JP4180974B2 - Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor - Google Patents

Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor Download PDF

Info

Publication number
JP4180974B2
JP4180974B2 JP2003157156A JP2003157156A JP4180974B2 JP 4180974 B2 JP4180974 B2 JP 4180974B2 JP 2003157156 A JP2003157156 A JP 2003157156A JP 2003157156 A JP2003157156 A JP 2003157156A JP 4180974 B2 JP4180974 B2 JP 4180974B2
Authority
JP
Japan
Prior art keywords
cooling
air passage
cooling air
cooler
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003157156A
Other languages
Japanese (ja)
Other versions
JP2004364365A (en
Inventor
俊一 川路
信行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003157156A priority Critical patent/JP4180974B2/en
Publication of JP2004364365A publication Critical patent/JP2004364365A/en
Application granted granted Critical
Publication of JP4180974B2 publication Critical patent/JP4180974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、外気を機内に取り入れない密閉構造を有し鉄道等の車両を駆動する車両駆動用全閉自冷形電動機及び該電動機に備わる冷却器の製造方法に関する。
【0002】
【従来の技術】
一般に、電車等の鉄道車両では、車体の下に配置された台車に車両駆動用電動機を装荷し、この電動機の回転力を、歯車装置を介して車輪に伝達して車両を走行させるようにしている。
【0003】
従来この種の電動機は、機内の回転子軸に固定された通風ファンの運転時の回転によって、外気を機内に流通させて冷却を行う開放形自己通風冷却方式を採用していた。
【0004】
かかる開放形自己通風方式の電動機は、冷却外気に混入する塵埃によって電動機内が汚損されるのを防ぐため、入気口部に通風ろ過器を設け、通風ろ過器内のフィルターによって流入外気の塵埃を捕捉している。また、このフィルターの目詰まりによる流入外気の減少によって電動機の温度上昇が増大するのを防ぐために、比較的短期間の周期でフィルターの清掃を実施している。
【0005】
しかし、フィルターで完全に塵埃を捕捉することは難しいため、機内に侵入した塵埃は機内各部に付着して次第に集積し、絶縁性能の低下や冷却効果の下をきたすため、定期的に電動機を分解して内部の塵埃除去のための清掃を行う必要があった。
【0006】
このフィルターの保守の省力化と電動機の分解清掃の周期の延長による保守の省力化を図る目的で、全閉自冷形電動機の採用が検討されている。この全閉自冷形電動機の構造を、図9及び図10を参照して説明する。
【0007】
図9及び図10において、円筒有底状のステータフレーム1の内周部に円筒状のステータ鉄心2を有し、このステータ鉄心2の円周部に多数の溝を設け、この溝中にステータコイル3が取付けられる。ステータフレーム1の両端部に軸受6,7をそれぞれ内蔵したベアリングブラケット4とベアリングハウジング5が取付けられ、この軸受6,7によってロータシャフト8の両端側を支持している。
【0008】
ロータシャフト8の中央部にロータ鉄心9が取付けられ、ロータ鉄心9の外周部に多数の溝を設け、この溝の中心にロータバー10が取付けられている。ロータバー10の両端はエンドリング(短絡環)で一体的に結束され、全体として誘導電動機のかご形回転子を形成している。
【0009】
ロータ鉄心9の内周側には、複数個の通風穴9aを円周上に設けてある。ロータシャフト8の機内部に内気を循環させるための循環ファン11が取付けてある。
【0010】
ステータフレーム1の両端部に通気口1a,1bが設けられ、この通気口1a,1bを覆うように、接続風道12,13と複数のパイプ14と複数の冷却フィン15より成る冷却器が、ロータフレーム1の外側にボルトによって取付けられている。
【0011】
電動機は、ステータフレーム1に設けたアーム部1Cをボルトによって台車の枠に固定され、機外に張出したロータシャフト端部8aを、継手を介して図示しない歯車装置に接続し、この歯車装置は車輪と一体の車軸に接続していることより、電動機の回転力を車輪に伝達する構成となっている。
【0012】
かかる構成の下で、運転時の循環ファン11の回転によって、機内の内気は、通気口1aより冷却器の入気通路12aに進入し、更に複数の通風路14aを流通して排気通路13aに進入した後通気口1bより機内に流入する。機内に流入した内気は、ロータ鉄心の通風穴9aを流通して循環ファン11の内径側に戻る。
【0013】
このように全閉自冷形電動機は、運転時において内気が冷却器内と機内とを循環流通する。運転時にステータコイル3とロータバー10およびエンドリングが発熱し、これによって機内各部の温度が上昇するが、加熱した内気が冷却器内の通風路14aを流通する際に冷却フィン15により冷却され、冷却された内気が機内を流通することにより機内各部を冷却し、ステータコイル3とロータバー10の温度上昇が規定値以上になるのを防いでいる。
【0014】
冷却フィン15は、電動機の長手方向と直交して車両の進行方向と同方向に配列しているので、走行風が各冷却ファン15の間を流通する。これにより、冷却フィン15の放熱作用が向上し、通風路14を流通する内気の冷却性が向上する。
【0015】
このような構成によって、外気を機内に流通させることなく電動機の冷却を行うので、通風ろ過器のフィルターは不要となり、機内の汚損も皆無となるので、電動機の分解周期を延ばすことが出来、保守の省力化を図ることが出来るものである。
【0016】
しかしながら、この構造の車両駆動用全閉自冷形電動機においては、冷却器の通風路14aがパイプ構造で多数密集した状態に配置され、更に多数の冷却フィン15で区切られた構造のため、外気の塵埃や紙・布屑が付着しやすく、使用期間の経過に伴って次第にパイプ間に詰まって冷却性能を低下させる。
【0017】
そのため、定期的に圧縮空気の吹き付け等を行ってこの塵埃や布屑の除去を行うことが必要であるが、パイプ14と冷却フィン15が交錯していることより、奧の方に付着した塵埃等を十分に除去するのが困難になる。
【0018】
かかる課題を解決するものとして出願人は先に特許文献1に示す車両用全閉自冷形電動機を提案した。
【0019】
この電動機を、図11及び図12を参照して説明する。
【0020】
図11,図12において、冷却器は接続風道16,17と1つの風道18と風道18の内壁に設けられた多数の吸熱フィン19と風道18の外壁に設けられた多数の放熱フィン20によって形成され、吸熱フィン19は、風道18の長手方向と同一に配列し、放熱フィンは風道18の長手方向と直交して車両の進行方向と同一の方向に配列している。
【0021】
電動機の運転時には、循環ファン11の回転によって、内気がステータフレーム1の通気口1aより入気通路16aに流入し、その後、風道18内の通風路18aを流通し、排気通路17aを経て機内に流入し、機内のロータ鉄心の通風穴9aを流通して循環ファン11の内径側に戻る。
【0022】
この構造の冷却器では、車両走行時の冷却外気が1つの風道18の外周面に沿って流れるので、外気に混入した塵埃や布屑は風道18や放熱フィンに付着して止まることはなく、長期間でも塵埃の付着は少なくなる。また気吹き等の清掃作業も容易で確実に塵埃を除去することが可能となる。
【0023】
更に、風道18の内壁に多数の吸熱フィンを設けてあるため、従来のパイプ構造に比べて、吸熱面積を増大させ、流通内気の熱を効率よく吸収して放熱フィン20に伝達することが出来るため、内気の冷却効果が向上する。
【0024】
このように図11,12の構造の車両駆動用電動機においては、保守の改善と、冷却性能の向上を図ることが出来るものである。
【0025】
【特許文献1】
特開平11−356011号公報
【0026】
【発明が解決しようとする課題】
しかしながら、上述した全閉自冷形電動機は、開放自己通風冷却形電動機に比べた場合は冷却機能が劣ることより、電動機が大型化するのは避けられないものになっている。
【0027】
近年、車両の高速化、高性能化が著しく、駆動用電動機の高出力化、小型軽量化の要望が強くなっていると同時に、保守の省力化が望まれていることより、冷却性の向上も図り小形軽量化された全閉自冷形電動機の実現が望まれている。
【0028】
本発明は、冷却性の向上による小形軽量化と保守の省力化とを可能にする車両駆動用全閉自冷形電動機及び該電動機に備わる冷却器の製造方法を提供することを目的とする。
【0029】
【課題を解決するための手段】
上記課題を解決するために本発明に係る車両駆動用全閉自冷形電動機は、ロータシャフトの機内側に一端を取付けた内気循環ファンを設け、ステータフレームの両端側に開口部を設け、前記ステータフレームの機外部に冷却器を設け、当該冷却器の器内空間を前記ステータフレームの両側の開口部にそれぞれ連通して機内空気を前記冷却器内に循環流通させて冷却を行う車両駆動用全閉自冷形電動機において、
前記冷却器は、前記フレームの両端の開口部の外側にそれぞれ設けた接続風道と、この接続風道の間に少なくとも2個配置した平坦面を有する筒状の冷却風道と、この冷却風道の平坦面を対向させ且つ対向面間に形成した間隙通風路と、前記冷却風道の内周壁に設けた複数の吸熱フィンと、前記冷却風道の外周壁に設けた複数の放熱フィンとを備え、前記接続風道のそれぞれの内部空間の一端を前記ステータフレームの開口部を介して機内空間に連通すると共にそれぞれの他端を前記冷却風道の内部空間に連通してなり、前記間隙通風路が放熱フィンを有しない平坦空間となっていることを特徴とする。
【0030】
本発明の車両駆動用全閉自冷形電動機によれば、運転時の循環ファンの回転により機内空気が冷却器内を循環流通し、冷却風道内を流通する際に、空気の熱は冷却風道内壁の全周にわたって従来以上に多数設けた吸熱フィンに効率よく伝達し、冷却風道の外周壁に設けた放熱フィンより外気に放出される。更に冷却風道間に形成された間隙通風路を冷却外気が流通することより、外気への放熱が一層向上する。そのため、循環内気の冷却器による冷却性能が向上し、電動機の温度上昇を低下させることが出来るため、電動機の小形軽量化又は出力増大が図れる。
【0031】
本発明に係る車両駆動用全閉自冷形電動機に備わる冷却器の製造方法は、ロータシャフトの機内側に一端を取付けた内気循環ファンを設け、ステータフレームの両端側に開口部を設け、前記ステータフレームの機外部に冷却器を設け、当該冷却器の器内空間を前記ステータフレームの両側の開口部にそれぞれ連通して機内空気を前記冷却器内に循環流通させて冷却を行う車両駆動用全閉自冷形電動機における前記冷却器の製造方法において、
長手方向に縦割りの複数個の分割形とした冷却風道を形成し、
前記複数個の分割形とした冷却風道の間に、放熱フィンを有しない平坦空間としての間隙通風路を形成し、
分割された各々の冷却風道の内周壁面に複数個の吸熱フィンを溶接にて取付け、
前記吸熱フィンが取付いた分割形の冷却風道を合わせ、合せ面を溶接して一体の筒状の冷却風道とし、
この筒状の冷却風道の外周壁面に放熱フィンを複数個溶接すると共に冷却風道の両端部に接続風道を溶接することを特徴とする。
【0032】
本発明によれば、冷却風道内壁への吸熱フィンの溶接による取付けは、冷却風道の長さ方向全長に渡って確実にかつ容易に行うことが出来ると同時に、狭い間隔でより多くの吸熱フィンを取付けすることが出来るようになるため、冷却風道内を流通する循環内気の熱を効率よく吸熱フィンで吸収して効率よく冷却風道に伝達し、更に冷却風道より放熱フィンに伝達するため、循環内気の冷却性能が向上する。又、冷却風道の外周壁面に放熱フィンを溶接する場合は、間隙通風路に面した狭隘部分の溶接は無いので作業は向上する。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。
【0034】
(第1の実施の形態)
図1〜図3は本発明の第1の実施の形態の車両駆動用全閉自冷形電動機の構成を示している。
【0035】
図1〜図3において、ステータフレーム1の内周面に、円筒状のステータ鉄心2を取付け、ステータ鉄心1の内周部全周にわたって設けた多数の溝内に、ステータコイル3を納め、ステータフレーム1の両端部に、軸受6,7をそれぞれ内蔵したベアリングブラケット4とベアリングハウジング5を取付け、軸受6,7によってロータシャフト8を支持する。
【0036】
ロータシャフト8の長手中央部に、ロータ鉄心9を取付け、ロータ鉄心9の外周部には、全周にわたって多数の溝が設けられ、この溝内にロータバー10が収納され、ロータ鉄心9の内周側には、円周上にわたって通風穴9aが複数個形成されている。ロータシャフト8の機内位置の一端に、内気を循環させるための循環ファン11が取付けされる。
【0037】
ステータフレーム1の長手方向の両端部に、通気口1a,1bが設けられ、ステータフレーム1の外側に通気口1a,1bを覆うように接続風道21,23がそれぞれ取付けされ、両接続風道21,23の間にはステータフレーム1の長手方向と同一方向に延びた筒状の第1の冷却風道25と第2の冷却風道26が設けられている。
【0038】
接続風道21の内部は、案内板22によって、第1の入器路21aと第2の入器路21bとに仕切られ、接続風道23の内部は案内板24によって第1の排気路23aと第2の排気路23bとに仕切られている。
【0039】
第1の冷却風道25内に形成された、第1の通風路25aの一端側は、第1の入器路21aと通気口1aを介して、駆動側の機内空間に連通し、第1の通風路25aの他端側は、第1の排気路23aと通気口1bを介して反駆動側の機内空間に連通している。
【0040】
第2の冷却風道26内に形成された第2の通風路26aの一端側は、第2の入気路21bと通気口1aを介して、駆動側の機内空間と連通し、第2の通風路26aの他端側は第2の排気路23bと通気口1bを介して反駆動側の機内空間と連通する。
【0041】
前記冷却風道25,26の外周面にはそれぞれ平坦面を形成し、この平坦面を対向させて両冷却風道25,26の間に、間隙通風路27を形成する。前記冷却風道25,26のそれぞれの内周壁面に、冷却風道25,26の長手方向に延びる吸熱フィン28を内周上に多数配列して設けてある。
【0042】
さらに、冷却風道25,26の外周壁面に、冷却風道25,26の長手方向直交する方向に多数の放熱フィン29を配列して設けてある。
【0043】
尚、冷却風道25,26の間に形成された間隙通風路27部分に対面している冷却風道25,26の外周壁面には放熱フィンを設けていない。
【0044】
次に、本実施形態における冷却器の製造方法について図4にて説明する。
【0045】
第1の冷却風道25は、長手方向に縦割り状に2分割されたカバー25Aとカバー25Bより成り、最初にカバー25Aとカバー25Bの内周壁面にそれぞれ多数の吸熱フィン28を順次溶接(イ)により取付けする。
【0046】
次いで、カバー25Aとカバー25Bを合わせ筒状とし、合わせ部分2箇所を溶接(ロ)により一体化して第1の冷却風道25を完成させる。
【0047】
同様の方法で第2の冷却風道26を完成させる。
【0048】
次いで第1の冷却風道25と第2の冷却風道26とを所定の位置関係にて配置して、第1の冷却風道25と第2の冷却風道26と間に間隙通風路27を形成した後、多数の放熱フィン29を順次各々の冷却風道25,26の外周壁に溶接(ハ)する。
【0049】
次いで冷却風道25,26の両端側に、接続風道23、案内板22を取付け、冷却器を完成させる。
【0050】
以上のように構成された本実施の形態の車両駆動用全閉自冷形電動機の動作について以下に説明する。
【0051】
すなわち、図1に示すように電動機の運転時には、循環ファン11の回転により機内の空気は、循環ファン11の外周空間に吹き上げられた後に通気口1aより接続風道21内の第1の入器路21aと第2の入器路21bに流入した後、それぞれ第1の通風路25aと第2の通風路26aを流通し、接続風道23内の第1の排気路23aと第2の排気路23bを経て通気口1bより反駆動側の機内空間に流入する。
【0052】
機内に流入した内気は、ロータ鉄心9の外周面とステーター鉄心2の内周面の間隙と、ロータ鉄心9の通風穴9aを軸方向に流通して循環ファン11の内径側に戻る。
【0053】
このように運転時には、機内空気は冷却器内を経路として循環流通する。
【0054】
第1の通風路25aと第2の通風路26aを機内空気が流通する際に、多数設けた吸熱フィン28は熱を吸収して冷却風道25,26に伝達し、更に多数設けた放熱フィン29によって大気に放出する。
【0055】
この冷却作用は、2個の冷却風道25,26内の内周壁の全周面に多数の吸熱フィン28が設けて、従来より大幅に吸熱フィン28の数が増しているので、効率よく熱を吸収すると同時に、冷却風道25,26の外周面に多数の放熱フィン29を設け、更に車両の進行と同一の方向に配置してあることより、冷却外気の走行風が放熱フィン29の間を十分に流通するため効率よく熱を外気に放出するので、冷却作用は向上する。
【0056】
さらに第1の冷却風道25と第2の冷却風道26の間に形成された間隙通風路27も冷却外気が流通するので、この面に対面している冷却風道25,26自身も放熱して冷却作用が一層促進する。
【0057】
また機内より通気口1aを通して接続風道21内に流入する内気は案内板22によって均等に2個の冷却風道25,26内に導入され、一方側に集中して流通することがなく、全体として効率良く冷却風道25,26での冷却作用が行われる。
【0058】
さらに冷却風道25,26内の吸熱フィン28は、内気の流通方向に沿って配列しているため、内気の流通抵抗を小さく出来、循環風量を増大出来るので冷却性能を向上させることが出来る。
【0059】
尚、冷却器は、一般的に薄板鋼板で製造されるが、軽量化と冷却性能の向上を図るためアルミ板で製造される場合がある。しかしながら、アルミ板は溶接が容易でないことから、溶接箇所が狭隘部分であったり、吸熱フィンや放熱フィンが数多く有る場合は、自ずとアルミ製より鋼製になりがちであった。
【0060】
これに対し、本実施の形態の冷却器は図4で示した方法にて、長手方向に縦割2分割の冷却風道25,26の内周壁面に吸熱フィン28を溶接するものであり、また放熱フィン29を冷却風道25,26の外周壁面に溶接する場合に間隙通風路27に面した狭隘部分の溶接は無いので、容易に溶接作業を行うことができる。これにより、冷却器全体をアルミ材で構成することが出来、軽量化を図ることができる上に、吸熱フィン28、冷却風道25,26、放熱フィン29の熱伝導性が向上し、内気の冷却作用を一層向上させることが出来る。
【0061】
また運転時は、冷却外気が冷却風道25,26の外周面と放熱フィン29の間を流通するが、冷却風道25,26は2個の筒状のため、塵埃、布屑等が冷却風道と放熱フィン29に付着しにくく、長期使用で表面に塵埃が付着した場合でも、気吹き等で容易に清掃除去が出来る。2個の冷却風道25,26の間の比較的狭隘となっている間隙通風路27を、冷却外気が流通するが、この部分は放熱フィンを有しない平坦空間となっているので、塵埃・布屑等は付着することが少なくなる。なおかつ長期使用で付着した場合でも容易に清掃除去することが出来る。また同じく間隙通風路27は放熱フィンを有しない平坦空間となっているので、車両走行時に冷却外気(走行風)がこの間隙通風路を流通しやすくなく、間隙通風路に面した冷却風道面の冷却性が向上し、この部分に放熱フィンがなくとも冷却性能が低下することはない。
【0062】
このように本実施の形態の車両駆動用全閉自冷形電動機においては、冷却性能の向上を図ることが出来るので小形軽量化又は出力増大が図れると同時に、冷却器の清掃保守の軽減を図ることが出来る。
【0063】
(第2の実施の形態)
次に、本発明の第2の実施の形態の車両駆動用全閉自冷形電動機の構成について、図1〜図4と同一部分には同一符号を付した図5,図6に基づき説明する。
【0064】
本実施の形態では、接続風道21の内部に案内板30を設け、この案内板30によって通気口1aより流入する通路を電動機の軸方向(長手方向)で2分し、2分された一方の第1の入器路21cを第1の通風路25aに連通し、他方の第2の入器路21dを第2の通風路に連通するようにしたものである。
【0065】
一般に、車両駆動用電動機は、車両の進行方向が逆となる場合は、電動機の回転方向も逆転して使用される。また車両の速度に応じて電動機の回転数も大幅に変化する。そのため循環ファン11により外周側に吹き上げられる内気は放射状とならず、回転方向によって斜めに吹き上げる。更に回転数の上昇に伴って吹き上げ角度の傾斜は大きくなる。冷却器は機外上方、車両の上方空間を一部利用して設置するため、冷却器は通気口1aに対しては対称形ではなく、そのため、通気口1aより流入する内気の方向及び角度が変化した場合は、2個の通風路25a,26aに流入する内気は、片方に偏って流入する傾向となる。
【0066】
本実施の形態によれば、案内板3Dによって通気口1aを電動機の長手方向に2分してあることから、回転方向、回転数が変化した場合でも必ず同等量の内気が通風路25a,26bにそれぞれ導入されるので、全体の冷却性能を低下させることがなくなる。尚、案内板30は、冷却器の入気側の接続風道内に設けるだけで効果を発揮するので、必ずしも、排気側の接続風道内に設けなくとも良い。
【0067】
(第3の実施の形態)
次に本発明の第3の実施の形態の車両駆動用全閉自冷形電動機の構成について、図1〜図6と同一部分には同一符号を付した図7に基づいて説明する。
【0068】
本実施の形態は、第1の冷却風道31と第2の冷却風道32と第3の冷却風道33を設け、各々の冷却風道間に第1の間隙通風路34と第2の間隙通風路35を設け、各々の冷却風道の内周壁面の円周上に、冷却風道の長手方向に延びる多数の吸熱フィン36,37,38をそれぞれ設け、各々の冷却風道の間隙通風路34,35部分を除いた外周壁面に放熱フィン39を長手方向と直交した方向に配列して多数設けたものである。
【0069】
本実施の形態は、冷却器の構成スペースが外部条件により制約され、比較的、偏平状で構成したものであるが、この場合においても冷却風道を3個とし、間隙通風路を2個所に形成することにより、吸熱フィン36,37,38の数も多く設けることが出来、更に各冷却風道内を流通する内気を均一化(平準化)することが出来るので、冷却器全体の冷却性能を維持し、向上させることが出来る。
【0070】
(第4の実施の形態)
次に本発明の第4の実施の形態の車両駆動用全閉自冷形電動機の構成について図1〜図6と同一部分には同一符号を付した図8に基づいて説明する。
【0071】
本実施の形態は、第1の冷却風道41と第2の冷却風道42の間に間隙通風路43を形成し、各冷却風道の内周壁面に吸熱フィン46,47をそれぞれ多数設けると同時に、第1の冷却風道41の外周壁面と第2の冷却風道の外周壁面にそれぞれ放熱フィン44,45を設け、かつ間隙通風路43に対面する冷却風道の外周面と、間隙通風路43の前後に延長する高さhの空間部に前記放熱フィン44,45を設けない構成としたものである。
【0072】
本実施の形態では、間隙通風路43を冷却外気がより一層流通しやすくなるので、間隙通風路43に対面している冷却風道面の冷却が向上するため、比較的間隙通風路を形成する平坦部の面積が大きくなる場合に有効となる。冷却風道の内側に設ける吸熱フィンの吸熱面積に比較して、冷却風道の外側に設ける放熱フィンの全体の面積は大きく構成することは容易であるので、間隙通風路43とその前後の空間に放熱フィンがない場合でも冷却性能が低下することはない。更に、間隙通風路43の前後空間に放熱フィンが存在しない構成のため、長期使用においても塵埃・布屑等が付着しにくく、付着した場合での清掃除去も一層容易に行うことが出来る。
【0073】
上述した各実施の形態では、冷却器をアルミ材により製造する例を説明したが、良熱伝導性材料であると共に軽量材であるアルミ材に代えて他の良熱伝導性材料にて冷却器を製造することができる。
【0074】
また、電動機としては、かご形誘導電動機に限らず各種の車両駆動用の全閉自冷形電動機が含まれる。
【0075】
なお、本願発明は、上記各実施形態に限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合、組み合わされた効果が得られる。さらに、上記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合には、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。
【0076】
【発明の効果】
本発明によれば、循環内気の冷却器による冷却性能が向上することにより、機内各部の温度上昇を低減することが出来るため、電動機の小形軽量化あるいは、容量(出力)増大を図ることが出来ると同時に、冷却器の保守の省力化を図ることが出来る車両駆動用全閉自冷形電動機及び該電動機に備わる冷却器の製造方法を提供することが出来る。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の車両駆動用全閉自冷形電動機の縦断面図。
【図2】 図1のC−C断面図。
【図3】 図1のD−D断面図。
【図4】 本発明の第1の実施の形態の冷却器の製造方法を説明する図。
【図5】 本発明の第2の実施の形態を示す部分横断面図。
【図6】 本発明の第2の実施の形態を示す部分縦断面図。
【図7】 本発明の第3の実施の形態を示す部分断面図。
【図8】 本発明の第4の実施の形態を示す部分断面図。
【図9】 従来の車両駆動用全閉自冷形電動機の正面図。
【図10】 図9のA−A断面図。
【図11】 従来提案されている車両駆動用全閉自冷形電動機の断面図。
【図12】 図11のB−B断面図。
【符号の説明】
1…ステータフレーム、1a,1b…通気口、9…ロータ鉄心、9a…通風穴、11…循環ファン、21…接続風道、22…案内板、23…接続風道、25…第1の冷却風道、26…第2の冷却風道、27…間隙通風路、28…吸熱フィン、29…放熱フィン、30…案内板、31…第1の冷却風道、32…第2の冷却風道、33…第3の冷却風道、34…第1の間隙通風路、35…第2の間隙通風路、36,37,38…吸熱フィン、39…放熱フィン、41…第1の冷却風道、42…第2の冷却風道、43…間隙通風路、44,45…放熱フィン、46,47…吸熱フィン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle-driving fully-closed self-cooling electric motor that drives a vehicle such as a railway and has a sealed structure that does not take outside air into the apparatus, and a method of manufacturing a cooler provided in the electric motor.
[0002]
[Prior art]
Generally, in a railway vehicle such as a train, a vehicle driving motor is loaded on a carriage disposed under the vehicle body, and the rotational force of the motor is transmitted to wheels via a gear device so that the vehicle travels. Yes.
[0003]
Conventionally, this type of electric motor employs an open type self-ventilation cooling method in which cooling is performed by circulating outside air into the machine by rotation during operation of a ventilation fan fixed to a rotor shaft in the machine.
[0004]
In order to prevent the inside of the motor from being polluted by dust mixed into the cooled outside air, such an open self-ventilation type motor is provided with a ventilation filter at the inlet, and the dust in the inflowing outside air is filtered by the filter in the ventilation filter. Has captured. Further, in order to prevent an increase in the temperature of the electric motor due to a decrease in inflow outside air due to the clogging of the filter, the filter is cleaned at a relatively short period.
[0005]
However, it is difficult to completely capture the dust with the filter, so the dust that has entered the machine adheres to each part of the machine and gradually accumulates, resulting in a decrease in insulation performance and a cooling effect. Therefore, it was necessary to perform cleaning for removing dust inside.
[0006]
In order to save the maintenance of this filter and to save the maintenance by extending the period of disassembly and cleaning of the motor, the adoption of a fully-closed self-cooling motor is being studied. The structure of this fully-closed self-cooling electric motor will be described with reference to FIGS.
[0007]
9 and 10, a cylindrical stator iron core 2 is provided on the inner peripheral portion of a cylindrical bottomed stator frame 1, and a number of grooves are provided in the circumferential portion of the stator iron core 2. A coil 3 is attached. A bearing bracket 4 and a bearing housing 5 each including bearings 6 and 7 are attached to both ends of the stator frame 1, and both ends of the rotor shaft 8 are supported by the bearings 6 and 7.
[0008]
A rotor iron core 9 is attached to the central portion of the rotor shaft 8, a number of grooves are provided in the outer periphery of the rotor iron core 9, and a rotor bar 10 is attached to the center of the grooves. Both ends of the rotor bar 10 are integrally bound by an end ring (short-circuit ring) to form a cage rotor of the induction motor as a whole.
[0009]
On the inner peripheral side of the rotor core 9, a plurality of ventilation holes 9 a are provided on the circumference. A circulation fan 11 for circulating the inside air inside the rotor shaft 8 is attached.
[0010]
Ventilation holes 1a, 1b are provided at both ends of the stator frame 1, and a cooler comprising connection air passages 12, 13, a plurality of pipes 14, and a plurality of cooling fins 15 is provided so as to cover the ventilation holes 1a, 1b. It is attached to the outside of the rotor frame 1 by bolts.
[0011]
In the electric motor, the arm portion 1C provided on the stator frame 1 is fixed to the frame of the carriage by bolts, and the rotor shaft end portion 8a projecting outside the machine is connected to a gear device (not shown) via a joint. Since it is connected to an axle integrated with the wheel, the rotational force of the electric motor is transmitted to the wheel.
[0012]
Under such a configuration, due to the rotation of the circulation fan 11 during operation, the inside air in the machine enters the inlet passage 12a of the cooler through the vent 1a, and further flows through the plurality of ventilation passages 14a to the exhaust passage 13a. After entering, it flows into the aircraft through the vent 1b. The inside air that has flowed into the machine flows through the ventilation hole 9 a of the rotor core and returns to the inner diameter side of the circulation fan 11.
[0013]
Thus, in the fully-closed self-cooling electric motor, the inside air circulates and circulates between the cooler and the machine during operation. During operation, the stator coil 3, the rotor bar 10, and the end ring generate heat, which increases the temperature of each part in the machine, but the heated inside air is cooled by the cooling fins 15 when flowing through the ventilation path 14a in the cooler, The inside air thus circulated in the machine cools each part of the machine and prevents the temperature rise of the stator coil 3 and the rotor bar 10 from exceeding a specified value.
[0014]
Since the cooling fins 15 are arranged orthogonal to the longitudinal direction of the electric motor and in the same direction as the traveling direction of the vehicle, the traveling wind flows between the cooling fans 15. Thereby, the heat radiation effect | action of the cooling fin 15 improves, and the coolability of the inside air which distribute | circulates the ventilation path 14 improves.
[0015]
With such a configuration, the motor is cooled without circulating outside air in the machine, so there is no need for a filter for the ventilation filter, and there is no fouling in the machine. It is possible to save labor.
[0016]
However, in the fully-closed self-cooling electric motor for driving a vehicle having this structure, the air passages 14a of the cooler are arranged in a dense state in a pipe structure, and are further divided by a large number of cooling fins 15, so that the outside air It easily adheres to dust and paper / cloth waste, and gradually clogs between pipes as the usage period elapses, reducing cooling performance.
[0017]
Therefore, it is necessary to periodically remove the dust and cloth waste by blowing compressed air or the like. However, since the pipes 14 and the cooling fins 15 are interlaced, the dust adhering to the ridges. It becomes difficult to sufficiently remove etc.
[0018]
In order to solve this problem, the applicant previously proposed a fully-closed self-cooling electric motor for a vehicle as shown in Patent Document 1.
[0019]
This electric motor will be described with reference to FIGS. 11 and 12.
[0020]
In FIG. 11 and FIG. 12, the cooler is connected to the air passages 16, 17, one air passage 18, many heat absorbing fins 19 provided on the inner wall of the air passage 18, and many heat dissipations provided on the outer wall of the air passage 18. The heat absorbing fins 19 formed by the fins 20 are arranged in the same direction as the longitudinal direction of the air passage 18, and the radiating fins are arranged in the same direction as the traveling direction of the vehicle perpendicular to the longitudinal direction of the air way 18.
[0021]
During operation of the electric motor, the internal air flows into the intake passage 16a from the vent 1a of the stator frame 1 by the rotation of the circulation fan 11, and then flows through the ventilation passage 18a in the air passage 18 and passes through the exhaust passage 17a. And flows through the ventilation hole 9 a of the rotor core in the machine and returns to the inner diameter side of the circulation fan 11.
[0022]
In the cooler of this structure, the cooling outside air when the vehicle travels flows along the outer peripheral surface of one air passage 18, so that dust and cloth waste mixed in the outside air will not adhere to the air passage 18 and the radiation fins and stop. In addition, the adhesion of dust is reduced even for a long period of time. Moreover, it is possible to easily and reliably remove dust, such as air blowing.
[0023]
Furthermore, since many heat-absorbing fins are provided on the inner wall of the air passage 18, it is possible to increase the heat-absorbing area compared to the conventional pipe structure, efficiently absorb the heat of the circulating air and transmit it to the heat-radiating fins 20. This can improve the cooling effect of the inside air.
[0024]
Thus, in the vehicle drive motor having the structure shown in FIGS. 11 and 12, the maintenance can be improved and the cooling performance can be improved.
[0025]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-356011
[Problems to be solved by the invention]
However, the above-described fully-closed self-cooling electric motor has an inevitable cooling function as compared with an open self-air-cooling electric motor, and thus the motor is inevitably increased in size.
[0027]
In recent years, the speed and performance of vehicles have been remarkably improved, and the demand for higher output and smaller size and weight of drive motors has increased. However, it is desired to realize a fully-closed self-cooling motor that is small and lightweight.
[0028]
SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle drive fully-closed self-cooling electric motor capable of reducing the size and weight by improving the cooling performance and saving labor, and a method of manufacturing the cooler provided in the electric motor.
[0029]
[Means for Solving the Problems]
In order to solve the above problems, a fully-closed self-cooling electric motor for driving a vehicle according to the present invention is provided with an internal air circulation fan having one end attached to the inner side of the rotor shaft, and provided with openings on both ends of the stator frame, A vehicle drive unit that cools by providing a cooler outside the machine of the stator frame, and communicating the interior space of the cooler with the openings on both sides of the stator frame to circulate and circulate the air inside the cooler. In a fully-closed self-cooling motor,
The cooler includes a connection air passage provided outside the openings at both ends of the frame, a cylindrical cooling air passage having at least two flat surfaces arranged between the connection air passages, and the cooling air. A gap ventilation path formed between opposed faces with the flat surfaces of the road facing each other, a plurality of heat absorption fins provided on the inner peripheral wall of the cooling air passage, and a plurality of heat dissipation fins provided on the outer peripheral wall of the cooling air passage the provided, Ri Na communicates the respective other ends with one end of each of the inner space of the connecting air passage communicating with the cabin space via an opening portion of the stator frame in the internal space of the cooling air path, said The gap ventilation path is a flat space having no heat radiation fins .
[0030]
According to the fully-closed self-cooling motor for driving a vehicle of the present invention, when the air in the machine circulates and circulates in the cooler due to the rotation of the circulation fan during operation, the heat of the air is cooled by the cooling air. The heat is efficiently transmitted to the heat-absorbing fins provided more than before over the entire circumference of the inner wall of the road, and is discharged to the outside air from the heat-radiating fins provided on the outer peripheral wall of the cooling air passage. Further, since the cooling outside air flows through the gap ventilation path formed between the cooling air passages, the heat radiation to the outside air is further improved. As a result, the cooling performance of the circulating air cooler can be improved and the temperature rise of the motor can be reduced, so that the motor can be reduced in size and weight or the output can be increased.
[0031]
A method for manufacturing a cooler provided in a fully-closed self-cooling electric motor for driving a vehicle according to the present invention includes an internal air circulation fan having one end attached to the inner side of a rotor shaft, and openings at both ends of the stator frame, A vehicle drive unit that cools by providing a cooler outside the machine of the stator frame, and communicating the interior space of the cooler with the openings on both sides of the stator frame to circulate and circulate the air inside the cooler. In the manufacturing method of the cooler in a fully-closed self-cooling electric motor,
Forming a cooling air passage that is divided into a plurality of vertically divided parts in the longitudinal direction,
Between the plurality of divided cooling air passages, a gap air passage is formed as a flat space having no heat radiation fins,
A plurality of endothermic fins are attached to the inner peripheral wall surface of each divided cooling air passage by welding,
Combine the split cooling air passages to which the endothermic fins are attached, weld the mating surfaces into an integral cylindrical cooling air passage,
A plurality of radiating fins are welded to the outer peripheral wall surface of the cylindrical cooling air passage, and connection air passages are welded to both ends of the cooling air passage.
[0032]
According to the present invention, the attachment of the heat absorbing fins to the inner wall of the cooling air passage by welding can be reliably and easily performed over the entire length of the cooling air passage, and at the same time, more heat absorption can be achieved at a narrow interval. Since the fins can be attached, the heat of the circulating air circulating in the cooling air passage is efficiently absorbed by the heat-absorbing fins and efficiently transmitted to the cooling air passage, and further transmitted from the cooling air passage to the heat radiating fins. Therefore, the cooling performance of the circulating internal air is improved. In addition, when the radiating fin is welded to the outer peripheral wall surface of the cooling air passage, the work is improved because there is no welding of the narrow portion facing the gap ventilation passage.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034]
(First embodiment)
1 to 3 show the configuration of a vehicle drive fully-closed self-cooling electric motor according to a first embodiment of the present invention.
[0035]
1 to 3, a cylindrical stator iron core 2 is attached to the inner peripheral surface of the stator frame 1, and the stator coil 3 is placed in a number of grooves provided over the entire inner circumference of the stator iron core 1. A bearing bracket 4 and a bearing housing 5 each incorporating bearings 6 and 7 are attached to both ends of the frame 1, and the rotor shaft 8 is supported by the bearings 6 and 7.
[0036]
A rotor core 9 is attached to the longitudinal center portion of the rotor shaft 8, and a large number of grooves are provided on the outer periphery of the rotor core 9, and a rotor bar 10 is accommodated in the grooves. On the side, a plurality of ventilation holes 9a are formed over the circumference. A circulation fan 11 for circulating the inside air is attached to one end of the rotor shaft 8 at the in-machine position.
[0037]
Ventilation holes 1a and 1b are provided at both ends in the longitudinal direction of the stator frame 1, and connection air paths 21 and 23 are attached to the outside of the stator frame 1 so as to cover the ventilation holes 1a and 1b, respectively. A cylindrical first cooling air passage 25 and a second cooling air passage 26 extending in the same direction as the longitudinal direction of the stator frame 1 are provided between 21 and 23.
[0038]
The inside of the connection air passage 21 is divided into a first inlet passage 21 a and a second inlet passage 21 b by a guide plate 22, and the inside of the connection air passage 23 is a first exhaust passage 23 a by a guide plate 24. And the second exhaust path 23b.
[0039]
One end side of the first ventilation passage 25a formed in the first cooling air passage 25 is communicated with the interior space on the driving side via the first inlet passage 21a and the vent hole 1a. The other end of the air passage 25a communicates with the in-machine space on the non-driving side via the first exhaust passage 23a and the vent 1b.
[0040]
One end side of the second ventilation passage 26a formed in the second cooling air passage 26 communicates with the interior space on the driving side via the second inlet passage 21b and the vent 1a, and the second The other end side of the ventilation path 26a communicates with the interior space on the non-driving side via the second exhaust path 23b and the vent 1b.
[0041]
A flat surface is formed on each of the outer peripheral surfaces of the cooling air passages 25 and 26, and a gap ventilation passage 27 is formed between the cooling air passages 25 and 26 with the flat surfaces facing each other. A large number of heat-absorbing fins 28 extending in the longitudinal direction of the cooling air passages 25 and 26 are arranged on the inner peripheral wall surface of each of the cooling air passages 25 and 26 on the inner periphery.
[0042]
Further, a large number of heat radiation fins 29 are arranged on the outer peripheral wall surfaces of the cooling air passages 25 and 26 in a direction orthogonal to the longitudinal direction of the cooling air passages 25 and 26.
[0043]
In addition, the radiation fin is not provided in the outer peripheral wall surface of the cooling air path 25 and 26 which has faced the clearance ventilation path 27 part formed between the cooling air paths 25 and 26. FIG.
[0044]
Next, the manufacturing method of the cooler in this embodiment is demonstrated in FIG.
[0045]
The first cooling air passage 25 is composed of a cover 25A and a cover 25B which are divided into two in the longitudinal direction. First, a number of heat absorbing fins 28 are sequentially welded to the inner peripheral wall surfaces of the cover 25A and the cover 25B ( Install according to b).
[0046]
Next, the cover 25A and the cover 25B are combined into a cylindrical shape, and the two portions to be combined are integrated by welding (B) to complete the first cooling air passage 25.
[0047]
The second cooling air passage 26 is completed in the same manner.
[0048]
Next, the first cooling air passage 25 and the second cooling air passage 26 are arranged in a predetermined positional relationship, and the gap air passage 27 is provided between the first cooling air passage 25 and the second cooling air passage 26. After a plurality of radiating fins 29 are formed, a large number of radiating fins 29 are sequentially welded (c) to the outer peripheral walls of the respective cooling air passages 25 and 26.
[0049]
Next, the connection air passage 23 and the guide plate 22 are attached to both ends of the cooling air passages 25 and 26 to complete the cooler.
[0050]
The operation of the vehicle drive fully-closed self-cooling electric motor of the present embodiment configured as described above will be described below.
[0051]
That is, as shown in FIG. 1, during operation of the electric motor, the air in the machine is blown up to the outer peripheral space of the circulation fan 11 by the rotation of the circulation fan 11, and then the first inlet in the connection air passage 21 from the vent 1a. After flowing into the passage 21a and the second inlet passage 21b, the first and second exhaust passages 25a and 26a flow through the first and second exhaust passages 25a and 26a, respectively. The air flows into the in-flight space on the side opposite to the driving side from the vent 1b through the passage 23b.
[0052]
The inside air that has flowed into the machine flows axially through the gap between the outer peripheral surface of the rotor core 9 and the inner peripheral surface of the stator core 2 and the ventilation hole 9a of the rotor core 9, and returns to the inner diameter side of the circulation fan 11.
[0053]
In this way, during operation, the in-machine air circulates through the cooler as a route.
[0054]
When the in-machine air flows through the first ventilation path 25a and the second ventilation path 26a, a large number of the heat absorption fins 28 absorb and transmit the heat to the cooling air paths 25 and 26, and a large number of the heat radiation fins provided. 29 to the atmosphere.
[0055]
In this cooling action, a large number of heat absorbing fins 28 are provided on the entire peripheral surface of the inner peripheral wall in the two cooling air passages 25, 26, and the number of heat absorbing fins 28 is greatly increased as compared with the conventional one. At the same time, a large number of radiating fins 29 are provided on the outer peripheral surfaces of the cooling air passages 25, 26, and are arranged in the same direction as the vehicle travels. Since the heat is efficiently released to the outside air, the cooling action is improved.
[0056]
Further, since the cooling outside air also flows through the gap ventilation passage 27 formed between the first cooling air passage 25 and the second cooling air passage 26, the cooling air passages 25 and 26 themselves facing this surface also dissipate heat. Thus, the cooling action is further promoted.
[0057]
Also, the inside air flowing into the connection air passage 21 from the inside of the machine through the vent 1a is equally introduced into the two cooling air passages 25 and 26 by the guide plate 22, and does not circulate in a concentrated manner on one side. As a result, the cooling action in the cooling air passages 25 and 26 is efficiently performed.
[0058]
Furthermore, since the endothermic fins 28 in the cooling air passages 25 and 26 are arranged along the flow direction of the inside air, the flow resistance of the inside air can be reduced and the circulation air volume can be increased, so that the cooling performance can be improved.
[0059]
The cooler is generally manufactured from a thin steel plate, but may be manufactured from an aluminum plate in order to reduce weight and improve cooling performance. However, since it is not easy to weld the aluminum plate, when the welded portion is a narrow portion or there are a large number of heat-absorbing fins and heat-dissipating fins, they tend to be made of steel rather than aluminum.
[0060]
On the other hand, the cooler of the present embodiment welds the heat-absorbing fins 28 to the inner peripheral wall surfaces of the cooling air passages 25 and 26 that are vertically divided into two in the longitudinal direction by the method shown in FIG. In addition, when welding the radiating fins 29 to the outer peripheral wall surfaces of the cooling air passages 25 and 26, there is no welding of the narrow portion facing the gap air passage 27, so that the welding operation can be easily performed. As a result, the entire cooler can be made of an aluminum material, and the weight can be reduced. In addition, the thermal conductivity of the heat absorbing fins 28, the cooling air passages 25 and 26, and the heat radiating fins 29 is improved. The cooling effect can be further improved.
[0061]
During operation, the cooling outside air flows between the outer peripheral surfaces of the cooling air passages 25 and 26 and the radiation fins 29. Since the cooling air passages 25 and 26 have two cylindrical shapes, dust, cloth waste, etc. are cooled. Even if dust adheres to the surface after long-term use, it can be easily removed by air blowing or the like. Cooling outside air circulates through a relatively narrow gap air passage 27 between the two cooling air passages 25 and 26, but this portion is a flat space having no heat radiating fins. Cloth waste and the like are less likely to adhere. Moreover, even if it adheres after long-term use, it can be easily removed by cleaning. Similarly, the gap ventilation path 27 is a flat space having no heat radiating fins, so that cooling outside air (running wind) does not easily flow through the gap ventilation path when the vehicle travels, and the cooling air path surface facing the gap ventilation path. The cooling performance is improved, and even if there is no heat radiation fin in this portion, the cooling performance is not lowered.
[0062]
As described above, in the fully closed self-cooling electric motor for driving the vehicle according to the present embodiment, the cooling performance can be improved, so that the size and weight can be reduced or the output can be increased, and at the same time, the cleaning maintenance of the cooler can be reduced. I can do it.
[0063]
(Second Embodiment)
Next, the configuration of the vehicle drive fully-closed self-cooling electric motor according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6 in which the same parts as those in FIGS. .
[0064]
In the present embodiment, a guide plate 30 is provided inside the connection air passage 21, and the guide plate 30 divides the passage flowing in from the vent hole 1a into two parts in the axial direction (longitudinal direction) of the motor. The first inlet path 21c communicates with the first ventilation path 25a, and the other second inlet path 21d communicates with the second ventilation path.
[0065]
In general, when the traveling direction of the vehicle is reversed, the motor for driving the vehicle is used with the rotation direction of the motor reversed. Further, the number of rotations of the electric motor varies greatly according to the speed of the vehicle. Therefore, the inside air blown up to the outer peripheral side by the circulation fan 11 does not radiate and blows up obliquely depending on the rotation direction. Further, as the rotational speed increases, the inclination of the blowing angle increases. Since the cooler is installed by using a part of the space above the outside of the machine and the upper space of the vehicle, the cooler is not symmetrical with respect to the vent 1a. Therefore, the direction and angle of the inside air flowing into the vent 1a is different. When changed, the inside air flowing into the two ventilation paths 25a and 26a tends to flow in one direction.
[0066]
According to the present embodiment, since the vent hole 1a is divided into two in the longitudinal direction of the electric motor by the guide plate 3D, even if the rotation direction and the number of rotations are changed, the same amount of inside air is surely supplied to the ventilation paths 25a and 26b. Therefore, the overall cooling performance is not deteriorated. The guide plate 30 is not necessarily provided in the connection air passage on the exhaust side because the guide plate 30 is effective only by being provided in the connection air passage on the intake side of the cooler.
[0067]
(Third embodiment)
Next, the configuration of a fully-closed self-cooling electric motor for driving a vehicle according to a third embodiment of the present invention will be described with reference to FIG. 7 in which the same parts as those in FIGS.
[0068]
In the present embodiment, a first cooling air passage 31, a second cooling air passage 32, and a third cooling air passage 33 are provided, and the first gap air passage 34 and the second air passage 34 are provided between the respective cooling air passages. A gap ventilation passage 35 is provided, and a number of heat absorbing fins 36, 37, 38 extending in the longitudinal direction of the cooling air passage are provided on the circumference of the inner peripheral wall surface of each cooling air passage. A large number of radiating fins 39 are arranged in the direction perpendicular to the longitudinal direction on the outer peripheral wall surface excluding the air passages 34 and 35.
[0069]
In the present embodiment, the configuration space of the cooler is limited by external conditions and is configured to be relatively flat. In this case as well, there are three cooling air passages and two gap ventilation passages. By forming it, it is possible to provide a large number of heat-absorbing fins 36, 37, 38, and further, the inside air flowing through each cooling air passage can be made uniform (leveled), so that the cooling performance of the entire cooler can be improved. Can be maintained and improved.
[0070]
(Fourth embodiment)
Next, the configuration of a fully-closed self-cooling electric motor for driving a vehicle according to a fourth embodiment of the present invention will be described with reference to FIG. 8 in which the same parts as those in FIGS.
[0071]
In the present embodiment, a gap ventilation passage 43 is formed between the first cooling air passage 41 and the second cooling air passage 42, and a large number of heat absorbing fins 46 and 47 are provided on the inner peripheral wall surface of each cooling air passage. At the same time, radiating fins 44 and 45 are provided on the outer peripheral wall surface of the first cooling air passage 41 and the outer peripheral wall surface of the second cooling air passage, respectively, and the outer peripheral surface of the cooling air passage facing the gap ventilation passage 43 and the gap In this configuration, the heat radiation fins 44 and 45 are not provided in a space portion having a height h extending before and after the ventilation path 43.
[0072]
In the present embodiment, since the cooling outside air can more easily flow through the gap ventilation path 43, the cooling of the cooling air passage surface facing the gap ventilation path 43 is improved, so that a relatively gap ventilation path is formed. This is effective when the area of the flat portion increases. Compared to the heat absorption area of the heat sink fin provided inside the cooling air passage, the entire area of the heat radiating fin provided outside the cooling air passage can be easily increased. Even if there is no heat radiating fin, the cooling performance is not lowered. Further, since there is no heat radiating fin in the front and rear space of the gap ventilation path 43, dust, cloth waste and the like are less likely to adhere even during long-term use, and cleaning and removal in the case of adhesion can be performed more easily.
[0073]
In each of the above-described embodiments, an example in which the cooler is manufactured from an aluminum material has been described. However, the cooler is made of another good heat conductive material instead of an aluminum material that is a light heat material as well as a good heat conductive material. Can be manufactured.
[0074]
Further, the electric motor is not limited to a squirrel-cage induction motor, but includes a fully-closed self-cooling electric motor for driving various vehicles.
[0075]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. In addition, the embodiments may be appropriately combined as much as possible, and in that case, combined effects can be obtained. Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, when an invention is extracted by omitting some constituent elements from all the constituent elements shown in the embodiment, when the extracted invention is implemented, the omitted part is appropriately supplemented by a well-known common technique. It is what is said.
[0076]
【The invention's effect】
According to the present invention, since the cooling performance of the circulating air cooler is improved, the temperature rise of each part in the machine can be reduced, so that the motor can be reduced in size and weight or the capacity (output) can be increased. At the same time, it is possible to provide a fully-closed self-cooling electric motor for driving a vehicle that can save labor for maintenance of the cooler and a method for manufacturing the cooler provided in the motor.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a fully-closed self-cooling electric motor for driving a vehicle according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line CC in FIG.
3 is a cross-sectional view taken along the line DD of FIG.
FIG. 4 is a diagram illustrating a method for manufacturing the cooler according to the first embodiment of this invention.
FIG. 5 is a partial cross-sectional view showing a second embodiment of the present invention.
FIG. 6 is a partial longitudinal sectional view showing a second embodiment of the present invention.
FIG. 7 is a partial sectional view showing a third embodiment of the present invention.
FIG. 8 is a partial cross-sectional view showing a fourth embodiment of the present invention.
FIG. 9 is a front view of a conventional closed self-cooling electric motor for driving a vehicle.
10 is a cross-sectional view taken along line AA in FIG.
FIG. 11 is a sectional view of a conventionally proposed fully-closed self-cooling electric motor for driving a vehicle.
12 is a sectional view taken along line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stator frame, 1a, 1b ... Ventilation hole, 9 ... Rotor core, 9a ... Ventilation hole, 11 ... Circulation fan, 21 ... Connection airway, 22 ... Guide plate, 23 ... Connection airway, 25 ... 1st cooling Air passage, 26 ... second cooling air passage, 27 ... gap air passage, 28 ... heat absorption fin, 29 ... radiation fin, 30 ... guide plate, 31 ... first cooling air passage, 32 ... second cooling air passage , 33 ... third cooling air passage, 34 ... first gap air passage, 35 ... second gap air passage, 36, 37, 38 ... heat absorbing fins, 39 ... heat dissipating fins, 41 ... first cooling air passage 42 ... 2nd cooling air path, 43 ... Gap ventilation path, 44, 45 ... Radiation fin, 46, 47 ... Endothermic fin.

Claims (6)

ロータシャフトの機内側に一端を取付けた内気循環ファンを設け、ステータフレームの両端側に開口部を設け、前記ステータフレームの機外部に冷却器を設け、当該冷却器の器内空間を前記ステータフレームの両側の開口部にそれぞれ連通して機内空気を前記冷却器内に循環流通させて冷却を行う車両駆動用全閉自冷形電動機において、
前記冷却器は、前記フレームの両端の開口部の外側にそれぞれ設けた接続風道と、この接続風道の間に少なくとも2個配置した平坦面を有する筒状の冷却風道と、この冷却風道の平坦面を対向させ且つ対向面間に形成した間隙通風路と、前記冷却風道の内周壁に設けた複数の吸熱フィンと、前記冷却風道の外周壁に設けた複数の放熱フィンとを備え、
前記接続風道のそれぞれの内部空間の一端を前記ステータフレームの開口部を介して機内空間に連通すると共にそれぞれの他端を前記冷却風道の内部空間に連通してなり、前記間隙通風路が放熱フィンを有しない平坦空間となっていることを特徴とする車両駆動用全閉自冷形電動機。
An internal air circulation fan having one end attached to the inner side of the rotor shaft is provided, openings are provided on both ends of the stator frame, a cooler is provided outside the stator frame, and the internal space of the cooler is provided in the stator frame. In a fully-closed self-cooling electric motor for driving a vehicle, which communicates with openings on both sides of the vehicle and circulates and circulates air inside the cooler to cool the vehicle,
The cooler includes a connection air passage provided outside the openings at both ends of the frame, a cylindrical cooling air passage having at least two flat surfaces arranged between the connection air passages, and the cooling air. A gap ventilation path formed between opposed faces with the flat surfaces of the road facing each other, a plurality of heat absorption fins provided on the inner peripheral wall of the cooling air passage, and a plurality of heat dissipation fins provided on the outer peripheral wall of the cooling air passage With
Ri Na communicates the respective other end communicates with the machine space through the opening of the stator frame one end of each of the inner space of the connecting air passage to the interior space of the cooling air passage, the gap ventilation passage A fully-closed self-cooling electric motor for driving a vehicle, characterized in that is a flat space having no heat radiation fins .
前記冷却風道の内周壁面に設ける複数の吸熱フィンを、前記冷却風道の長手方向に長くなるよう全周上に配列し、前記冷却風道の外周壁面に設ける複数の放熱フィンを冷却風道の長手方向と直交する方向に配列したことを特徴とする請求項に記載の車両駆動用全閉自冷形電動機。A plurality of heat sink fins provided on the inner peripheral wall surface of the cooling air passage are arranged on the entire circumference so as to be elongated in the longitudinal direction of the cooling air passage, and a plurality of heat dissipating fins provided on the outer peripheral wall surface of the cooling air passage are provided as cooling air. The fully-closed self-cooling electric motor for driving a vehicle according to claim 1 , wherein the electric motor is arranged in a direction perpendicular to the longitudinal direction of the road. 前記接続風道の入気側の内部に案内板を設け、この案内板によって入気口より流入する内気を分流させて複数の冷却風道内に導入する構造としたことを特徴とする請求項1又は2に記載の車両駆動用全閉自冷形電動機。2. A structure in which a guide plate is provided inside the inlet side of the connection air passage, and the inside air flowing in from the air inlet is divided by the guide plate and introduced into a plurality of cooling air passages. Or a fully-closed self-cooling electric motor for driving a vehicle according to 2 ; 前記複数個の冷却風道のそれぞれの外周壁面に独立した放熱フィンを複数個設ける構成とし、同時に前記冷却風道の互の平坦面を対向させて間に形成した間隙通風路と、この間隙通風路の延長した空間範囲に前記放熱フィンが配置されていないことを特徴とする請求項1乃至のいずれか一項に記載の車両駆動用全閉自冷形電動機。A plurality of independent heat dissipating fins are provided on the outer peripheral wall surfaces of each of the plurality of cooling air passages, and at the same time, a gap ventilation passage formed between the flat surfaces of the cooling air passages facing each other, and the gap ventilation air All enclosed self-cooling type motor for driving a vehicle according to any one of claims 1 to 3, characterized in that the radiating fins in extended spatial extent of the road is not disposed. ロータシャフトの機内側に一端を取付けた内気循環ファンを設け、ステータフレームの両端側に開口部を設け、前記ステータフレームの機外部に冷却器を設け、当該冷却器の器内空間を前記ステータフレームの両側の開口部にそれぞれ連通して機内空気を前記冷却器内に循環流通させて冷却を行う車両駆動用全閉自冷形電動機における前記冷却器の製造方法において、
長手方向に縦割りの複数個の分割形とした冷却風道を形成し、
前記複数個の分割形とした冷却風道の間に、放熱フィンを有しない平坦空間としての間隙通風路を形成し、
分割された各々の冷却風道の内周壁面に複数個の吸熱フィンを溶接にて取付け、
前記吸熱フィンが取付いた分割形の冷却風道を合わせ、合せ面を溶接して一体の筒状の冷却風道とし、
この筒状の冷却風道の外周壁面に放熱フィンを複数個溶接すると共に冷却風道の両端部に接続風道を溶接することを特徴とする車両駆動用全閉自冷形電動機に備わる冷却器の製造方法。
An internal air circulation fan having one end attached to the inner side of the rotor shaft is provided, openings are provided on both ends of the stator frame, a cooler is provided outside the stator frame, and the internal space of the cooler is provided in the stator frame. In the method of manufacturing the cooler in a fully-closed self-cooling electric motor for driving a vehicle that performs cooling by circulating and circulating in-machine air into the cooler, respectively, in communication with openings on both sides of the cooler,
Forming a cooling air passage that is divided into a plurality of vertically divided parts in the longitudinal direction,
Between the plurality of divided cooling air passages, a gap air passage is formed as a flat space having no heat radiation fins,
A plurality of endothermic fins are attached to the inner peripheral wall surface of each divided cooling air passage by welding,
Combine the split cooling air passages to which the endothermic fins are attached, weld the mating surfaces into an integral cylindrical cooling air passage,
A cooler provided in a fully-closed self-cooling electric motor for driving a vehicle, wherein a plurality of radiating fins are welded to the outer peripheral wall surface of the cylindrical cooling air passage, and connection air passages are welded to both ends of the cooling air passage. Manufacturing method.
前記冷却器を構成する少なくとも前記接続風道、前記冷却風道、前記吸熱フィンおよび前記放熱フィンを良熱伝導性材料で製造し、この冷却器を前記車両駆動用全閉自冷形電動機のステータフレームの外側に脱着自在に取付けることを特徴とする請求項に記載の車両駆動用全閉自冷形電動機に備わる冷却器の製造方法。At least the connecting air passage, the cooling air passage, the heat-absorbing fins, and the heat-radiating fins constituting the cooler are manufactured from a highly heat-conductive material, and the cooler is a stator of the fully-closed self-cooling electric motor for driving the vehicle. 6. The method for manufacturing a cooler provided in a fully-closed self-cooling electric motor for driving a vehicle according to claim 5 , wherein the cooling device is detachably attached to the outside of the frame.
JP2003157156A 2003-06-02 2003-06-02 Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor Expired - Fee Related JP4180974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157156A JP4180974B2 (en) 2003-06-02 2003-06-02 Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157156A JP4180974B2 (en) 2003-06-02 2003-06-02 Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor

Publications (2)

Publication Number Publication Date
JP2004364365A JP2004364365A (en) 2004-12-24
JP4180974B2 true JP4180974B2 (en) 2008-11-12

Family

ID=34051016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157156A Expired - Fee Related JP4180974B2 (en) 2003-06-02 2003-06-02 Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor

Country Status (1)

Country Link
JP (1) JP4180974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683663A (en) * 2012-08-28 2014-03-26 东芝三菱电机产业系统株式会社 Rotary motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800847B2 (en) * 2006-06-01 2011-10-26 三菱電機株式会社 Fully closed liquid-cooled electric motor
CN107565755B (en) * 2017-10-18 2023-11-03 江苏兆胜科技股份有限公司 Permanent magnet direct-drive motor air-air cooler
CN113991924A (en) * 2021-09-30 2022-01-28 珠海格力电器股份有限公司 Casing of high-efficient heat dissipation liquid cooling and motor and air compressor machine thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683663A (en) * 2012-08-28 2014-03-26 东芝三菱电机产业系统株式会社 Rotary motor
CN103683663B (en) * 2012-08-28 2016-04-27 东芝三菱电机产业系统株式会社 Electric rotating machine

Also Published As

Publication number Publication date
JP2004364365A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5297236B2 (en) Fully closed main motor for vehicles
US6891290B2 (en) Fully enclosed type motor with outer fans
JP3441242B2 (en) Wheel integrated rotary electric machine
US20080030086A1 (en) Totally Enclosed Type Main Drive Motor for Vehicle
JP4772298B2 (en) Fully closed electric motor for vehicle drive
JP3825679B2 (en) Fully enclosed outer fan motor for vehicles
JP4891688B2 (en) Fully enclosed motor
JP2004194498A (en) All closed external fan cooling version dynamic electric motors
JPH07288949A (en) Electric motor to drive vehicle
JP2006050683A (en) Full closing motor for vehicle
JP4928986B2 (en) Fully closed electric motor for vehicle drive
JP2006180684A (en) Totally-enclosed motor for vehicle drive
JP2006101658A (en) Totally enclosed motor for vehicle
JP4457652B2 (en) Motor cooling structure
JP4180974B2 (en) Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor
JP4891656B2 (en) Fully enclosed motor for vehicles
JP2004187352A (en) Totally enclosed motor for drive of vehicle
JP6688825B2 (en) vehicle
JP2004312875A (en) Totally-enclosed motor for vehicle drive
JP2006109570A (en) Totally enclosed main motor for driving vehicle
JP2005130693A (en) Fully-enclosed motor
JP2017171252A (en) Cooling structure of in-wheel motor unit
JP4397180B2 (en) Main motor for vehicles
KR101033210B1 (en) Apparatus for preventing overheat of the in-wheel motor
JP2007097325A (en) Totally enclosed motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees