR20220119639A (en) Low silicon, low carbon equivalent gigapascal grade composite structure steel sheet/steel strip and manufacturing method thereof
JP2006183140A (en) High-strength cold rolled steel sheet and its production method
KR100756114B1 (en) Method for production of high strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics
WO2024121608A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
CA3233088A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
KR20230052290A (en) Cold-rolled and coated steel sheet and its manufacturing method
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
KR20240090672A (en) Cold rolled heat treated steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R151 Written notification of patent or utility model registration

Ref document number: 4181036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees