JP4180444B2 - Explosion-proof method of waste crusher using nitrogen gas - Google Patents

Explosion-proof method of waste crusher using nitrogen gas Download PDF

Info

Publication number
JP4180444B2
JP4180444B2 JP2003154741A JP2003154741A JP4180444B2 JP 4180444 B2 JP4180444 B2 JP 4180444B2 JP 2003154741 A JP2003154741 A JP 2003154741A JP 2003154741 A JP2003154741 A JP 2003154741A JP 4180444 B2 JP4180444 B2 JP 4180444B2
Authority
JP
Japan
Prior art keywords
waste
crusher
oxygen concentration
nitrogen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154741A
Other languages
Japanese (ja)
Other versions
JP2005013770A (en
Inventor
清一郎 井上
誠二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2003154741A priority Critical patent/JP4180444B2/en
Publication of JP2005013770A publication Critical patent/JP2005013770A/en
Application granted granted Critical
Publication of JP4180444B2 publication Critical patent/JP4180444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物を破砕処理する廃棄物処理施設の破砕機に関するものであり、窒素ガスを用いてより経済的に、しかも簡単且つ確実に破砕機の防爆性能を高め得るようにした窒素ガスを用いた破砕機の防爆方法に関するものである。
【0002】
【従来の技術】
都市ごみや産業廃棄物を焼却、溶融、ガス化等により処理する場合には、先ず破砕処理施設に於いて粗大ごみや不燃ごみ等(以下廃棄物と呼ぶ)を所望の大きさに破砕し、有価物や不燃物、可燃物等に選別したあと、夫々の選別物に対応した適宜の処理が施されて行く。
【0003】
ところで、廃棄物内にはLPガスボンベやスプレー缶、有機溶剤用容器、ガソリン用容器、灯油用容器等の危険物の残留した容器類等(以下危険物等と呼ぶ)が多数混入しており、これ等の危険物等は廃棄物の収集段階で分別され、取り除かれるのが原則である。
【0004】
しかし現実には、廃棄物処理施設へ搬入されてくる廃棄物内には多数の危険物等が混入しており、そのため廃棄物処理施設に於いては、破砕機へ廃棄物を投入する前に、機械的又は作業員の目視によって危険物等を選別並びに除去するようにしている。
【0005】
また、万一過誤により危険物が破砕機内へ投入された場合に備えて、各破砕機には所謂防爆装置が設けられており、破砕機内での火災の発生や爆発事故等の防止が図られている。
【0006】
尚、上記破砕機の防爆には、一般に希釈空気吸込方式と水蒸気吸込方式とが多く用いられており、前者の希釈空気吸込方式に於いては、破砕機内部へ多量の空気を吹込むことにより、破砕機内部雰囲気の可燃性ガス濃度をその爆発下限界未満の濃度にまで希釈し、爆発を未然に防止するようにしている。
また、後者の水蒸気吸込方式に於いては、破砕機内部へ水蒸気を吸込み、破砕機内部雰囲気の可燃性ガス濃度を爆発限界外の濃度に保持することにより、爆発を抑制するようにしている。
【0007】
【特許文献1】
特許第1612826号
【特許文献2】
特許第1181078号
【0008】
上記両防爆方式は実用化の実績も多く、優れた防爆性能を有するものであることが実証されている。
しかし、両防爆方式にも未だ解決すべき問題点が多くのこされている。例えば、前者の希釈空気吸込方式にあっては、多量の空気を破砕機内へ吹き込むため破砕機内部に可燃性ガスが滞留する恐れは少ないが、破砕機内部の浮遊ダスト量が増大することになり、結果として破砕機からの排出空気を処理するための集塵装置が大型化すると云う難点がある。
【0009】
また、破砕機内部雰囲気内の可燃性ガスが空気の吹き込みによって希釈される段階で、短時間ではあるが部分的に可燃性ガスの爆発濃度領域を通過するため、必然的に爆発の可能性が残ることになり、信頼性が低いと云う問題がある。
【0010】
更に、防爆設備の構成には空気吸込み用送風機、排風機、集塵器、消音器及び空気ダクト等を必要とし、設備の小型化が図り難いと云う難点がある。
【0011】
一方、後者の水蒸気吸込み方式に於いても同様であり、防爆設備の構成には水蒸気発生用ボイラ、ボイラ燃料供給装置、給水設備、排水・排蒸気処理設備及び集塵器等を必要とし、防爆設備の小型化を図り難いと云う難点がある。
【0012】
また、防爆設備の運転初期には暖気時間を必要とするうえ、水蒸気発生用ボイラに於ける燃焼消費が多大となり、ランニングコストの引下げが図れないと云う問題がある。
【0013】
更に、水蒸気雰囲気内で廃棄物を破砕するため、破砕機内で発生した投入水蒸気の凝縮水により、破砕機の内部や破砕機に接続されている各種の設備機器の内部が腐食されると云う問題がある。
【0014】
【発明が解決しようとする課題】
本発明は、従前のこの種廃棄物処理用破砕機の防爆設備に於ける上述の如き問題、即ち空気吸込方式の防爆設備では設備の小型化が困難なうえ、集塵装置が大型化すること、防爆性能の信頼性が低いこと等の問題を、また水蒸気吸込み方式の防爆設備では設備の小型化が困難なうえ、凝縮水による機器内部の腐食が生じ易いこと等の問題を解決せんとするものであり、廃棄物処理施設に付設した窒素発生装置からの窒素ガスを用いることにより、経済的に、しかも簡単且つ確実に破砕機の防爆性が確保できると共に、設備の大幅な小型化を可能とした窒素ガスを用いた廃棄物処理用破砕機の防爆方法を提供するものである。
【0015】
【課題を解釈するための手段】
窒素ガスを防爆防止用に使用することは、例えば危険物タンクの上部空間内にN2ガスを充填する方法等により広く実用化されている。
しかし、廃棄物処理用破砕機等の分野に於いては、従前からN2ガスの漏洩量が多いためにランニングコストが高騰し、到底N2ガスを現実の使用に供することは不可能であると考えられていた。
【0016】
しかし、前記の如く水蒸気方式の防爆では腐食の問題が避けられず、また空気吸込方式の防爆では安全性に問題があるため、これに代わる防爆方式の開発が急務になって来ていると云う現実がある。
そこで、本願発明者等は、従前からランニングコストの点で使用が不可能であると考えられていた窒素ガスの使用を想到し、窒素の使用が現実にランニングコストの点から不可能か否かを検証すると共に、防爆性能や窒素の消費量、消費量を削減するための方策等に関する各種の試験を破砕機の実稼動プラントを用いて実施した。
【0017】
本願発明は上記各試験結果を基にして創作されたものであり、請求項1の発明は、先端部に間隔を置いて、廃棄物が通過可能な少なくとも2基のシール装置を備えた廃棄物供給コンベアを通して破砕機本体の上方へ廃棄物を供給すると共に、所望の寸法に破砕した廃棄物を、基端部に間隔を置いて、破砕された廃棄物が通過可能な少なくとも2基のシール装置を備えた搬出コンベアにより外部へ搬出するようにした廃棄物処理用破砕機であって、破砕機本体内へ窒素ガス供給装置から酸素濃度制御器を通して窒素ガスを吹き込んで破砕機本体に設けた酸素濃度検出器により破砕機本体内の酸素濃度を検出し、前記酸素濃度検出器の検出信号により制御装置及び前記酸素濃度制御器を介して破砕機本体内へ供給する窒素ガス量を調整し、破砕機本体内の酸素濃度を8〜11%の濃度値に保持すると共に、前記廃棄物供給コンベアのシール装置の間に排気フード部を、前記搬出コンベアのシール装置の間に排気フード部を、また各排気フード部に酸素濃度検出器を夫々設け、更に各排気フード部内のガスを排出する透引排風機の吸引側に酸素濃度制御器を介設し、前記酸素濃度検出器により検出した排気フード部の酸素濃度から排気フード部排ガスの窒素ガス濃度を求め、当該窒素ガス濃度が所定値を越えると制御装置及び酸素濃度制御器を介して透引排風機からの排出ガスの排出量を減少させるようにし、また、廃棄物破砕機本体の上方部と下方部とを窒素ガス循環ラインによりバイパス状に連通させると共に当該循環ラインに循環送風機を介設し、循環送風機により破砕機本体の内部に下方より上方へ向う循環ガス流を起生させるようにしたことを発明の基本構成とするものである。
【0020】
請求項の発明は、請求項1の発明に於いて廃棄物破砕機本体1aの酸素濃度検出器15a、15bの酸素濃度検出値が設定値を越えた場合に廃棄物破砕機への廃棄物の供給を停止するようにしたものである。
【0021】
請求項の発明は、請求項1の発明に於いて、廃棄物破砕機本体1aに可燃性ガス検出器17を設け、当該可燃性ガス検出器17による検出値が設定値を越えた場合に廃棄物破砕機1への廃棄物の供給を停止するようにしたものである。
【0022】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明を実施した廃棄物処理用破砕機Aの全体系統図であり、図1に於いて、1は回転式破砕機、1aは破砕機本体、2は廃棄物供給コンベア、2aは供給コンベア駆動用モータ、3は排出コンベア、4は搬出コンベア、5は窒素ガス供給装置、6は制御装置、7・9・10はシール装置、12は誘引排風機、13は循環送風機、14a〜14dは窒素ガス吸込ノズル、15a〜15dは酸素濃度検出器、16a、16bは酸素濃度制御器、16c・dは酸素濃度制御器、17は可燃性ガス検出器、Nは窒素ガス供給ライン、Oは検出信号ライン、Cは制御信号ライン、Lは窒素ガス循環ライン、Vは排気ラインである。
【0023】
前記回転式破砕機1は所謂ハンマー型若しくは回転刃型の破砕機であり、破砕機本体1aの上方開口により本体内へ搬入された廃棄物を破砕し、所定の寸法以下の大きさの破砕片を形成する。
また、廃棄物供給コンベア2の先端部及び搬出コンベア4の基端部には、夫々排気フード部2b・4bが設けられており、破砕機本体1a内から漏洩して来た空気や窒素の混合ガス(排ガスG)がここに集められ、外部へ排出されて行く。更に、廃棄物供給コンベア2の先端部及び排出コンベア4の基端部の前記排気フード部2bの下流側及び排気フード部4bの上流側には、所謂ゴム板や薄金属板等から成る廃棄物が通過可能なノレン状のシール装置7、9、10が夫々一定の間隔を置いて設けられており、破砕機本体1aの内部空間を外気との間の気密性を可能な限り保持するように構成されている。
【0024】
前記窒素ガス供給装置5は、破砕機本体1a内へ所定量の窒素ガスを供給するものであり、液化窒素ガス供給装置であっても、或いは空気分離型の窒素ガス発生装置であってもよく、本実施形態に於いては空気中のO2を吸着剤により吸着分離してN2を得るようにした構造の窒素ガス発生装置が使用されている。
【0025】
窒素ガス吸込ノズル14a〜14dは破砕機本体1aの上方部及び下方部に夫々適宜に分散設置されており、本実施形態に於いては、2系統の窒素ガス供給ラインNを通して各窒素ガス吸込ノズル14a〜14dへ窒素ガスを供給している。
【0026】
尚、各窒素ガス供給ラインNには酸素濃度制御器16a、16bが介設されており、後述するように制御装置6からの制御信号により制御弁の開度を調整することにより、窒素ガス供給量即ち破砕機本体1a内のO2濃度が調整される。
【0027】
前記酸素濃度検出器15a〜15dは破砕機本体1aの上方及び下方部に各1個、並びに廃棄物供給コンベア2の排気フード部2bの近傍と搬出コンベア4の排気フード部4bの近傍に各1個ずつ設けられており、前者の2個の酸素濃度検出器15a、15bは文字通り破砕機本体1a内のO2濃度を夫々検出するものである。
【0028】
これに対して、後者の2個の酸素濃度検出器15c、15dは、各排気フード部2b、4b内のO2濃度からN2濃度を求め、この部分のN2濃度が高い場合には誘引排風機12の運転を制御することにより、排出される窒素ガス量(損失量)を減少させるためのものである。
【0029】
前記誘引排風機12は、破砕機本体1a内から排出される空気や窒素やその他のばい塵等から成る排ガスGを外部(例えば排ガス処理装置)へ排出するものであり、その排出量は酸素濃度制御器16c・dの制御弁により調整される。
【0030】
また、前記循環送風機13は、破砕機本体1aの内部下方の雰囲気を上方へ送り、これを循環ラインLを通して強制循環させるものであり、当該循環送風機13と循環ラインLとから成るN2循環装置を設けることにより、破砕機本体1a内部のN2濃度が均一に保持されることになる。
【0031】
前記制御装置6は、本発明に依る破砕機防出量設備の全体を制御するものであり、各酸素濃度検出器15a〜15dからO2濃度検出信号が入力されると共に、各酸素濃度制御器16a、16b及び酸素濃度制御器16c・d、誘引排風機12、循環送風機13、供給コンベア駆動用モータ2a及び窒素ガス供給装置5へ夫々制御信号を発信する。
同様に、制御装置6へは、可燃性ガス濃度検出器17から、検出信号が入力される。
【0032】
次に、本発明に依る廃棄物用破砕機の防爆方法を図1に基づいて説明する。
廃棄物供給コンベア2により搬入されて来た廃棄物はシール装置7を経て、破砕機本体1aの上方より搬入され、回転ハンマ(又は回転刃・図示省略)により適宣な大きさに破砕されたあと、下方より排出コンベア3上へ排出され、排出コンベア4へ引き継がれ、シール装置9、10を通して外部へ搬出されて不燃物や有価物(金属類)が適宜に選別回収される。
【0033】
一方、破砕機本体1a内へは、窒素ガス吸込ノズル14a〜14dを通して窒素ガス供給装置5から所定量の窒素ガスが連続若しくは間欠的に供給されており、これにより破砕機本体1a内の酸素濃度は、爆発限界外(酸素濃度8〜11%)の値に保持されている。
【0034】
また、破砕機本体1a内部のガス(G)は、破砕機回転刃等の回転によりある程度下方から上方へ向けて循環しているが、循環送風機13の運転により、破砕機本体1a内には上方へ向うガスGの流れが形成されており、これによって本体1a内各部の窒素ガス濃度が極めて均一な濃度に保持されることになる。
【0035】
また、シール装置8及びシール装置7や、シール装置9・10及びシール装置10を通して排気フード部2b、4bへ流入した空気や窒素の混合ガス(排ガス)Gは、誘引排風機12により外部へ排出されて行く。
【0036】
前記、破砕機本体1a内の酸素濃度は、各酸素濃度検出器15a、15bの検出信号により制御装置6を介して、酸素濃度制御器16a、16bの制御弁開度を調整してN2ガスの供給量を増減させることにより、前記約8〜11%のO2濃度値となるように調整されている。
【0037】
また、各シール部2b、4b内の酸素濃度は、酸素濃度検出器15c、15dにより検出されており、当該部分の酸素濃度が設定値よりも減少(即ち、当該部分の窒素濃度が増加)した場合には、誘引排風機12及び酸素濃度制御器16c・dの制御弁を調整し、排ガスGの排出量を減少させる。これにより、排気フード部2bの上流側及び排気フード部4bの下流側へ窒素ガスの漏洩を防止して、窒素ガス損失量の削減を図る。
尚、万一酸素濃度検出器15a、15bや可燃性ガス濃度検出器17の検出値が設定値を越えた場合には、破砕機本体1aへの廃棄物の供給が自動的に停止される。
【0038】
【発明の効果】
本願発明に於いては、窒素ガスを廃棄物処理用破砕機の本体内へ供給し、本体内部の酸素濃度を8〜11%に保持する構成としているため、従前の空気吸込方式の場合に比較して破砕機の安全性が大幅に向上する。また、水蒸気吸込の場合の如き腐食の問題は一切発生せず、排気フード部2b、4b等からの蒸気の噴出の問題も全く起こらない。
【0039】
更に、本発明に於いては、循環送風機13と窒素ガス循環ラインLから成る循環装置により、破砕機本体1aの内部ガスを強制循環させるようにしているため、破砕機本体1a内の酸素濃度が均一化され、破砕機の防爆性能が大幅に向上する。
そのうえ、各排気フード部2b、4b内の窒素濃度に応じて誘引排風機12によるガスGの排出量を制御するようにしているため、外部へ排出される窒素ガスの損失量が大幅に減少することになる。
本発明は上述の通り、優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】 本発明を実施した廃棄物処理用破砕機の全体系統図である。
【符号の説明】
A 廃棄物処理用破砕機
G 排ガス(空気+窒素等)
1 回転式破砕機
1a 破砕機本体
2 廃棄物供給コンベア
2a 供給コンベア駆動用モータ
2b 排気フード部
3 排出コンベア
4 搬出コンベア
4b 排気フード部
5 窒素ガス供給装置
6 制御装置
7 シール装置
9 シール装置
10 シール装置
12 誘引排風機
13 循環送風機
14a〜14d 窒素ガス吸込ノズル
15a〜15d 酸素濃度検出器
16a〜16b 酸素濃度制御器
16c・d 酸素濃度制御器
17 可燃性ガス検出器
N 窒素ガス供給ライン
O 検出信号ライン
C 制御信号ライン
L 窒素ガス循環ライン
V 排気ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crusher of a waste treatment facility that crushes municipal waste and industrial waste, and can improve the explosion-proof performance of the crusher more economically, easily and reliably using nitrogen gas. The present invention relates to an explosion-proof method for a crusher using nitrogen gas.
[0002]
[Prior art]
When disposing of municipal waste and industrial waste by incineration, melting, gasification, etc., first crush large-sized waste, non-combustible waste, etc. (hereinafter referred to as waste) into a desired size in a crushing treatment facility, After sorting into valuables, incombustibles, combustibles, etc., appropriate processing corresponding to each sort is performed.
[0003]
By the way, many waste containers such as LP gas cylinders, spray cans, organic solvent containers, gasoline containers, kerosene containers, etc. (hereinafter referred to as dangerous substances) are mixed in the waste. In principle, these dangerous materials are separated and removed at the waste collection stage.
[0004]
However, in reality, there are many hazardous materials mixed in the waste that is brought into the waste treatment facility. Therefore, in the waste treatment facility, before putting the waste into the crusher, In addition, dangerous materials and the like are selected and removed mechanically or visually by an operator.
[0005]
In addition, each crusher is equipped with a so-called explosion-proof device in case a dangerous material is thrown into the crusher due to an error, thereby preventing a fire or explosion accident in the crusher. ing.
[0006]
In addition, for the explosion-proofing of the crusher, a dilution air suction method and a water vapor suction method are generally used. In the former dilution air suction method, a large amount of air is blown into the crusher. The flammable gas concentration in the atmosphere inside the crusher is diluted to a concentration below the lower limit of the explosion to prevent explosion.
Further, in the latter water vapor suction method, the explosion is suppressed by sucking water vapor into the crusher and maintaining the combustible gas concentration in the crusher atmosphere at a concentration outside the explosion limit.
[0007]
[Patent Document 1]
Japanese Patent No. 1612826 [Patent Document 2]
Japanese Patent No. 1181078
Both of the above explosion-proof methods have many achievements in practical use and have been proved to have excellent explosion-proof performance.
However, there are still many problems to be solved in both explosion-proof systems. For example, in the former dilution air suction method, a large amount of air is blown into the crusher, so there is little risk of flammable gas remaining inside the crusher, but the amount of floating dust inside the crusher will increase. As a result, there is a problem that the dust collector for processing the exhaust air from the crusher is increased in size.
[0009]
In addition, at the stage where the combustible gas in the atmosphere inside the crusher is diluted by blowing in air, it partially passes through the explosive concentration region of the combustible gas for a short time, so there is a possibility of explosion. There is a problem that the reliability is low.
[0010]
Furthermore, the construction of the explosion-proof equipment requires an air suction blower, an exhaust fan, a dust collector, a silencer, an air duct, and the like, which makes it difficult to downsize the equipment.
[0011]
On the other hand, the same applies to the latter water vapor suction method, and the construction of the explosion-proof equipment requires a steam generating boiler, boiler fuel supply device, water supply equipment, drainage / exhaust steam treatment equipment, dust collector, etc. There is a difficulty that it is difficult to reduce the size of the equipment.
[0012]
In addition, there is a problem that a warm-up time is required at the initial stage of operation of the explosion-proof equipment, and that the combustion consumption in the steam generating boiler becomes large, so that the running cost cannot be reduced.
[0013]
Furthermore, because the waste is crushed in the steam atmosphere, the condensate of the input steam generated in the crusher corrodes the inside of the crusher and various equipment connected to the crusher. There is.
[0014]
[Problems to be solved by the invention]
The present invention has a problem as described above in the conventional explosion-proof equipment of this kind of waste treatment crusher, that is, it is difficult to downsize the equipment in the air suction type explosion-proof equipment, and the size of the dust collector is increased. In addition, the problem of low reliability of explosion-proof performance, etc., and the difficulty of downsizing the equipment with the water vapor suction-type explosion-proof equipment, and the problem of internal corrosion of equipment due to condensate are likely to be solved. By using nitrogen gas from the nitrogen generator attached to the waste treatment facility, the explosion-proof property of the crusher can be secured economically, easily and reliably, and the equipment can be greatly downsized. The present invention provides an explosion-proof method for a waste disposal crusher using nitrogen gas.
[0015]
[Means for interpreting problems]
The use of nitrogen gas for preventing explosions has been widely put into practical use by, for example, a method of filling N 2 gas in the upper space of a dangerous goods tank.
However, in the field of waste processing crushers and the like, since the amount of leakage of N 2 gas has been large in the past, running costs have soared and it is impossible to use N 2 gas for actual use. It was thought.
[0016]
However, as mentioned above, the corrosion problem is unavoidable with the steam type explosion proof, and the safety problem with the air suction type explosion proof, it is said that the development of an alternative explosion proof method has become an urgent task. There is reality.
Therefore, the inventors of the present application have conceived the use of nitrogen gas, which has been considered impossible in terms of running cost, and whether or not the use of nitrogen is actually impossible in terms of running cost. In addition, various tests related to explosion-proof performance, nitrogen consumption, measures to reduce consumption, etc. were conducted using an actual plant for crushers.
[0017]
The invention of the present application was created based on the above test results, and the invention of claim 1 is a waste having at least two sealing devices through which the waste can pass with a gap at the tip . supplies upwardly to the waste shredder body through feed conveyors, the desired crushed waste into dimensions, spaced proximal end, the crushed waste seal both groups least passable a was set to be carried out to the outside by the discharge conveyor having a device waste crusher, provided crusher body Nde write blowing nitrogen gas through the oxygen concentration controller from the nitrogen gas supply device into the shredder body The oxygen concentration in the crusher body is detected by the oxygen concentration detector, and the amount of nitrogen gas supplied to the crusher body through the control device and the oxygen concentration controller is adjusted by the detection signal of the oxygen concentration detector. ,Crushing machine Both Holding the oxygen concentration in the body 8 to 11% of the density value, an exhaust hood portion between the seal device of the waste feed conveyor, an exhaust hood portion between the seal device of the output conveyor, and each exhaust Each of the hoods is provided with an oxygen concentration detector, and further, an oxygen concentration controller is provided on the suction side of the ventilation fan that discharges the gas in each exhaust hood, and the exhaust hood detected by the oxygen concentration detector The nitrogen gas concentration of the exhaust hood exhaust gas is obtained from the oxygen concentration, and when the nitrogen gas concentration exceeds a predetermined value, the discharge amount of the exhaust gas from the ventilation exhaust fan is reduced via the control device and the oxygen concentration controller. In addition, the upper part and the lower part of the waste crusher main body are communicated in a bypass manner with a nitrogen gas circulation line, and a circulation fan is provided in the circulation line, and the inside of the crusher main body is provided by the circulation fan. It is an basic configuration of the invention that so as to produce force the circulating gas stream toward upward than downward.
[0020]
The invention of claim 2 is the waste to the waste crusher when the oxygen concentration detection values of the oxygen concentration detectors 15a, 15b of the waste crusher main body 1a exceed the set value in the invention of claim 1. The supply of is stopped.
[0021]
The invention of claim 3 is the invention of claim 1, wherein the combustible gas detector 17 is provided in the waste crusher main body 1a, and the detection value by the combustible gas detector 17 exceeds the set value. The supply of waste to the waste crusher 1 is stopped.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall system diagram of a waste treatment crusher A embodying the present invention. In FIG. 1, 1 is a rotary crusher, 1a is a crusher body, 2 is a waste supply conveyor, 2a Is a supply conveyor drive motor, 3 is a discharge conveyor, 4 is a carry-out conveyor, 5 is a nitrogen gas supply device, 6 is a control device, 7, 9 and 10 are sealing devices, 12 is an induction fan, 13 is a circulating fan, 14a -14d is a nitrogen gas suction nozzle, 15a to 15d are oxygen concentration detectors, 16a and 16b are oxygen concentration controllers, 16c and d are oxygen concentration controllers, 17 is a combustible gas detector, N is a nitrogen gas supply line, O is a detection signal line, C is a control signal line, L is a nitrogen gas circulation line, and V is an exhaust line.
[0023]
The rotary crusher 1 is a so-called hammer type or rotary blade type crusher, crushing the waste carried into the main body through the upper opening of the crusher main body 1a, and crushing pieces having a size of a predetermined size or less. Form.
Further, exhaust hood portions 2b and 4b are provided at the distal end portion of the waste supply conveyor 2 and the proximal end portion of the carry-out conveyor 4, respectively, and a mixture of air and nitrogen leaked from the crusher main body 1a. Gas (exhaust gas G) is collected here and discharged to the outside. Further, wastes made of so-called rubber plates or thin metal plates are disposed on the downstream side of the exhaust hood portion 2b and the upstream side of the exhaust hood portion 4b at the distal end portion of the waste supply conveyor 2 and the proximal end portion of the discharge conveyor 4. Noren-like sealing devices 7, 9, and 10 through which air can pass are provided at regular intervals, so that the internal space of the crusher main body 1a is kept as close as possible to the outside air. It is configured.
[0024]
The nitrogen gas supply device 5 supplies a predetermined amount of nitrogen gas into the crusher body 1a, and may be a liquefied nitrogen gas supply device or an air separation type nitrogen gas generation device. In this embodiment, a nitrogen gas generator having a structure in which N 2 is obtained by adsorbing and separating O 2 in the air with an adsorbent is used.
[0025]
The nitrogen gas suction nozzles 14a to 14d are appropriately distributed and installed in the upper part and the lower part of the crusher body 1a. In this embodiment, each nitrogen gas suction nozzle is passed through two nitrogen gas supply lines N. Nitrogen gas is supplied to 14a-14d.
[0026]
Each nitrogen gas supply line N is provided with oxygen concentration controllers 16a and 16b. By adjusting the opening of the control valve by a control signal from the control device 6 as will be described later, nitrogen gas supply is performed. The amount, that is, the O 2 concentration in the crusher body 1a is adjusted.
[0027]
The oxygen concentration detectors 15a to 15d are each one above and below the crusher body 1a, and one each near the exhaust hood 2b of the waste supply conveyor 2 and one near the exhaust hood 4b of the carry-out conveyor 4. The former two oxygen concentration detectors 15a and 15b literally detect the O 2 concentration in the crusher main body 1a, respectively.
[0028]
On the other hand, the latter two oxygen concentration detectors 15c and 15d obtain the N 2 concentration from the O 2 concentration in each exhaust hood portion 2b and 4b, and are attracted when the N 2 concentration in this portion is high. This is for reducing the amount of nitrogen gas discharged (loss amount) by controlling the operation of the exhaust fan 12.
[0029]
The induced exhaust fan 12 discharges exhaust gas G composed of air, nitrogen, other dust, etc. from the crusher main body 1a to the outside (for example, exhaust gas treatment device), and the discharge amount is oxygen concentration. It is adjusted by the control valve of the controller 16c · d.
[0030]
The circulation blower 13 sends the atmosphere below the inside of the crusher main body 1a upward, and forcibly circulates the atmosphere through the circulation line L. The N 2 circulation device comprising the circulation blower 13 and the circulation line L is provided. By providing this, the N 2 concentration inside the crusher main body 1a is maintained uniformly.
[0031]
The control device 6 controls the entire crusher prevention amount equipment according to the present invention. O 2 concentration detection signals are input from the oxygen concentration detectors 15a to 15d, and each oxygen concentration controller. Control signals are transmitted to 16a, 16b, the oxygen concentration controller 16c, d, the induction fan 12, the circulation fan 13, the supply conveyor drive motor 2a, and the nitrogen gas supply device 5, respectively.
Similarly, a detection signal is input from the combustible gas concentration detector 17 to the control device 6.
[0032]
Next, an explosion-proof method for the waste crusher according to the present invention will be described with reference to FIG.
The waste carried in by the waste supply conveyor 2 passes through the sealing device 7 and is carried from above the crusher main body 1a and crushed to an appropriate size by a rotating hammer (or a rotary blade, not shown). After that, it is discharged onto the discharge conveyor 3 from below, taken over by the discharge conveyor 4, and carried out to the outside through the sealing devices 9 and 10, where non-combustible materials and valuables (metals) are appropriately sorted and collected.
[0033]
On the other hand, a predetermined amount of nitrogen gas is continuously or intermittently supplied from the nitrogen gas supply device 5 through the nitrogen gas suction nozzles 14a to 14d into the crusher body 1a, whereby the oxygen concentration in the crusher body 1a. Is kept outside the explosion limit (oxygen concentration 8-11%).
[0034]
Further, the gas (G) inside the crusher main body 1a is circulated from the lower side to the upper side to some extent by the rotation of the crusher rotary blade or the like. The flow of gas G toward the surface is formed, so that the nitrogen gas concentration in each part in the main body 1a is kept at a very uniform concentration.
[0035]
Further, the mixed gas (exhaust gas) G of air and nitrogen flowing into the exhaust hood portions 2b and 4b through the seal device 8 and the seal device 7 and the seal devices 9 and 10 and the seal device 10 is discharged to the outside by the induced exhaust fan 12. Going to be.
[0036]
Wherein the oxygen concentration in the shredder body 1a, each oxygen concentration sensor 15a, through the control device 6 by the detection signal of 15b, the oxygen concentration controller 16a, N 2 gas by adjusting the control valve opening 16b By adjusting the supply amount, the O 2 concentration value is adjusted to about 8 to 11%.
[0037]
Further, the oxygen concentration in each of the seal portions 2b and 4b is detected by the oxygen concentration detectors 15c and 15d, and the oxygen concentration in the portion has decreased from the set value (that is, the nitrogen concentration in the portion has increased). In that case, the control valve of the induced exhaust fan 12 and the oxygen concentration controller 16c · d is adjusted to reduce the emission amount of the exhaust gas G. This prevents nitrogen gas from leaking to the upstream side of the exhaust hood portion 2b and the downstream side of the exhaust hood portion 4b, thereby reducing the amount of nitrogen gas loss.
If the detected values of the oxygen concentration detectors 15a and 15b and the combustible gas concentration detector 17 exceed the set values, the supply of waste to the crusher main body 1a is automatically stopped.
[0038]
【The invention's effect】
In the present invention, since nitrogen gas is supplied into the main body of the waste treatment crusher and the oxygen concentration inside the main body is maintained at 8 to 11%, it is compared with the case of the conventional air suction method. This greatly improves the safety of the crusher. Further, there is no problem of corrosion as in the case of water vapor suction, and no problem of the ejection of steam from the exhaust hood portions 2b, 4b or the like.
[0039]
Furthermore, in the present invention, the internal gas of the crusher body 1a is forcibly circulated by the circulation device comprising the circulation blower 13 and the nitrogen gas circulation line L, so that the oxygen concentration in the crusher body 1a is reduced. It is made uniform and the explosion-proof performance of the crusher is greatly improved.
In addition, since the amount of gas G discharged by the induced exhaust fan 12 is controlled according to the nitrogen concentration in each exhaust hood 2b, 4b, the loss of nitrogen gas discharged to the outside is greatly reduced. It will be.
As described above, the present invention has excellent practical utility.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a waste disposal crusher embodying the present invention.
[Explanation of symbols]
A Waste disposal crusher G Exhaust gas (air + nitrogen, etc.)
DESCRIPTION OF SYMBOLS 1 Rotary crusher 1a Crusher main body 2 Waste supply conveyor 2a Supply conveyor drive motor 2b Exhaust hood part 3 Discharge conveyor 4 Carry-out conveyor 4b Exhaust hood part 5 Nitrogen gas supply apparatus 6 Control apparatus 7 Seal apparatus 9 Seal apparatus 10 Seal Device 12 Induced exhaust fan 13 Circulating fan 14a-14d Nitrogen gas suction nozzles 15a-15d Oxygen concentration detectors 16a-16b Oxygen concentration controller 16c, d Oxygen concentration controller 17 Combustible gas detector N Nitrogen gas supply line O Detection signal Line C Control signal line L Nitrogen gas circulation line V Exhaust line

Claims (3)

先端部に間隔を置いて、廃棄物が通過可能な少なくとも2基のシール装置を備えた廃棄物供給コンベアを通して破砕機本体の上方へ廃棄物を供給すると共に、所望の寸法に破砕した廃棄物を、基端部に間隔を置いて、破砕された廃棄物が通過可能な少なくとも2基のシール装置を備えた搬出コンベアにより外部へ搬出するようにした廃棄物処理用破砕機であって、破砕機本体内へ窒素ガス供給装置から酸素濃度制御器を通して窒素ガスを吹き込んで破砕機本体に設けた酸素濃度検出器により破砕機本体内の酸素濃度を検出し、前記酸素濃度検出器の検出信号により制御装置及び前記酸素濃度制御器を介して破砕機本体内へ供給する窒素ガス量を調整し、破砕機本体内の酸素濃度を8〜11%の濃度値に保持すると共に、前記廃棄物供給コンベアのシール装置の間に排気フード部を、前記搬出コンベアのシール装置の間に排気フード部を、また各排気フード部に酸素濃度検出器を夫々設け、更に各排気フード部内のガスを排出する透引排風機の吸引側に酸素濃度制御器を介設し、前記酸素濃度検出器により検出した排気フード部の酸素濃度から排気フード部排ガスの窒素ガス濃度を求め、当該窒素ガス濃度が所定値を越えると制御装置及び酸素濃度制御器を介して透引排風機からの排出ガスの排出量を減少させるようにし、また、廃棄物破砕機本体の上方部と下方部とを窒素ガス循環ラインによりバイパス状に連通させると共に当該循環ラインに循環送風機を介設し、循環送風機により破砕機本体の内部に下方より上方へ向う循環ガス流を起生させるようにしたことを特徴とする窒素ガスを用いた廃棄物処理用破砕機の防爆方法。 The waste is supplied to the upper part of the crusher main body through a waste supply conveyor having at least two sealing devices through which the waste can pass with a gap at the tip, and the waste crushed to a desired size , spaced proximal end, a waste crusher which is adapted to discharge to the outside by the discharge conveyor which crushed waste with a seal device both groups least passable, crushed Nde write blowing nitrogen gas through the oxygen concentration controller from the nitrogen gas supply device into the machine body to detect the oxygen concentration in the crusher main body by the oxygen concentration sensor provided in the crusher body, the detection signal of the oxygen concentration detector both the controller and through the oxygen concentration controller to adjust the amount of nitrogen gas supplied to the shredder body, when holding the oxygen concentration of the crusher body 8-11% of the density values by the waste feed Combe An exhaust hood portion is provided between the sealing devices of the discharge conveyor, an exhaust hood portion is provided between the sealing devices of the carry-out conveyor, and an oxygen concentration detector is provided in each exhaust hood portion. Further, the gas in each exhaust hood portion is discharged. An oxygen concentration controller is provided on the suction side of the exhaust fan, and the nitrogen gas concentration of the exhaust hood exhaust gas is obtained from the oxygen concentration of the exhaust hood detected by the oxygen concentration detector, and the nitrogen gas concentration is a predetermined value. If exceeded, the amount of exhaust gas discharged from the permeation exhaust fan is reduced via the controller and oxygen concentration controller, and the upper and lower parts of the waste crusher body are bypassed by the nitrogen gas circulation line. The nitrogen is characterized in that a circulation blower is interposed in the circulation line and a circulation gas flow is generated in the inside of the crusher main body from the lower side to the upper side by the circulation blower. Proof爆方method of waste disposal for the crushing machine using the scan. 廃棄物破砕機本体の酸素濃度検出器の酸素濃度検出値が設定値を越えた場合に廃棄物破砕機への廃棄物の供給を停止するようにした請求項1に記載の窒素ガスを用いた廃棄物処理用破砕機の防爆方法。The nitrogen gas according to claim 1, wherein the supply of waste to the waste crusher is stopped when the oxygen concentration detection value of the oxygen concentration detector of the waste crusher body exceeds a set value . Explosion-proof method for waste processing crusher. 廃棄物破砕機本体に可燃性ガス検出器を設け、当該可燃性ガス検出器による検出値が設定値を越えた場合に廃棄物破砕機への廃棄物の供給を停止するようにした請求項1に記載の窒素ガスを用いた廃棄物処理用破砕機の防爆方法。A combustible gas detector is provided in the waste crusher body, and the supply of waste to the waste crusher is stopped when a detection value by the combustible gas detector exceeds a set value. Explosion-proof method for waste treatment crusher using nitrogen gas described in 1.
JP2003154741A 2003-04-28 2003-05-30 Explosion-proof method of waste crusher using nitrogen gas Expired - Fee Related JP4180444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154741A JP4180444B2 (en) 2003-04-28 2003-05-30 Explosion-proof method of waste crusher using nitrogen gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003123556 2003-04-28
JP2003154741A JP4180444B2 (en) 2003-04-28 2003-05-30 Explosion-proof method of waste crusher using nitrogen gas

Publications (2)

Publication Number Publication Date
JP2005013770A JP2005013770A (en) 2005-01-20
JP4180444B2 true JP4180444B2 (en) 2008-11-12

Family

ID=34196534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154741A Expired - Fee Related JP4180444B2 (en) 2003-04-28 2003-05-30 Explosion-proof method of waste crusher using nitrogen gas

Country Status (1)

Country Link
JP (1) JP4180444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731635B1 (en) * 2010-10-13 2011-07-27 株式会社近藤商会 Document disposal recycling system
KR102501231B1 (en) * 2022-01-19 2023-02-21 노명국 Waste storage system with nitrogen purge apparatus to prevent fire in waste storage tank

Also Published As

Publication number Publication date
JP2005013770A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
EP0563482B1 (en) Method for processing waste comprising drying by sublimation prior to incineration
JP2023120262A (en) Fire detection system of waste disposal facility, and fire detection method
JP6020104B2 (en) Fire protection equipment for bulky waste treatment facilities
JP4180444B2 (en) Explosion-proof method of waste crusher using nitrogen gas
JP4460387B2 (en) Waste and pollutant reduction and detoxification methods and equipment
CN1061266C (en) Device for preventing risk of fire due to burning or glowing particles fire in pipeline
US20220241794A1 (en) Method and plant for the processing of waste
JP2011240295A (en) Waste crushing facility equipped with fire prevention apparatus, and its operation method
US7494079B1 (en) Refuse recycling plant
US20090217848A1 (en) Waste treatment method and apparatus
US5516975A (en) Methods for processing leachate using completely closed system in monitor-type and stabilizing-type industrial and non-industrial waste treatment plant
US3972481A (en) Shredding system improvement to suppress explosions
US4972998A (en) Method and system for preventing explosions within a solid waste disposal facility
JP2006176262A (en) Conveyor device
US20110203534A1 (en) Method and device for conveying combustion residues
JPH06296896A (en) Crushing treating device for solid waste
JP2617669B2 (en) Explosion-proof equipment for rotary crushers
JP7304144B2 (en) Waste treatment system
JPH10503274A (en) System for producing ash products and energy from waste
JPH0199654A (en) Cruser
JP3756459B2 (en) Deodorization system and deodorization method
JPH0780334A (en) Device for preventing explosion of big refuge crusher
JP2005081386A (en) Treating method and treating device for gas can
Zalosh et al. Assessment of explosion hazards in refuse shredders
JPH1078208A (en) Refuse supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Ref document number: 4180444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees