JP4179938B2 - 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体 - Google Patents

立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
JP4179938B2
JP4179938B2 JP2003206566A JP2003206566A JP4179938B2 JP 4179938 B2 JP4179938 B2 JP 4179938B2 JP 2003206566 A JP2003206566 A JP 2003206566A JP 2003206566 A JP2003206566 A JP 2003206566A JP 4179938 B2 JP4179938 B2 JP 4179938B2
Authority
JP
Japan
Prior art keywords
pixel
image
pixel value
region
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206566A
Other languages
English (en)
Other versions
JP2004295859A (ja
Inventor
重宏 鳥居
敦史 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003206566A priority Critical patent/JP4179938B2/ja
Publication of JP2004295859A publication Critical patent/JP2004295859A/ja
Application granted granted Critical
Publication of JP4179938B2 publication Critical patent/JP4179938B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、単一の画像から擬似立体視が可能となる画像を生成する立体画像生成装置に関する。
【0002】
【従来の技術】
従来の立体画像生成装置は、単一の2次元画像を用い、視差を与えることにより擬似立体視を可能とする画像を生成する。たとえば、単一の2次元画像の入力画像を右目用の画像とし、入力画像中の各領域に視差を与えて左目用の画像を生成する。
【0003】
第1の従来例としては、2次元画像の3次元化方法として、既存の2次元画像の情報のみからでも違和感の少ない3次元画像化を実現できる方式について以下のような構成が公知である(特許文献1を参照)。すなわち、この第1の従来例では、2次元画像から3次元画像用の左目画像あるいは右目画像を作成する2次元画像の3次元化方法であって、背景画像やそれより手前の人物像等からなる手前画像からなる2次元画像から該手前画像を抽出するステップと、視差や遠近感に応じて前記手前画像を水平方向に移動させるステップと、前記手前画像の移動によって生じる無画像情報領域を補填するように移動後の前記手前画像を拡大するステップと、前記手前画像と背景画像とを合成するステップとよりなる構成が開示されている。
【0004】
また、第2の従来例としては、2次元画像の3次元化方法について、以下のような構成が公知である(特許文献2を参照)。すなわち、この第2の従来例では、2次元画像から3次元画像用の左目画像あるいは右目画像を作成する2次元画像の3次元化方法であって、2次元画像の立体化しようとする所定領域の周囲の画像を拡大あるいは縮小することにより、前記所定領域を左右に移動させて左目画像あるいは右目画像を作成する。この場合、前記2次元画像を水平方向に複数に分割し、分割された領域の一つあるいは複数の領域を立体化する際、該立体化しようとする領域の左右の領域の画像を拡大あるいは縮小する。もちろん、前記立体化しようとする領域は任意の基本図形であってもよいし、前記立体化しようとする領域は任意の形状であってもよい。
【0005】
【特許文献1】
特許第3086577号公報明細書
【0006】
【特許文献2】
特許第3091644号公報明細書
【0007】
【発明が解決しようとする課題】
しかしながら、これらの手法は、背景と対象物の分離や、拡大縮小などの処理が必要である。したがって、たとえば、動画等など高速に画像を生成する必要がある場合には不適である。
【0008】
本発明は、上記のような問題点を解決するためになされたものであって、その目的は、高速に立体画像生成が可能となる立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体を提供するものである。
【0009】
【課題を解決するための手段】
この発明のある局面に係る立体画像生成装置は、画面を構成する各画素に対する画素値の集合に対応する画像を格納するための記憶手段と、画面を分割した複数の領域にそれぞれ対応するように、画像を複数の部分画像に分割するための領域分割手段とを備え、各部分画像は、領域内の各画素に対する画素値の集合に対応し、各領域に対応する視差に応じて、各部分画像の画素に対応する画素値を平行にずらした位置の画素に対応付けするための平行移動手段と、視差の相違により生じる、画素に対応付けされる画素値のない空白領域において、空白領域に含まれる画素に対応する画素値を生成するための画像処理手段とをさらに備え、画像処理手段は、空白領域において、隣接する複数の部分画像のうちの少なくとも一つの部分画像の端部の画素に対応する画素値に基づいて、空白領域の画素に対応する画素値を生成するための画像補間手段を含む。
【0010】
好ましくは、複数の部分画像は、第1の部分画像と、視差の相違により、第1の部分画像と同じ画素に重複して画素値が対応付けされる重複領域を有する第2の部分画像とを含み、画像処理手段は、重複領域において、同じ画素に対応する第1の部分画像および第2の部分画像にそれぞれ含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成するための画像混合手段をさらに含む。
【0011】
好ましくは、画像混合手段は、第1の部分画像および第2の部分画像にそれぞれ対応する視差に応じて、第1の部分画像および第2の部分画像のうちの何れかを選択して、選択された部分画像に含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成する。
【0012】
好ましくは、画像混合手段は、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とを交互に選択して、重複領域に含まれる画素に対応する画素値を生成する。
【0013】
好ましくは、画像混合手段は、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とをαブレンディングして、重複領域に含まれる画素に対応する画素値を生成する。
【0014】
好ましくは、記憶手段は、予め複数の領域分割モデルを記憶し、領域分割手段は、領域分割モデルを特定可能な情報に応じて、複数の領域分割モデルのうちの一つを選択するための領域分割モデル選択手段を含み、選択された領域分割モデルに基づいて、画面を領域分割する。
【0015】
好ましくは、領域分割モデルは、少なくとも奥行き方向と上下方向とに有限距離で仕切られる空間の静止画における奥行き方向および上下方向の境界面の領域の各々に対応するように画面を3分割するための領域分割モデルを含み、領域分割手段は、外部からの入力による3分割するための領域分割モデルの選択に応じて、3分割の領域のそれぞれの大きさを変更するための領域微調整手段をさらに含む。
【0016】
好ましくは、領域分割モデルは、少なくとも奥行き方向と上下方向と左右方向とに有限距離で仕切られる空間の静止画における上下方向と左右方向との境界面を奥行き方向にそれぞれ2分割した領域の各々と奥行き方向の境界面の領域とに対応するように画面を9分割するための領域分割モデルを含み、領域分割手段は、外部からの入力による9分割するための領域分割モデルの選択に応じて、9分割の領域のそれぞれの大きさを変更するための領域微調整手段をさらに含む。
【0017】
好ましくは、複数の領域分割モデルは、画面を鉛直方向および水平方向のうちいずれか一方に所定数の画素毎の複数の領域に分割した領域分割モデルを含む。
【0018】
好ましくは、視差に関連する情報を複数の部分画像にそれぞれ対応する視差に変換する視差変換手段をさらに備える。
【0019】
好ましくは、画像は、動画の1フレームである。
この発明のある局面に係る立体画像生成方法は、画面を構成する各画素に対する画素値の集合に対応する画像を、画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、各部分画像は、領域内の各画素に対する画素値の集合に対応し、各領域に対応する視差に応じて、各部分画像の画素に対応する画素値を平行にずらした位置の画素に対応付けするステップと、視差の相違により生じる、画素に対応付けされる画素値がない空白領域において、空白領域に含まれる画素に対応する画素値を生成するステップとをさらに備え、画素値を生成するステップは、空白領域に含まれる画素に対応する画素値を、空白領域に隣接する複数の部分画像のうちの少なくとも一つの部分画像の端部の画素に対応する画素値に基づいて、生成するステップを含む。
【0020】
好ましくは、複数の部分画像は、第1の部分画像と、視差の相違により、第1の部分画像と同じ画素に重複して画素値が対応付けされる重複領域を有する第2の部分画像とを含み、画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像および第2の部分画像にそれぞれ含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成するステップをさらに含む。
【0021】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、第1の部分画像および第2の部分画像にそれぞれ対応する視差に応じて、第1の部分画像および第2の部分画像のうち何れかを選択して、選択された部分画像に含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成する。
【0022】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とを交互に選択して、重複領域に含まれる画素に対応する画素値を生成する。
【0023】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とをαブレンディングして、重複領域に含まれる画素に対応する画素値を生成する。
【0024】
好ましくは、複数の画像に分割するステップは、記憶領域に予め格納された、領域分割モデルを特定可能な情報に応じて、複数の領域分割モデルのうちの一つを選択するステップと、選択された領域分割モデルに基づいて、画面を領域分割するステップとをさらに含む。
【0025】
好ましくは、視差に関連する情報を複数の部分画像にそれぞれ対応する視差に変換するステップをさらに備える。
【0026】
この発明のある局面に係る立体画像生成プログラムは、画面を構成する各画素に対する画素値の集合に対応する画像を、画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、各部分画像は、領域内の各画素に対する画素値の集合に対応し、各領域に対応する視差に応じて、各部分画像の画素に対応する画素値を平行にずらした位置の画素に対応付けするステップと、視差の相違により生じる、画素に対応付けされる画素値がない空白領域において、空白領域に含まれる画素に対応する画素値を生成するステップとをさらに備え、画素値を生成するステップは、空白領域に含まれる画素に対応する画素値を、空白領域に隣接する複数の部分画像のうちの少なくとも一つの部分画像の端部の画素に対応する画素値に基づいて、生成するステップを含む。
【0027】
好ましくは、複数の部分画像は、第1の部分画像と、視差の相違により、第1の部分画像と同じ画素に重複して画素値が対応付けされる重複領域を有する第2の部分画像とを含み、画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像および第2の部分画像にそれぞれ含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成するステップをさらに含む。
【0028】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、第1の部分画像および第2の部分画像にそれぞれ対応する視差に応じて、第1の部分画像および第2の部分画像のうち何れかを選択して、選択された部分画像に含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成する。
【0029】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とを交互に選択して、重複領域に含まれる画素に対応する画素値を生成する。
【0030】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とをαブレンディングして、重複領域に含まれる画素に対応する画素値を生成する。
【0031】
好ましくは、複数の画像に分割するステップは、記憶領域に予め格納された、領域分割モデルを特定可能な情報に応じて、複数の領域分割モデルのうちの一つを選択するステップと、選択された領域分割モデルに基づいて、画面を領域分割するステップとをさらに含む。
【0032】
好ましくは、視差に関連する情報を複数の部分画像にそれぞれ対応する視差に変換するステップをさらに備える。
【0033】
この発明のある局面に係る立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体は、画面を構成する各画素に対する画素値の集合に対応する画像を、画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、各部分画像は、領域内の各画素に対する画素値の集合に対応し、各領域に対応する視差に応じて、各部分画像の画素に対応する画素値を平行にずらした位置の画素に対応付けするステップと、視差の相違により生じる、画素に対応付けされる画素値がない空白領域において、空白領域に含まれる画素に対応する画素値を生成するステップとをさらに備え、
画素値を生成するステップは、空白領域に含まれる画素に対応する画素値を、空白領域に隣接する複数の部分画像のうちの少なくとも一つの部分画像の端部の画素に対応する画素値に基づいて、生成するステップを含む。
【0034】
好ましくは、複数の部分画像は、第1の部分画像と、視差の相違により、第1の部分画像と同じ画素に重複して画素値が対応付けされる重複領域を有する第2の部分画像とを含み、画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像および第2の部分画像にそれぞれ含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成するステップをさらに含む。
【0035】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、第1の部分画像および第2の部分画像にそれぞれ対応する視差に応じて、第1の部分画像および第2の部分画像のうち何れかを選択して、選択された部分画像に含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成する。
【0036】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とを交互に選択して、重複領域に含まれる画素に対応する画素値を生成する。
【0037】
好ましくは、重複領域に含まれる画素に対応する画素値を生成するステップは、重複領域において、同じ画素に対応する第1の部分画像に含まれる第1の画素値と、第2の部分画像に含まれる第2の画素値とをαブレンディングして、重複領域に含まれる画素に対応する画素値を生成する。
【0038】
好ましくは、複数の画像に分割するステップは、記憶領域に予め格納された、領域分割モデルを特定可能な情報に応じて、複数の領域分割モデルのうちの一つを選択するステップと、選択された領域分割モデルに基づいて、画面を領域分割するステップとをさらに含む。
【0039】
好ましくは、視差に関連する情報を複数の部分画像にそれぞれ対応する視差に変換するステップをさらに備える。
【0040】
【発明の実施の形態】
以下に本発明の実施の形態について図面を用いて詳細に説明する。以下の説明では、同一の構成部分には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについて詳細な説明は繰り返さない。
【0041】
本発明の実施の形態における立体画像生成装置は、右目用画像を入力画像とする。すなわち、右目用画像の入力により左目用画像を生成するものとする。ただし、入力画像は右目用画像に限定しない。たとえば、左目用画像を入力画像としてもよい。左目用画像を入力画像とした場合には、下記に説明する平行移動の方向を逆にすればよい。
【0042】
[実施の形態1]
図1は、本発明の実施の形態1における立体画像生成装置として機能するコンピュータシステム100の一例の外観を示す。
【0043】
図1を参照して、コンピュータシステム100は、FD(Flexible Disk)114へのデータまたは、プログラム等の格納と読み出しを可能とするFD駆動装置106と、CD―ROM(Compact Disc-Read Only Memory)116に格納されているデータまたは、プログラム等の読み出しを可能とするCD―ROM駆動装置108とを含むコンピュータ102と、コンピュータ102からの出力を表示するためのモニタ104と、ユーザが入力を行なうためのキーボード110と、マウス112とを備える。
【0044】
なお、図1で示したコンピュータシステム100の動作は周知であるので、ここではその詳細な説明は繰り返さない。
【0045】
図2は、本発明の実施の形態1における立体画像生成装置として機能するコンピュータシステム100の構成を示す機能ブロック図である。
【0046】
図2を参照して、コンピュータシステム100は、演算処理を行なうためのCPU(Central Processing Unit)118と、データまたは、プログラム等を記憶するためのメモリ120と、固定ディスク122と、FD駆動装置106と、CD−ROM駆動装置108と、外部の通信網(図示せず)と接続するための通信インターフェイス124を含むコンピュータ102と、モニタ104と、キーボード110と、マウス112とを備える。
【0047】
FD駆動装置106には、FD114が装着可能である。また、CD―ROM駆動装置108には、CD―ROM116が装着可能である。
【0048】
FD114または、CD―ROM116には、所定のプログラムが格納されている。CPU118は、ソフトウェアに対応するプログラムに基づいて、コンピュータシステム100を構成するハードウェアの制御を行なう。
【0049】
ここで、FD114または、CD―ROM116に格納されたプログラムをCPU118が実行するときの動作について説明する。
【0050】
FD114または、CD―ROM116に格納された所定のプログラムは、FD駆動装置106または、CD―ROM駆動装置108により読み取られる。そして、読み取られたプログラムは、直接メモリ120に読み出される。あるいは、一旦、固定ディスク122に格納されてからメモリ120に読み出されてもよい。CPU118は、メモリ120に読み出されたプログラムに基づいて演算処理を行なう。
【0051】
このようなプログラムを含むソフトウェアは、一般的に、FD114やCD―ROM116のような記録媒体に格納されて流通している。
【0052】
本発明の実施の形態1におけるコンピュータシステム100は、ハードウェアとハードウェアを制御するためのソフトウェアとで動作する。
【0053】
一般的なコンピュータのハードウェアは、CPU118を含む制御部と、メモリ120と固定ディスク122とを含む記憶部と、マウス112とキーボード110とを含む入力部と、モニタ104を含む出力部と、OS(Operating System)とを含む。
【0054】
本発明の実施の形態1において、コンピュータシステム100は、立体画像を生成するためのプログラムを動作させることにより、立体画像生成装置として機能する。
【0055】
したがって、本発明において最も本質的な発明は、FD、CD―ROM、メモリカード、固定ディスクなどの記録媒体に記録された立体画像を生成するためのプログラムである。
【0056】
なお、図2に示したコンピュータシステム100の動作は周知であるので、ここではその詳細な説明は繰り返さない。
【0057】
次に、本発明の実施の形態1におけるコンピュータシステム100上でプログラムにより機能する立体画像生成装置の構成を説明する。
【0058】
図3は、本発明の実施の形態1における立体画像生成装置200の制御機能ブロック図である。
【0059】
図3を参照して、本発明の実施の形態1における立体画像生成装置200は、画像の入力を受けるための画像入力部202と、画像入力部202に入力された画像を格納するための記憶部218と、領域分割モデルを選択するための領域分割モデル選択部204と、画像を複数の部分画像に分割するための領域分割部208と、視差モデルを選択するための視差モデル選択部206と、領域に対応する視差に応じて部分画像の画素に対応する各画素値を平行にずらした位置の画素に対応付けさせるための平行移動部212と、視差の相違により生じる、空白領域の画素に対応する画素値を生成するための画像補間部216と、視差の相違により生じる、重複領域に含まれる画素に対応する画素値を生成するための画像混合部214とを含む。
【0060】
画像は、画面を構成する各画素に対する画素値の集合に対応する。
領域分割モデル選択部204において、画像入力部202に領域分割モデルの特定可能な情報が入力される。そして、その情報に応じて領域分割モデルが選択される。ここで、領域分割モデルを特定可能な情報とは、たとえば、領域分割された画像、もしくは、領域分割モデル番号等である。領域分割モデル番号を指定して領域分割モデルを選択する場合、記憶部218に含まれるRAM(Random Access Memory)およびROM(Read Only Memory)等に領域分割モデルを保持しておいてもよい。指定された領域分割モデル番号に応じてRAM等に保持された領域分割モデルとの対応付けが行なわれる。そして、領域分割モデル番号に応じた領域分割モデルが選択される。
【0061】
領域分割部208においては、選択された領域分割モデルに基づいて、画面が分割される。そして、分割された複数の領域にそれぞれ対応するように、画像を複数の部分画像に分割される。
【0062】
視差モデル選択部206において、画像入力部202に視差モデルの特定可能な情報が入力される。そして、その情報に応じて視差モデルが選択される。ここで、視差モデルを特定可能な情報とは、たとえば、視差画像、デプスマップ、視差モデル番号、領域分割モデル番号に対応した視差テーブルに基づく視差データ等である。
【0063】
デプスマップは、視差ではなく、距離を表わす。デプスマップは、計算により視差に変換が可能である。
【0064】
また、視差モデル番号を指定して視差モデルを選択する場合、記憶部218に含まれるRAM等に視差モデルを保持しておいてもよい。指定された視差モデル番号に応じてRAM等に保持された視差モデルとの対応付けが行なわれる。そして、視差モデル番号に応じた視差モデルが選択される。
【0065】
あるいは、領域分割モデルと対応付けされた視差モデルをRAM等に保持しておいてもよい。選択された領域分割モデルに応じて視差モデルの対応付けが行なわれる。その結果、視差モデルが選択される。選択された視差モデルに基づいて、分割された各領域に対応する視差が決定される。
【0066】
または、各領域に対応する視差は、ユーザによる入力により決定されてもよい。
【0067】
そして、平行移動部212により、視差に応じて各領域に含まれる画素に対応する画素値を平行にずらした位置の画素に対応付けさせる。
【0068】
各領域に対応する視差の相違により、画素に対応付けされる画素値のない空白領域が生じる。画像補間部216において、空白領域に隣接する複数の部分画像のうち少なくとも一つの部分画像の端部に対応する画素値に基づいて、空白領域の画素に対応する画素値が生成される。
【0069】
また、各領域に対応する視差の相違により、同じ画素に重複して対応付けされる画素値を含む重複領域が生じる。画像混合部214において、各領域にそれぞれ含まれる、同じ画素に重複して対応付けされるそれぞれの画素値に基づいて、重複領域の画素に対応する画素値が生成される。
【0070】
以上のような構成において本発明の実施の形態1における右目用画像の入力から左目用画像を生成する動作について説明する。
【0071】
図4は、本発明の実施の形態1において右目用画像の入力から左目用画像を生成するまでの動作のフローチャートである。
【0072】
図4を参照して、まず、右目用画像が画像入力部202へ入力される(ステップS21)。
【0073】
入力された画像は、記憶部218に格納される。このとき、本発明の実施の形態1において入力される画像は、静止画とする。ただし、入力画像は、静止画に限定しない。たとえば、入力画像は、動画の1フレームでもよい。
【0074】
次に、CPU118を含む制御部(図示せず)は、領域分割モデルの特定可能な情報が画像入力部202に入力されたかを判定する(ステップS22)。
【0075】
ステップS22において、領域分割モデルの特定可能な情報が入力された場合、制御部は、領域分割モデル選択部204に入力された情報に応じて、予め記憶部218に格納された領域分割モデルと対応づけさせる。
【0076】
そして、制御部は、選択された領域分割モデルに基づいて、領域分割部208により画面を複数の領域に分割させる(ステップS25)。
【0077】
このとき、領域分割部208は、各領域に対応するように画像を複数の部分画像に分割する。
【0078】
一方、ステップS22において、領域分割モデルの特定可能な情報が入力されない場合、制御部は、表示部(図示せず)によりユーザに対して領域分割モデルの表示が行なわれる(ステップS23)。
【0079】
つづいて、制御部は、ユーザによる領域分割モデルの選択および微調整のための入力が行なわれたかを判定する(ステップS24)。
【0080】
ステップS24において、領域分割モデルの選択および微調整が行なわれた場合、制御部は、選択された領域分割モデルに基づいて、領域分割部208により画面を複数の領域に分割させる(ステップS25)。
【0081】
そして、領域分割部208は、各領域に対応するように画像を部分画像に分割させる。
【0082】
なお、本発明の実施の形態1において領域分割モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、領域分割モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0083】
また、本発明の実施の形態1において領域の分割は、領域分割モデルに基づいて行なっているが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いて領域分割を行なってもよい。
【0084】
次に、制御部は、視差モデルを特定することが可能な情報が画像入力部202に入力されたかを判定する(ステップS26)。
【0085】
ステップS26において、視差モデルの特定可能な情報が入力された場合、制御部は、視差モデル選択部206に入力された情報に応じて予め記憶部218に格納された視差モデルと対応づけさせる。または、指定された領域分割モデル番号または、選択された領域分割モデルに応じて記憶部218に格納された視差モデルと対応づけてもよい。
【0086】
そして、制御部は、選択された視差モデルに基づいて、分割された各領域に対応する視差の大きさ分、右に分割された領域に対応する部分画像を平行移動させる(ステップS28)。
【0087】
すなわち、制御部は、部分画像に対応する画素値を平行にずらした位置の画素に対応付けさせる。
【0088】
一方、ステップS26において、視差モデルの特定可能な情報が入力されていない場合、制御部は、ユーザにより視差が入力されるまで待機する(ステップS27)。
【0089】
ユーザにより各領域の視差が入力された場合、制御部は、入力された各領域に対応する視差の大きさ分、右に分割された領域に対応する部分画像を平行移動させる(ステップS28)。
【0090】
すなわち、制御部は、部分画像に対応する画素値を平行にずらした位置の画素に対応付けさせる。
【0091】
なお、本発明の実施の形態において視差モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、視差モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0092】
また、本発明の実施の形態1における視差の決定は、外部からの入力または、視差モデルに基づいて行なっているが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いた視差の算出を行なってもよい。
【0093】
次に、制御部は、分割された領域に対応する部分画像を視差に応じて平行移動させた際に、各領域に対応する視差の相違により生じる、空白領域を画像補間部216により補間させる(ステップS29)。
【0094】
そして、制御部は、平行移動部212により各領域に対応する部分画像を平行移動させた際に生じる重複領域において、画像混合部214により同じ画素に重複して対応付けられる各部分画像に含まれる画素値に基づいて、重複領域に含まれる画素に対応する画素値を生成する(ステップS30)。
【0095】
以下、本発明の実施の形態1において、画像を水平方向に3分割された領域のうちの特定の領域を立体化する方法を一例として図面に基づいて詳細に説明する。ただし、領域分割モデルの分割数は、3分割に特に限定しない。
【0096】
図5は、本発明の実施の形態1における画像を水平方向に3分割する領域分割モデルの一例を示す図である。
【0097】
図5を参照して、図5に示す領域分割モデルは、画像を水平方向に3分割している。分割された領域のうち特定の領域を立体化することが可能となる。たとえば、画像の中心の物体の立体画像を生成する際に、背景、物体、背景というように3分割の領域に分けられる。このとき、水平方向の細い領域に細分化して各領域毎に立体画像生成処理を行なうことにより画像の中心の物体の輪郭に沿って領域を分割することができる。そのため、画像の中心の物体に特定して立体画像を生成することが可能となる。
【0098】
図6は、本発明の実施の形態1における画像を水平方向に3分割する領域分割モデルに対応する視差モデルの例を示す図である。また、この領域分割モデルの各領域に対応する視差モデルの例を図6(a)および図6(b)に示す。
【0099】
図6(a)を参照して、図6(a)に示す視差モデルは、画像を水平方向に領域1、領域2および領域3の3領域に分割されている。領域上部の矢印は、視差の大きさを表している。そして、領域1、領域2および領域3の視差をそれぞれ、d、2dおよびdとする。図6(a)に示す視差モデルにおいて、右目用画像と右目用画像から生成した左目用画像とにより形成される立体画像において領域2は、領域1および領域3と比較して視差が大きいため、前面に飛び出て見えることとなる。
【0100】
一方、図6(b)を参照して、図6(b)に示す視差モデルは、画像を水平方向に領域1、領域2および領域3の3領域に分割されている。そして、領域1、領域2および領域3の視差をそれぞれ、2d、dおよび2dとする。図6(b)に示す視差モデルにおいて、右目用画像と右目用画像から生成した左目用画像とにより形成される立体画像において領域2は、領域1および領域3と比較して視差が小さいため、奥に引っ込んで見えることとなる。
【0101】
図7は、本発明の実施の形態1において、画像を水平方向に3分割して、各領域の視差に応じて平行移動した際に生ずる空白領域および重複領域の一例を示す図である。
【0102】
図7(a)は、画像を水平方向に3分割された領域1、領域2および領域3の3領域と各領域に対応する視差を示す図である。
【0103】
図7(a)を参照して、領域1および領域3の視差は、0である。そのため、領域1および領域3は、平行移動量は0である。
【0104】
一方、領域2の視差は、dである。したがって、平行移動部212おいては、領域2に対応する視差dに応じた大きさ分だけ右に領域2に対応する部分画像を平行移動させる。すなわち、視差に応じて平行にずらした位置の画素に、領域2に対応する部分画像に含まれる画素値を対応付けさせる。
【0105】
図7(b)は、領域2に対応する部分画像に含まれる画素値を視差に応じて平行にずらした位置の画素への対応付けを示す図である。
【0106】
図7(b)を参照して、領域12は、領域2に対応する部分画像の平行移動により生じる画素に対応する画素値のない空白領域である。空白領域に含まれる画素に対応する画素値の補間は、空白領域に隣接する両端の領域に対応する部分画像に含まれる画素値に基づいて行なわれる。すなわち、領域1に対する部分画像の右端列の画素に対応する画素値と領域2に対する部分画像の左端列の画素に対応する画素値とで空白領域を補間する。ただし、両端の領域に含まれる画素値に基づいて、空白領域を補間することに限定しない。たとえば、空白領域に隣接する領域のうち少なくとも一つの領域に含まれる画素値に基づいて、空白領域の補間を行なってもよい。または、移動前の領域2に含まれる画素値に基づいて空白領域の補間を行なってもよい。
【0107】
一方、領域23は、領域2に対応する部分画像の平行移動により生じる領域2および領域3に対応する部分画像に含まれる画素値が同じ画素に対応付けられる重複領域である。重複領域に含まれる画素値は、同じ画素に重複して対応付けられる領域2および領域3に対応するそれぞれの部分画像に含まれる画素値に基づいて、画像混合部214により生成される。
【0108】
図8は、本発明の実施の形態1において画素補間部216による空白領域の両端の領域にそれぞれ含まれる画素値に基づいた、空白領域の補間を示す概念図である。図中の記号は画素値を表すものとする。
【0109】
図8を参照して、領域2が領域2に対応する視差に応じて4画素分右に平行移動したときに領域12の空白領域が生じる。この空白領域を領域12の左半分は、領域12の左に隣接する領域1に対する部分画像の最右端列の画素に対応する画素値で補間する。そして、領域12の右半分は、領域12の右に隣接する領域2に対する部分画像の最左端列の画素に対応する画素値で補間する。
【0110】
また、平行移動が奇数画素分であるために奇数画素列の空白領域が生じる場合は、特に限定されないが右側の領域2の視差が大きいため、すなわち、領域2の方が手前にあるため、右側の画素数を左側の画素数よりも多く配置してもよい。
【0111】
図9は、本発明の実施の形態1において画像混合部214により重複する各領域に対応する部分画像に含まれる画素値に基づいた、重複領域に含まれる画素値の生成を示す概念図である。
【0112】
図9(a)は、平行移動前の領域2および領域3である。図中の記号は画素値を表すものとする。図9(b)は、領域2の水平方向に4画素分の平行移動により生じる重複領域において、手前にある部分画像に含まれる画素値を配置することによる画素値の生成を示す図である。図9(c)は、領域2の水平方向に4画素分の平行移動により生じる重複領域において、重複する各部分画像の画素列に対応する画素値を交互に配置することによる画素値の生成を示す図である。
【0113】
図9(a)を参照して、領域2は、平行移動部212により水平方向に4画素分の平行移動する。そのときに領域2と領域3との間に、4列の画素の重複が生じるものとする。
【0114】
図9(b)を参照して、4画素分の平行移動により領域2および領域3が重複する領域23が生じる。右方向の平行移動により重複が生じるということは、領域2の視差の方が大きいことを意味している。すなわち、領域2が領域3よりも手前に存在することを意味している。したがって、重複領域は、領域2により領域3が隠される領域であるため、領域2を優先的に表示する。すなわち、画像混合部214は、領域2に対応する部分画像に含まれる画素値を重複領域の画素に対応する画素値とする。これにより、視差の小さな領域はより後ろに存在するため、重複領域の視差が小さな部分をオクルージョン(隠れ部分)であるとして、自然な重複領域の解消が可能となる。
【0115】
図9(c)を参照して、4画素分の平行移動により領域2および領域3に対応する部分画像が重複する領域23が生じる。画像混合部214は、領域23に含まれる画素に対応する画素値を、重複する各部分画像の画素列に対応する画素値を交互に配置して、重複領域の画素に対応する画素値としてもよい。これにより、より見やすい立体画像を生成することが可能となる。
【0116】
また、平行移動が奇数画素分であるために奇数画素列の重複領域が生じる場合、特に限定されないが右側または、左側の領域に対する部分画像の画素列に対応する画素値を多く配置してもよい。あるいは、中央列を右側および左側の領域に対応する部分画像に含まれる画素値を交互に配置してもよい。
【0117】
ただし、画素に対応する画素値の生成の方法として、上記図9(b)および図9(c)に示した方法に限定しない。たとえば、領域23に含まれる画素値を同じ画素に重複して対応付けされるそれぞれの部分画像に含まれる画素値をαブレンディングすることにより求めてもよい。
【0118】
αブレンディングとは、0≦α≦1なる定数αを用いて、α×I2+(1−α)×I3により画素値を生成する手法である。ここで、I2およびI3は同じ画素に重複して対応付けされるそれぞれの部分画像に含まれる画素値である。
【0119】
以上のように、本発明の実施の形態1における立体画像生成装置によれば、右目用の画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の画素に対応する画素値の補間と、重複領域の画素に対応する画素値の生成とを行なうことにより、左目用の画像を生成することが可能となる。
【0120】
また、重複するそれぞれの部分画像に含まれる画素値に基づいて重複領域に含まれる画素値を生成することにより、左目用画像を高速に生成することが可能となる。
【0121】
あるいは、空白領域に隣接する領域に対応する部分画像に含まれる画素値に基づいて、空白領域の画素に対応する画素値を補間することにより、左目用画像を高速に生成することが可能となる。
【0122】
そして、入力画像を動画の1フレームとすることにより、2次元動画の立体画像生成が可能となる。
【0123】
また、画像を水平方向に3分割する領域分割モデルに基づいて、立体画像生成の処理を行なうことにより、左目用画像を高速に生成することが可能となる。
【0124】
あるいは、画像に応じて画像を水平方向に3分割する領域分割モデルを用いることにより、画像の提供者が意図した立体画像を生成することが可能となる。
【0125】
[実施の形態2]
本発明の実施の形態2における立体画像生成装置として機能するコンピュータシステムは、本発明の実施の形態1における図1および図2に示したコンピュータシステム100の構成と同じである。そのため、コンピュータシステム100の構成および動作の説明は繰り返さない。
【0126】
また、本発明の実施の形態2における、コンピュータシステム100上で機能する立体画像生成装置の構成および動作については、図3および図4に示した本発明の実施の形態1における立体画像生成装置200の機能ブロック図および右目用画像の入力から左目用画像を生成するまでの動作のフローチャートと同じである。そのため本発明の実施の形態2における立体画像生成装置200の構成および動作の説明は繰り返さない。
【0127】
以下、本発明の実施の形態2において、画像を鉛直方向に4分割された領域のうちの特定の領域を立体化する方法の一例として図面に基づいて詳細に説明する。ただし、領域分割モデルの分割数は、4分割に特に限定しない。
【0128】
図10は、本発明の実施の形態2における画像を鉛直方向に4分割する領域分割モデルの一例を示す図である。
【0129】
図10を参照して、図10に示す領域分割モデルは、画像を鉛直方向に4分割している。分割された領域のうち特定の領域を立体化することが可能となる。たとえば、画像を鉛直方向に4分割し、下の領域から順次視差を小さく設定する。このとき、立体画像を生成する際に一番下の領域が最も手前に見えることとなる。そして、上の3領域が順次距離が遠ざかるように見えることとなる。そのため、図10に示す領域分割モデルは、たとえば、風景等の画像を立体画像とする際の領域分割モデルとして適している。
【0130】
図11は、本発明の実施の形態2において、画像を鉛直方向に4分割して、各領域に対応する視差に応じて平行移動した際に生ずる空白領域および切り取り領域の一例を示す図である。
【0131】
図11(a)は、画像を鉛直方向に4分割された領域1、領域2、領域3、領域4と各領域に対応する視差を示す図である。
【0132】
図11(a)を参照して、画像を鉛直方向に4分割した領域に領域1より順次小さい視差が対応している。領域1、領域2、領域3、領域4の視差を3d、2d、d、0とする。領域1より順次視差を小さくしていくことにより、立体画像を生成した際に、領域1が最も手前で、順次領域の距離が遠ざかるように見せることができる。風景画像等から立体画像を生成する際の領域分割モデルに適している。
【0133】
図11(b)は、領域1、領域2、領域3、領域4の各領域に対応する部分画像を各領域に対応する視差に応じて平行移動するときに生じる空白領域と切り取り領域を示す図である。
【0134】
図11(b)を参照して、図11(a)に示す領域に対応する部分画像を各領域に対応する視差に応じて右方向に平行移動させている。そのため、画素に対応する画素値のない空白領域が生じる。さらに、領域1、領域2および領域3に対応する各部分画像は、平行移動により画面よりはみ出すため、画面外に切り取り領域が生じる。
【0135】
空白領域の補間は、空白領域の左端の領域に対応する部分画像が存在しないため、空白領域に隣接する右側の領域に対応する部分画像に含まれる画素値に基づいて行なう。または、空白領域に隣接する右側の領域と移動前の領域とに対応するそれぞれの部分画像に含まれる画素値に基づいて、空白領域を補間してもよい。
【0136】
一方、各領域の平行移動により生じる切り取り領域は、記憶部218において、生成される左目用画像に含まれる画素値のうち画面外に対応づけられる画素値の除去により切り取られる。
【0137】
以上のように、本発明の実施の形態2における立体画像生成装置によれば、右目用の画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の補間と、画面外にはみ出す切り取り領域の切り取りとを行なうことにより、左目用の画像を生成することが可能となる。
【0138】
また、空白領域の画素に対応する画素値を、隣接する領域に含まれる画素値に基づいて補間することにより、左目用画像を高速に生成することが可能となる。
【0139】
そして、入力画像を動画の1フレームとすることにより、2次元動画の立体画像生成が可能となる。
【0140】
また、画像を鉛直方向に4分割する領域分割モデルに基づいて立体画像生成の処理を行なうことにより、左目用画像を高速に生成することが可能となる。
【0141】
あるいは、風景等の画像に応じて鉛直方向に4分割する領域分割モデルを用いることで画像の提供者が意図した立体画像を生成することが可能となる。
【0142】
[実施の形態3]
本発明の実施の形態3における立体画像生成装置として機能するコンピュータシステムは、本発明の実施の形態1における図1および図2に示したコンピュータシステム100の構成と同じである。そのため、コンピュータシステム100の構成および動作の説明は繰り返さない。
【0143】
また、本発明の実施の形態3における、コンピュータシステム100上で機能する立体画像生成装置の構成および動作については、図3および図4に示した本発明の実施の形態1における立体画像生成装置200の機能ブロック図および右目用画像の入力から左目用画像を生成するまでの動作のフローチャートと同じである。そのため本発明の実施の形態3における立体画像生成装置200の構成および動作の説明は繰り返さない。
【0144】
以下、本発明の実施の形態3において、画像の中央部を長方形で2分割された領域のうちの特定の領域を立体化する方法の一例として図面に基づいて詳細に説明する。
【0145】
図12は、本発明の実施の形態3における画像の中央部を長方形で2分割する領域分割モデルの一例を示す図である。
【0146】
図12を参照して、図12に示す分割モデルは、画面の中央部を長方形で2分割している。分割された領域のうち特定の領域を立体化することが可能となる。たとえば、画面の中央の領域に対応する視差を周囲の視差よりも大きく設定する。このとき、立体画像を生成する際に中央の領域のみ飛び出して見えることとなる。一方、画面の中央の領域に対応する視差を周囲の視差よりも小さく設定する。このとき、立体画像を生成する際に中央の領域のみがへこんで見えることとなる。
【0147】
図13は、本発明の実施の形態3において、画像の中央部を長方形により2分割して、各領域に対応する視差に応じて平行移動した際に生ずる空白領域および重複領域の一例を示す図である。
【0148】
図13(a)は、画像の中央部を長方形により2分割された領域1と領域2とにそれぞれ対応する視差を示す。
【0149】
図13(a)を参照して、領域1、領域2の視差を、0、dとする。そして、領域1および領域2に対応するそれぞれの部分画像を視差に応じて、平行移動部212により平行移動させる。すなわち、視差に応じて平行にずらした位置の画素に領域1および領域2に対応するそれぞれの部分画像に含まれる画素値を対応付けさせる。ただし、領域1の視差は0であるため、領域1に対応する部分画像の平行移動量は0である。
【0150】
図13(b)は、視差に応じて各領域に対応する部分画像に含まれる画素値を平行にずらした位置の画素への対応付けを示す図である。
【0151】
図13(b)を参照して、領域2に対応する部分画像の平行移動により画素に対応する画素値のない空白領域と、領域1および領域2に対応する部分画像に含まれる画素値が同じ画素に対応付けられる重複領域とが生じる。
【0152】
空白領域に含まれる画素値の補間は、空白領域に隣接する両端の領域に対応するそれぞれの部分画像に含まれる画素値に基づいて行なわれる。ただし、両端の領域に含まれる画素値に基づいて、空白領域を補間することに限定しない。たとえば、空白領域に隣接する領域のうち少なくとも一つの領域に含まれる画素値に基づいて、空白領域の補間を行なってもよい。または、移動前の領域2に含まれる画素値に基づいて空白領域の補間を行なってもよい。
【0153】
空白領域に含まれる画素値の補間については、本発明の実施の形態1における図8に示した空白領域に含まれる画素を両端の領域の画素を用いた補間を示す概念図の説明における空白領域に含まれる画素値の補間方法と同じである。そのため説明は繰り返さない。
【0154】
一方、領域2に対応する部分画像の平行移動により、領域1および領域2に対応する部分画像に含まれるそれぞれの画素値が同じ画素に対応付けられる重複領域が生じる。重複領域に含まれる画素値は、同じ画素に重複して対応付けられる領域1および領域2に対応するそれぞれの部分画像に含まれる画素値に基づいて、画像混合部214により生成される。
【0155】
重複領域に含まれる画素値の生成については、本発明の実施の形態1における図9に示した重複領域に含まれる画素を同じ画素に重複して対応付けられる各領域に含まれる画素値に基づいた、画素値の生成を示す概念図の説明における重複領域に含まれる画素値の生成方法と同じである。そのため説明は繰り返さない。
【0156】
以上のように、本発明の実施の形態3における立体画像生成装置によれば、右目用の画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の画素に対応する画素値の補間と、重複領域の画素に対応する画素値の生成とを行なうことにより、左目用の画像を生成することが可能となる。
【0157】
また、重複するそれぞれの部分画像に含まれる画素値に基づいて重複領域に含まれる画素値を生成することにより、左目用画像を高速に生成することが可能となる。
【0158】
あるいは、空白領域に隣接する領域に対応する部分画像に含まれる画素値に基づいて、空白領域の画素に対応する画素値を補間することにより、左目用画像を高速に生成することが可能となる。
【0159】
そして、入力画像を動画の1フレームとすることにより、2次元動画の立体動画生成が可能となる。
【0160】
また、画像の中央部を長方形で2分割する領域分割モデルに基づいて、立体画像生成の処理を行なうことにより、左目用画像を高速に生成することが可能となる。
【0161】
あるいは、画像に応じて画像の中央部を長方形で2分割する領域分割モデルを用いることにより、画像の提供者が意図した立体画像を生成することが可能となる。
【0162】
[実施の形態4]
本発明の実施の形態4における立体画像生成装置として機能するコンピュータシステムは、本発明の実施の形態1における図1および図2に示したコンピュータシステム100の構成と同じである。そのため、コンピュータシステム100の構成および動作の説明は繰り返さない。
【0163】
また、本発明の実施の形態4における、コンピュータシステム100上で機能する立体画像生成装置の構成については、図3に示した本発明の実施の形態1における立体画像生成装置200の機能ブロック図と同じである。そのため、本発明の実施の形態6における立体画像生成装置200の構成の説明は繰り返さない。
【0164】
以下、本発明の実施の形態4において、静止画内の特定の領域を立体化する方法の一例として図面に基づいて詳細に説明する。
【0165】
図14は、本発明の実施の形態4において、破線領域を特定して、破線領域内の立体化を行なう静止画を説明するための図である。
【0166】
図14を参照して、静止画は、部屋のような少なくとも奥行き方向と上下方向とに有限距離で仕切られた空間を表わす画像である。すなわち、静止画は、部屋の側面から部屋の中央を見ている視点の画像である。また、静止画にける正面の壁面には、窓が一つ設けられる。そして、静止画における正面の壁際に2人の人が立っている。破線領域は、一例として窓と2人の人と天井と床とを含む領域が特定されている。なお、この破線領域は、ユーザによるマウス112あるいはキーボード110への入力指示により特定されていてもよい。あるいは、破線領域は、予め記憶部218に格納された画面上の位置情報に基づいた領域であってもよい。
【0167】
次に、立体画像生成装置200が図14において説明した破線領域内の画像の画像入力部202への入力に応じて、左目用画像の生成を行なう動作についての説明を行なう。
【0168】
図4は、本発明の実施の形態4において右目用画像の入力から左目用画像を生成するまでの動作のフローチャートである。
【0169】
図4を参照して、ユーザにより特定された破線領域の画像が画像入力部202に入力される(ステップS21)。
【0170】
このとき、入力された画像は、記憶部218に格納される。
次に、領域分割モデル選択部204は、領域分割モデルの特定可能な情報がユーザによりマウス112またはキーボード110を介して画像入力部202に入力されたかを判定する(ステップS22)。
【0171】
そして、ステップS22において、領域分割モデルの特定可能な情報が入力された場合、領域分割モデル選択部204は、入力された情報に基づいて、予め記憶部218に格納された領域分割モデルを対応づける。すなわち、領域分割モデル選択部204は、ユーザによる画像入力部202への領域分割モデルの特定可能な情報の入力に応じて領域分割モデルを選択する。
【0172】
ここで、領域分割モデル選択部204は、ユーザによるマウス112あるいはキーボード110への入力指示に基づいて、図14において説明した静止画の破線領域内の奥行き方向および上下方向の境界面の領域の各々に対応する領域分割モデルを指定する。すなわち、領域分割モデル204は、図14において説明した静止画の破線領域内の天井の領域、正面の壁面の領域および床の領域の各々に対応する領域分割モデルを指定する。
【0173】
そして、領域分割部208は、指定された領域分割モデルに基づいて、静止画の破線領域の分割を行なう(ステップS25)。
【0174】
一方、ステップS22において、領域分割モデルの特定可能な情報が入力されない場合、または、図14の静止画の破線領域内の天井の領域、正面の壁面の領域および床の領域の各々に対応する領域分割モデルがない等により領域分割モデルが指定されない場合、たとえばモニタ104に記憶部218に格納される複数の領域分割モデルが表示される(ステップS23)。
【0175】
そして、ユーザは、マウス112あるいはキーボード110への入力指示により、表示される複数の領域分割モデルの中から一つを選択する。そして、ユーザは、選んだ領域分割モデルを立体化の対象となる画像に対応するように微調整を行なう(ステップS24)。
【0176】
ここで、微調整とは、選択された領域分割モデルの分割領域の大きさの変更を含む。たとえば、ユーザによるマウス112あるいはキーボード110への入力指示により、モニタ104より表示される複数の領域分割モデルの中から鉛直方向に画面を3分割した領域分割モデルが選択される。そして、ユーザによるマウス112あるいはキーボード110への入力指示により、図14の静止画における天井と正面の壁面との境界線と床と正面の壁面との境界線とに対応するように、領域分割モデルにおける各領域の境界線の微調整が行なわれてもよい。
【0177】
次に、領域分割部208は、微調整された領域分割モデルに基づいて、正面の壁面と天井と床との3つの領域の各々に対応するように破線領域内の画像を分割する(ステップS25)。
【0178】
なお、本発明の実施の形態4において領域分割モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、領域分割モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0179】
また、本発明の実施の形態4において領域の分割は、領域分割モデルに基づいて行なうが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いて領域分割を行なってもよい。
【0180】
そして、視差モデル選択部205において、画像入力部202への視差モデルの特定可能な情報が入力されたか否かが判定される(ステップS26)。
【0181】
ステップS26において、視差モデルの特定可能な情報が入力されていない場合、ユーザによるマウス112あるいはキーボード110への入力指示により直接入力されるまで待機する(ステップS27)。
【0182】
一方、ステップS26において、視差モデルの特定可能な情報が入力された場合、視差モデル選択部205は、視差モデル選択部206に入力された情報に応じて、予め記憶部218に格納された視差モデルと対応づけさせる。
【0183】
すなわち、視差は、視差モデル選択部206によりユーザからの入力に応じて選択される視差モデルに基づく。視差モデルは、予め選択された領域分割モデルに対応づけられていてもよい。
【0184】
なお、本発明の実施の形態4において視差モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、視差モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0185】
また、本発明の実施の形態1における視差の決定は、外部からの入力または、視差モデルに基づいて行なっているが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いた視差の算出を行なってもよい。
【0186】
そして、平行移動部212は、各領域に対応する部分画像を視差に基づいて、各領域に対応する部分画像に含まれる画素の平行にずらした位置への対応付けを行なう(ステップS28)。
【0187】
そして、画像補間部216は、平行移動部212により各領域に対応する部分画像を視差に応じて平行移動させた際に、各領域に対応する視差の相違により生じる空白領域を補間する(ステップS29)。
【0188】
なお、平行移動部212による各領域に含まれる画素を平行にずらした位置への対応付けは、各領域の画素値を一旦記憶部218に格納することにより行なわれてもよい。すなわち、各領域に含まれる画素を平行にずらした位置の画素値をすべて計算し、一旦記憶部218に格納した後に記憶部218に格納された移動前の画像の画素値を上書きしてもよい。
【0189】
あるいは、平行にずらした位置への対応付けは、1画素毎に行なわれてもよいものとする。すなわち、平行移動部212は、1画素毎に平行にずらして記憶部218に格納された移動前の画像の画素値を上書きしてもよい。
【0190】
また、ステップS30において、画像混合部214は、各領域に対応する部分画像の視差に応じた平行移動により重複領域が生じない場合、画像の混合を行なわない。このとき、各領域に対応する部分画像の視差に応じた平行移動により切り取り領域が生じる場合、ステップS30において、切り取り領域の除去、すなわち、画面外に対応付けられた画素値の除去が行なわれる。
【0191】
また、領域分割モデル選択部204と領域分割部208と視差モデル選択部206と平行移動部212と画像混合部214と画像補間部216とは、CPU118を含む制御部(図示せず)において、プログラムを実行させることにより機能する。
【0192】
図15は、静止画を領域分割モデルに基づいて鉛直方向に3つの領域に分割して、各領域に対応する部分画像の視差に応じた平行移動により生じる空白領域および切り取り領域を示す図である。
【0193】
図15(a)は、図14に示した静止画内の破線領域を3分割する領域分割モデルと各領域に対応する視差を示す図である。
【0194】
図15(a)を参照して、図15(a)に示す領域分割モデルは、画面を鉛直方向に3分割している。そして、静止画を鉛直方向に3分割した領域1、領域2、領域3に対応する部分画像の視差は、ユーザにより選択された視差モデル、あるいはユーザにより直接入力された視差に基づいて、それぞれ2d、d、2dとする。このとき、領域1は、図14の静止画において床に対応する領域である。また、領域2は、図14の静止画において正面の壁面に対応する領域である。そして、領域3は、図14の静止画において天井に対応する領域である。領域2の視差を領域1および領域3と比較して小さくすることにより、立体画像を生成したときに、領域1および領域3が飛び出して見えることとなる。すなわち、図14に示す静止画に基づいて、立体画像を生成したとき、天井と床に対応する領域が手前に見えることとなる。
【0195】
一方、図15(b)は、領域1、領域2、領域3の各領域に対応する部分画像を各領域に対応する視差に応じて平行移動するときに生じる空白領域と切り取り領域を示す図である。
【0196】
図15(b)を参照して、平行移動部212は、図15(a)に示す領域に対応する部分画像を各領域に対応する視差に応じて右方向に平行移動させている。そのため、領域1、領域2および領域3の左側に画素に対応する画素値のない空白領域が生じる。さらに、領域1、領域2および領域3に対応する各部分画像は、平行移動により画面よりはみ出すため、画面外に切り取り領域を生じる。
【0197】
空白領域の補間は、画像補間部216において、空白領域の左端の領域に対応する部分画像が存在しないため、空白領域に隣接する右側の領域に対応する部分画像に含まれる画素値に基づいて行なわれる。または、空白領域に隣接する右側の領域と移動前の領域とに対応するそれぞれの部分画像に含まれる画素値に基づいて、空白領域を補間してもよい。
【0198】
または、このとき、空白領域の補間は、空白領域と隣接する特定された破線領域外の領域の含まれる画素値に基づいて行なってもよい。あるいは、特定した破線領域よりも大きい領域で立体画像を生成後に、破線領域を切り出してもよいし、破線領域を立体化した後に空白領域が生じている左端を除外してもよい。
【0199】
一方、各領域の平行移動により生じる切り取り領域は、記憶部218において、生成される左目用画像に含まれる画素値のうち画面外に対応づけられる画素値の除去により切り取られる。
【0200】
以上のように、本発明の実施の形態4における立体画像生成装置によれば、静止画において領域を特定して、特定された領域を右目用の画像として入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の補間と、画面外にはみ出す切り取り領域の切り取りとを行なうことにより、左目用の画像を高速に生成することが可能となる。
【0201】
また、空白領域の画素に対応する画素値を隣接する領域に含まれる画素値に基づいて補間することにより、左目用画像を高速に生成することが可能となる。
【0202】
[実施の形態5]
本発明の実施の形態5における立体画像生成装置として機能するコンピュータシステムは、本発明の実施の形態1における図1および図2に示したコンピュータシステム100の構成と同じである。そのため、コンピュータシステム100の構成および動作の説明は繰り返さない。
【0203】
また、本発明の実施の形態5における、コンピュータシステム100上で機能する立体画像生成装置の構成については、図3に示した本発明の実施の形態1における立体画像生成装置200の機能ブロック図と同じである。そのため、本発明の実施の形態5における立体画像生成装置200の構成の説明は繰り返さない。
【0204】
以下、本発明の実施の形態5において、静止画内の特定の領域を立体化する方法の一例として図面に基づいて詳細に説明する。
【0205】
図16は、本発明の実施の形態5において、立体化を行なう静止画を説明するための図である。
【0206】
図16を参照して、静止画は、部屋のような少なくとも奥行き方向と上下方向と左右方向とに有限距離で仕切られた空間を表わす画像である。すなわち、静止画は、部屋の側面から部屋の中央を見ている視点の画像である。また、静止画における右側の壁面には、窓が一つ設けられる。また、静止画における正面の壁際に2人の人が立っている。すなわち、この静止画は、右側に窓がある廊下を親子二人連れで歩いている情景の一例を表わしている。
【0207】
次に、立体画像生成装置200が図16において説明した静止画の画像入力部202への入力に応じて、左目用画像の生成を行なう動作についての説明を行なう。
【0208】
図4は、本発明の実施の形態5において右目用画像の入力から左目用画像を生成するまでの動作のフローチャートである。
【0209】
図4を参照して、ユーザにより図15の画像が画像入力部202に入力される(ステップS21)。
【0210】
このとき、入力された画像は、記憶部218に格納される。
次に、領域分割モデル選択部204は、領域分割モデルの特定可能な情報がユーザによりマウス112またはキーボード110を介して画像入力部202に入力されたかを判定する(ステップS22)。
【0211】
そして、ステップS22において、領域分割モデルの特定可能な情報が入力された場合、領域分割モデル選択部204は、入力された情報に基づいて、予め記憶部218に格納された領域分割モデルと対応づけさせる。すなわち、領域分割モデル選択部204は、ユーザによる画像入力部202への領域分割モデルの特定可能な情報の入力に応じて領域分割モデルを選択する。
【0212】
ここで、領域分割モデル選択部204は、ユーザによるマウス112あるいはキーボード110への入力指示に基づいて、図16において説明した静止画の上下方向と左右方向との境界面を奥行き方向にそれぞれ2分割した領域の各々と奥行き方向の境界面の領域とに対応する領域分割モデルを指定する。すなわち、図16において説明した静止画の天井の領域、床の領域および左右の壁面の領域を奥行き方向にそれぞれ2分割した領域の各々と正面の壁面の領域とに対応する領域分割モデルを指定する。
【0213】
そして、領域分割部208は、指定された領域分割モデルに基づいて、静止画の分割を行なう(ステップS25)。
【0214】
一方、ステップS22において、領域分割モデルの特定可能な情報が入力されない場合、または、図16の静止画の天井の領域、床の領域および左右の壁面の領域を奥行き方向にそれぞれ2分割した領域の各々と正面の壁面の領域とに対応する領域分割モデルがない等により領域分割モデルが指定されない場合、たとえばモニタ104に記憶部218に格納される複数の領域分割モデルが表示される(ステップS23)。
【0215】
そして、ユーザは、マウス112あるいはキーボード110への入力指示により、表示される複数の領域分割モデルの中から一つを選択する。そして、ユーザは、選んだ領域分割モデルを立体化の対象となる画像に対応するように微調整を行なう(ステップS24)。
【0216】
ここで、微調整とは、選択された領域分割モデルの分割領域の大きさの変更を含む。たとえば、ユーザによるマウス112あるいはキーボード110への入力指示により、モニタ104より表示される複数の領域分割モデルの中から図16のように天井の領域と床の領域と左右の壁面の領域とを奥行き方向で2分割した領域と正面の領域との9つの領域に分割された領域分割モデルが選択される。そして、ユーザによるマウス112あるいはキーボード110への入力指示により、図16の静止画における天井と正面の壁面と床と左右の壁面のそれぞれの境界線に対応するように、領域分割モデルにおける各領域の境界線の微調整が行なわれる。
【0217】
このとき、たとえば、ユーザによるマウス112あるいはキーボード110への入力指示により、領域分割モデルにおける中央の領域の4隅を静止画における正面の壁面の4隅に対応づけることにより微調整が行なわれてもよい。
【0218】
次に、領域分割部208は、微調整された領域分割モデルに基づいて、図16に示す静止画を9つの領域に分割する(ステップS25)。
【0219】
なお、本発明の実施の形態5において領域分割モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、領域分割モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0220】
また、本発明の実施の形態5において領域の分割は、領域分割モデルに基づいて行なうが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いて領域分割を行なってもよい。
【0221】
そして、視差モデル選択部205において、画像入力部202への視差モデルの特定可能な情報が入力されたか否かの判定をする(ステップS26)。
【0222】
ステップS26において、視差モデルの特定可能な情報が入力されていない場合、ユーザによるマウス112あるいはキーボード110への入力指示により直接入力されるまで待機する(ステップS27)。
【0223】
一方、ステップS26において、視差モデルの特定可能な情報が入力された場合、視差モデル選択部205は、視差モデル選択部206に入力された情報に応じて、予め記憶部218に格納された視差モデルと対応付けさせる。
【0224】
すなわち、視差は、視差モデル選択部206によりユーザからの入力に応じて選択される視差モデルに基づく。視差モデルは、予め選択された領域分割モデルに対応づけられていてもよい。
【0225】
なお、本発明の実施の形態5において視差モデルが予め格納される記憶部218は、たとえば、RAMおよびROM等を含む。ただし、視差モデルは、たとえば、固定ディスク122等の外部記憶装置に格納されていてもよい。
【0226】
また、本発明の実施の形態1における視差の決定は、外部からの入力または、視差モデルに基づいて行なっているが、たとえば、記憶部218から読み出した画像を解析して求める特徴量を用いた視差の算出を行なってもよい。
【0227】
そして、平行移動部212は、各領域に対応する部分画像を視差に基づいて、各領域に対応する部分画像に含まれる画素の平行にずらした位置への対応付けを行なう(ステップS28)。
【0228】
そして、画像補間部216は、平行移動部212により各領域に対応する部分画像を視差に応じて平行移動させた際に、各領域に対応する視差の相違により生じる空白領域を補間する(ステップS29)。
【0229】
なお、平行移動部212による各領域に含まれる画素を平行にずらした位置への対応付けは、各領域の画素値を一旦記憶部218に格納することにより行なわれてもよい。すなわち、各領域に含まれる画素を平行にずらした位置の画素値をすべて計算し、一旦記憶部218に格納した後に記憶部218に格納された移動前の画像の画素値を上書きしてもよい。
【0230】
あるいは、平行にずらした位置への対応付けは、1画素毎に行なわれてもよいものとする。すなわち、平行移動部212は、1画素毎に平行にずらして記憶部218に格納された移動前の画像の画素値を上書きしてもよい。
【0231】
そして、画像補間部214は、各領域に対応する部分画像の視差に応じた平行移動により重複領域が生じる場合、画像の混合、すなわち、重複領域に対応する画素値の生成を行なう(ステップS30)。
【0232】
このとき、各領域に対応する部分画像の視差に応じた平行移動により切り取り領域が生じる場合、切り取り領域の除去、すなわち、画面外に対応付けられた画素値の除去が行なわれる。
【0233】
また、領域分割モデル選択部204と領域分割部208と視差モデル選択部206と平行移動部212と画像混合部214と画像補間部216とは、CPU118を含む制御部(図示せず)において、プログラムを実行させることにより機能する。
【0234】
図17は、静止画を9つの領域に分割するときの領域分割モデルの一例を示す図である。
【0235】
図17を参照して、図17に示す領域分割モデルは、図16において説明した静止画の天井の領域、床の領域および左右の壁面の領域を奥行き方向でそれぞれ2分割した領域の各々と正面の壁面の領域とに対応するように分割している。
【0236】
領域分割部208は、図17に示す領域分割モデルにしたがって、領域1〜領域9に対応するように、図16において説明した静止画を分割する。領域1〜領域9に対応する部分画像の視差は、たとえば、ユーザにより選択された視差モデルあるいはユーザにより直接入力された視差に基づいて、領域1、領域3、領域7、領域9の視差を2dとし、領域2、領域4、領域6、領域8の視差をdとして、そして、領域5の視差を0とする。各領域に対応する部分画像を視差に応じて平行移動すると、立体画像において、より手前にあるものほど飛び出して見えることとなる。そのため、図16において説明した静止画を立体化するとき、奥行きを持った部屋に見えるようになる。
【0237】
すなわち、図17に示す領域分割モデルのように、領域を細かく分割することにより、よりなだらかに奥行きを作ることが可能となる。
【0238】
図18は、領域分割された各領域に対応する部分画像を視差に応じて平行移動した際に生ずる空白領域、重複領域、切り取り領域の一例を示す図である。
【0239】
図18を参照して、上述したように領域1〜領域9に対応する部分画像の視差は、たとえば、領域1、領域3、領域7、領域9の視差を2dとし、領域2、領域4、領域6、領域8の視差をdとして、領域5の視差を0とする。つづいて、領域1〜領域9に対応するそれぞれの部分画像を視差に応じて、平行移動部212により平行移動させる。ただし、領域5の視差は0であるため、領域5に対応する部分画像の平行移動量は0である。
【0240】
各部分画像の平行移動により、画素に対応する画素値のない空白領域と、領域同士が重なる重複領域と、画面よりはみ出す切り取り領域とが生じる。
【0241】
領域3に対応する部分画像の平行移動により生じる平行移動後の領域3の左側に生じる空白領域の補間は、空白領域の左端の領域に対応する部分画像が存在しないため、空白領域に隣接する右側の領域に対応する部分画像に含まれる画素値に基づいて行なう。または、空白領域に隣接する右側の領域と移動前の領域とに対応するそれぞれの部分画像に含まれる画素値に基づいて、空白領域を補間してもよい。
【0242】
また、領域6および領域7に対応する部分画像の平行移動により生じる領域5と領域6との間の空白領域と領域6と領域7との間の空白領域とに含まれる画素値の補間は、空白領域に隣接する両端の領域に対応するそれぞれの部分画像に含まれる画素値に基づいて行なわれる。ただし、両端の領域に含まれる画素値に基づいて、空白領域を補間することに限定しない。たとえば、空白領域に隣接する領域のうち少なくとも一つの領域に含まれる画素値に基づいて、空白領域の補間を行なってもよい。または、移動前の領域6、または、領域7に含まれる画素値に基づいて空白領域の補間を行なってもよい。
【0243】
また、空白領域の両端の領域に含まれる画素値に基づいて、空白領域に含まれる画素値の補間の一例としては、本発明の実施の形態1における図8に示した空白領域に含まれる画素を両端の領域の画素を用いた補間を示す概念図の説明における空白領域に含まれる画素値の補間方法と同じである。そのため説明は繰り返さない。
【0244】
一方、領域2、領域3、領域4、領域8の平行移動により生じる領域3と領域4と領域2と領域8との重複領域と、領域4と領域5との重複領域に含まれる画素値は、同じ画素に重複して対応付けられる領域に対応するそれぞれの部分画像に含まれる画素値に基づいて、画像混合部214により生成される。
【0245】
重複領域に含まれる画素値の生成の一例としては、本発明の実施の形態1における図9に示した重複領域に含まれる画素を同じ画素に重複して対応付けられる各領域に含まれる画素値に基づいた、画素値の生成を示す概念図の説明における重複領域に含まれる画素値の生成方法と同じである。そのため説明は繰り返さない。
【0246】
また、各領域の平行移動により生じる切り取り領域は、記憶部218において、生成される左目用画像に含まれる画素値のうち画面外に対応づけられる画素値の除去により切り取られる。
【0247】
以上のように、本発明の実施の形態5における立体画像生成装置200によれば、右目用の画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の補間と、重複領域の混合と、画面外にはみ出す切り取り領域の切り取りとを行なうことにより、左目用の画像を生成することが可能となる。
【0248】
また、重複するそれぞれの部分画像に含まれる画素値に基づいて重複領域に含まれる画素値を生成することにより、左目用画像を高速に生成することが可能となる。
【0249】
あるいは、空白領域に隣接する領域に対応する部分画像に含まれる画素値に基づいて、空白領域の画素に対応する画素値を補間することにより、左目用画像を高速に生成することが可能となる。
【0250】
[実施の形態6]
本発明の実施の形態6における立体画像生成装置として機能するコンピュータシステムは、本発明の実施の形態1における図1および図2に示したコンピュータシステム100の構成と同じである。そのため、コンピュータシステム100の構成および動作の説明は繰り返さない。
【0251】
また、本発明の実施の形態6における、コンピュータシステム100上で機能する立体画像生成装置の構成については、図3に示した本発明の実施の形態1における立体画像生成装置200の機能ブロック図と同じである。そのため本発明の実施の形態6における立体画像生成装置200の構成の説明は繰り返さない。
【0252】
以下、本発明の実施の形態6において、静止画内の特定の領域を立体化する方法の一例として図面に基づいて詳細に説明する。
【0253】
まず、本発明の実施の形態6の説明を行なう前提として、実施の形態4において説明した図15において、視差dが1より大きい場合(たとえば、dを5とする。)を考慮する。このとき、領域1、領域2および領域3の視差は、それぞれ10、5、10となる。すなわち、各領域間の視差が不連続となる。予め不連続な視差が対応付けられる場合、立体画像の生成について問題とならない。しかしながら、たとえば、実施の形態5において説明した図16のように廊下や壁面に対応する領域の立体画像を生成する場合、奥行きに応じて、連続的に視差が変化しなければ不自然な立体画像が生成されることとなる。そのために、領域分割の単位を所定の画素数の領域(たとえば、鉛直方向に1画素毎に分割する領域)とし、隣接する領域間の視差を連続的に変化させることにより、より自然な立体画像の生成が可能となる。
【0254】
すなわち、本発明の実施の形態6において、所定の画素数の領域の一例として鉛直方向に1画素毎に領域を分割した領域分割モデルにしたがって、画面を分割し、それぞれの領域に対応する部分画像を、連続的に変化させる視差に応じて、平行移動させる。
【0255】
ここで、所定の画素数は、1画素に特に限定されるものではない。ただし、より隣接する領域間の視差を連続的に変化させるためには、画面の領域を1画素毎に分割することが望ましい。
【0256】
ここで、本発明の実施の形態6における、コンピュータシステム100上で機能する立体画像生成装置の動作については、図4に示した本発明の実施の形態1における立体画像生成装置200が右目用画像の入力から左目用画像を生成する動作のフローチャートと以下の点で異なる。
【0257】
すなわち、本発明の実施の形態6において、選択される領域分割モデルは、鉛直方向に1画素毎に領域を分割した分割モデルである。
【0258】
図19は、図10において説明した領域分割モデルをさらに詳細に分割した領域分割モデルに基づいて分割した部分画像を視差に応じて平行移動させた図である。
【0259】
図19を参照して、図19に示す領域分割モデルは、実施の形態2において説明した図10の鉛直方向に4分割した領域分割モデルをさらに詳細に分割した分割モデルである。すなわち、図19に示す領域分割モデルは、画面を鉛直方向に1画素毎の領域に分割した分割モデルである。
【0260】
領域分割部218は、鉛直方向に1画素毎に領域を分割した領域分割モデルに基づいて、分割された画面の各領域に対応するように画像を分割する。そして、平行移動部212は、分割された各領域に対応する部分画像を視差に応じて、平行移動させる。このとき、視差は、下の領域から順次視差を小さく設定する。そのため、各領域に対応する部分画像の平行移動により生じる空白領域と平行移動後の各領域に対応する部分画像の左端との境界線は、図19に示すように近似的に斜線となる。
【0261】
このとき、生成される立体画像において、一番下の領域が最も手前に見えることとなる。そして、上の領域になるほど順次距離が遠ざかるように見えることとなる。そして、実施の形態2において説明した図10の鉛直方向に4分割の領域分割モデルに基づく立体画像と比較して、視差を連続的に変化させることにより、より自然な立体画像の生成を行なうことができる。
【0262】
一方、図20は、図15において説明した領域分割モデルをさらに詳細に分割した領域分割モデルに基づいて分割した部分画像を視差に応じて平行移動させた図である。
【0263】
図20を参照して、図20に示す領域分割モデルは、実施の形態4において説明した図15の鉛直方向に3分割した領域分割モデルをさらに詳細に分割した分割モデルである。すなわち、図20に示す領域分割モデルは、画面を鉛直方向に1画素毎の領域に分割した分割モデルである。
【0264】
領域分割部218は、鉛直方向に1画素毎に領域を分割した領域分割モデルに基づいて、分割された画面の各領域に対応するように画像を分割する。そして、平行移動部212は、分割された各領域に対応する部分画像を視差に応じて、平行移動させる。このとき、視差は、図14における天井に対応する領域においては、上の領域から順次視差を小さく設定する。また、図14における正面の壁面に対応する領域においては、視点から壁面までの距離が同じであるため同一の視差を設定する。そして、図14における床に対応する領域においては、下の領域から順次視差を小さく設定する。そのため、各領域に対応する部分画像の平行移動により生じる空白領域と平行移動後の各領域に対応する部分画像の左端との境界線は、連続的な変化を示す。すなわち、図20に示すように、図14における天井の領域に対応する部分画像の左端と空白領域との境界線は、近似的に右上がりの斜線となる。そして、図14における正面の壁面の領域に対応する部分画像の左端と空白領域との境界線は、鉛直方向の直線となる。そして、図14における床の領域に対応する部分画像の左端と空白領域との境界線は、近似的に右下がりの斜線となる。
【0265】
このとき、生成される立体画像において、図14における天井に対応する領域においては、上の領域になるほど手前に見える。また、図14における床に対応する領域においては、下の領域になるほど手前に見える。すなわち、正面の壁面が一番奥となるような奥行きのある部屋に見える。そして、実施の形態4において説明した図15の鉛直方向に3分割の領域分割モデルに基づく立体画像と比較して、視差を連続的に変化させることにより、より自然な立体画像の生成を行なうことができる。
【0266】
また、このとき、図19および図20において、領域の平行移動により生じる空白領域の補間は、空白領域の左端の領域に対応する部分画像が存在しないため、空白領域に隣接する右側の領域に対応する部分画像に含まれる画素値に基づいて行なう。または、空白領域に隣接する右側の領域と移動前の領域とに対応するそれぞれの部分画像に含まれる画素値に基づいて、空白領域を補間してもよい。
【0267】
一方、各領域の平行移動により生じる切り取り領域は、記憶部218において、生成される左目用画像に含まれる画素値のうち画面外に対応づけられる画素値の除去により切り取られる。
【0268】
また、画面を鉛直方向に1画素毎に分割されたそれぞれの領域への詳細な視差の設定により、平行移動後の各領域に対応する部分画像の左端の境界線を斜線だけでなく、矩形あるいは近似的に曲線とすることもできる。
【0269】
以上のように、本発明の実施の形態6における立体画像生成装置200によれば、右目用の画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域の補間と、画面外にはみ出す切り取り領域の切り取りとを行なうことにより、左目用の画像を生成することが可能となる。
【0270】
また、画面を鉛直方向に1画素毎の領域に分割する領域分割モデルに基づいて連続的に変化する視差を対応付けて立体化を行なうことにより、より自然な立体画像の生成が可能となる。
【0271】
なお、実施の形態6における領域分割モデルは、鉛直方向に1画素毎の領域に分割した領域分割モデルとして説明したが、たとえば、実施の形態1において説明した図5の水平方向に3分割した領域分割モデルをさらに詳細に分割した領域分割モデルに基づいて立体化を行なってもよいものとする。すなわち、たとえば、領域分割モデルは、水平方向に1画素毎の領域に分割した分割モデルであってもよい。
【0272】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0273】
【発明の効果】
以上説明したとおり、本発明における立体画像生成装置によれば、画像を入力してから領域分割と、領域に対応した視差に基づく分割された部分画像の平行移動と、平行移動により生じる空白領域に含まれる画素に対応する画素値の補間と、重複領域に含まれる画素に対応する画素値の生成とを行なうことにより、立体画像の生成を行なうことが可能となる。
【0274】
また、空白領域に隣接する領域に対応する部分画像に含まれる画素値に基づいて、空白領域の画素に対応する画素値を補間することにより、立体画像を高速に生成することが可能となる。
【0275】
あるいは、重複するそれぞれの部分画像に含まれる画素値に基づいて重複領域に含まれる画素値を生成することにより、立体画像を高速に生成することが可能となる。
【0276】
そして、入力画像を動画の1フレームとすることにより、2次元動画の立体画像生成が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態における立体画像生成装置として機能するコンピュータシステム100の一例の外観を示す。
【図2】 本発明の実施の形態における立体画像生成装置として機能するコンピュータシステム100の構成を示す機能ブロック図である。
【図3】 本発明の実施の形態における立体画像生成装置200の制御機能ブロック図である。
【図4】 本発明の実施の形態において右目用画像の入力から左目用画像を生成するまでの動作のフローチャートである。
【図5】 本発明の実施の形態1における画像を水平方向に3分割する領域分割モデルの一例を示す図である。
【図6】 本発明の実施の形態1における画像を水平方向に3分割する領域分割モデルに対応する視差モデルの例を示す図である。
【図7】 本発明の実施の形態1において、画像を水平方向に3分割して、各領域の視差に応じて平行移動した際に生ずる空白領域および重複領域の一例を示す図である。
【図8】 本発明の実施の形態1において画素補間部216による空白領域の両端の領域に含まれる画素値を用いた補間を示す概念図である。
【図9】 本発明の実施の形態1において画像混合部214により重複する各領域に対応する部分画像に含まれる画素値に基づいた、重複領域に含まれる画素値の生成を示す概念図である。
【図10】 本発明の実施の形態2における画像を鉛直方向に4分割する領域分割モデルの一例を示す図である。
【図11】 本発明の実施の形態2において、画像を鉛直方向に4分割して、各領域に対応する視差に応じて平行移動した際に生ずる空白領域および切り取り領域の一例を示す図である。
【図12】 本発明の実施の形態3における画像の中央部を長方形で2分割する領域分割モデルの一例を示す図である。
【図13】 本発明の実施の形態3において、画像の中央部を長方形により2分割して、各領域に対応する視差に応じて平行移動した際に生ずる空白領域および重複領域の一例を示す図である。
【図14】 本発明の実施の形態4において、破線領域を特定して、破線領域内の立体化を行なう静止画を説明するための図である。
【図15】 静止画を領域分割モデルに基づいて鉛直方向に3つの領域に分割して、各領域に対応する部分画像の視差に応じた平行移動により生じる空白領域および切り取り領域を示す図である。
【図16】 本発明の実施の形態5において、立体化を行なう静止画を説明するための図である。
【図17】 静止画を9つの領域に分割するときの領域分割モデルの一例を示す図である。
【図18】 領域分割された各領域に対応する部分画像を視差に応じて平行移動した際に生ずる空白領域、重複領域、切り取り領域の一例を示す図である。
【図19】 図10において説明した領域分割モデルをさらに詳細に分割した領域分割モデルに基づいて分割した部分画像を視差に応じて平行移動させた図である。
【図20】 図15において説明した領域分割モデルをさらに詳細に分割した領域分割モデルに基づいて分割した部分画像を視差に応じて平行移動させた図である。
【符号の説明】
100 コンピュータシステム、102 コンピュータ、104 モニタ、106 FD駆動装置、108 CD―ROM駆動装置、110 キーボード、112 マウス、114 FD、116 CD―ROM、118 CPU、120メモリ、122 固定ディスク、124 通信インターフェイス、200 立体画像生成装置、202 画像入力部、204 領域分割モデル選択部、206視差モデル選択部、208 領域分割部、212 平行移動部、214 画像混合部、216 画像補間部、218 記憶部。

Claims (28)

  1. 画面を構成する各画素に対する画素値の集合に対応する画像を格納するための記憶手段と、
    前記画面を分割した複数の領域にそれぞれ対応するように、前記画像を複数の部分画像に分割するための領域分割手段とを備え、
    各前記部分画像は、前記領域内の各前記画素に対する前記画素値の集合に対応し、
    各前記領域に対応する視差に応じて、各前記部分画像の前記画素に対応する前記画素値を平行にずらした位置の前記画素に対応付けするための平行移動手段と、
    前記視差の相違により生じる、前記画素に対応付けされる前記画素値のない空白領域において、前記空白領域に含まれる前記画素に対応する前記画素値を生成するための画像処理手段とをさらに備え、
    前記画像処理手段は、前記空白領域において、隣接する前記複数の部分画像のうちの少なくとも一つの前記部分画像の端部の画素に対応する前記画素値に基づいて、前記空白領域の前記画素に対応する前記画素値を生成するための画像補間手段を含み、
    前記記憶手段は、予め複数の領域分割モデルを記憶し、
    前記領域分割手段は、前記領域分割モデルを特定可能な情報に応じて、前記複数の領域分割モデルのうちの一つを選択するための領域分割モデル選択手段を含み、
    選択された前記領域分割モデルに基づいて、前記画面を領域分割する、立体画像生成装置。
  2. 前記複数の部分画像は、
    第1の部分画像と、
    前記視差の相違により、前記第1の部分画像と同じ前記画素に重複して前記画素値が対応付けされる重複領域を有する第2の部分画像とを含み、
    前記画像処理手段は、前記重複領域において、同じ前記画素に対応する前記第1の部分画像および前記第2の部分画像にそれぞれ含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成するための画像混合手段をさらに含む、請求項1記載の立体画像生成装置。
  3. 前記画像混合手段は、前記第1の部分画像および前記第2の部分画像にそれぞれ対応する前記視差に応じて、前記第1の部分画像および前記第2の部分画像のうちの何れかを選択して、選択された前記部分画像に含まれる前記画素値に基づいて、前
    記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項2記載の立体画像生成装置。
  4. 前記画像混合手段は、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とを交互に選択して、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項2記載の立体画像生成装置。
  5. 前記画像混合手段は、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とをαブレンディングして、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項2記載の立体画像生成装置。
  6. 前記領域分割モデルは、少なくとも奥行き方向と上下方向とに有限距離で仕切られる空間の静止画における奥行き方向および上下方向の境界面の領域の各々に対応するように画面を3分割するための領域分割モデルを含み、
    前記領域分割手段は、外部からの入力による前記3分割するための領域分割モデルの選択に応じて、前記3分割の領域のそれぞれの大きさを変更するための領域微調整手段をさらに含む、請求項1記載の立体画像生成装置。
  7. 前記領域分割モデルは、少なくとも奥行き方向と上下方向と左右方向とに有限距離で仕切られる空間の静止画における上下方向と左右方向との境界面を奥行き方向にそれぞれ2分割した領域の各々と奥行き方向の境界面の領域とに対応するように画面を9分割するための領域分割モデルを含み、
    前記領域分割手段は、外部からの入力による前記9分割するための領域分割モデルの選択に応じて、前記9分割の領域のそれぞれの大きさを変更するための領域微調整手段をさらに含む、請求項1記載の立体画像生成装置。
  8. 複数の前記領域分割モデルは、前記画面を鉛直方向および水平方向のうちいずれか一方に所定数の画素毎の複数の領域に分割した領域分割モデルを含む、請求項1記載の立体画像生成装置。
  9. 前記視差に関連する情報を前記複数の部分画像にそれぞれ対応する前記視差に変換する視差変換手段をさらに備える、請求項1記載の立体画像生成装置。
  10. 前記画像は、動画の1フレームである、請求項1記載の立体画像生成装置。
  11. 画面を構成する各画素に対する画素値の集合に対応する画像を、前記画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、
    各前記部分画像は、前記領域内の各前記画素に対する前記画素値の集合に対応し、
    各前記領域に対応する視差に応じて、各前記部分画像の前記画素に対応する前記画素値を平行にずらした位置の前記画素に対応付けするステップと、
    前記視差の相違により生じる、前記画素に対応付けされる前記画素値がない空白領域において、前記空白領域に含まれる前記画素に対応する前記画素値を生成するステップとをさらに備え、
    前記画素値を生成するステップは、前記空白領域に含まれる前記画素に対応する前記画素値を、前記空白領域に隣接する前記複数の部分画像のうちの少なくとも一つの前記部分画像の端部の画素に対応する前記画素値に基づいて、生成するステップを含み、
    前記複数の画像に分割するステップは、領域分割モデルを特定可能な情報に応じて、記憶領域に予め格納された複数の領域分割モデルのうちの一つを選択するステップと、
    選択された前記領域分割モデルに基づいて、前記画面を領域分割するステップとをさらに含む、立体画像生成方法。
  12. 前記複数の部分画像は、
    第1の部分画像と、
    前記視差の相違により、前記第1の部分画像と同じ前記画素に重複して前記画素値が対
    応付けされる重複領域を有する第2の部分画像とを含み、
    前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像および前記第2の部分画像にそれぞれ含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップをさらに含む、請求項11記載の立体画像生成方法。
  13. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記第1の部分画像および前記第2の部分画像にそれぞれ対応する前記視差に応じて、前記第1の部分画像および前記第2の部分画像のうち何れかを選択して、選択された前記部分画像に含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項12記載の立体画像生成方法。
  14. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とを交互に選択して、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項12記載の立体画像生成方法。
  15. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とをαブレンディングして、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項12記載の立体画像生成方法。
  16. 前記視差に関連する情報を前記複数の部分画像にそれぞれ対応する前記視差に変換するステップをさらに備える、請求項11記載の立体画像生成方法。
  17. 画面を構成する各画素に対する画素値の集合に対応する画像を、前記画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、
    各前記部分画像は、前記領域内の各前記画素に対する前記画素値の集合に対応し、
    各前記領域に対応する視差に応じて、各前記部分画像の前記画素に対応する前記画素値を平行にずらした位置の前記画素に対応付けするステップと、
    前記視差の相違により生じる、前記画素に対応付けされる前記画素値がない空白領域において、前記空白領域に含まれる前記画素に対応する前記画素値を生成するステップとをさらに備え、
    前記画素値を生成するステップは、前記空白領域に含まれる前記画素に対応する前記画素値を、前記空白領域に隣接する前記複数の部分画像のうちの少なくとも一つの前記部分画像の端部の画素に対応する前記画素値に基づいて、生成するステップを含み、
    前記複数の画像に分割するステップは、領域分割モデルを特定可能な情報に応じて、記憶領域に予め格納された複数の領域分割モデルのうちの一つを選択するステップと、
    選択された前記領域分割モデルに基づいて、前記画面を領域分割するステップとをさらに含む、立体画像生成プログラム。
  18. 前記複数の部分画像は、
    第1の部分画像と、
    前記視差の相違により、前記第1の部分画像と同じ前記画素に重複して前記画素値が対応付けされる重複領域を有する第2の部分画像とを含み、
    前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像および前記第2の部分画像にそれぞれ含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップをさらに含む、請求項17記載の立体画像生成プログラム。
  19. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記第1の部分画像および前記第2の部分画像にそれぞれ対応する前記視差に応じて、前記第1の部分画像および前記第2の部分画像のうち何れかを選択して、選択
    された前記部分画像に含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項18記載の立体画像生成プログラム。
  20. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とを交互に選択して、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項18記載の立体画像生成プログラム。
  21. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とをαブレンディングして、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項18記載の立体画像生成プログラム。
  22. 前記視差に関連する情報を前記複数の部分画像にそれぞれ対応する前記視差に変換するステップをさらに備える、請求項17記載の立体画像生成プログラム。
  23. 画面を構成する各画素に対する画素値の集合に対応する画像を、前記画面を分割した複数の領域にそれぞれ対応するように、複数の部分画像に分割するステップを備え、
    各前記部分画像は、前記領域内の各前記画素に対する前記画素値の集合に対応し、
    各前記領域に対応する視差に応じて、各前記部分画像の前記画素に対応する前記画素値を平行にずらした位置の前記画素に対応付けするステップと、
    前記視差の相違により生じる、前記画素に対応付けされる前記画素値がない空白領域において、前記空白領域に含まれる前記画素に対応する前記画素値を生成するステップとをさらに備え、
    前記画素値を生成するステップは、前記空白領域に含まれる前記画素に対応する前記画素値を、前記空白領域に隣接する前記複数の部分画像のうちの少なくとも一つの前記部分画像の端部の画素に対応する前記画素値に基づいて、生成するステップを含み、
    前記複数の画像に分割するステップは、領域分割モデルを特定可能な情報に応じて、記憶領域に予め格納された複数の領域分割モデルのうちの一つを選択するステップと、
    選択された前記領域分割モデルに基づいて、前記画面を領域分割するステップとをさらに含む、立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
  24. 前記複数の部分画像は、
    第1の部分画像と、
    前記視差の相違により、前記第1の部分画像と同じ前記画素に重複して前記画素値が対応付けされる重複領域を有する第2の部分画像とを含み、
    前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像および前記第2の部分画像にそれぞれ含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップをさらに含む、請求項23記載の立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
  25. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記第1の部分画像および前記第2の部分画像にそれぞれ対応する前記視差に応じて、前記第1の部分画像および前記第2の部分画像のうち何れかを選択して、選択された前記部分画像に含まれる前記画素値に基づいて、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項24記載の立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
  26. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とを交互に選択して、
    前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項24記載の立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
  27. 前記重複領域に含まれる前記画素に対応する前記画素値を生成するステップは、前記重複領域において、同じ前記画素に対応する前記第1の部分画像に含まれる第1の画素値と、前記第2の部分画像に含まれる第2の画素値とをαブレンディングして、前記重複領域に含まれる前記画素に対応する前記画素値を生成する、請求項24記載の立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
  28. 前記視差に関連する情報を前記複数の部分画像にそれぞれ対応する前記視差に変換するステップをさらに備える、請求項23記載の立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2003206566A 2003-02-05 2003-08-07 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体 Expired - Fee Related JP4179938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206566A JP4179938B2 (ja) 2003-02-05 2003-08-07 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028656 2003-02-05
JP2003206566A JP4179938B2 (ja) 2003-02-05 2003-08-07 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2004295859A JP2004295859A (ja) 2004-10-21
JP4179938B2 true JP4179938B2 (ja) 2008-11-12

Family

ID=33421309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206566A Expired - Fee Related JP4179938B2 (ja) 2003-02-05 2003-08-07 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP4179938B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073292B2 (en) * 2006-02-28 2011-12-06 Koninklijke Philips Electronics N.V. Directional hole filling in images
WO2011033668A1 (ja) 2009-09-18 2011-03-24 株式会社 東芝 視差画像生成装置
JP5197683B2 (ja) * 2010-06-30 2013-05-15 株式会社東芝 奥行き信号生成装置及び方法
JP5620202B2 (ja) * 2010-09-08 2014-11-05 株式会社バンダイナムコゲームス プログラム、情報記憶媒体及び画像生成システム
JP5594067B2 (ja) * 2010-11-02 2014-09-24 ソニー株式会社 画像処理装置および画像処理方法
US20120262542A1 (en) * 2011-04-15 2012-10-18 Qualcomm Incorporated Devices and methods for warping and hole filling during view synthesis
CN102972038B (zh) * 2011-07-01 2016-02-10 松下电器产业株式会社 图像处理装置、图像处理方法、程序、集成电路
JP5867128B2 (ja) * 2012-02-08 2016-02-24 株式会社Jvcケンウッド 画像処理装置、画像処理方法及び画像処理プログラム
WO2013186882A1 (ja) * 2012-06-13 2013-12-19 株式会社エム・ソフト 立体視画像生成方法および立体視画像生成システム

Also Published As

Publication number Publication date
JP2004295859A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5160741B2 (ja) 3dグラフィック処理装置及びこれを利用した立体映像表示装置
EP1582074B1 (en) Video filtering for stereo images
JP4214976B2 (ja) 擬似立体画像作成装置及び擬似立体画像作成方法並びに擬似立体画像表示システム
JP4966431B2 (ja) 画像処理装置
JP4251952B2 (ja) 立体画像表示装置および立体画像表示方法
CN102208115B (zh) 基于三维医学图像而生成立体视图的技术
US20080106546A1 (en) Method and device for generating 3d images
US20070154070A1 (en) Image processing apparatus, image signal generation method, information recording medium, and image processing program
WO2004107764A1 (ja) 画像表示装置及びプログラム
KR20070042989A (ko) 2차원 이미지들로부터 인공 부산물이 없는 3차원이미지들을 생성하는 방법
JP2004145832A (ja) コンテンツ作成装置、コンテンツ編集装置、コンテンツ再生装置、コンテンツ作成方法、コンテンツ編集方法、コンテンツ再生方法、コンテンツ作成プログラム、コンテンツ編集プログラム、および携帯通信端末
JP2005073013A (ja) 立体画像表示装置、立体画像表示方法、その方法をコンピュータに実行させるためのプログラム及びそのプログラムを記録した記録媒体
JP4179938B2 (ja) 立体画像生成装置、立体画像生成方法、立体画像生成プログラムおよび立体画像生成プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2011199389A (ja) 画像処理装置、画像変換方法、およびプログラム
JP2006208767A (ja) 画像再生装置、及び画像再生プログラム
JPH11265461A (ja) 動画像再生品質制御装置およびその制御方法
JP2020005202A (ja) 映像処理装置
JP2005267655A (ja) コンテンツ再生装置、コンテンツ再生方法、コンテンツ再生プログラム、コンテンツ再生プログラムを記録した記録媒体、および携帯通信端末
JP5396877B2 (ja) 画像処理装置、プログラム、画像処理方法、および記録方法
WO2004107765A1 (ja) 立体映像表示装置及びテキストデータ処理装置及びプログラム及び記憶媒体
JP4214529B2 (ja) 奥行き信号生成装置、奥行き信号生成プログラム、擬似立体画像生成装置、及び擬似立体画像生成プログラム
US7009606B2 (en) Method and apparatus for generating pseudo-three-dimensional images
KR20140077398A (ko) 입체영상 디스플레이에서의 계층적 다중화를 위한 장치 및 방법
US20130187907A1 (en) Image processing apparatus, image processing method, and program
JP5857606B2 (ja) 奥行き製作支援装置、奥行き製作支援方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees