JP4179850B2 - Active liquid seal vibration isolator - Google Patents

Active liquid seal vibration isolator Download PDF

Info

Publication number
JP4179850B2
JP4179850B2 JP2002324124A JP2002324124A JP4179850B2 JP 4179850 B2 JP4179850 B2 JP 4179850B2 JP 2002324124 A JP2002324124 A JP 2002324124A JP 2002324124 A JP2002324124 A JP 2002324124A JP 4179850 B2 JP4179850 B2 JP 4179850B2
Authority
JP
Japan
Prior art keywords
armature
vibration
string
solenoid
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002324124A
Other languages
Japanese (ja)
Other versions
JP2004156733A (en
Inventor
淳 斉藤
幸光 南端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yamashita Rubber Co Ltd
Original Assignee
Honda Motor Co Ltd
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yamashita Rubber Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002324124A priority Critical patent/JP4179850B2/en
Publication of JP2004156733A publication Critical patent/JP2004156733A/en
Application granted granted Critical
Publication of JP4179850B2 publication Critical patent/JP4179850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液封防振装置において、液室の容積を加振部材て可変とすることによって振動を吸収する能動型液封防振装置に係る。
【0002】
【従来の技術】
このような能動型液封防振装置として、加振部材をソレノイドのアーマチュアで駆動するものが公知である。また加振部材の例えば上下方向振動に対してソレノイドをプル側又はプッシュ側のいずれか片側の移動だけに用い、リターンをゴム膜の弾性によっておこなうようにしたものも公知である。
【0003】
これらの公知例における加振部材とアーマチュアは、ネジ止め等によって固く連結一体化されているため、組立時に加振部材がアーマチュアの移動軸線と交わる方向(以下、横方向という)へ傾くと、加振部材と一緒にアーマチュアが傾く等して、アーマチュアを摺動自在に支持するメタルベアリング等からなる軸受け部材の軸線に対して偏心することがある(以下、この状態を横振れという)。その後アーマチュアが横振れしたまま摺動すると、アーマチュアの軸受部材を偏摩耗させるため耐久性が低下してしまい、能動型液封防振装置における実用性のあるソレノイドの使用が困難となった。したがって組立時に横振れせず正確に心出しできることが望まれる。
【0004】
一方、加振部材とアーマチュアを屈曲可能に接続してアーマチュアの横振れを少なくすることが示されている(特許文献1参照)。すなわち加振部材の一部をアーマチュアの筒状部へ緩く嵌合し、かつ加振部材とアーマチュアの間に皿バネを介在させてボルトで連結することにより、加振部材がアーマチュアに対して屈曲可能になっている。
【0005】
【特許文献1】
特開2001−1765号公報
【0006】
【発明が解決しようとする課題】
ところで、上記特許文献1のような構造にすると、皿バネの剛性によって加振部材は比較的大きな力が加わらなければ屈曲が生じず、多くの場合は加振部材が単独で屈曲せずにアーマチュアと一体のまま横振れするので、依然としてアーマチュアの横振れを生じてしまうことになる。また、加振部材とアーマチュアの嵌合構造を採用すると、構造が比較的複雑になる。そこで本願発明は、加振部材とアーマチュアの連結部が容易に曲がるようにして横振れを防いで組立時の心出し精度並びに組立性を向上させ、かつ構造も簡単にすることを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本願の能動型液封防振装置に係る請求項1は、第1の取付部材と第2の取付部材間を連結するインシュレータを壁部の一部とする主液室と、この主液室を形成する他の壁部の一部をなすとともに主液室の容積を可変とする加振部材と、この加振部材を引っ張って駆動するプル型の駆動手段とを備え、この駆動手段に設けられた移動部を前記加振部材と連結するとともに、主たる振動の入力方向へ移動自在に軸受け支持した能動型液封防振装置において、前記加振部材と前記移動部それぞれ別々に形成し、ひも状連結部材により連結することにより前記加振部材を移動部に対して首振り運動可能にしたことを特徴とする。
【0008】
請求項2は上記請求項1において、前記駆動手段がソレノイドであり、前記移動部が前記ソレノイドのアーマチュアであることを特徴とする。
【0009】
請求項3は上記請求項2において、前記ひも状連結部材と前記アーマチュアとの接続部が、前記アーマチュアの軸方向端部のうち前記加振部材から最も離れた側に位置することを特徴とする。
【0010】
請求項4は上記請求項2において、前記ソレノイドが比例式であり、前記アーマチュアの端部と前記ソレノイドの磁束集中部との間に形成されたギャップを有するとともに、前記ひも状連結部材と前記加振部材又は前記アーマチュアとの接続部に、前記ギャップを調整するためのギャップ調節手段を備えたことを特徴とする。
【0011】
請求項5は上記請求項4において、前記ひも状連結部材の一端部は、前記加振部材又は前記アーマチュアのいずれか一方へカシメ固定され、他端部は前記加振部材又は前記アーマチュアのいずれか他方へネジ止めされて前記ギャップ調節手段を構成することを特徴とする。
【0012】
請求項6は上記請求項1において、前記ひも状連結部材の一端を前記加振部材又は前記移動部に形成された貫通穴へ通し、この貫通穴の周囲を縮径することにより連結したことを特徴とする。
【0013】
【発明の効果】
請求項1によれば、加振部材と駆動手段の移動部を別体に形成し、双方をひも状連結部材で連結したので、加振部材が傾く場合、加振部材だけが容易に首振り運動して傾き、移動部に振れを伝達しにくくなる。したがって、移動部は横振れのない精度の高い心出し状態で組み立てることができ、組立時の心出し精度並びに組立性が向上し、組立時における移動部の偏心が少ない状態すなわち初期オフセットを少ない状態にすることができる。
【0014】
また、能動型液封防振装置の能動時において、移動部は初期オフセットの少ない状態で移動できるから、軸受部材の偏摩耗を少なくすることができる。そのうえ、加振部材と移動部をひも状連結部材にて連結するだけで済むので、構造が簡単になり、組立容易かつ耐久性が向上し、低コストで製造できる。
さらに、心出し精度が低い状態の摺動時に発生する異音を低減でき、かつ摺動抵抗が減少するため駆動手段による移動部の確実な作動を確保できる。
【0015】
請求項2によれば、移動部であるアーマチュアの横振れが小さいので、駆動手段がソレノイドであっても耐久性の高い実用性のあるものとすることができる。
【0016】
請求項3によれば、ひも状連結部材とアーマチュアとの接続部が、加振部材から最も離れたアーマチュアの軸方向端部に位置するので、ひも状連結部材の連結長さを最長にすることができる。その結果、加振部材の首振り運動に対するアーマチュアの横振れを最小にすることができる。
【0017】
請求項4によれば、ソレノイドが比例式のときアーマチュアとソレノイドの磁束集中部間におけるギャップを所定範囲に収めることが必要となるが、ひも状連結部材と加振部材又はアーマチュアとの接続部にギャップ調節手段を備えたので、ギャップ調節を簡単かつ正確にできる。
【0018】
請求項5によれば、ひも状連結部材の一端を加振部材又はアーマチュアのいずれか一方へカシメ固定し、他端部を加振部材又はアーマチュアのいずれか他方へネジ止めすることによりギャップ調節手段を簡単に構成することができ、しかもギャップ調節手段を一端側のみに設けるだけで足りることになる。
【0019】
請求項6によれば、ひも状連結部材の一端を加振部材又は移動部に形成された貫通穴へ通し、この貫通穴の周囲を縮径することにより連結したので、簡単かつ正確な連結ができる。
【0020】
【発明の実施の形態】
以下、図面に基づいて一実施例を説明する。図1は、実施例としての自動車用エンジンマウントにおける全断面、図2はアーマチュアシール部分の拡大断面図を示す。図1において、このエンジンマウント1は、図示省略のエンジン側へ取付けられる第1取付部材2と、やはり図示省略の車体側へ取付けられる第2取付部材3と、この間に介在されるインシュレータ4を備える。
【0021】
インシュレータ4は、ゴム等の適宜弾性材料からなる防振ゴム等の防振用弾性体であり、第1取付部材2からの入力振動を吸収するための所定のバネ定数を有し、全体として略円錐状をなし、頂部に第1取付部材2を一体化するとともに、裾部周囲を第2取付部材3へ連結している。
【0022】
これら第1取付部材2、第2取付部材3、インシュレータ4の間に非圧縮性液体が封入された液室が形成され、その内部に設けられた仕切壁5により、インシュレータ4側の主液室6と、仕切壁5を挟んでその反対側となる加振室7に区画する。主液室6と加振室7は仕切壁5の中央に形成された絞り通路8により連通しており、主液室6にはインシュレータ4が臨んで主液室6を構成する壁の一部をなしている。
【0023】
加振室7の底部には、加振部材10が設けられる。加振部材10は鉄等の強磁性体もしくはアルミ等の金属や樹脂等の非磁性体材料で形成された比較的剛性のある略カップ状をなし、主たる振動方向Zから見て円板状をなすとともに、その周囲を同じく略円板状をなす弾性シール11によって浮動支持されている。
【0024】
弾性シール11は、インシュレータ4と同じか又は異なるゴム等の弾性材料からなり、加振部材10と後述する第2の取付部材3へ固定されて一体となる部材とを連結し、加振部材10の主たる振動の入力方向Zに平行な上下への変位に伴って、主としてせん断方向に弾性変形するリターンスプリングとして加振部材10を振動可能に支持するとともに、加振室7の液漏れを防止している。このゴム材料はゴムバネとして機能できる公知の種々なものを使用できる。
【0025】
弾性シール11の内周側は周壁状をなす加振部材10の外周部12をくるむように焼き付け一体化され、外周部12の上部に弾性シール11と一体の上ストッパ13が上方へ突出して設けられている。この上ストッパ13は、外周部12を覆う弾性シール11と連続するゴム部で一体に形成される略三角形断面の山形部である。
【0026】
加振部材10のZ方向における上下への変位に伴って、上ストッパ13は尖った先端部から仕切壁5へ押し当てられるようになっている。この押し当てにより上ストッパ13は圧縮されて反発力を発生し、この反発力は変位量の増大に伴う圧縮量の非線形的増大にしたがって徐々に増大することになる。すなわち非線形的バネ特性を生じるようになっている。
【0027】
加振部材10は中心線Cに沿って上下方向へ移動自在の鉄等の強磁性体金属製アーマチュア17と連結されて一体移動するようになっており、このアーマチュア17を介して後から詳しく説明するソレノイド15により図の下方向へ変位駆動され、かつリターンバネ手段により逆方向へ戻し変位されることにより振動して加振室7中に液体流動を発生させ、主液室6の容積を変動させる。
【0028】
ソレノイド15の駆動は、マイコン等の制御装置18により制御される。ソレノイド15、アーマチュア17及び制御装置18は駆動手段を構成する。なお、アーマチュア17はソレノイド15の外側被覆19内に一体化されたメタルベアリング16により外周を摺動自在に支持されている。
【0029】
この駆動手段はプル型であり、第1の取付部材2からの振動入力により主液室6の液圧が上昇するとき(以下、正入力という)、ソレノイド15によりアーマチュア17を介して加振部材10を図の下方へ移動させることにより液圧上昇をキャンセルし、逆に主液室6の液圧が減少するとき(以下、負入力という)アーマチュア17の引きを解放してリターンバネ手段の弾性力により加振部材10を図の上方へ戻して主液室6の液圧変動を抑制する。
【0030】
このとき、第1取付部材2に対する防振すべき振動の入力に対して、加振部材10を略同位相で加振すれば、加振室7中にて液体流動を発生させる。また、加振部材10をアクテイブ制御する周波数域は任意であり、例えば、アイドル域、発進域の各振動周波数を含む100Hz以下に設定することができる。
【0031】
弾性シール11の外周部は、フランジ金具20の中央に設けられた筒部21へ焼き付け一体化され、筒部21から半径方向外方へ伸びるフランジ22は、第2の取付部材3を構成する基部筒金具23の上部フランジ24とインシュレータ4の外周部へ一体化された筒状金具25の下端部との間に挟持される。
【0032】
基部筒金具23の上部フランジ24と筒状金具25の上端フランジ26は上部筒金具27により連結一体化される。このとき上部筒金具27の上下方向両端を折り曲げることにより各フランジを挟み、かつ当接部の適当位置を溶接する。この一体化により仕切壁5の外周部は、インシュレータ4とフランジ金具20のフランジ22上に挟まれて固定される。
【0033】
なお、仕切壁5の外周部に対するインシュレータ4の接触は上下2段になっており、上端側はインシュレータ4の内周面下部に設けられた段部28と密接し、段部28と一体のシール突起28aでシールされる(図中の拡大部参照)。また下端部側は、筒状金具25のに内面に沿って形成される内側被覆29の下端を押し当てることにより、内側被覆29と一体のシール突起29aでシールされる(図中の拡大部参照)。
【0034】
また、フランジ22上には弾性シール11と連続一体の被覆層30が設けられ、この部分でフランジ22と仕切壁5の外周下端部との間をシールするようになっている
【0035】
仕切壁5は樹脂等の適宜材料からなる略リング状をなし、その外周部は上下方向幅を大きくされ、その肉厚内には周方向へ形成され外周側を開放した周溝が形成され、この開放部を内側被覆29で閉じることにより周溝内がダンピングオリフィス通路31をなしている。ダンピングオリフィス通路31は外周部内を上下2段に重なってらせん状に回っており、一部を開口32により主液室6中へ連通し、他端を第2取付部材3の側壁に形成された出口33より第2取付部材3の外周部に形成された副液室34へ連通している。
【0036】
副液室34を構成するハウジング35内にはダイアフラム36が設けられ、副液室34の液量変動を補償し、主液室6の容積変動に追随して伸縮変形するようになっている。ダイアフラム36の副液室34側と反対側の面がむ空間は通気孔37を介して大気開放されている。
【0037】
仕切壁5の中央部には中心線Cと直交方向へ広がる仕切部38をなし、その中央に絞り通路8が形成されている。仕切部38は絞り通路8部分を除き、加振室7の上方側を覆っており、かつ下面は上ストッパ13が押し当てられる部分である。
【0038】
仕切部38は仕切壁5における周囲部分の上下方向端部よりその中間部高さ位置まで引き込まれた状態で形成され、仕切部38の上側と仕切壁5の外周部上端との間はアール部40で結ばれる。アール部40の一部を切り欠くことによりダンピングオリフィス通路31の入り口をなす開口32が形成される。
【0039】
仕切部38より下方部分周囲は環状壁42をなし、加振部材10の上部側が収容される空間を形成する。環状壁42はフランジ金具20における筒部21の周囲を若干の間隔を持って囲んでいる。
なお、符号43は加振部材10及び弾性シール11等の上下動を可能にするための作動空間であり、加振部材10及び弾性シール11とソレノイド15との間に形成される。
【0040】
図2に拡して示すように、下ストッパ14は上ストッパ13と同一又は異なるゴム等の弾性材料からなり、上ストッパ13と同様に略三角形断面の山形部であって、加振部材10へ取付けられるフランジ金具50と一体に形成され、フランジ金具50から下方へ突出して尖った先端部がソレノイド15の外側被覆19上に当接している。
【0041】
加振部材10のZ方向における上下への変位に伴って、下ストッパ14はソレノイド15の外側被覆19上面へ押し当てられることにより圧縮されて反発力を発生し、この反発力は圧縮量の増大にしたがって徐々に増大することになる。すなわち下ストッパ14は弾性シール11とともにリターンバネ手段を構成し、このリターンバネ手段に非線形的バネ特性を与えるようになっている。
【0042】
この下ストッパ14の圧縮開始は、厳密にはリターンバネの一部として実質的に機能するバネ力を発生する程度に圧縮された段階であって、加振部材10の変位量が所定量を超えたとき、例えば、アクテイブ時の加振部材10について予め設定された変位量より大きくなったときから開始させる。一方、所定の変位量まではバネ力が発生しないか又は発生しても極微少であってリターンバネとして弾性シール11のバネ力よりもかなり弱くなるようにする。
【0043】
このような作用を実現する初期設定として例えば、加振部材10が中立位置にあるとき、すなわち図の上下方向へ振動して移動していない状態において、所定の変位量分だけ下ストッパ14の先端とその接触相手との間に所定のクリアランスを予め設けておくことができる。
【0044】
但し、このような初期設定は任意であり、接離時の打音を生じないようにするためには、当初から下ストッパ14の尖った先端部を外側被覆19へ軽く押し当てておき、所定の変位量までは弾性シール11のバネがトータルのリターンバネにおける主体をなす程度に、下ストッパ14の圧縮量があまり大きくならないようしておき、所定の変位量を境にして圧縮量を急激に増大させるようにしてもよい。
【0045】
このような変化は,下ストッパ14を略三角形断面の山形状とすることにより容易に実現可能になる。本実施例ではこのような当初から接触する構成を採用している。なお、上ストッパ13の仕切壁5に対する接触及び圧縮における初期設定も同様にでき、かつ上ストッパ13の圧縮時における作用も下ストッパ14と同様に生じる。
【0046】
フランジ金具50は、外向きフランジ部51、その外周側先端を上方へ折り返えして形成された外周壁52及び外向きフランジ部51の内周端から上方へ突出する筒部53を備える。筒部53は加振部材10の外周下部に形成された小径の段部54へ圧入やカシメ等の適宜手段により固定されて一体化される。
【0047】
さらに、下ストッパ14と連続するゴムの一部は、外周壁52から加振室7の半径方向外方へ広がるダイアフラム状のアーマチュアシール55をなし、その外周側肥大部56は、弾性シール11と連続してフランジ22上に形成されたシール突部57と外側被覆19の一部をなす外側カバー19aの間で気密に挟持されてシールされる。
【0048】
上部室58は、アーマチュアシール55と弾性シール11及び加振部材10によって囲まれた密閉空間である。一方、下部室59はアーマチュアシール55、ソレノイド15及び加振部材10によって囲まれた密閉空間であり、外部との空気流動を阻止している。このようにアーマチュアシール55を設けて作動空間43を密閉空間となる上部室58と下部室59とに区画したので、下部室59側に位置するアーマチュア17を大気開放させずに密閉できる。したがって鉄等の強磁性体からなるアーマチュア17を錆びにくくして防錆性を向上させることができるから、長期間使用しても所定の性能を維持できる。
【0049】
なお、下部室59の容量は上部室58と比べて著しく小さく、内外との空気流動がなくても加振部材10の上下振動に不都合を生じない程度になっている。しかも、アーマチュアシール55がダイアフラム状であるから、その変形によって下部室59内の空気流動を可能とする。また下部室59内は下ストッパ14によって径方向へ内外に区分される場合があるが、このときは下ストッパ14の一部に設けた連通溝により内外の空間を連通して空気流動を可能にしている。
【0050】
また、下ストッパ14及びアーマチュアシール55と連続するゴムの一部が、フランジ金具50における外向きフランジ部51の上面、外周壁52の周囲及び筒部53の外側面を一体に覆う金具部被覆64をなし、その上端である筒部53の上端近傍部に上方へ突出するシール突起65が一体に形成されている。このシール突起65は、筒部53を加振部材10の段部54へ固定するとき、加振部材10に形成された側方張出部66の下面へ密接し、筒部53と加振部材10との間をシールしている。
【0051】
これら下ストッパ14及びアーマチュアシール55は、例えば、耐熱処方の天然ゴムや公知の種々な合成ゴム等の耐熱性弾性材料で構成される。なお、上ストッパ13及び弾性シール11も同様の耐熱性構造にすることができる。さらにはこれらに耐薬品性、耐油性等の特性を加えてもよい。
【0052】
図3は下ストッパ14部分を図2の下方から示したものである。この図に明らかなように、下ストッパ14の下面側は周方向へほぼ等間隔で配列されたブロック状をなし、例えば、図示する6個のように任意の複数個設けられる。隣り合う下ストッパ14の間は下ストッパ14と略同幅の間隙63が設けられている。なお、このようにブロック状とせず全周に連続する単一のリング状にすることもできる。
【0053】
間隙63は下ストッパ14の非線形的バネ特性を顕著にすることを目的にする凹部の一例として設けられ、同時に下部室59のうち下ストッパ14によって区分される径方向の内外部分の連通性を確保して、下ストッパ14が外側被覆19へ接触したとき下ストッパ14とアーマチュア17との間における空気閉じ込めを回避し、図の上下方向へ移動するアーマチュア17の作動性を良好に確保することを可能にする。
【0054】
但し、間隙63は必ずしも下部室59の内外を連通するように設ける必要はなく、非線形的バネ特性だけを狙う場合には、下部室59の内外を連通しない単なる凹部を形成して部分的に圧縮しやすくしただけのものでもよい。
【0055】
図3及び4に明らかなように、間隙63の底部67における中央部には放射方向へ横切る比較的浅くかつ狭いスリット状の連通溝68が形成されている。この連通溝68は下ストッパ14が全圧縮されたときでも下部室59の内外部分を連通させるためのものであり、その幅及び深さはは圧縮時の通気性を確保できるものであれば任意であり、その数も任意である。場合によっては連通溝68を省略することもできる。
【0056】
図4に示すように、間隙63の幅及び深さは下ストッパ14の非線形的バネ特性を考慮した任意のものでよく、下ストッパ14を必要なバネが得られる大きさにすることにより自ずから定まる。但し深さhは下ストッパ14の肉厚H未満であり、h/Hが1/10〜9/10程度が好ましく、1/3〜1/2程度であればバネのバランスを取りやすくてより好ましい。
【0057】
次に加振部材10とアーマチュア17の連結構造について説明する。図5に明らかなように、加振部材10とアーマチュア17は別体に形成され、ひも状連結部材70にて連結されている。ひも状連結部材70は、加振部材10及びアーマチュア17が一体になって上下移動するとき、主液室6及び加振室7の液圧変動により、加振部材10に対して主たる振動の入力方向Zと交わる方向すなわち横方向の力が加わると、加振部材10が首振り運動することを可能にするよう、加振部材10をアーマチュア17に対して首振り自由に連結する部材である。
【0058】
ひも状連結部材70の長さ方向両端には、固着された抜け止めリング71a及び72aを介して筒状金具のようなひも状連結部材70よりも太径をなす端部固定具71,72が取付けられている。加振部材10側の端部固定具71は、加振部材10の中心に形成された穴73へ収容されて、穴73の周囲に形成された立てフランジ状のカシメ部74にてカシメ固定される。
【0059】
アーマチュア17側の端部固定具72は周囲に雄ネジが形成されており、この部分をアーマチュア17の中心に形成された軸穴75の下部に設けられた雌ネジ部76へネジ込まれて結合される。このネジ結合によってアーマチュア17のギャップ調節手段(詳細後述)が構成されている。但し、取付構造はこの例に限らず任意にでき、例えばギャップ調節手段を省略するときは、ひも状連結部材70の両端を加振部材10及びアーマチュア17へ直接埋設一体化させることもできる。
【0060】
また、本実施例では雌ネジ部76が軸穴75の下部、すなわちアーマチュア17の下部に設けられている。このようにするとひも状連結部材70の長さを加振部材10とアーマチュア17の間隔よりも長い、ほぼ最長にできるから、加振部材10が首振り運動をしても、そのアーマチュア17に対する影響を最小に止めることができる。
【0061】
すなわち、アーマチュア17の移動は、加振部材10の首振り運動に影響されず、移動中の横振れが少なくなる。このため移動時の心出し精度が高くなり、摺動するベアリング16の偏摩耗を抑制できる。本実施例におけるベアリング16は、図5中の拡大部に示すように、オイルレスタイプのメタルベアリングであり、公知のものを適宜採用できる。
【0062】
本実施例では、アーマチュア17が摺動するベアリング16の摺動面を、銅等の合金層等77に低摩擦材コーテイング層78を施したもので構成し、摺動面を摩擦係数μ=0.03〜0.2程度にしたものである。この低摩擦材コーテイング層78には、例えばフッ素樹脂からなる公知のものを使用できる。
【0063】
このような構造にすると、フッ素樹脂からなる低摩擦材コーテイング層78が摩耗を受けやすいところ、アーマチュア17の横振れを少なくすることにより、低摩擦材コーテイング層78の耐久性を増すことになる。図中の符号79はベアリング16における鉄等からなる基材であり、例えばその厚みを0.7mmとすれば、摺動面を0.3mm程度となる比率にする。
【0064】
ギャップ調節手段は、図5に示すアーマチュア17とソレノイド15の磁束集中部15aとのギャップgを調節するためのものであり、端部固定具72の雌ネジ部76に対するネジ込み量を調整することによりアーマチュア17が図の上下方向へ移動して磁束集中部15aとのギャップgが変化する。このギャップ調節は、本実施例におけるソレノイド15が比例式ソレノイドであるため、ソレノイドの出力一定になる範囲にギャップgを維持するように調節することを目的とする。
【0065】
すなわち、比例式ソレノイドは、図6にその出力(縦軸)とギャップの大きさ(横軸)との一般的な関係を示すように、ギャップgが所定範囲にあるときのみ出力が一定になる特性を有する。したがって比例式ソレノイドを安定して用いるためにはギャップgが使用域として示す所定範囲内になるよう調整することが必要になるのであり、この調節機構によりギャップ調節を正確かつ簡単に実現できる。
【0066】
なお、このギャップ調節手段はネジ結合に限定されない。ひも状連結部材70の長さ調節構造など、要はギャップgを調節するため、ソレノイド15に対するアーマチュア17の位置又はひも状連結部材70の緊張状態における加振部材10とアーマチュア17の間隔を調節できるものであればどのようなものでもよい。
【0067】
ひも状連結部材70は首振り機能を可能とする程度に曲がりやすくかつ必要とされる程度の引っ張り強度を有するものであればどのようなものでもよい。例えば、ピアノ線のような単線状もしくは帯状部材又はこれらの材料からなる細線をある程度の太さに撚り合わせたワイヤー状部材、さらにはチェーンのような多関節線状部材等が可能である。但し、曲がりにおける方向性をなくすため、円形又は正多角形断面を有するものが好ましい。
【0068】
また、材質は必要な引っ張り強度があれば、合成樹脂や金属等、特に限定されない。さらにソレノイド15部分の発熱を考慮すると耐熱性に優れたものが好ましい。また防錆性に優れたものであることも好ましい。したがって、これらを考慮すると、例えばステンレス製や耐熱樹脂製のワイヤー等が好ましい。
【0069】
図7はひも状連結部材70をワイヤー状の撚り線として構成した例であり、Aは一方方向へ撚り合わせたもの、Bは両方向へ撚り合わせたものである。このうちBの両方向へ撚り合わせたものは、撚りが戻りにくいため、ひも状連結部材70の寸法精度を高精度に維持できる。したがって撚り線タイプのものを採用する場合であってより精度の高い用途においては、Bに示すような両方向へ撚り合わせたものを使用することが好ましい。
【0070】
図8はアーマチュア17側においてひも状連結部材70の長さ調整をおこなう場合の別例である。この例では、アーマチュア17の底部に小径部80を設け、その中心に形成した貫通穴81へひも状連結部材70の一端部を差し通し、所定の長さにして小径部80をプレス機等で縮径することにより連結一体化するとともにひも状連結部材70の端部の内余分な部分をカットしたものである。このようにするとネジ止め構造に代えることができるので、より簡単かつ安価にできる。
【0071】
次に、本実施例の作用を説明する。まず組立時において、加振部材10とアーマチュア17がひも状連結部材70にて連結されているから、仮に加振部材10が傾いても、ひも状連結部材70がこの傾きをアーマチュア17へほとんど伝達しないので、アーマチュア17は横振れせずにメタルベアリング16の軸穴内へ嵌合され、偏心量の少ない状態すなわち初期オフセットを少ない状態になる。このため心出し精度並びに組立性が向上する。
【0072】
また、アーマチュア17はその後の作動時に初期オフセットの少ない状態で移動できるから、メタルベアリング16の偏摩耗を少なくすることができる。そのうえ、加振部材10とアーマチュア17をひも状連結部材70にて連結するだけで済むので、構造が簡単になり、組立容易かつ耐久性が向上し、低コストで製造できる。さらに、心出し精度が低い状態の摺動時に発生する異音を低減でき、かつ摺動抵抗が減少するためソレノイド15によるアーマチュア17の確実な作動を確保できる。
【0073】
次に、上記により組み立てられたこのエンジンマウントの使用状態において、アクテイブ時には、第1取付部材2へ例えば30Hz程度のアイドル振動が防振すべき振動として入力するとき、これを打ち消すべくソレノイド15により加振部材10を略同位相かつ防振すべき振動と同じ周波数で加振する。これにより主液室6の内圧変動を吸収する。このとき、弾性シール11及びストッパ(13,14)はリターンバネ手段として機能する。入力振動が大きくなって所定の変位量を超えると、下ストッパ14の圧縮量が急激に増大するので非線形的なバネ特性を与える。
【0074】
一方、パッシブ時において、防振すべき振動以外の振動入力に対しては、ソレノイド15が加振部材10をフリーにするため、加振部材10は主液室6から伝達される液圧変化に応じて変位する。このとき比較的小振幅の振動入力には弾性シール11のみが主としてせん断方向の弾性変形により対応し、良好な低バネ特性を得ることができる。
【0075】
上記アクテイブ時において、制御装置18によりソレノイド15(図1)へ通電すると、磁力によりアーマチュア17は下方へ移動される。このとき、加振部材10はひも状連結部材70を介してアーマチュア17と連結しているので、下ストッパ14を圧縮しつつアーマチュア17と一体に下方へ移動する。
【0076】
また、ソレノイド15に対する通電を停止すると、アーマチュア17はフリーになり、加振部材10がリターンバネとして作用する下ストッパ14の反発弾性により上方へ移動して復帰し、ひも状連結部材70を介して加振部材10と連結するアーマチュア17も一体に上方へ移動する。
【0077】
このような加振部材10及びアーマチュア17の上下移動において、主液室6及び加振室7の液圧変動により、加振部材10に対して主たる振動の入力方向Zと交わる方向の力が加振部材10に加わると、加振部材10は主たる振動の入力方向Zに対して横振れしようとするが、加振部材10は別体のアーマチュア17とひも状連結部材70を介して連結しているだけのため、アーマチュア17に対して加振部材10のみが容易に首振り運動をする。
【0078】
したがってこの首振り運動は、アーマチュア17に何ら影響を与えず、アーマチュア17はほとんどの場合において加振部材10と一緒に首振り運動をすることはない。その結果アーマチュア17は上下移動時に左右へ振れず、上下移動時における高精度の心出し状態を維持できるので、ベアリング16との摺動性を良好に維持して摩擦抵抗を減らし、偏摩耗を防止できる。
【0079】
このため、ソレノイド15の出力を増加させずに済み、耐久性が向上する。また、簡単な構造で加振部材10とアーマチュア17を連結できる。したがって、組立・製造容易でコストダウンできる。しかも本実施例のように端部固定具71、72で取付ければ、ギャップg(図5)の調も容易である。
【0080】
また、下ストッパ14を利用してリターンバネを構成するので、特別なコイルスプリング等のリターンバネを用いなくても済むため、部品点数を削減し、心出し精度を高める。そのうえ、非線形のバネ特性を得ることができる。
しかも、下ストッパ14及びアーマチュアシール55さらには弾性シール11や上ストッパ13等のゴム部を耐熱性材料にしたので、エンジンの輻射熱や防振装置自体の発熱によって高熱となる使用環境であっても耐久性を良好にできる。
【0081】
さらに、アーマチュアシール55の外周側先端部56を第2の取付部材3側へ固定するので、加振部材10の心出し、位置決めが容易になるから、組立精度を高めることができる。そのうえ、アーマチュアシール55を加振部材10及び弾性シール11と別体にして下ストッパ14と一体に設けたので、加振部材10側を変更することなく下ストッパ14側のみを特性等変更することが容易になるから、部品の共通化により種々な仕様変更への対応が容易になる。また、アーマチュアシール55を下ストッパ14と一体に形成できるので、部品点数を削減して構造が簡単になりかつ製造が容易になる。
【0082】
なお、本願発明は上記実施例に限定されず種々に変形や応用が可能であり、例えば、アーマチュアシール55は弾性シール11と一体に形成することもでき、さらに下ストッパ14と別体にしてもよい。また、用途としては、エンジンマウント以外にも種々な振動伝達経路における振動遮断用防振装置として利用できる。また、振動源へ取付けてその制振器として利用することもできる。
【図面の簡単な説明】
【図1】第1実施例に係るエンジンマウントの全断面図
【図2】アーマチュアシール部分の拡大断面図
【図3】下ストッパ及びアーマチュアシール部分の拡大図
【図4】図3の4−4線相当断面図
【図5】ギャップ調節手段を示す拡大断面図
【図6】比例式ソレノイドの出力とギャップの関係を示すグラフ
【図7】撚り線構造のひも状連結部材を示す図
【図8】アーマチュアとひも状連結部材の連結構造別例を示す
【符号の説明】
1:エンジンマウント、2:第1取付部材、3:第2取付部材、4:インシュレータ、5:仕切壁、6:主液室、7:加振室、10:加振部材、11:弾性シール、13:上ストッパ、14:下ストッパ、15ソレノイド、15a:磁束集中部、16:メタルベアリング(軸受部材)、17:アーマチュア、37:通気孔、55:アーマチュアシール、58:上部室、59:下部室、63:間隙、70:ひも状連結部材、71:端部固定具、72:端部固定具
[0001]
BACKGROUND OF THE INVENTION
The present invention, in Ekifubofu device, according to the active liquid Fubofu device that absorbs vibration by variable Te the volume of the liquid chamber to the vibrating member.
[0002]
[Prior art]
As such an active liquid seal vibration isolator, an apparatus in which a vibration member is driven by a solenoid armature is known. Also, it is well known that a solenoid is used only for movement on either the pull side or the push side with respect to vertical vibrations of the vibration member, and the return is performed by the elasticity of a rubber film.
[0003]
Since the vibrating member and the armature in these known examples are firmly connected and integrated by screwing or the like, if the vibrating member is tilted in the direction intersecting the armature movement axis (hereinafter referred to as the lateral direction) during assembly, The armature may be tilted together with the vibration member, and may be eccentric with respect to the axis of the bearing member made of a metal bearing or the like that slidably supports the armature (hereinafter, this state is referred to as lateral vibration). After that, when the armature slides while being laterally shaken, the bearing member of the armature is unevenly worn, resulting in a decrease in durability, making it difficult to use a practical solenoid in the active liquid seal vibration isolator. Therefore, it is desired that the centering can be accurately performed without causing side shaking during assembly.
[0004]
On the other hand, it is shown that the lateral vibration of the armature is reduced by connecting the vibration member and the armature so as to be bendable (see Patent Document 1). In other words, a portion of the vibration member is loosely fitted to the tubular portion of the armature, and the vibration member is bent with respect to the armature by interposing a disc spring between the vibration member and the armature and connecting with a bolt. It is possible.
[0005]
[Patent Document 1]
JP-A-2001-1765 [0006]
[Problems to be solved by the invention]
By the way, when the structure as in Patent Document 1 is used, the vibration member does not bend unless a relatively large force is applied due to the rigidity of the disc spring. In many cases, the vibration member does not bend independently and the armature is not bent. As a result, the armature still shakes. Further, when a fitting structure of the vibration member and the armature is employed, the structure becomes relatively complicated. Accordingly, an object of the present invention is to improve the centering accuracy and assemblability during assembly by making the connecting portion of the vibration member and the armature easily bend to prevent lateral vibration, and to simplify the structure.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention relates to an active liquid seal vibration isolator of the present application, wherein a main liquid chamber having an insulator for connecting a first mounting member and a second mounting member as a part of a wall portion; An excitation member that forms a part of the other wall forming the main liquid chamber and makes the volume of the main liquid chamber variable, and a pull-type drive means that pulls and drives the excitation member. thereby consolidated with the vibrating member moving portion provided in the drive means, the active fluid Fubofu apparatus bearing movably supported in the input direction of the principal vibration, the moving unit, respectively and the vibrating member The vibrating member is formed separately and connected by a string-like connecting member so that the swinging member can swing with respect to the moving portion.
[0008]
A second aspect is characterized in that, in the first aspect, the driving means is a solenoid, and the moving portion is an armature of the solenoid.
[0009]
According to a third aspect of the present invention, in the second aspect of the present invention, the connecting portion between the string-like connecting member and the armature is located on the side farthest from the vibration member among the axial ends of the armature. .
[0010]
According to a fourth aspect of the present invention, the solenoid according to the second aspect is proportional, and has a gap formed between an end portion of the armature and a magnetic flux concentrating portion of the solenoid, and the string-like connecting member and the additional member. A gap adjusting means for adjusting the gap is provided at a connecting portion with a vibration member or the armature.
[0011]
A fifth aspect of the present invention is the method of the fourth aspect, wherein one end of the string-like connecting member is caulked and fixed to either the vibration member or the armature, and the other end is either the vibration member or the armature. The gap adjusting means is configured by being screwed to the other side.
[0012]
A sixth aspect of the present invention is the method according to the first aspect, wherein one end of the string-like connecting member is passed through a through hole formed in the vibrating member or the moving portion, and the periphery of the through hole is reduced in diameter. Features.
[0013]
【The invention's effect】
According to the first aspect, since the vibration member and the moving part of the driving means are formed separately and both are connected by the string-like connection member, when the vibration member is inclined, only the vibration member is easily swung. It moves and tilts, making it difficult to transmit vibration to the moving part. Therefore, the moving part can be assembled in a highly accurate centering state without side shake, the centering accuracy and assembling performance during assembly are improved, and the moving part is less eccentric during assembly, that is, the initial offset is small. Can be.
[0014]
In addition, when the active liquid seal vibration isolator is active, the moving part can move with a small initial offset, so that uneven wear of the bearing member can be reduced. In addition, since the vibration member and the moving part need only be connected by a string-like connecting member, the structure is simplified, the assembly is easy and the durability is improved, and the manufacturing can be performed at low cost.
Furthermore, noise generated during sliding with low centering accuracy can be reduced, and sliding resistance can be reduced, so that reliable operation of the moving part by the driving means can be ensured.
[0015]
According to the second aspect of the present invention, since the armature as the moving portion has a small lateral vibration, even if the driving means is a solenoid, it can be highly durable and practical.
[0016]
According to the third aspect, since the connecting portion between the string-like connecting member and the armature is located at the axial end of the armature farthest from the vibration member, the connecting length of the string-like connecting member is maximized. Can do. As a result, it is possible to minimize the lateral movement of the armature with respect to the swinging motion of the vibration member.
[0017]
According to claim 4, when the solenoid is a proportional type, it is necessary to keep the gap between the armature and the magnetic flux concentrating portion of the solenoid within a predetermined range, but the connecting portion between the string-like connecting member and the vibration member or the armature is required. Since the gap adjusting means is provided, the gap adjustment can be easily and accurately performed.
[0018]
According to the fifth aspect of the present invention, one end of the string-like connecting member is caulked and fixed to either the vibration member or the armature, and the other end is screwed to either the vibration member or the armature, thereby adjusting the gap. In addition, it is sufficient to provide the gap adjusting means only on one end side.
[0019]
According to the sixth aspect, since one end of the string-like connecting member is passed through the through-hole formed in the vibrating member or the moving part and the circumference of the through-hole is reduced, the connection is simple and accurate. it can.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment will be described below with reference to the drawings. FIG. 1 is an entire cross-section of an automotive engine mount as an embodiment, and FIG. 2 is an enlarged cross-sectional view of an armature seal portion. In FIG. 1, the engine mount 1 includes a first attachment member 2 attached to an engine side (not shown), a second attachment member 3 attached to a vehicle body side (not shown), and an insulator 4 interposed therebetween. .
[0021]
The insulator 4 is an anti-vibration elastic body such as an anti-vibration rubber made of an appropriate elastic material such as rubber, has a predetermined spring constant for absorbing input vibration from the first mounting member 2, and is substantially as a whole. It has a conical shape, and the first mounting member 2 is integrated at the top, and the periphery of the skirt is connected to the second mounting member 3.
[0022]
A liquid chamber in which an incompressible liquid is sealed is formed between the first mounting member 2, the second mounting member 3, and the insulator 4, and the main liquid chamber on the insulator 4 side is formed by a partition wall 5 provided therein. 6 and an excitation chamber 7 on the opposite side across the partition wall 5. The main liquid chamber 6 and the vibration chamber 7 communicate with each other by a throttle passage 8 formed in the center of the partition wall 5, and the insulator 4 faces the main liquid chamber 6 and a part of the wall constituting the main liquid chamber 6. I am doing.
[0023]
A vibration member 10 is provided at the bottom of the vibration chamber 7. The vibration member 10 has a substantially rigid cup shape made of a ferromagnetic material such as iron or a non-magnetic material such as a metal such as aluminum or a resin, and has a disk shape when viewed from the main vibration direction Z. At the same time, the periphery thereof is supported in a floating manner by an elastic seal 11 having a substantially disk shape.
[0024]
The elastic seal 11 is made of an elastic material such as rubber that is the same as or different from that of the insulator 4, and connects the vibration member 10 and a member that is fixed to and integrated with a second mounting member 3 to be described later. The vibration member 10 is supported as a return spring that elastically deforms mainly in the shearing direction in accordance with the vertical displacement parallel to the input direction Z of the main vibration of the vibration, and the liquid leakage of the vibration chamber 7 is prevented. ing. As this rubber material, various known materials that can function as a rubber spring can be used.
[0025]
The inner peripheral side of the elastic seal 11 is baked and integrated so as to surround the outer peripheral portion 12 of the vibration member 10 having a peripheral wall shape, and an upper stopper 13 integral with the elastic seal 11 is provided above the outer peripheral portion 12 so as to protrude upward. ing. The upper stopper 13 is a chevron portion having a substantially triangular cross section formed integrally with a rubber portion continuous with the elastic seal 11 covering the outer peripheral portion 12.
[0026]
The upper stopper 13 is pressed against the partition wall 5 from the pointed tip portion in accordance with the vertical displacement of the vibration member 10 in the Z direction. By this pressing, the upper stopper 13 is compressed to generate a repulsive force, and this repulsive force gradually increases as the amount of compression increases nonlinearly with the increase in displacement. That is, non-linear spring characteristics are produced.
[0027]
The vibration member 10 is connected to a ferromagnetic metal armature 17 such as iron that is movable in the vertical direction along the center line C, and moves integrally therewith. The armature 17 will be described in detail later. The solenoid 15 is driven to move downward in the figure, and is returned to the reverse direction by the return spring means to vibrate to generate a liquid flow in the vibration chamber 7 and change the volume of the main liquid chamber 6. Let
[0028]
The drive of the solenoid 15 is controlled by a control device 18 such as a microcomputer. The solenoid 15, the armature 17 and the control device 18 constitute drive means. The armature 17 is slidably supported on the outer periphery by a metal bearing 16 integrated in the outer sheath 19 of the solenoid 15.
[0029]
This drive means is a pull type, and when the hydraulic pressure in the main liquid chamber 6 rises due to vibration input from the first mounting member 2 (hereinafter referred to as positive input), the vibration member via the armature 17 by the solenoid 15. 10 to cancel the hydraulic elevated by moving downward in FIG by reverse when the hydraulic pressure in the main liquid chamber 6 is decreased (hereinafter, referred to as the negative input) to release the pull of the armature 17 of the litters Nba Ne means The vibration member 10 is returned upward in the figure by the elastic force to suppress the fluid pressure fluctuation in the main fluid chamber 6.
[0030]
At this time, if the vibration member 10 is vibrated in substantially the same phase with respect to the input of vibration to be vibrated to the first mounting member 2, a liquid flow is generated in the vibration chamber 7 . Also, the frequency range for Akuteibu controlling the vibrating members 10 is arbitrary, for example, idling region, it can be set to 100Hz or less including the vibration frequency of the starting area.
[0031]
The outer periphery of the elastic seal 11 is baked and integrated with a cylindrical portion 21 provided in the center of the flange metal fitting 20, and the flange 22 extending radially outward from the cylindrical portion 21 is a base portion constituting the second mounting member 3. It is sandwiched between the upper flange 24 of the tubular fitting 23 and the lower end portion of the tubular fitting 25 integrated with the outer peripheral portion of the insulator 4.
[0032]
The upper flange 24 of the base tubular fitting 23 and the upper end flange 26 of the tubular fitting 25 are connected and integrated by an upper tubular fitting 27. At this time, the flanges are sandwiched by bending both ends in the vertical direction of the upper tubular fitting 27, and appropriate positions of the contact portions are welded. By this integration, the outer peripheral portion of the partition wall 5 is sandwiched between the insulator 4 and the flange 22 of the flange fitting 20 and fixed.
[0033]
The insulator 4 contacts the outer peripheral part of the partition wall 5 in two steps, upper and lower, and the upper end is in close contact with the step part 28 provided at the lower part of the inner peripheral surface of the insulator 4, and the seal is integrated with the step part 28. Sealed by the protrusion 28a (see the enlarged portion in the figure). Further, the lower end side is sealed with a seal projection 29a integrated with the inner cover 29 by pressing the lower end of the inner cover 29 formed along the inner surface of the cylindrical metal fitting 25 (see the enlarged portion in the figure). ).
[0034]
Further, a coating layer 30 that is continuous and integrated with the elastic seal 11 is provided on the flange 22, and this portion seals between the flange 22 and the lower end of the outer periphery of the partition wall 5 .
[0035]
The partition wall 5 has a substantially ring shape made of an appropriate material such as a resin, its outer peripheral portion has a large vertical width, and a circumferential groove that is formed in the circumferential direction and opens on the outer peripheral side is formed in its thickness. By closing this open portion with the inner coating 29, the inside of the circumferential groove forms a damping orifice passage 31. The damping orifice passage 31 is spirally wound in the upper and lower two stages in the outer peripheral portion, and a part thereof is communicated with the main liquid chamber 6 through the opening 32 and the other end is formed on the side wall of the second mounting member 3. The outlet 33 communicates with a secondary liquid chamber 34 formed on the outer periphery of the second mounting member 3.
[0036]
A diaphragm 36 is provided in the housing 35 that constitutes the sub liquid chamber 34, compensates for variations in the amount of liquid in the sub liquid chamber 34, and expands and contracts following the volume variation of the main liquid chamber 6. Opposite surface and the sub liquid chamber 34 side of the diaphragm 36 is extraordinary free space is open to the atmosphere through the vent hole 37.
[0037]
A partition portion 38 extending in a direction orthogonal to the center line C is formed at the center portion of the partition wall 5, and a throttle passage 8 is formed at the center thereof. The partition portion 38 covers the upper side of the vibration chamber 7 except for the throttle passage 8 portion, and the lower surface is a portion against which the upper stopper 13 is pressed.
[0038]
The partition portion 38 is formed in a state of being drawn from the vertical direction end portion of the peripheral portion of the partition wall 5 to the intermediate portion height position, and the round portion is formed between the upper side of the partition portion 38 and the upper end of the outer peripheral portion of the partition wall 5. 40 tied. An opening 32 that forms the entrance of the damping orifice passage 31 is formed by cutting out a part of the rounded portion 40.
[0039]
A portion below the partition portion 38 forms an annular wall 42 and forms a space in which the upper side of the vibration member 10 is accommodated. The annular wall 42 surrounds the periphery of the cylindrical portion 21 of the flange fitting 20 with a slight gap.
Reference numeral 43 denotes an operating space for allowing the vibration member 10 and the elastic seal 11 to move up and down, and is formed between the vibration member 10 and the elastic seal 11 and the solenoid 15.
[0040]
As shown in expanded Figure 2, the lower stopper 14 is made of an elastic material such as the same or a different rubber and the upper stopper 13, a chevron portion of the same substantially triangular cross-section with the upper stopper 13, vibrating members 10 It is formed integrally with the flange fitting 50 to be attached to, and a sharp tip projecting downward from the flange fitting 50 is in contact with the outer cover 19 of the solenoid 15.
[0041]
As the vibration member 10 is displaced in the vertical direction in the Z direction, the lower stopper 14 is compressed by being pressed against the upper surface of the outer cover 19 of the solenoid 15 to generate a repulsive force. This repulsive force increases the amount of compression. It will gradually increase as you go. That is, the lower stopper 14 constitutes a return spring means together with the elastic seal 11, and gives the return spring means a non-linear spring characteristic.
[0042]
Strictly speaking, the start of compression of the lower stopper 14 is a stage where it is compressed to a level that generates a spring force that substantially functions as a part of the return spring, and the displacement amount of the vibration member 10 exceeds a predetermined amount. When, for example, the vibration member 10 at the time of activation becomes larger than a preset displacement, the vibration member 10 is started. On the other hand, the spring force is not generated up to a predetermined displacement amount, or even if it is generated, the spring force is extremely small and is considerably weaker than the spring force of the elastic seal 11 as a return spring.
[0043]
As an initial setting for realizing such an action, for example, when the vibration member 10 is in a neutral position, that is, in a state where it does not move by vibrating in the vertical direction in the figure, the tip of the lower stopper 14 is moved by a predetermined amount of displacement. And a predetermined clearance can be provided in advance between the contact partner and the contact partner.
[0044]
However, such initial setting is arbitrary, and in order not to generate a hitting sound at the time of contact / separation, the sharp tip of the lower stopper 14 is lightly pressed against the outer cover 19 from the beginning, The amount of compression of the lower stopper 14 should not be so large that the spring of the elastic seal 11 is the main component of the total return spring until the amount of displacement is increased. You may make it increase.
[0045]
Such a change can be easily realized by forming the lower stopper 14 into a mountain shape having a substantially triangular cross section. In the present embodiment, such a configuration that contacts from the beginning is adopted. The initial setting in the contact and compression of the upper stopper 13 with respect to the partition wall 5 can be performed in the same manner, and the action of the upper stopper 13 during compression also occurs in the same manner as the lower stopper 14.
[0046]
The flange fitting 50 includes an outward flange portion 51, an outer peripheral wall 52 formed by folding the outer peripheral side tip upward, and a cylindrical portion 53 protruding upward from the inner peripheral end of the outward flange portion 51. The cylindrical part 53 is fixed and integrated by a suitable means such as press-fitting or caulking into a small-diameter step part 54 formed at the lower outer periphery of the vibration member 10.
[0047]
Further, a part of the rubber continuous with the lower stopper 14 forms a diaphragm-like armature seal 55 that spreads outward from the outer peripheral wall 52 in the radial direction of the vibration chamber 7, and the outer peripheral side enlarged portion 56 is connected to the elastic seal 11. The seal projection 57 continuously formed on the flange 22 and the outer cover 19a forming a part of the outer cover 19 are airtightly sandwiched and sealed.
[0048]
The upper chamber 58 is a sealed space surrounded by the armature seal 55, the elastic seal 11, and the vibration member 10. On the other hand, the lower chamber 59 is a sealed space surrounded by the armature seal 55, the solenoid 15, and the vibration member 10, and prevents air flow from the outside. As described above, the armature seal 55 is provided so that the working space 43 is partitioned into the upper chamber 58 and the lower chamber 59 serving as a sealed space, so that the armature 17 located on the lower chamber 59 side can be sealed without opening to the atmosphere. Accordingly, since the armature 17 made of a ferromagnetic material such as iron can be made less likely to rust and the rust prevention can be improved, the predetermined performance can be maintained even when used for a long time.
[0049]
The capacity of the lower chamber 59 is remarkably smaller than that of the upper chamber 58, and is such that no inconvenience is caused in the vertical vibration of the vibrating member 10 even if there is no air flow between the inside and outside. In addition, since the armature seal 55 has a diaphragm shape, the deformation allows the air flow in the lower chamber 59. Also the lower chamber 59 which may be divided into and out by the lower stopper 14 in the radial direction, but allows more air flow communication with the inside and outside of the space communicating groove formed in a part of the lower stopper 14 at this time I have to.
[0050]
Further, a part of the rubber continuous with the lower stopper 14 and the armature seal 55 is a metal part covering 64 that integrally covers the upper surface of the outward flange part 51, the periphery of the outer peripheral wall 52, and the outer surface of the cylindrical part 53 in the flange metal part 50. A seal projection 65 projecting upward is integrally formed in the vicinity of the upper end of the cylindrical portion 53, which is the upper end thereof. When the cylindrical portion 53 is fixed to the stepped portion 54 of the vibration member 10, the seal protrusion 65 is in close contact with the lower surface of the side protruding portion 66 formed on the vibration member 10, and the cylindrical portion 53 and the vibration member 10 is sealed.
[0051]
The lower stopper 14 and the armature seal 55 are made of a heat-resistant elastic material such as natural rubber having a heat-resistant prescription or various known synthetic rubbers. The upper stopper 13 and the elastic seal 11 can also have a similar heat resistant structure. Furthermore, characteristics such as chemical resistance and oil resistance may be added to these.
[0052]
FIG. 3 shows the lower stopper 14 portion from below in FIG. As is apparent from this figure, the lower surface side of the lower stopper 14 has a block shape arranged at substantially equal intervals in the circumferential direction. For example, an arbitrary plural number such as six shown is provided. Between the adjacent lower stoppers 14, a gap 63 having substantially the same width as the lower stopper 14 is provided. In addition, it can also be set as the single ring shape which does not become block shape in this way and continues to the perimeter.
[0053]
The gap 63 is provided as an example of a recess for the purpose of making the non-linear spring characteristic of the lower stopper 14 remarkable, and at the same time, the communicability of the inner and outer portions in the radial direction divided by the lower stopper 14 in the lower chamber 59 is ensured. Thus, when the lower stopper 14 comes into contact with the outer coating 19, it is possible to avoid air confinement between the lower stopper 14 and the armature 17 and to ensure good operability of the armature 17 moving in the vertical direction in the figure. To.
[0054]
However, the gap 63 is not necessarily provided so as to communicate with the inside and outside of the lower chamber 59. When aiming only at the non-linear spring characteristics, a simple recess that does not communicate with the inside and outside of the lower chamber 59 is formed and partially compressed. You can just make things easier.
[0055]
As apparent from FIGS. 3 and 4, a relatively shallow and narrow slit-like communication groove 68 is formed at the center of the bottom 67 of the gap 63 in the radial direction. The communication groove 68 is for communicating the inner and outer portions of the lower chamber 59 even when the lower stopper 14 is fully compressed, and the width and depth thereof are arbitrary as long as air permeability during compression can be ensured. And the number is also arbitrary. In some cases, the communication groove 68 can be omitted.
[0056]
As shown in FIG. 4, the width and depth of the gap 63 may be arbitrary considering the non-linear spring characteristics of the lower stopper 14, and are naturally determined by making the lower stopper 14 large enough to obtain a necessary spring. . However, the depth h is less than the thickness H of the lower stopper 14, and h / H is preferably about 1/10 to 9/10, and if it is about 1/3 to 1/2, it is easy to balance the spring. preferable.
[0057]
Next, a connection structure between the vibration member 10 and the armature 17 will be described. As is apparent from FIG. 5, the vibration member 10 and the armature 17 are formed separately and are connected by a string-like connection member 70. When the vibrating member 10 and the armature 17 are moved up and down integrally, the string-like connecting member 70 is input with main vibrations to the vibrating member 10 due to fluid pressure fluctuations in the main liquid chamber 6 and the vibrating chamber 7. This is a member that freely connects the vibration member 10 to the armature 17 so that the vibration member 10 can swing when a force in a direction intersecting the direction Z, that is, a lateral direction is applied.
[0058]
At both ends in the lengthwise direction of the string-like connecting member 70, end fixtures 71 and 72 having a diameter larger than that of the string-like connecting member 70 such as a cylindrical metal fitting are secured via fixed retaining rings 71a and 72a. Installed. The end fixing tool 71 on the vibration member 10 side is accommodated in a hole 73 formed in the center of the vibration member 10 and is fixed by caulking with a vertical flange-shaped caulking portion 74 formed around the hole 73. The
[0059]
The end fixture 72 on the armature 17 side has a male screw formed around it, and this portion is screwed into a female screw portion 76 provided at the lower portion of a shaft hole 75 formed at the center of the armature 17. Is done. This screw connection constitutes a gap adjusting means (details will be described later) of the armature 17. However, the mounting structure is not limited to this example, and can be arbitrarily selected. For example, when the gap adjusting means is omitted, both ends of the string-like connecting member 70 can be directly embedded in the vibrating member 10 and the armature 17.
[0060]
In the present embodiment, the female screw portion 76 is provided in the lower portion of the shaft hole 75, that is, the lower portion of the armature 17. In this way, the length of the string-like connecting member 70 can be made the longest, which is longer than the distance between the vibrating member 10 and the armature 17, so that even if the vibrating member 10 swings, the influence on the armature 17 is increased. Can be minimized.
[0061]
That is, the movement of the armature 17 is not affected by the swinging motion of the vibration member 10, and the lateral vibration during movement is reduced. For this reason, the centering accuracy at the time of movement becomes high, and uneven wear of the sliding bearing 16 can be suppressed. The bearing 16 in the present embodiment is an oilless type metal bearing, as shown in the enlarged portion in FIG.
[0062]
In this embodiment, the sliding surface of the bearing 16 on which the armature 17 slides is constituted by an alloy layer 77 such as copper provided with a low-friction material coating layer 78, and the sliding surface has a friction coefficient μ = 0. 0.03 to 0.2. For the low friction material coating layer 78, for example, a known layer made of a fluororesin can be used.
[0063]
With such a structure, the low friction material coating layer 78 made of fluororesin is susceptible to wear. However, by reducing the lateral vibration of the armature 17, the durability of the low friction material coating layer 78 is increased. Reference numeral 79 in the figure denotes a base material made of iron or the like in the bearing 16. For example, if the thickness is 0.7 mm, the sliding surface is set to a ratio of about 0.3 mm.
[0064]
The gap adjusting means is for adjusting the gap g between the armature 17 and the magnetic flux concentrating portion 15a of the solenoid 15 shown in FIG. 5, and adjusting the screwing amount of the end fixture 72 to the female screw portion 76. As a result, the armature 17 moves in the vertical direction in the figure, and the gap g with the magnetic flux concentrating portion 15a changes. The purpose of this gap adjustment is to adjust the gap g within a range where the output of the solenoid is constant because the solenoid 15 in this embodiment is a proportional solenoid.
[0065]
That is, the proportional solenoid output is constant only when the gap g is within a predetermined range, as shown in FIG. 6 which shows a general relationship between the output (vertical axis) and the size of the gap (horizontal axis). Has characteristics. Therefore, in order to use the proportional solenoid stably, it is necessary to adjust the gap g to be within a predetermined range indicated as a use range, and the adjustment of the gap can be realized accurately and easily.
[0066]
The gap adjusting means is not limited to screw connection. In order to adjust the gap g, such as the length adjusting structure of the string-like connecting member 70, the position of the armature 17 with respect to the solenoid 15 or the distance between the vibrating member 10 and the armature 17 in the tension state of the string-like connecting member 70 can be adjusted. Any thing can be used.
[0067]
The string-like connecting member 70 may be anything as long as it can be bent to the extent that it can swing and has a required tensile strength. For example, a single-wire or strip-like member such as a piano wire, or a wire-like member obtained by twisting thin wires made of these materials to a certain thickness, and a multi-joint linear member such as a chain are possible. However, in order to eliminate the directionality in the bending, those having a circular or regular polygonal cross section are preferable.
[0068]
The material is not particularly limited as long as it has a necessary tensile strength, such as a synthetic resin or a metal. Further, considering the heat generation of the solenoid 15 portion, a material excellent in heat resistance is preferable. Moreover, it is also preferable that it is excellent in rust prevention property. Therefore, considering these, for example, a wire made of stainless steel or a heat resistant resin is preferable.
[0069]
FIG. 7 shows an example in which the string-like connecting member 70 is configured as a wire-shaped stranded wire, in which A is twisted in one direction and B is twisted in both directions. Of these, those twisted in both directions of B can hardly return the twist, so that the dimensional accuracy of the string-like connecting member 70 can be maintained with high accuracy. Therefore, in the case of adopting a stranded wire type, it is preferable to use the one twisted in both directions as shown in B in a more accurate application.
[0070]
FIG. 8 shows another example of adjusting the length of the string-like connecting member 70 on the armature 17 side. In this example, a small-diameter portion 80 is provided at the bottom of the armature 17, one end of the string-like connecting member 70 is inserted into a through hole 81 formed at the center thereof, and the small-diameter portion 80 is made a predetermined length by a press machine or the like. The diameter is reduced to integrate and connect, and the inner portion of the end portion of the string-like connecting member 70 is cut. In this way, since it can be replaced with a screwing structure, it can be made simpler and cheaper.
[0071]
Next, the operation of this embodiment will be described. First, at the time of assembly, the vibrating member 10 and the armature 17 are connected by the string-like connecting member 70, so that even if the vibrating member 10 is inclined, the string-like connecting member 70 almost transmits this inclination to the armature 17. Therefore, the armature 17 is fitted into the shaft hole of the metal bearing 16 without causing the lateral swing, and the state where the amount of eccentricity is small, that is, the initial offset is small. For this reason, centering accuracy and assemblability are improved.
[0072]
Further, since the armature 17 can move with a small initial offset during the subsequent operation, uneven wear of the metal bearing 16 can be reduced. In addition, since the vibrating member 10 and the armature 17 need only be connected by the string-like connecting member 70, the structure is simplified, the assembly is easy and the durability is improved, and the manufacturing can be performed at low cost. Furthermore, since the noise generated when sliding with low centering accuracy can be reduced and the sliding resistance is reduced, the armature 17 can be reliably operated by the solenoid 15.
[0073]
Next, when the engine mount assembled as described above is in use, when activated, an idle vibration of about 30 Hz, for example, is input to the first mounting member 2 as a vibration to be prevented by the solenoid 15 so as to cancel it. The vibrating member 10 is vibrated at substantially the same phase and the same frequency as the vibration to be shaken. Thereby, the internal pressure fluctuation of the main liquid chamber 6 is absorbed. At this time, the elastic seal 11 and the stoppers (13, 14) function as return spring means. When the input vibration increases and exceeds a predetermined displacement, the amount of compression of the lower stopper 14 increases abruptly, giving a non-linear spring characteristic.
[0074]
On the other hand, in the passive mode, the solenoid 15 makes the vibration member 10 free for vibration inputs other than vibrations to be vibrated, so that the vibration member 10 changes the hydraulic pressure transmitted from the main liquid chamber 6. Displaces accordingly. At this time, only the elastic seal 11 responds to vibration input of a relatively small amplitude mainly by elastic deformation in the shear direction, and good low spring characteristics can be obtained.
[0075]
At the time of the activation, when the controller 18 energizes the solenoid 15 (FIG. 1), the armature 17 is moved downward by the magnetic force. At this time, since the vibration member 10 is connected to the armature 17 via the string-like connection member 70, the vibration member 10 moves downward integrally with the armature 17 while compressing the lower stopper 14.
[0076]
Further, when the energization to the solenoid 15 is stopped, the armature 17 becomes free, the vibration member 10 moves upward due to the rebound resilience of the lower stopper 14 acting as a return spring, and returns via the string-like connection member 70. The armature 17 connected to the vibration member 10 also moves upward.
[0077]
In such vertical movement of the vibrating member 10 and the armature 17, a force in a direction intersecting with the main vibration input direction Z is applied to the vibrating member 10 due to the fluid pressure fluctuations of the main liquid chamber 6 and the vibrating chamber 7. When applied to the vibration member 10, the vibration member 10 tends to swing laterally with respect to the main vibration input direction Z, but the vibration member 10 is connected to a separate armature 17 via a string-like connection member 70. Therefore, only the vibration member 10 easily swings with respect to the armature 17.
[0078]
Therefore, this swing motion does not affect the armature 17, and the armature 17 does not swing with the vibration member 10 in most cases. As a result, the armature 17 does not swing left and right when moving up and down, and can maintain a highly accurate centering state when moving up and down, thus maintaining good sliding performance with the bearing 16 to reduce frictional resistance and prevent uneven wear. it can.
[0079]
For this reason, it is not necessary to increase the output of the solenoid 15, and durability is improved. Further, the vibration member 10 and the armature 17 can be connected with a simple structure. Therefore, assembly and manufacturing are easy and the cost can be reduced. Moreover be attached at the end fixture 71 and 72 as in this embodiment, it is easy to adjust the gap g (FIG. 5).
[0080]
Further, since the return spring is configured by using the lower stopper 14, it is not necessary to use a return spring such as a special coil spring, so that the number of parts is reduced and the centering accuracy is increased. In addition, non-linear spring characteristics can be obtained.
In addition, since the rubber portions such as the lower stopper 14 and the armature seal 55 and the elastic seal 11 and the upper stopper 13 are made of heat-resistant materials, even in a usage environment where the heat is high due to the radiation heat of the engine or the heat generation of the vibration isolator itself. Durability can be improved.
[0081]
Furthermore, since the outer peripheral side distal end portion 56 of the armature seal 55 is fixed to the second mounting member 3 side, the vibration member 10 can be easily centered and positioned, so that the assembly accuracy can be improved. In addition, since the armature seal 55 is provided separately from the vibration member 10 and the elastic seal 11 and is provided integrally with the lower stopper 14, only the characteristics of the lower stopper 14 can be changed without changing the vibration member 10 side. Therefore, it becomes easy to cope with various specification changes by sharing parts. Further, since the armature seal 55 can be formed integrally with the lower stopper 14, the number of parts is reduced, the structure is simplified, and the manufacture is facilitated.
[0082]
The invention of the present application is not limited to the above-described embodiment, and various modifications and applications are possible. For example, the armature seal 55 can be formed integrally with the elastic seal 11 and further separated from the lower stopper 14. Good. In addition to the engine mount, it can be used as a vibration isolator for vibration isolation in various vibration transmission paths. It can also be used as a vibration damper by being attached to a vibration source.
[Brief description of the drawings]
1 is an overall cross-sectional view of an engine mount according to a first embodiment. FIG. 2 is an enlarged cross-sectional view of an armature seal portion. FIG. 3 is an enlarged view of a lower stopper and an armature seal portion. Fig. 5 is an enlarged cross-sectional view showing the gap adjusting means. Fig. 6 is a graph showing the relationship between the output of the proportional solenoid and the gap. Fig. 7 is a diagram showing a string-like connecting member having a stranded wire structure. ] Shows another example of the connection structure of the armature and the string-like connecting member.
1: engine mount, 2: first mounting member, 3: second mounting member, 4: insulator 5: partition wall, 6: main liquid chamber, 7: oscillating chamber, 10: vibrating member, 11: elastic Sea Le, 13: upper stopper, 14: lower stopper, 15: solenoid, 15a: flux concentration portion, 16: metal bearing (bearing member), 17: armature 37: vent 55: armature seal, 58: upper chamber, 59: lower chamber , 63: gap, 70: string-like connecting member, 71: end fixture, 72: end fixture

Claims (6)

第1の取付部材と第2の取付部材間を連結するインシュレータを壁部の一部とする主液室と、この主液室を形成する他の壁部の一部をなすとともに主液室の容積を可変とする加振部材と、この加振部材を引っ張って駆動するプル型の駆動手段とを備え、この駆動手段に設けられた移動部を前記加振部材と連結するとともに、主たる振動の入力方向へ移動自在に軸受け支持した能動型液封防振装置において、
前記加振部材と前記移動部それぞれ別々に形成し、ひも状連結部材により連結することにより前記加振部材を移動部に対して首振り運動可能にしたことを特徴とする能動型液封防振装置。
A main liquid chamber having an insulator connecting the first mounting member and the second mounting member as a part of a wall part, and forming a part of another wall part forming the main liquid chamber and the main liquid chamber a vibrating member which the volume is variable, along with the vibrating member to pull and a pull-type driving means for driving and consolidated with the vibrating member moving portion provided in the drive means, principal vibration In an active liquid seal vibration isolator supported by a bearing so as to be movable in the input direction of
An active liquid-sealed anti-vibration system, wherein the vibration member and the moving part are separately formed and connected by a string-like connecting member so that the vibration member can swing with respect to the moving part. apparatus.
前記駆動手段がソレノイドであり、前記移動部が前記ソレノイドのアーマチュアであることを特徴とする請求項1に記載した能動型液封防振装置。  2. The active liquid seal vibration isolator according to claim 1, wherein the driving means is a solenoid and the moving part is an armature of the solenoid. 前記ひも状連結部材と前記アーマチュアとの接続部が、前記アーマチュアの軸方向端部のうち前記加振部材から最も離れた側に位置することを特徴とする請求項2に記載した能動型液封防振装置。  3. The active liquid seal according to claim 2, wherein a connecting portion between the string-like connecting member and the armature is positioned on a side of the armature that is farthest from the vibrating member in an axial end portion of the armature. Anti-vibration device. 前記ソレノイドが比例式であり、前記アーマチュアの端部と前記ソレノイドの磁束集中部との間に形成されたギャップを有するとともに、前記ひも状連結部材と前記加振部材又は前記アーマチュアとの接続部に、前記ギャップを調整するためのギャップ調節手段を備えたことを特徴とする請求項2に記載した能動型液封防振装置。  The solenoid is proportional, has a gap formed between the end of the armature and the magnetic flux concentrating portion of the solenoid, and is connected to the connecting portion between the string-like connecting member and the exciting member or the armature. The active liquid seal vibration isolator according to claim 2, further comprising gap adjusting means for adjusting the gap. 前記ひも状連結部材の一端部は、前記加振部材又は前記アーマチュアのいずれか一方へカシメ固定され、他端部は前記加振部材又は前記アーマチュアのいずれか他方へネジ止めされて前記ギャップ調節手段を構成することを特徴とする請求項4に記載した能動型液封防振装置。  One end portion of the string-like connecting member is caulked and fixed to either the vibration member or the armature, and the other end portion is screwed to either the vibration member or the armature, and the gap adjusting means The active liquid seal vibration isolator according to claim 4, wherein: 前記ひも状連結部材の一端を前記加振部材又は前記移動部に形成された貫通穴へ通し、この貫通穴の周囲を縮径することにより連結したことを特徴とする請求項1に記載した能動型液封防振装置。  2. The active device according to claim 1, wherein one end of the string-like connecting member is passed through a through hole formed in the vibrating member or the moving portion, and the periphery of the through hole is reduced to reduce the diameter. Mold liquid seal vibration isolator.
JP2002324124A 2002-11-07 2002-11-07 Active liquid seal vibration isolator Expired - Fee Related JP4179850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324124A JP4179850B2 (en) 2002-11-07 2002-11-07 Active liquid seal vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324124A JP4179850B2 (en) 2002-11-07 2002-11-07 Active liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2004156733A JP2004156733A (en) 2004-06-03
JP4179850B2 true JP4179850B2 (en) 2008-11-12

Family

ID=32803811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324124A Expired - Fee Related JP4179850B2 (en) 2002-11-07 2002-11-07 Active liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP4179850B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185126A (en) * 2007-01-30 2008-08-14 Bridgestone Corp Vibration absorbing device
JP4982428B2 (en) * 2008-05-23 2012-07-25 東海ゴム工業株式会社 Fluid filled vibration isolator
JP5033082B2 (en) * 2008-08-12 2012-09-26 東洋ゴム工業株式会社 Active liquid-filled vibration isolator
JP5148725B2 (en) * 2011-03-11 2013-02-20 東洋ゴム工業株式会社 Liquid-filled vibration isolator
KR101428279B1 (en) 2012-12-12 2014-08-07 현대자동차주식회사 Active Mount
CN110584694B (en) * 2019-09-12 2023-07-28 东软医疗系统股份有限公司 Vehicle-mounted mobile CT machine
CN114812362B (en) * 2022-06-29 2023-06-30 湖南城市学院设计研究院有限公司 Slope deformation monitoring device with protection function

Also Published As

Publication number Publication date
JP2004156733A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP5568472B2 (en) Fluid filled vibration isolator
JP4072696B2 (en) Fluid filled active vibration isolator
JP4875363B2 (en) Active anti-vibration support device
WO2004081408A1 (en) Vibration-isolating apparatus
JP3845421B2 (en) Electromagnetic actuator
JP4179850B2 (en) Active liquid seal vibration isolator
JP2018105378A (en) Damper
JP4980808B2 (en) Active anti-vibration support device
JP2005127519A (en) Hydraulic bearing
JP2011149377A (en) Capacity control valve
US7311300B2 (en) Actuator drive control device for active vibration isolation support system, and method of using the same
JP4119201B2 (en) Active liquid seal vibration isolator
JPH0949541A (en) Fluid filling type vibration proofing device
JP2004291737A (en) Electromagnetic actuator
JP2007085399A (en) Electromagnetic actuator
JP2004003615A (en) Vibration control equipment
JP2014047661A (en) Capacity control valve
JP4084122B2 (en) Active liquid seal vibration isolator
JPS62127539A (en) Vibration body supporting device
JP4023462B2 (en) Active fluid filled vibration isolator
JP3803647B2 (en) Electromagnetic actuator
WO2017221980A1 (en) Clutch control device
JP3901655B2 (en) Active anti-vibration support device
JP4341932B2 (en) Liquid seal vibration isolator
JP2004297870A (en) Electromagnetic actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees