JP4180869B2 - 赤外線撮像装置 - Google Patents

赤外線撮像装置 Download PDF

Info

Publication number
JP4180869B2
JP4180869B2 JP2002282831A JP2002282831A JP4180869B2 JP 4180869 B2 JP4180869 B2 JP 4180869B2 JP 2002282831 A JP2002282831 A JP 2002282831A JP 2002282831 A JP2002282831 A JP 2002282831A JP 4180869 B2 JP4180869 B2 JP 4180869B2
Authority
JP
Japan
Prior art keywords
output
circuit
level
value
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002282831A
Other languages
English (en)
Other versions
JP2004117254A (ja
Inventor
理 中村
保志 松本
政樹 蒲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002282831A priority Critical patent/JP4180869B2/ja
Publication of JP2004117254A publication Critical patent/JP2004117254A/ja
Application granted granted Critical
Publication of JP4180869B2 publication Critical patent/JP4180869B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は赤外線撮像装置に関し、更に詳しくは2次元配列の赤外線検知素子を使用する赤外線撮像装置に対して新規な入出力補正方法を提供するものである。
【0002】
赤外線撮像装置は、対象シーン・物体の放射赤外線強度分布を正確に再生した画像信号を出力する必要がある。
【0003】
この目的を実現するためには、一般的な赤外線撮像装置が抱える問題点である、▲1▼検知素子毎に特性(感度及びオフセット)のバラツキがある、▲2▼シェーディング現象により各検知素子への入射赤外線強度(照度)が特有の分布を示す、に対処し、各検知素子の出力が対象シーン・物体からの放射赤外線強度を正確に反映したものとになるように入出力特性を補正してやる必要がある。
【0004】
即ち、撮像装置画像出力は、
各検知素子に入射する赤外線照度×各検知素子の感度+オフセット成分に対応するものであるため、入出力特性の補正は、シェーディングと検知素子特性バラツキの両者を同時に解決するものでなければならない。ここで、シェーディング現象とは、赤外線撮像装置において均一な放射線輝度分布を有するシーン又は対象物体を撮像した時に、焦点面上での照度分布が均一にならず、特有の分布を示す現象である。
【0005】
【従来の技術】
ここで、前述したシェーディングについて詳細に説明する。このシェーディングには、▲1▼シーン成分が光学系開口部分を通過して結像する際にその焦点面上の照度に分布が生じる光学系シェーディングと、▲2▼光学系鏡筒及び赤外線検知素子容器等(以下ハウジングと呼ぶ)、シーン以外から検知素子に入射する成分が焦点面上に照度分布を生じるハウジングシェーディングとがある。
【0006】
図9は、光学系シェーディングの説明図である。シーン成分は、レンズ61により集光された後、赤外線検出センサ62上に像を結ぶ。この時、光軸上に平行な成分のみならず、それ以外の成分もレンズ61で集光された後、赤外線検出センサ62上に像を結ぶ。この結果、赤外線検出センサ62に沿った軸をxとすると、そのシェーディング特性は図10に示すようなものとなる。
【0007】
図10は光学系シェーディング特性を示す図である。縦軸は照度、横軸は結像位置xである。赤外線検出センサ62の中心(中心軸63)が最も照度が強く、中心から離れるに従って、照度が弱くなっていることが分かる。
【0008】
図11はハウジングシェーディングの説明図である。図において、70はレンズ7をその内部に含む鏡筒、71はシーン成分を受けて集光するレンズである。73はレンズ71を透過した赤外線を透過させる透過窓、74は鏡筒70内に設けられたコールドシールド、76は該コールドシールド74の端部に設けられた赤外線検出センサである。75は内部が真空にされた容器、77は赤外線検知センサ76を冷却するJT(ジュール・トムソン)冷却器である。
【0009】
赤外線検知センサ76を冷却するのは、赤外線検知センサ76自身及びその周辺からの不要な赤外線を放射しないようにするためである。JT冷却器77は、赤外線検出センサ76を−180゜C程度に冷却する。
【0010】
このように構成された装置で、シーン成分は赤外線検知センサ76に入射する。それとは別に鏡筒70から放射された赤外線がレンズ面反射後又は直接コールドシールド74の内壁に衝突し、反射した光(図中L1,L2,L3等)も赤外線検出センサ76に入射する。この反射光はシーン成分L0を含まない成分である。従って、この成分(ハウジング成分という)により、シェーディングが生じる。
【0011】
図12はハウジングシェーディングの特性を示す図である。縦軸は照度、横軸は結像位置xである。xの全域にわたりほぼ同じ照度をもつ。
【0012】
従来技術は、シェーディング及び検知素子特性補正をそれぞれ単独に補正するものであり、両者を同時に補正する技術は提案されていない。
【0013】
例えば、シェーディング補正方法として、次のような技術が知られている。
【0014】
以下に示す公知例では、光学系鏡筒の温度を温度センサで測定し、測定した温度データとメモリに格納した各検知素子から鏡筒を見た時の立体角テーブルとから鏡筒成分を計算し、この計算結果を画像データから減算することにより鏡筒成分を除去すると共に、鏡筒成分除去結果に対して、メモリに格納された周辺光量分布データを乗算することにより光学系シェーディングを補正する(特許文献1参照)。
【0015】
また、本発明者らは、ハウジング成分のレベルを通常の撮像時画像データから計算し、これをメモリ格納のハウジング成分出力のプロファイルと乗算し、この値を用いてシェーディング補正を行なう方法を提案した。
【0016】
また、例えば検知素子の特性を補正する方法として、以下のような技術が知られている。
【0017】
この公知例では、広範囲な赤外線入射強度範囲に対して検知素子毎の特性のバラツキを補正する巧妙な方法である(特許文献2参照)。
【0018】
【特許文献1】
特公平7−32467号公報
【特許文献2】
特開平4−105024号公報
【0019】
【発明が解決しようとする課題】
前述した特許文献1では、検知素子毎の特性バラツキが考慮されていないという問題と、シェーディング要素として鏡筒から直接入射する成分しか考慮されておらず、レンズ面やコールドシールド内面で反射して入射する成分に起因するシェーディングに対処できないという問題がある。また、本発明者らが提案した方法では、ハウジング成分を通常使用時の画像データから直接計算するため、ハウジング成分とシーン成分との割合によっては補正不可又は精度劣化となる場合がある。
【0020】
また、前述した特許文献2では、ハウジング成分が考慮されていないため、シーン温度とハウジング温度が異なる場合にシェーディング現象が発生するという問題がある。
【0021】
以上、述べたように、従来の技術では、シェーディング現象と検知素子特性バラツキを同時に補正し、シーン温度やハウジング温度が変化した時にもシーン画像信号を変質させることのない入出力特性補正を実現することは困難である。
【0022】
本発明は、このような課題に鑑みてなされたものであって、シェーディング現象と検知素子特性バラツキを同時に補正することができる赤外線撮像装置を提供することを目的としている。
【0023】
以下で使用する用語の説明を行なう。
(a)プロファイル
2次元又は1次元に配列された検知素子各々の出力レベルの検知素子位置に対する分布を全素子平均レベルを1として相対値表示した特性
(b)レベル分布
上記プロファイルと同様に、検知素子位置に対する各検知素子出力レベル値自体の分布
(c)検出センサ又は検出器
2次元に配列された検知素子の総体
(d)背景温度
ハウジング温度及びシーン温度が同一の状態における温度。この時の検知素子出力を基準背景出力と呼ぶ。
(e)電子シャッタ
特に、検知素子が電荷蓄積型(例えばCCD)である場合、電荷蓄積時間を変えることにより感度を高く又は低く制御することができる。カメラのシャッタ時間を変えることとの類似から電子シャッタ制御と呼ばれる。ここでは、電子シャッタは電荷蓄積時間を意味する。
【0024】
【課題を解決するための手段】
本発明は次の要素からなる。
▲1▼ハウジング温度を計測し、その温度に対するハウジング成分に対する検知素子出力を求め、その結果を用いて、赤外線検知素子出力を構成する各成分であるハウジング成分,シーン成分,オフセット成分の割合を求める。ここで、オフセット成分はシーン成分が入射されていない時(赤外線入射パワーが0)における赤外線検知器の出力をいう。
▲2▼実測データを基に作成した各成分補正用校正データを前記各成分毎の割合で加算し、これの逆数を検知器出力に乗算することにより、入出力特性を補正する。
【0025】
赤外線検出器を構成する素子(以下検知素子という)の出力をd(n)、全検知素子平均出力レベルをMとして、d(n)、Mはそれぞれ次式で表わすことができる。
【0026】
d(n)={s(n)+h(n)}・r(n)+o(n) (1)
M=(s+h)・r+o=s・r+h・r+o(n) (2)
ここで、s(n)は検知素子iに入射するシーンからの赤外線パワー、h(n)は検知素子iに入射するハウジングからの赤外線パワー、s及びhはs(n)及びh(n)の全検知素子(i=1からN)に対する平均値、r(n)は検知素子iの感度(レスポンシビティ)、rは全検知素子平均の感度、o(n)は検知素子nのオフセット出力、oはo(n)の全検知素子平均値である。
【0027】
(1)式をs・r、h・r、oを用いて変形すると、以下のようになる。
【0028】
【数1】
Figure 0004180869
【0029】
ハウジング温度を計測し、その温度に対応するハウジング成分平均出力h・r、その全検知素子出力レベルMに対する割合HRを求め、更にoのMに対する割合ORを求めると、シーン成分平均出力s・rの全検知素子平均出力Mに対する割合は
(1−HR−OR)となる。このことを利用すると、(3)式は以下のようになる。
【0030】
【数2】
Figure 0004180869
【0031】
(5)式でsp(n)={s(n)・r(n)}/(s・r)、
hp(n)={h(n)・r(n)}/(h・r)、
op(n)=o(n)/oは、それぞれシーン成分、ハウジング成分、オフセット成分各々の平均値に対する各検知素子の出力を示すものである。そこで、これらの値を、事前に求め、メモリデータとして格納しておき、計算に使用するようにしておけば、光学系シェーディングに起因するシーン入射成分照度分布s(n)、ハウジング成分照度分布h(n)、及び検知素子毎の感度バラツキr(n)とオフセット成分バラツキo(n)を補正することができる。
【0032】
ここで、オフセット成分は、赤外線入射パワーが0の時の検知素子出力に相当する。赤外線撮像装置で赤外線入射パワー0の状態を生成することは困難であるが、検知素子出力を赤外線入射パワーが小さい場合を基準条件として、基準条件における出力及び基準条件からの検知素子出力の変化量を評価する方法をとればオフセット成分を考慮することができる。
【0033】
図1は本発明の原理説明図である。この場合は、検知素子出力がシーン成分とハウジング成分のみから構成され、オフセット成分が無視できる場合の説明図である。(a)に示すように、検知素子出力はシーン成分とハウジング成分が加算されたものである。即ち、全検知素子出力の平均レベルがMで表される場合、Mはハウジング成分平均レベルHと、シーン成分平均レベルSとが加算されたものである。ハウジング成分Hの割合をHRとすると、その割合HR=H/Mで表される。この時、シーン成分の割合SR=(=Sn/M)=1−HRで表される。
【0034】
ハウジング成分出力レベルはハウジングから検知素子に入射する赤外線強度に依存し、この赤外線強度は光学系と検知素子が同じものであれば、ハウジング温度で決まる。事前にハウジング温度に対するハウジング成分出力レベルの関係を求めて変換テーブルを作成しておき、ハウジング温度を計測し、変換テーブルで変換することによりハウジング成分出力レベルHを求めることができる。
【0035】
全検知素子出力現在値は、例えば平均レベルMとして求めることができる。シーン成分出力レベル自体を直接的に求めることはできないが、前記検知素子出力現在値からハウジング成分出力レベルHを差し引いた残余となる。(b)に示すハウジング成分及びシーン成分のプロファイルhp(n)、sp(n)は、光学系、検知素子の構成/構造によって決まるものであり、事前に用意しておくことができる。
【0036】
検知素子出力現在値のレベル分布、即ち、任意位置の検知素子nに対する出力レベル値d(n)は、前記検知素子出力現在値(平均値M)、Mに対するハウジング成分Hの比率HR、及びハウジング成分とシーン成分のプロファイルhp(n)、sp(n)から以下の式で表わすことができる。
d(n)=M・SR・sp(n)+M・HR・hp(n)
=M・{(1−HR)・sp(n)+HR・hp(n)}
=M・{HR・(hp(n)−sp(n))+sp(n)}
即ち、HR、hp(n)、sp(n)によって全検知素子出力のプロファイルprf(n)=HR・(hp(n)−sp(n))+sp(n)
が計算できることになる。このプロファイルprf(n)の逆数を任意位置の検知素子nの出力レベルd(n)に乗算することにより、つまり、出力レベルd(n)をprf(n)で除算することにより、検知素子nの出力レベルは平均値Mとなる。即ち、全検知素子の出力レベル値が平均値Mとなり、目的とするレベル分布の均一化、入出力特性補正が行なわれることになる。
【0037】
次に、入出力特性補正の実施について説明する。ハウジング温度をハウジング成分Hに変換する変換テーブル、各成分プロファイルhp(n)−sp(n)、及びsp(n)を事前に作成し、メモリに格納しておく。これらのデータと、任意検知素子出力に対する平均レベルMの計算値を使用すると、上式の
HR・(hp(n)−sp(n))+sp(n)が得られる。この値で、任意素子出力レベルd(n)を除算すると、その結果はmとなり、検知素子出力におけるレベル分布が補正され、全素子均一な出力レベルMになる。
【0038】
d(n)/{HR・(hp(n)−sp(n))+sp(n)}=M
図2は本発明の第1の実施の形態例の動作原理説明図である。この場合、図1に示す場合と異なり、シーン成分、ハウジング成分に加えてオフセット成分が含まれる場合の説明図である。この場合、(a)に示すように、平均値Mは、ハウジング成分DH、シーン成分DS及びオフセット成分Lから構成される。このプロファイルは、(b)に示すようなものとなる。
【0039】
ハウジング温度を基準背景温度からの変化として計測し、ハウジング成分出力を基準背景温度に対する検知素子出力からの変化量DHとして規定する。同様に、シーン成分出力も基準出力からの変化量DSと考える。
【0040】
オフセット成分出力を基準背景出力によって代表することとし、基準背景出力のレベルLとプロファイルIp(n)、ハウジング成分出力変化量DH及びハウジング成分変化量に対するプロファイルhp(n)、及びシーン成分出力変化量に対するプロファイルsp(n)は、各々事前に確定でき、例えばメモリに格納しておくことができる。
【0041】
検知素子出力現在値のレベル分布、即ち、任意位置の検知素子nに対する出力レベル値d(n)は、前記検知素子出力現在値(平均レベルM)、Mに対するハウジング成分Hの比率HR、オフセット成分Lの比率LR、及びハウジング成分、シーン成分、オフセット成分のプロファイルhp(n)、sp(n)、lp(n)から以下の式で表わすことができる。
d(n)=M・SR・sp(n)+M・HR・hp(n)
+M・LR・lp(n)
=M・{(1−HR−LR)・sp(n)+HR・hp(n)
+LR・lp(n)}
=M・{HR・(hp(n)−sp(n))+LR・(lp(n)−sp(n))+sp(n)}
即ち、HR、hp(n)、sp(n)、LR、lp(n)によって全検知素子出力のプロファイル
prf(n)=HR・(hp(n)−sp(n))+LR・(lp(n)−sp(n))+sp(n)
が計算できることになる。このプロファイルprf(n)の逆数を任意位置の検知素子nの出力レベルd(n)に乗算することにより、つまり、出力レベルd(n)をprf(n)で除算することにより、検知素子nの出力レベルは平均レベルMとなる。即ち、全検知素子の出力レベル値が平均レベルMとなり、目的とするレベル分布の均一化、入出力特性補正が行なわれることになる。
【0042】
次に、入出力特性補正の実施について説明する。ハウジング温度をハウジング成分Hに変換する変換テーブル、各成分プロファイル{hp(n)−sp(n)}、{lp(n)−sp(n)}、及びsp(n)を事前に作成し、メモリに格納しておく。これらのデータと、任意検知素子出力に対する平均レベルMの計算値を使用すると、上式の
HR・(hp(n)−sp(n))+LR・(lp(n)−sp(n))
+sp(n)が得られる。この値で、任意素子出力レベルd(n)を除算すると、その結果はMとなり、検知素子出力におけるレベル分布が補正され、全素子均一な出力レベルMになる。
【0043】
d(n)/{HR・(hp(n)−sp(n))+LR・(lp(n)−sp(n))+sp(n)}=M
(1)図3は本発明の原理ブロック図である。この原理ブロック図で示される発明の原理は図1で説明したものである。図において、10は赤外線を検知する赤外線検知部である。該赤外線検知部10は、赤外線光学系1と、赤外線を検出する検知素子よりなる赤外線検知器2と、該赤外線検知器2の出力を増幅するアンプ3と、該アンプ3の出力をディジタルデータに変換するA/D変換回路4と、赤外線光学系1を保護するハウジング5と、赤外線検知部10の温度Tを検出する温度センサ6より構成されている。該温度センサ6は、光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出するものである。
【0044】
11は該温度センサ6の出力をディジタル信号に変換するA/D変換回路、12は該A/D変換回路11の出力をハウジング成分出力レベルに変換する変換テーブル、13は前記赤外線検知部10の出力を受けてフレーム毎の平均レベルMを求める演算回路、14は変換されたハウジング成分出力レベルHのフレーム毎平均レベルMに対する割合H/Mを計算する除算回路である。
【0045】
15はハウジング成分出力Hのプロファイルhp(n)とシーン入射成分出力Snのプロファイルsp(n)の差を格納する補正データ1メモリ、16はシーン入射成分出力のプロファイルsp(n)を格納する補正データ2メモリ、17は前記ハウジング成分出力レベルの割合H/Mと補正データ1メモリの値(hp(n)−sp(n))を乗算する乗算回路、18は該乗算結果と補正データ2メモリの値を加算する加算回路、19は該加算回路18の結果によりA/D変換された赤外線検知部10の出力を除算する除算回路である。そして、該除算回路19の出力が補正出力となっている。
【0046】
このように構成された装置において、赤外線検知部10は、温度Tにおける赤外線検知器2の出力をディジタルデータとして出力する。演算回路13は赤外線検知部10の出力を受けてフレーム毎の平均レベルMを演算する。一方、A/D変換回路11は、温度センサ6の出力をディジタルデータに変換して変換テーブル12にその出力をアドレスとして与える。該変換テーブル12には、温度とハウジング成分出力の関係を示すテーブルが予め記憶されている。該変換テーブル12は、温度Tにおけるハウジング成分Hを出力する。
【0047】
除算回路14は、演算回路13の出力Mと、変換テーブル12の出力Hを受けてハウジング成分Hの現在の平均値Mに対する割合H/Mを演算する。一方、補正データ1メモリ15は、ハウジング成分出力Hのプロファイルhp(n)とシーン入射成分出力Sのプロファイルsp(n)の差hp(n)−sp(n)を出力する。この結果、除算回路14の出力と補正データ1メモリ15の出力を受ける乗算回路17の出力は、
(H/M)・{hp(n)−sp(n)}
となる。
【0048】
一方、補正データ2メモリ16は、シーン成分プロファイルsp(n)を出力する。乗算回路17と補正データ2メモリ16の出力は、加算回路18により加算され、その出力prf(n)は、
Figure 0004180869
となる。
【0049】
一方、赤外線検知部10の出力d(n)は、前述したように、
d(n)=M・{HR・(hp(n)−sp(n))+sp(n)}
と表わされる。
【0050】
除算回路19は、赤外線検知部10の出力d(n)を、加算回路18の出力で除算するから、その出力は以下に示すように、
【0051】
【数3】
Figure 0004180869
【0052】
となり、補正出力はMとなり、入出力特性の補正がなされたことになる。即ち、ハウジング成分等の影響による補正がなされた赤外線出力が得られることになる。
(2)請求項2記載の発明は、赤外線を検知する赤外線検知部と、光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出する温度センサと、該温度センサの出力をディジタル信号に変換するA/D変換回路と、該A/D変換回路の変換出力において基準背景温度との差温度を算出する減算回路と、該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、前記赤外線検知部の出力を受けてフレーム毎の平均値を求める演算回路と、変換されたハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路と、基準背景温度の時の検知素子出力(基準背景出力)のレベルを格納する基準レベルメモリと、該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合(基準レベル割合)を計算する除算回路と、ハウジング成分出力変化のプロファイルとシーン入射成分出力の基準背景出力からの変化に対するプロファイルの差が格納された補正データ1メモリと、シーン入射成分出力の基準背景出力からの変化に対するプロファイルが格納された補正データ2メモリと、基準背景出力のプロファイルを格納する補正データ3メモリと、前記ハウジング成分出力変化レベルの割合と補正データ1メモリの値を乗算する乗算回路と、前記基準レベル割合と補正データ3メモリの値を乗算する乗算回路と、該2個の乗算結果と補正データメモリ2の値を加算する加算回路と、該加算回路の結果によりA/D変換された赤外線検知素子出力を除算する除算回路とを有し、該除算回路の出力を補正出力とすることを特徴としている。
【0053】
このように構成すれば、ハウジング成分及びオフセット成分の影響による補正がなされた赤外線出力を得ることができる。
(3)請求項3記載の発明は、前記A/D変換出力をハウジング成分出力レベルに変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、ハウジング成分出力レベルの赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段に、ハウジング成分出力レベルを現在使用の電子シャッタ値に対応する値に換算するために前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする。
【0054】
この発明は、電子シャッタが使用される場合の入出力特性補正方法を与えるものである。赤外線検知素子出力は、蓄積された電荷量に比例するものであり、電荷量は電子シャッタ速度に比例する。即ち、電子シャッタ速度を速くすれば、蓄積電荷量は小さくなり、シャッタ速度を遅くすると、蓄積電荷量は増大する。従って、図1又は図2において、ハウジング成分出力レベル及び基準背景出力レベルを赤外線検知部出力の現在値に対すると同じ電子シャッタ値になるように計算することにより、電子シャッタの影響を除くことができる。
【0055】
一方、ハウジング成分、シーン成分、基準背景成分に対するプロファイルは、各々平均値を1とする相対値として規定しており、電子シャッタの影響は含まれない。以上のことにより、赤外線検知素子が如何なる電子シャッタで使用されていても、正常な入出力特性補正が可能となる。
(4)請求項4記載の発明は、前記差温度をハウジング成分出力レベル変化に変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、変換されたハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路の前段において、変換されたハウジング成分出力レベル変化を現在使用の電子シャッタ値に対応する値に換算するために前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有すると共に、前記基準背景温度に対する出力レベルを格納する基準レベルメモリにおける値が電子シャッタに対応するものであり、該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段において、前記基準レベルを現在使用の電子シャッタ値に対応する値に変換するために前記基準レベルメモリ値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする。
【0056】
赤外線検知素子出力は、蓄積された電荷量に比例するものであり、電荷量は電子シャッタ速度に比例する。従って、図1又は図2において、ハウジング成分出力レベル及び基準背景出力レベルを赤外線検知部出力の現在値に対すると同じ電子シャッタ値になるように計算することにより、電子シャッタの影響を除くことができる。
(5)請求項5記載の発明は、赤外線を検知する赤外線検知部と、光学系鏡筒又は光学系・検知器固定部分等のハウジングの温度を検出する温度センサと、該温度センサの出力をディジタル信号に変換するA/D変換回路と、該A/D変換回路の出力において基準背景温度との差温度を算出する減算回路と、該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、シーン成分出力のプロファイルハウジング成分出力のプロファイルの差分に相当するプロファイルを格納する補正データ1メモリと、前記変換テーブル出力と電子シャッタ値を乗算する乗算回路1と、該乗算回路1の出力と補正データ1メモリからの補正データとの乗算を行なう乗算回路2と、基準背景出力レベル×(シーン成分出力のプロファイル基準背景出力のプロファイルの差分)に相当するレベル分布を有する補正データ2を格納する補正データ2メモリと、補正データ2メモリ出力と電子シャッタ値とを乗算する乗算回路3と、前記乗算回路2及び乗算回路3の出力とA/D変換された赤外線検知素子出力を加算する加算回路と、シーン成分出力のプロファイルを格納する補正データ3メモリと、前記加算回路出力を補正データ3メモリに格納した補正データにより除算する除算回路とを有し、該除算回路の出力を補正出力とすることを特徴とする。
【0057】
このように構成すれば、ハウジング成分及び基準背景出力成分の影響を除去した赤外線出力を得ることができる。
【0058】
また、この発明において、前記補正データ1メモリ、補正データ2メモリ、補正データ3メモリ、ハウジング成分出力変換テーブル、基準背景出力メモリに格納される値が、ハウジング及びシーンを代表する面黒体光源の温度が、それぞれ基準背景温度にある場合、一方のみを交互に基準背景温度から一定温度だけ変化させた場合の赤外線検知素子出力データから作成されることを特徴とする。
【0059】
このように構成すれば、高精度な入出力特性補正が可能となり、シーン情報を正確に反映した画像データを出力することができる。
【0060】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態例を詳細に説明する。
【0061】
先ず、図3に示す原理ブロック図について更に詳細に説明する。この例では、ハウジング温度センサ6からの出力がA/D変換回路11によりA/D変換され、その出力が変換テーブル12に格納されたテーブルによりハウジング成分出力Hに変換される。ここで、変換テーブル12、補正データ1メモリ15及び補正データ2メモリ16としては、例えばROMが用いられる。
【0062】
一方、アンプ3で増幅され、続くA/D変換回路4によりA/D変換された赤外線検知素子出力d(n)について、演算回路13によりフレーム毎の平均レベルMを計算する。次に、除算回路14により、フレーム毎の平均レベルMにより前記ハウジング成分出力Hを除算する。この結果、除算回路14の出力はH/Mとなる。
【0063】
この除算結果H/Mと、補正データ1メモリ15から読み出された補正データ1を乗算回路17により乗算する。乗算結果は、H/M・{hp(n)−sp(n)}となる。ここで、H/MはHRと同じである。更にこの乗算結果と、補正データ2メモリ16から読み出された補正データ2とが加算回路18で加算される。加算結果は、以下の通りである。
H/M・{hp(n)−sp(n)}+sp(n)
ここで平均レベルMとハウジング成分出力Hはフレーム毎の値であるが、補正データ1及び補正データ2は各素子毎に規定された値である。従って、加算結果prf(n)も各素子毎に出力される。この加算結果prf(n)と赤外線検知素子出力d(n)の素子毎の値が除算回路19で除算される。この結果、除算回路19の出力は、次式で表される。
M・{HR・(hp(n)−sp(n))+sp(n)}が
HR・(hp(n)−sp(n))+sp(n)で除算される結果、d(n)はMとなり、入出力特性が補正された出力となる。ここで、乗算回路17、加算回路18及び除算回路19の計算は、例えばゲートアレイ又はFPGA(大規模ゲートアレイ)を用いて構成することができる。
【0064】
変換テーブル12は、ハウジング温度を アドレスとしてその内容を読み出すことにより、該ハウジング温度に対応するハウジング成分出力Hが得られる。この場合に、例えばハウジング温度範囲を100゜Cとすると、100個のアドレスがあれば、1゜C刻みでハウジング成分出力を求めることができ、変換テーブル12に必要なROM容量はごく小さいものですむ。
【0065】
補正データ1メモリ15及び補正データ2メモリ16は、検知素子番号をアドレスとして読み出される。検知素子数を100×100とすると、アドレス数は10000となる。ここで、各素子に対する補正データを16ビットとすると、必要なROM容量は、160Kビットとなる。この程度の容量のROMは容易に入手できるものであり、実際的には補正データ1メモリ15、補正データ2メモリ16、変換テーブル12を1個のROMに格納することができる。補正データ1メモリ15、補正データ2メモリ16、変換テーブル12に格納するデータは、例えば図7に示す手順で作成することができる(詳細後述)。
【0066】
図4は本発明の第1の実施の形態例を示すブロック図である。この原理ブロック図で示される発明の原理は図2で説明したものである。図3と同一のものは、同一の符号を付して示す。この発明は、ハウジング温度を基準温度からの変化量として規定し、鏡筒及びシーンの温度が基準温度である時の検知素子出力レベルを基準背景出力レベルLとして使用するものである。
【0067】
図において、10は赤外線を検知する赤外線検知部である。該赤外線検知部10は、赤外線光学系1と、赤外線を検出する検知素子よりなる赤外線検知器2と、該赤外線検知器2の出力を増幅するアンプ3と、該アンプ3の出力をディジタルデータに変換するA/D変換回路4と、赤外線光学系1を保護するハウジング5と、赤外線検知部10の温度Tを検出する温度センサ6より構成されている。該温度センサ6は、光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出するものである。
【0068】
11は該温度センサ6の出力をディジタル信号に変換するA/D変換回路、30は基準背景温度相当ディジタル値T0を記憶しておくレジスタ、31はA/D変換回路11の出力Tを加算端子に、前記レジスタ30の出力(基準温度)を減算端子に受ける減算回路、21は該減算回路31の出力を受けてハウジング成分出力の出力変化を変換テーブルとして記憶する変換テーブルである。該変換テーブル21には、ハウジング温度Tと基準背景温度T0との差分に応じたハウジング成分変化量が記憶されている。
【0069】
20は基準背景出力レベルLを記憶するメモリ(例えばROM)、13は赤外線検知部10の出力を受けてフレーム毎の平均レベルMを求める演算回路である。22は該演算回路13の出力と、基準背景出力レベルLを受けてその比率L/M(=LR)を求める除算回路である。23は演算回路13の出力である平均レベルMと変換テーブル21のハウジング出力変化DHとを受けてこれらの値の比率を求める除算回路である。該除算回路23の出力は、HR=DH/Mで表わされる。
【0070】
25はプロファイルlp(n)−sp(n)を記憶している補正データ3メモリ、15はプロファイルhp(n)−sp(n)を記憶している補正データ1メモリ、16はプロファイルsp(n)を記憶している補正データ2メモリである。
【0071】
24は除算回路22の出力であるLRと、lp(n)−sp(n)を出力する補正データ3メモリ15の出力を受けて乗算を行なう乗算回路である。該乗算回路24の出力は、LR{lp(n)−sp(n)}で表わされる。17は除算回路23の出力であるHRと、hp(n)−sp(n)を出力する補正データ1メモリ15の出力を受けて演算を行なう乗算回路である。該乗算回路17の出力は、HR{hp(n)−sp(n)}で表わされる。補正データ2メモリ16にはシーン成分sp(n)が記憶されている。
【0072】
18は乗算回路24、乗算回路17及び補正データ2メモリ16の出力を受けて、これら出力を加算する加算回路である。その出力は、
LR・{lp(n)−sp(n)}+HR{hp(n)−sp(n)}+sp(n)で表わされる。19は赤外線検知部10の出力であるd(n)と加算回路18の出力prf(n)を受けて、除算d(n)/prf(n)を演算する除算回路である。該除算回路19の出力が入出力特性補正データとなっている。このように構成された装置の動作を説明すれば、以下の通りである。
【0073】
赤外線検知部10は、温度Tにおける赤外線検知器2の出力をディジタルデータとして出力する。演算回路13は赤外線検知部10の出力を受けてフレーム毎の平均値Mを演算する。一方、A/D変換回路11は、温度センサ6の出力をディジタルデータに変換して、その出力を減算回路31に与える。該減算回路31の他方の入力には、レジスタ30に記憶されている基準背景温度相当ディジタル値T0が与えられる。該減算回路31は、ハウジング温度Tと基準温度T0の差分T−T0をハウジング成分出力変化変換テーブル21にアドレスデータとして与える。
【0074】
変換テーブル21は、差温度に対応するハウジング成分DHを出力する。除算回路23は、演算回路13の出力である平均値Mと、変換テーブル21の出力であるハウジング成分DHを受けて比率HRを求める。HR=DH/Mで与えられる。
【0075】
一方、除算回路22は、基準背景出力レベルメモリ20の出力Lと演算回路13の出力である平均値Mを入力して比率LRを求める。LR=L/Mで与えられる。乗算回路24は、該除算回路22の出力LRと、補正データ3メモリ25の出力であるlp(n)−sp(n)を受けて、これらの値の乗算を行なう。従って、該乗算回路24の出力は、LR・{lp(n)−sp(n)}となる。
【0076】
また、乗算回路17は、除算回路23の出力であるHRと補正データ1メモリの出力であるhp(n)−sp(n)を受けて、これらの値の乗算を行なう。従って、該乗算回路17の出力は、HR・{hp(n)−sp(n)}となる。
【0077】
加算回路18は、乗算回路24の出力と、乗算回路17の出力と、補正データ2メモリ16の出力であるsp(n)を受けて、これらの加算を行なう。従って、該加算回路18の出力prf(n)は、以下の式で表わされる。
【0078】
【数4】
Figure 0004180869
【0079】
一方、赤外線検知部10の出力d(n)は、次式で表わされる。
【0080】
【数5】
Figure 0004180869
【0081】
除算回路19は、赤外線検知部10の出力d(n)を加算回路18の出力であるprf(n)で除算するので、その除算結果は、
【0082】
【数6】
Figure 0004180869
【0083】
となる。以上より明らかなように、任意素子出力レベルd(n)をprf(n)で除算すると、その結果はMとなり、検知素子出力におけるレベル分布が補正され、全素子均一な出力レベルMになる。
【0084】
図5は本発明の第2の実施の形態例を示すブロック図である。図4と同一のものは、同一の符号を付して示す。図において、10は赤外線を検知する赤外線検知部である。該赤外線検知部10は、赤外線光学系1と、赤外線を検出する検知素子よりなる赤外線検知器2と、該赤外線検知器2の出力を増幅するアンプ3と、該アンプ3の出力をディジタルデータに変換するA/D変換回路4と、赤外線光学系1を保護するハウジング5と、赤外線検知部10の温度Tを検出する温度センサ6より構成されている。該温度センサ6は、光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出するものである。
【0085】
11は該温度センサ6の出力をディジタル信号に変換するA/D変換回路、30は基準背景温度相当ディジタル値を記憶しておくレジスタ、31はA/D変換回路11の出力を加算端子に、前記レジスタ30の出力(基準温度)を減算端子に受ける減算回路、32は該減算回路31の出力を受けてハウジング成分出力の出力変化(単位シャッタ換算値)を変換テーブルとして記憶する変換テーブルである。該変換テーブル32には、ハウジング温度Tと基準背景温度T0との差分に応じたハウジング成分が記憶されている。該変換テーブル32の変換値をSDHとする。
【0086】
33は基準背景出力レベル(単位シャッタ換算値)SLが記憶されているメモリである。13は赤外線検知部10の出力を受けて、フレーム毎の平均レベルMを求める演算回路である。34は変換テーブル32の出力SDHとシャッタ値Sとを乗算する乗算回路、35はメモリ33の出力SLとシャッタ値Sとを乗算する乗算回路である。
【0087】
36は、演算回路13の出力Mと、乗算回路35の出力とを受けて、乗算回路35の出力をMで除算する除算回路、37は乗算回路34の出力DHと演算回路13の出力Mを受けて、乗算回路34の出力をMで除算する除算回路である。24は、除算回路36の出力と補正データ3メモリの出力lp(n)−sp(n)を受けて、これらの値の乗算を行なう乗算回路、17は除算回路37の出力と補正データ1メモリの出力hp(n)−sp(n)を受けてこれらの値の乗算を行なう乗算回路である。
【0088】
18は、乗算回路24の出力と、乗算回路17の出力と、補正データ2メモリ16の出力とを加算する加算回路、19は赤外線検知部10の出力d(n)と、加算回路18の出力prf(n)を受けて、d(n)/prf(n)を演算する除算回路である。該除算回路19の出力が入出力特性補正がなされた補正出力である。
【0089】
25は、プロファイルlp(n)−sp(n)を記憶している補正データ3メモリ、15はプロファイルhp(n)−sp(n)を記憶している補正データ1メモリ、16はプロファイルsp(n)を記憶している補正データ2メモリである。40は赤外線検知出力の補正出力である除算回路19の出力を受ける上位システム、41は該上位システム40からの電子シャッタ指令を受ける電子シャッタ制御回路である。上位システム40としては、例えば画像処理装置が用いられる。該電子シャッタ制御回路41の出力(シャッタ値)Sは、赤外線検知器2、乗算回路34、乗算回路35に与えられている。このように構成された装置の動作を説明すれば、以下の通りである。
【0090】
図5に示す実施の形態例は、図4に示す実施の形態例に比較して、変換テーブル32に記憶されたハウジング成分変化量及びメモリ33に記憶された基準背景出力レベルが単位電子シャッタ値に換算された値を使用し、これらの出力を各々電子シャッタ値(シャッタ値S)と乗算した結果を用いてハウジング成分比率HR及び基準背景出力比率LRを求める点が異なっている。その他の構成はほぼ同じである。
【0091】
赤外線検知部10は、温度Tにおける赤外線検知器2の出力をディジタルデータとして出力する。演算回路13は赤外線検知部10の出力を受けてフレーム毎の平均レベルMを演算する。一方、A/D変換回路11は、温度センサ6の出力をディジタルデータに変換して、その出力を減算回路31に与える。該減算回路31の他方の入力には、レジスタ30に記憶されている基準背景温度相当ディジタル値T0が与えられる。該減算回路31は、ハウジング温度Tと基準温度T0の差分T−T0をハウジング成分出力変化変換テーブル32にアドレスデータとして与える。
【0092】
変換テーブル32は、差温度に対応するハウジング成分SDHを出力する。該変換テーブル32の出力SDHは、続く乗算回路34に入る。該乗算回路34には、シャッタ値Sが入力されており、該乗算回路34は、このシャッタ値Sとハウジング成分SDHとを乗算する。該乗算回路34の出力DHは、DH=S・SDHとなる。
【0093】
乗算回路34の出力は、除算回路37に入る。該除算回路37はハウジング成分の平均レベルMに対する比率HRを計算する。該除算回路37には、平均レベルMが入力されており、該除算回路37の出力HRは、HR=DH/Mとなる。
【0094】
一方、乗算回路35には、基準背景出力レベルSLと、シャッタ値Sが入っており、該乗算回路35はこれら値を乗算し、その出力LはL=S・SLとなる。該乗算回路35の出力Lは除算回路36に入る。該除算回路36の他方の入力には平均レベルが入力されている。そして、該除算回路36は基準背景出力レベルLの平均レベルMに対する比率LRを計算し、その出力LRはLR=L/Mとなる。
【0095】
乗算回路24は、該除算回路36の出力LRと、補正データ3メモリ25の出力であるlp(n)−sp(n)を受けて、これらの値の乗算を行なう。従って、該乗算回路24の出力は、LR・{lp(n)−sp(n)}となる。
【0096】
また、乗算回路17は、除算回路37の出力であるHRと補正データ1メモリ15の出力であるhp(n)−sp(n)を受けて、これらの値の乗算を行なう。従って、該乗算回路17の出力は、HR・{hp(n)−sp(n)}となる。
【0097】
加算回路18は、乗算回路24の出力と、乗算回路17の出力と、補正データ2メモリ16の出力であるsp(n)を受けて、これらの加算を行なう。従って、該加算回路18の出力prf(n)は、以下の式で表わされる。
【0098】
【数7】
Figure 0004180869
【0099】
一方、赤外線検知部10の出力d(n)は、次式で表わされる。
【0100】
【数8】
Figure 0004180869
【0101】
除算回路19は、赤外線検知部10の出力d(n)を加算回路18の出力であるprf(n)で除算するので、その除算結果は、
【0102】
【数9】
Figure 0004180869
【0103】
となる。以上より明らかなように、任意素子出力レベルd(n)をprf(n)で除算すると、その結果はMとなり、検知素子出力におけるレベル分布が補正され、全素子均一な出力レベルMになる。
【0104】
この実施の形態例によれば、電子シャッタの影響を除いた補正出力を得ることができる。
【0105】
上述の実施の形態例では、ハウジング成分及び基準背景レベルの出力をシャッタ値Sと乗算した場合について説明したが、これに限るものでない。例えば、ハウジング成分のみの出力とシャッタ値Sとを乗算するようにしてもよい。この場合も、電子シャッタの影響を除いた補正出力を得ることができる。
【0106】
図6は本発明の第3の実施の形態例を示すブロック図である。図4と同一のものは、同一の符号を付して示す。図において、10は赤外線を検知する赤外線検知部である。該赤外線検知部10は、赤外線光学系1と、赤外線を検出する検知素子よりなる赤外線検知器2と、該赤外線検知器2の出力を増幅するアンプ3と、該アンプ3の出力をディジタルデータに変換するA/D変換回路4と、赤外線光学系1を保護するハウジング5と、赤外線検知部10の温度Tを検出する温度センサ6より構成されている。該温度センサ6は、光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出するものである。
【0107】
11は該温度センサ6の出力をディジタル信号に変換するA/D変換回路、30は基準背景温度相当ディジタル値を記憶しておくレジスタ、31はA/D変換回路11の出力を加算端子に、前記レジスタ30の出力(基準温度)を減算端子に受ける減算回路、21は該減算回路31の出力を受けてハウジング成分出力の出力変化を変換テーブルとして記憶する変換テーブルである。該変換テーブル21には、ハウジング温度Tと基準背景温度T0との差分に応じたハウジング成分変化量が記憶されている。
【0108】
45はハウジング成分変換テーブル32の出力とシャッタ値Sとを乗算する乗算回路、46は該乗算回路45の出力と補正データ1メモリ15’の出力であるsp(n)−hp(n)とを乗算する乗算回路、47は補正データ2メモリ16’の出力であるSL・{sp(n)−lp(n)}とシャッタ値Sとを乗算する乗算回路である。
【0109】
48は赤外線検知部10の出力であるd(n)と、乗算回路47の出力と、乗算回路46の出力とを加算する加算回路である。19は該加算回路48の出力を受けて、補正データ3メモリ25の出力であるsp(n)で除算する除算回路である。
【0110】
15’はプロファイルsp(n)−hp(n)を記憶する補正データ1メモリ、25はプロファイルsp(n)を記憶する補正データ2メモリ、16’はSL・(sp(n)−lp(n))を記憶する補正データ3メモリである。このように構成された装置の動作を説明すれば、以下の通りである。
【0111】
ハウジング温度は、減算回路31により基準温度T0からの温度変化として計算され、この温度変化分を変換テーブル21を介してハウジング成分出力レベル変化量SDHに変換する。更に、このハウジング成分出力レベルSDHが電子シャッタ値Sと乗算回路45で乗算され、電子シャッタ現在値に対応するハウジング成分出力レベル変化量が求められる。
【0112】
この電子シャッタ現在値に対応するハウジング成分出力レベルと、補正データ1メモリ15’に記憶された値とが乗算回路46で乗算される。一方、補正データ3メモリ16’に記憶された補正データ3と、電子シャッタ値とが乗算回路47で乗算される。そして、この乗算結果と前記乗算回路46の出力と、赤外線検知部10の出力d(n)とが加算回路48で加算される。
【0113】
この加算回路出力は、補正データ2メモリ25に記憶された補正データ2によって除算され、この結果が入出力補正された補正出力となる。この実施の形態例において、補正データ1と電子シャッタ現在値に対応するハウジング成分出力レベルDHとの乗算結果は、DH・{sp(n)−hp(n)}となる。
【0114】
また、補正データ3と電子シャッタ現在値Sとの乗算結果は
SL・{sp(n)−lp(n)}となる。一方、A/D変換された検知素子出力d(n)はSnを仮定されたシーン成分出力とすると、
d(n)=Sn・sp(n)+DH・hp(n)+SL・lp(n)
であるから、これに前記のDH・{sp(n)−hp(n)}、
SL・{sp(n)−lp(n)}を加算すると、
【0115】
【数10】
Figure 0004180869
【0116】
のようになる。この結果、平均値は加算前と同じ(S+DH+SL)であり、プロファイルがシーン成分プロファイルsp(n)の出力に変換されたことになる。この加算出力を、補正データ2メモリ25に記憶されたsp(n)により除算することにより、シーン成分Snが均一な場合には、ハウジング成分の分布や感度、オフセット成分のバラツキによらず、均一な出力(S+DH+SL)を得ることができる。
【0117】
以上、説明したように、この実施の形態例によれば、ハウジング成分及び基準背景出力成分の影響を除去した赤外線出力を得ることができる。
【0118】
図7はメモリデータ作成部の一実施の形態例を示すブロック図である。図において、50は赤外線検知部を覆う恒温槽である。51は面黒体光源、52は該面黒体光源51の発する温度を制御する温度コントローラ、53は恒温槽50を一定の温度になるように制御する温度コントローラである。60は赤外線検知器2と接続されて、検知器駆動・信号検出・画像データ取得を行なう検知器駆動・信号検出・画像データ取得部である。
【0119】
ここでは、前述した補正データ1メモリ、補正データ2メモリ、補正データ3メモリ、変換テーブル、基準背景出力記憶メモリに記憶させるデータの作成方法について説明する。ここで、面黒体光源51から赤外線光学系1を通過して、赤外線検知器2に入射する赤外線は、赤外線装置の実使用時にはシーン成分に相当するものである。
【0120】
ここで、例えば図8に示す温度条件を設定し、各々の温度条件に対する検知器出力データd0(n)〜d3(n)を基礎データとして取得する。図8は各温度条件における検知器出力データを示す図である。番号1の例は、面黒体温度がTS゜C、ハウジング温度がTS゜C、検知器出力データがd0(n)、番号2の例は、面黒体温度がTS+DT゜C、ハウジング温度がTS゜C、検知器出力データがd1(n)、番号3の例は、面黒体温度がTS゜C、ハウジング温度がTS+DT゜C、検知器出力データがd2(n)、番号4の例は、面黒体温度がTS+DT゜C、ハウジング温度がTS+DT゜C、検知器出力データがd3(n)である。
【0121】
このようにして検知器出力データが求まったら、これらのデータを基礎データとして以下の計算により各メモリデータを作成する。
(a)基準背景出力レベルL
基準背景温度をTS゜Cとし、d0(n)の全検知素子(n=0〜nmax)に対する平均値をLとする。
(b)ハウジング成分出力レベルH
Hはハウジング温度Tにおける平均検知素子出力レベルであり、基礎データから次式で計算される。
【0122】
【数11】
Figure 0004180869
【0123】
変換テーブルには、上式を用いて一定刻み毎の温度について計算し、変換テーブルを作成することができる。
(c)ハウジング成分プロファイルhp(n)
ハウジング成分プロファイルhp(n)は次式による計算値を用いる。
【0124】
【数12】
Figure 0004180869
【0125】
上式において、分子は各画素のハウジング成分であり、分母はその全素子平均値である。
(d)シーン成分プロファイルsp(n)
シーン成分プロファイルsp(n)は次式による計算値を用いる。
【0126】
【数13】
Figure 0004180869
【0127】
上式において、分子は各画素のシーン成分出力であり、分母はその全素子平均値である。
(e)基準背景成分プロファイルlp(n)
基準背景成分プロファイルlp(n)は次式による計算値を用いる。
【0128】
【数14】
Figure 0004180869
【0129】
上式において、分子は各画素のシーン成分出力であり、分母はその全素子平均値である。
【0130】
この実施の形態例によれば、高精度な入出力特性補正が可能となり、シーン情報を正確に反映した画像データを出力することができる。
【0131】
(付記1) 赤外線を検知する赤外線検知部と、
光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出する温度センサと、
該温度センサの出力をディジタル信号に変換するA/D変換回路と、
該A/D変換回路の出力をハウジング成分出力レベルに変換する変換テーブルと、
前記赤外線検知部の出力を受けてフレーム毎の平均レベルを求める演算回路と、
変換されたハウジング成分出力レベルの赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路と、
ハウジング成分出力のプロファイルとシーン入射成分出力のプロファイルの差を格納する補正データ1メモリと、
シーン入射成分出力のプロファイルを格納する補正データ2メモリと、
前記ハウジング成分出力レベルの割合と補正データ1メモリの値を乗算する乗算回路と、
該乗算結果と補正データ2メモリの値を加算する加算回路と、
該加算回路の結果によりA/D変換された赤外線検知部出力を除算する除算回路とを有し、
該除算回路の出力を補正出力とする赤外線撮像装置。
【0132】
(付記2) 赤外線を検知する赤外線検知部と、
光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出する温度センサと、
該温度センサの出力をディジタル信号に変換するA/D変換回路と、
該A/D変換回路の変換出力において基準背景温度との差温度を算出する減算回路と、
該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、
前記赤外線検知部の出力を受けてフレーム毎の平均値を求める演算回路と、
変換されたハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路と、
基準背景温度に対する出力(基準背景出力)レベルを格納する基準レベルメモリと、
該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合(基準レベル割合)を計算する除算回路と、
ハウジング成分出力変化のプロファイルとシーン入射成分出力の基準背景出力からの変化に対するプロファイルの差を格納する補正データ1メモリと、
シーン入射成分出力の基準背景出力からの変化に対するプロファイルを格納する補正データ2メモリと、
基準背景出力のプロファイルを格納する補正データ3メモリと、
前記ハウジング成分出力変化レベルの割合と補正データ1メモリの値を乗算する乗算回路と、
前記基準レベル割合と補正データ3メモリの値を乗算する乗算回路と、
該2個の乗算結果と補正データメモリ2の値を加算する加算回路と、
該加算回路の結果によりA/D変換された赤外線検知素子出力を除算する除算回路とを有し、
該除算回路の出力を補正出力とする赤外線撮像装置。
【0133】
(付記3) 前記A/D変換出力をハウジング成分出力レベルに変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、ハウジング成分出力レベルの赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段に、ハウジング成分出力レベルを現在使用の電子シャッタ値に対応する値に換算するため、前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする付記1記載の赤外線撮像装置。
【0134】
(付記4) 前記差温度をハウジング成分出力レベル変化に変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、ハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路の前段において、ハウジング成分出力レベル変化を現在使用の電子シャッタ値に対応する値に換算するために前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有すると共に、前記基準背景温度に対する出力レベルを格納する基準レベルメモリにおける値が電子シャッタに対応するものであり、該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段において、前記基準レベルを現在使用の電子シャッタ値に対応する値に変換するために前記基準レベルメモリ値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする。
【0135】
(付記5) 赤外線を検知する赤外線検知部と、
光学系鏡筒又は光学系・検知器固定部分等のハウジングの温度を検出する温度センサと、
該温度センサの出力をディジタル信号に変換するA/D変換回路と、
該A/D変換回路の出力において基準背景温度との差温度を算出する減算回路と、
該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、
(シーン成分出力のプロファイル−ハウジング成分出力のプロファイル)に相当するプロファイルを格納する補正データ1メモリと、
前記変換テーブル出力と電子シャッタ値を乗算する乗算回路1と、
該乗算回路1の出力と補正データ1メモリからの補正データとの乗算を行なう乗算回路2と、
基準背景出力レベル×(シーン成分出力のプロファイル−基準背景出力のプロファイル)に相当するレベル分布を有する補正データ2を格納する補正データ2メモリと、
補正データ2メモリ出力と電子シャッタ値とを乗算する乗算回路3と、
前記乗算回路2及び乗算回路3の出力とA/D変換された赤外線検知素子出力を加算する加算回路と、
シーン成分出力のプロファイルを格納する補正データ3メモリと、
前記加算回路出力を補正データ3メモリに格納した補正データにより除算する除算回路とを有し、
該除算回路の出力を補正出力とする赤外線撮像装置。
【0136】
(付記6) 前記補正データ1メモリ、補正データ2メモリ、補正データ3メモリ、ハウジング成分出力変換テーブル、基準背景出力メモリに格納される値が、ハウジング及びシーンを代表する面黒体光源の温度が、それぞれ基準背景温度にある場合、一方のみを交互に基準背景温度から一定温度だけ変化させた場合の赤外線検知素子出力データから作成されることを特徴とする付記1乃至5の何れかに記載の赤外線撮像装置。
【0137】
【発明の効果】
以上説明したように、本発明によれば、以下の効果が得られる。
(1)請求項1記載の発明によれば、ハウジング成分等の影響による補正がなされた赤外線出力が得られる。
(2)請求項2記載の発明によれば、ハウジング成分及びオフセット成分の影響による補正がなされた赤外線出力を得ることができる。
(3)請求項3記載の発明によれば、赤外線検知素子が如何なる電子シャッタで使用されていても、正常な入出力特性補正が可能となる。
(4)請求項4記載の発明によれば、ハウジング成分出力レベル及び基準背景出力レベルを赤外線検知部出力の現在値に対すると同じ電子シャッタ値になるように計算することにより、電子シャッタの影響を除くことができる。
(5)請求項5記載の発明によれば、ハウジング成分及び基準背景出力成分の影響を除去した赤外線出力を得ることができる。
【0138】
このように、本発明によれば、シェーディング現象と検知素子特性バラツキを同時に補正することができる赤外線撮像装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の原理説明図である。
【図2】本発明の第1の実施の形態例の動作原理説明図である。
【図3】本発明の原理ブロック図である。
【図4】本発明の第1の実施の形態例を示すブロック図である。
【図5】本発明の第2の実施の形態例を示すブロック図である。
【図6】本発明の第3の実施の形態例を示すブロック図である。
【図7】メモリデータ作成部の一実施の形態例を示すブロック図である。
【図8】各温度条件における検知器出力データを示す図である。
【図9】光学系シェーディングの説明図である。
【図10】光学系シェーディングの特性を示す図である。
【図11】ハウジングシェーディングの説明図である。
【図12】ハウジングシェーディングの特性を示す図である。
【符号の説明】
1 赤外線光学系
2 赤外線検知器
3 アンプ
4 A/D変換回路
5 ハウジング
10 赤外線検知部
11 A/D変換回路
12 変換テーブル
13 演算回路
14 除算回路
15 補正データ1メモリ
16 補正データ2メモリ
17 乗算回路
18 加算回路
19 除算回路

Claims (5)

  1. 赤外線を検知する赤外線検知部と、
    光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出する温度センサと、
    該温度センサの出力をディジタル信号に変換するA/D変換回路と、
    該A/D変換回路の出力をハウジング成分出力レベルに変換する変換テーブルと、
    前記赤外線検知部の出力を受けてフレーム毎の平均レベルを求める演算回路と、
    変換されたハウジング成分出力レベルの赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路と、
    ハウジング成分出力のプロファイルとシーン入射成分出力のプロファイルの差が格納された補正データ1メモリと、
    シーン入射成分出力のプロファイルが格納された補正データ2メモリと、
    前記ハウジング成分出力レベルの割合と補正データ1メモリの値を乗算する乗算回路と、
    該乗算結果と補正データ2メモリの値を加算する加算回路と、
    該加算回路の結果によりA/D変換された赤外線検知部出力を除算する除算回路とを有し、
    該除算回路の出力を補正出力とする赤外線撮像装置。
  2. 赤外線を検知する赤外線検知部と、
    光学系鏡筒又は光学系・検知素子固定部分等のハウジングの温度を検出する温度センサと、
    該温度センサの出力をディジタル信号に変換するA/D変換回路と、
    該A/D変換回路の変換出力において基準背景温度との差温度を算出する減算回路と、
    該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、
    前記赤外線検知部の出力を受けてフレーム毎の平均値を求める演算回路と、
    変換されたハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路と、
    基準背景温度の時の検知素子出力(基準背景出力)のレベルを格納する基準レベルメモリと、
    該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合(基準レベル割合)を計算する除算回路と、
    ハウジング成分出力変化のプロファイルとシーン入射成分出力の基準背景出力からの変化に対するプロファイルの差が格納された補正データ1メモリと、
    シーン入射成分出力の基準背景出力からの変化に対するプロファイルが格納された補正データ2メモリと、
    基準背景出力のプロファイルを格納する補正データ3メモリと、
    前記ハウジング成分出力変化レベルの割合と補正データ1メモリの値を乗算する乗算回路と、
    前記基準レベル割合と補正データ3メモリの値を乗算する乗算回路と、
    該2個の乗算結果と補正データメモリ2の値を加算する加算回路と、
    該加算回路の結果によりA/D変換された赤外線検知素子出力を除算する除算回路とを有し、
    該除算回路の出力を補正出力とする赤外線撮像装置。
  3. 前記A/D変換出力をハウジング成分出力レベルに変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、ハウジング成分出力レベルの赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段に、ハウジング成分出力レベルを現在使用の電子シャッタ値に対応する値に換算するために前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする請求項1記載の赤外線撮像装置。
  4. 前記差温度をハウジング成分出力レベル変化に変換する変換テーブルが単位電子シャッタ値に対する値を出力するものであり、ハウジング成分出力レベル変化の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する除算回路の前段において、ハウジング成分出力レベル変化を現在使用の電子シャッタ値に対応する値に換算するために前記変換テーブル出力値と電子シャッタ値とを乗算する乗算回路を有すると共に、前記基準背景温度に対する出力レベルを格納する基準レベルメモリにおける値が電子シャッタに対応するものであり、該基準レベルメモリの値の赤外線検知部出力フレーム毎平均レベルに対する割合を計算する前段において、前記基準レベルを現在使用の電子シャッタ値に対応する値に変換するために前記基準レベルメモリ値と電子シャッタ値とを乗算する乗算回路を有することを特徴とする請求項2記載の赤外線撮像装置。
  5. 赤外線を検知する赤外線検知部と、
    光学系鏡筒又は光学系・検知器固定部分等のハウジングの温度を検出する温度センサと、
    該温度センサの出力をディジタル信号に変換するA/D変換回路と、
    該A/D変換回路の出力において基準背景温度との差温度を算出する減算回路と、
    該差温度をハウジング成分出力レベル変化に変換する変換テーブルと、
    シーン成分出力のプロファイルとハウジング成分出力のプロファイルの差分に相当するプロファイルを格納する補正データ1メモリと、
    前記変換テーブル出力と電子シャッタ値を乗算する乗算回路1と、
    該乗算回路1の出力と補正データ1メモリからの補正データとの乗算を行なう乗算回路2と、
    基準背景出力レベル×(シーン成分出力のプロファイルと基準背景出力のプロファイルの差分)に相当するレベル分布を有する補正データ2を格納する補正データ2メモリと、
    補正データ2メモリ出力と電子シャッタ値とを乗算する乗算回路3と、
    前記乗算回路2及び乗算回路3の出力とA/D変換された赤外線検知素子出力を加算する加算回路と、
    シーン成分出力のプロファイルを格納する補正データ3メモリと、
    前記加算回路出力を補正データ3メモリに格納した補正データにより除算する除算回路とを有し、
    該除算回路の出力を補正出力とする赤外線撮像装置。
JP2002282831A 2002-09-27 2002-09-27 赤外線撮像装置 Expired - Fee Related JP4180869B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282831A JP4180869B2 (ja) 2002-09-27 2002-09-27 赤外線撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282831A JP4180869B2 (ja) 2002-09-27 2002-09-27 赤外線撮像装置

Publications (2)

Publication Number Publication Date
JP2004117254A JP2004117254A (ja) 2004-04-15
JP4180869B2 true JP4180869B2 (ja) 2008-11-12

Family

ID=32276881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282831A Expired - Fee Related JP4180869B2 (ja) 2002-09-27 2002-09-27 赤外線撮像装置

Country Status (1)

Country Link
JP (1) JP4180869B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187254A (ja) * 2007-01-26 2008-08-14 Sumitomo Electric Ind Ltd 赤外撮像装置、撮像素子の出力値算出方法
JP2016219914A (ja) * 2015-05-15 2016-12-22 日本電気株式会社 赤外線撮像装置、及びその制御方法
JP6540519B2 (ja) * 2016-01-12 2019-07-10 三菱電機株式会社 赤外線撮像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565261B2 (ja) * 1987-10-17 1996-12-18 ソニー株式会社 固体撮像装置用画像欠陥補正装置
JPH0732467B2 (ja) * 1989-02-10 1995-04-10 三菱電機株式会社 赤外ビデオカメラ用シエーデイング補正装置
JPH03179977A (ja) * 1989-12-08 1991-08-05 Mitsubishi Electric Corp 撮像装置
EP2009414A1 (en) * 1999-01-14 2008-12-31 Panasonic Corporation Infrared imaging device, vehicle with the same, and infrared image adjusting device
JP4401582B2 (ja) * 2001-02-26 2010-01-20 富士通株式会社 赤外線撮像装置

Also Published As

Publication number Publication date
JP2004117254A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
US5994701A (en) Infrared sensor device with temperature correction function
US7260270B2 (en) Image creating device and image creating method
US7885536B1 (en) Infrared and near-infrared camera hyperframing
US7619656B2 (en) Systems and methods for de-blurring motion blurred images
US7235773B1 (en) Method and apparatus for image signal compensation of dark current, focal plane temperature, and electronics temperature
US6252659B1 (en) Three dimensional measurement apparatus
JP4401582B2 (ja) 赤外線撮像装置
JP2003247823A (ja) 位相差検出方法、位相差検出装置、測距装置および撮像装置
JP2005249723A (ja) 温度分布を含む画像の出力装置およびその制御方法
JP3675066B2 (ja) 赤外線撮像装置および画像補正方法
JP2009089138A (ja) 赤外線カメラ
JP4180869B2 (ja) 赤外線撮像装置
JPH03246428A (ja) 赤外線映像装置
WO2006017544A2 (en) Sensor apparatus and method for noise reduction
WO2020148868A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP6991371B1 (ja) 赤外線撮像装置
JP2001272278A (ja) 撮像システム及びそれを用いた温度計測方法
US8416404B2 (en) Method and system for measurement and correction of thermally induced changes of boresight, effective focal length, and focus
JP2005274301A (ja) 赤外線カメラ
JP7271604B2 (ja) 赤外線撮像装置
JP2551177B2 (ja) 計測装置
JP2000002520A (ja) 3次元入力装置
JP2019213193A (ja) 赤外線撮像装置及びそれに用いられるプログラム
JP3116086B2 (ja) 光検出器を用いた物体の運動測定方法
US20060186338A1 (en) Method for improving measurement accuracy of infrared imaging radiometers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071101

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4180869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees