JP4179746B2 - Electrically responsive complex - Google Patents

Electrically responsive complex Download PDF

Info

Publication number
JP4179746B2
JP4179746B2 JP2000380981A JP2000380981A JP4179746B2 JP 4179746 B2 JP4179746 B2 JP 4179746B2 JP 2000380981 A JP2000380981 A JP 2000380981A JP 2000380981 A JP2000380981 A JP 2000380981A JP 4179746 B2 JP4179746 B2 JP 4179746B2
Authority
JP
Japan
Prior art keywords
group
complex
halide
phenylazomethine
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000380981A
Other languages
Japanese (ja)
Other versions
JP2002179635A (en
Inventor
公寿 山元
昌芳 樋口
豊彦 西海
久美子 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000380981A priority Critical patent/JP4179746B2/en
Publication of JP2002179635A publication Critical patent/JP2002179635A/en
Application granted granted Critical
Publication of JP4179746B2 publication Critical patent/JP4179746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この出願の発明は、電気応答性錯体に関するものである。さらに詳しくは、この出願の発明は、二次電池の正極材料や錯体触媒として有効に作用するフェニルアゾメチン錯体およびフェニレンジアミン錯体に関するものである。
【0002】
【従来の技術とその課題】
近年、ノート型パソコンや携帯電話の普及、あるいは電気自動車の開発、実用化に伴って、二次電池の軽量化、長寿命化、高性能化が望まれている。
【0003】
従来の二次電池は、電極材料としてニッケル、水素吸蔵合金などを用いたニッケル水素電池やニッケルカドミウム(ニカド)電池などが一般的であったが、最近では、より高いエネルギー密度を有するリチウム二次電池が注目されており、携帯端末用の小型電池としてのみならず、自動車用、宇宙用の大型電池としても期待され、研究が盛んに行われている。
【0004】
このようなリチウム二次電池では、主に正極材料としてコバルト酸リチウムが用いられているが、コバルトの埋蔵量が僅か840万トンと極めて少ないため、材料のコストが高く、価格も変動しやすいという問題があった。そこで、低コスト化を図るために、ニッケル、マンガン、バナジウムなどの他の金属酸化物を用いた正極材料が開発され、一部で採用されている。
【0005】
しかし、これらの金属材料を主体とする二次電池は重く、携帯電子機器等の小型用途ではもちろんのこと、自動車用、宇宙用等の大型用途においては、二次電池の重量が大きくなるために実現可能な大きさが制限されるという問題があった。
【0006】
また、二次電池の性能という面では、リチウム二次電池の移動イオンが金属イオンであるため、移動速度が遅く、充放電できる電流量はあまり大きくなく、応答性も低いという問題があった。さらに、リチウム二次電池では、充放電の際にリチウムイオンが電極材料(結晶)に繰り返し挿入(充電)、放出(放電)されるため、電極材料の構造変化が大きく、劣化が生じ易かった。これにより、電池の繰り返し寿命が短くなってしまうという問題があった。さらに、以上のとおりのリチウム二次電池を含む一般の電池では、正極と負極を隔離するために、液体の電解質が使用されている。したがって、電解質溶液の漏洩が起こる可能性があり、薄型化も困難であった。
【0007】
そこで、ポリマーと電解質塩のみから構成されるポリマー電解質やこれらを有機溶媒でゲル化したゲル状ポリマー電解質が開発され、実用化されている。しかし、このようなポリマー電解質を用いたポリマー二次電池においても、大きなイオン種が移動するため内部抵抗が高く、応答性が悪いという問題があった。また、これらのポリマー電池は、リチウム二次電池と同様に、電極材料の主体がコバルト酸リチウム等の金属材料であるため、上記の種々の問題も解決されずに残っていたのである。
【0008】
これらの問題に対応する有効な解決するために、適当な電極材料として導電性高分子が考慮される。しかし、現在のところ、そのような導電性高分子材料は実用化には至っておらず、高性能の高分子電極材料が望まれていたのが実情である。
【0009】
一方、従来より化学反応用の金属触媒としては種々のものが報告、提供されているが、工業レベルでの使用において有用な金属触媒として、安定な酸化還元を示し、かつ多電子の移動が可能なものが求められている。また、金属触媒が工業的に使用されるためには、触媒効率の更なる向上とともに、熱安定性も求められているが、そのような金属触媒はこれまでにあまり多く知られていないのが実情である。
【0010】
そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、二次電池の小型化、軽量化が可能で、長い寿命と高速応答性を示す高性能な二次電池用の電極材料を提供することを課題としている。また、この出願の発明は、合わせて、多電子を移動でき、安定な酸化還元を示す、熱安定性の高い金属触媒を提供することを課題としている。
【0011】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、まず第1には、電気応答性を有する錯体であって、次の一般式(I)
【0012】
【化4】

Figure 0004179746
【0013】
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R1およびR2は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、RおよびRaは各々同一または別異にフェニル基またはナフチル基を示し、Mは希土類金属、ハロゲン化錫( II )、ハロゲン化バナジウム、またはハロゲン化リチウムを示す。)で表されるフェニルアゾメチン錯体を提供する。
【0014】
第2には、この出願の発明は、電気応答性を有する錯体であって、次の一般式(II)
【0015】
【化5】
Figure 0004179746
【0016】
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R3およびR4は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、Rbは各々同一または別異にフェニレン基、ビフェニレン基、ジフェニレンスルフィド基、またはナフチレン基を示し、Mは希土類金属、ハロゲン化錫( II )、ハロゲン化バナジウム、またはハロゲン化リチウムを示し、nは重合度を示す1以上の整数である。)で表されるポリフェニルアゾメチン錯体を提供する
【0022】
【発明の実施の形態】
発明者等は、前記の課題を解決すべく、鋭意研究を重ね、これまでにプロトン電極の正極材料として有用なポリフェニルアゾメチン誘導体を報告している(特願平2000−270712)。その後、希土類金属イオンがこれらのフェニルアゾメチン誘導体やフェニレンジアミン誘導体類に対して高い配位能を有することを見出した。そして、希土類金属イオンとフェニルアゾメチン誘導体やフェニレンジアミン誘導体が、錯形成することにより電気活性となることを見出し、この出願の発明に至ったものである。
【0023】
この出願の発明のフェニルアゾメチン錯体やフェニレンジアミン錯体は、イオン移動を伴わずに酸化還元されるため、従来の導電性高分子類に比べ、格段に高いエネルギー密度を持つ正極材料として有用なものである。また、触媒能を有する金属イオンと効率よく錯形成できるため、π共役系を介した円滑な電子移動に基づく触媒効率の向上も期待できる。
【0024】
したがって、この出願の発明は、電気応答性錯体としてフェニルアゾメチン錯体やフェニレンジアミン錯体を提供するものである。
【0025】
フェニルアゾメチン錯体としては、次の一般式(IV)
【0026】
【化7】
Figure 0004179746
【0027】
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R1およびR2は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、RおよびRaは各々同一または別異にフェニル基またはナフチル基を示す。)で表されるフェニルアゾメチン誘導体のNに希土類金属、またはハロゲン化金属が配位し、錯形成したものが提供される。
【0028】
位するMは、希土類金属またはハロゲン化金属から選択される。希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、アクチニウム(Ac)から選択されるスカンジウム族やセリウム(Ce)、ユウロピウム(Eu)、テルビウム(Tb)、イッテルビウム(Yb)等のランタノイド(Ln)系の金属が挙げられる。中でもLa、Ce、Eu、Tbが好ましい。一方、ハロゲン化金属としてはSnCl2、SnBr2等のハロゲン化錫(II)、VCl3等のハロゲン化バナジウム、LiClやLiBr等のハロゲン化リチウムが挙げられる。
【0029】
上記一般式(IV)に示されるようなフェニルアゾメチン誘導体は、どのような方法で合成されるものであってもよい。種々の公知の方法が例示されるが、具体的には、四塩化チタンやパラトルエンスルホン酸などの酸存在下、ジアミンとジケトン、もしくはアミノフェニルケトンを脱水反応して得る方法が考えられる。このようにして得られたフェニルアゾメチン誘導体への希土類金属やハロゲン化金属(M)の配位は、どのような方法で行われてもよいが、実際には、フェニルアゾメチン誘導体とMを溶液中で共存させることにより容易に錯形成が起こる。また、溶液中で共存させた後、溶媒を除去すれば、フェニルアゾメチン錯体が単離できる。
【0030】
この出願の発明では、さらに、次の一般式(V)
【0031】
【化8】
Figure 0004179746
【0032】
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R3およびR4は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、Rbは各々同一または別異にフェニレン基、ビフェニレン基、ジフェニレンスルフィド基、またはナフチレン基を示し、nは重合度を示す1以上の整数である。)で表されるポリフェニルアゾメチン誘導体のN部位に上記のとおりのMが配位したポリフェニルアゾメチン錯体が提供される。
【0034】
一般式(V)のポリフェニルアゾメチン誘導体は、どのような方法で合成されるものであってもよく、種々の公知の合成法が適用できる。例えば、四塩化チタン、パラトルエンスルホン酸などの酸存在下における、ジアミンとジケトン、もしくはアミノフェニルケトンの脱水反応が考慮される。このようにして得られたポリフェニルアゾメチン誘導体への希土類金属やハロゲン化金属(M)の配位は、どのような方法で行われてもよいが、実際には、ポリフェニルアゾメチン誘導体とMを溶液中で共存させることにより容易に錯形成が起こる。また、溶液中で両者を共存させた後、溶媒を除去すれば、ポリフェニルアゾメチン錯体が単離される。
【0041】
以上のとおりの各錯体は、高い電気応答性と安定な酸化還元電位を示す化合物であり、これらは高エネルギー密度二次電池の正極材料や安定性の高い金属触媒として有用である。
【0042】
以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【0043】
【実施例】
<実施例1> ビス[(α−フェニル)フェニルアゾメチン]ベンゼン(i)の合成
以下の化学式(A)に従って、ビス[(α−フェニル)フェニルアゾメチン]ベンゼン(i)を合成した。
【0044】
【化10】
Figure 0004179746
【0045】
100mLの三口フラスコに、1,4−ジベンゾイルベンゼン(1.43g、5.0mmol)、アニリン(1.8mL、20mmol)、ジアザビシクロ[2,2,2]オクタン(30.0mmol)を加え、窒素雰囲気下とした後、溶媒としてクロロベンゼン(50mL)を加えた。四塩化チタン(0.8mL、7.5mmol)を滴下し、125℃で12時間加熱還流した。反応終了後、沈殿物を濾過し、濾液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/10)により目的物を収率97%で単離した。
【0046】
得られた目的物を、赤外吸収スペクトル、質量分析、および元素分析により同定した。結果を表1に示した。
【0047】
【表1】
Figure 0004179746
【0048】
<実施例2> ビス[(α−フェニル)フェニルアゾメチン]ベンゼンと塩化錫(II)の錯形成と電気化学測定
0.2M TBABF4を含むアセトニトリル溶液中において、2mMのビス[(α−フェニル)フェニルアゾメチン]ベンゼンのサイクリックボルタンメトリー測定(作用電極:炭素電極、対極:白金電極、参照電極:Ag/Ag+、掃引速度:0.1V/sec)を行った。
【0049】
系中に4mMの塩化錫(II)を加えたところ、錯形成に基づく極めて良好な酸化還元波(E1/2=0.65Vvs.Ag/Ag+)が観測された。
<実施例3> ビス[(α−フェニル)フェニルアゾメチン]ベンゼンと塩化リチウムの錯形成と電気化学測定
0.2M TBABF4を含むアセトニトリル溶液中において、2mMのビス[(α−フェニル)フェニルアゾメチン]ベンゼンのサイクリックボルタンメトリー測定(作用電極:炭素電極、対極:白金電極、参照電極:Ag/Ag+、掃引速度:0.1V/sec)を行った。
【0050】
系中に4mMの塩化リチウムを加えたところ、錯形成に基づく極めて良好な酸化還元波(E1/2=0.65Vvs.Ag/Ag+)が観測された。
<実施例4> ビス[(α−フェニル)フェニルアゾメチン]とランタン(III)イオンの錯形成と電気化学測定
0.2M TBABF4を含むアセトニトリル溶液中において、2mMのビス[(α−フェニル)フェニルアゾメチン]ベンゼンのサイクリックボルタンメトリー測定(作用電極:炭素電極、対極:白金電極、参照電極:Ag/Ag+、掃引速度:0.1V/sec)を行った。
【0051】
系中に4mMのLa(OSO2CF33を加えたところ、錯形成に基づく極めて良好な酸化還元波(E1/2=−0.55Vvs.Ag/Ag+)が観測された。<実施例5> ポリ[(α−フェニル)フェニルアゾメチン](ii)の合成
次の化学式(B)に従ってポリ[(α−フェニル)フェニルアゾメチン](ii)を合成した。
【0052】
【化11】
Figure 0004179746
【0053】
50mLの三口フラスコに、1,4−ジベンゾイルベンゼン(0.286g、1.0mmol)、4,4’−チオジアミン(0.216g、1.0mmol)、ジアザビシクロ[2,2,2]オクタン(8.0mmol)を加え、窒素雰囲気下とした後、クロロベンゼン(20mL)を加え、四塩化チタン(2.0mmol)を滴下した。125℃で24時間加熱還流した。反応終了後、沈殿物を濾過し、濾液を濃縮した後、メタノール中で再沈殿して、目的物を黄色粉体として収率96%で得た。
【0054】
生成物の同定結果を表2に示した。
【0055】
【表2】
Figure 0004179746
【0079】
【発明の効果】
以上詳しく説明したとおり、この発明によって、高エネルギー密度を有する二次電池の正極材料や、安定な錯体触媒として有用なフェニルアゾメチン錯体およびポリフェニルアゾメチン錯体が提供される。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to an electroresponsive complex. More specifically, the invention of this application relates to a phenylazomethine complex and a phenylenediamine complex that effectively act as a positive electrode material or a complex catalyst of a secondary battery.
[0002]
[Prior art and its problems]
In recent years, with the widespread use of notebook personal computers and mobile phones, or the development and commercialization of electric vehicles, there is a demand for lighter, longer life and higher performance secondary batteries.
[0003]
Conventional secondary batteries are generally nickel-metal hydride batteries and nickel-cadmium (nickel) batteries using nickel, hydrogen storage alloy, etc. as electrode materials, but recently, lithium secondary batteries having higher energy density. Batteries have attracted attention, and are expected not only as small batteries for portable terminals but also as large batteries for automobiles and space, and research is being actively conducted.
[0004]
In such a lithium secondary battery, lithium cobaltate is mainly used as a positive electrode material. However, since the reserve of cobalt is as small as only 8.4 million tons, the cost of the material is high and the price is likely to fluctuate. There was a problem. Thus, in order to reduce the cost, positive electrode materials using other metal oxides such as nickel, manganese, vanadium, etc. have been developed and partially adopted.
[0005]
However, secondary batteries mainly composed of these metal materials are heavy, and not only for small applications such as portable electronic devices, but also for large applications such as automobiles and space use, the weight of the secondary battery increases. There was a problem that the realizable size was limited.
[0006]
Further, in terms of the performance of the secondary battery, since the mobile ion of the lithium secondary battery is a metal ion, there is a problem that the moving speed is slow, the amount of current that can be charged and discharged is not so large, and the response is low. Furthermore, in the lithium secondary battery, since lithium ions are repeatedly inserted (charged) and released (discharged) into and from the electrode material (crystal) during charge and discharge, the structure of the electrode material is greatly changed and easily deteriorated. As a result, there is a problem that the repeated life of the battery is shortened. Furthermore, in a general battery including the lithium secondary battery as described above, a liquid electrolyte is used to separate the positive electrode and the negative electrode. Therefore, leakage of the electrolyte solution may occur, and it is difficult to reduce the thickness.
[0007]
Therefore, a polymer electrolyte composed only of a polymer and an electrolyte salt and a gel polymer electrolyte obtained by gelling these with an organic solvent have been developed and put into practical use. However, even in the polymer secondary battery using such a polymer electrolyte, there is a problem in that the internal resistance is high and the response is poor because large ionic species move. Further, in these polymer batteries, as in the case of the lithium secondary battery, since the main material of the electrode material is a metal material such as lithium cobaltate, the various problems described above remain unsolved.
[0008]
In order to effectively solve these problems, conductive polymers are considered as suitable electrode materials. However, at present, such a conductive polymer material has not been put into practical use, and a high-performance polymer electrode material has been desired.
[0009]
On the other hand, various types of metal catalysts for chemical reactions have been reported and provided. However, as metal catalysts useful for industrial use, they exhibit stable redox and can move many electrons. There is a need for something. In addition, in order to use metal catalysts industrially, there is a need for further improvement in catalyst efficiency and thermal stability, but such metal catalysts are not well known so far. It is a fact.
[0010]
Therefore, the invention of this application has been made in view of the circumstances as described above, solves the problems of the prior art, enables the secondary battery to be reduced in size and weight, and has a long life and high-speed response. It is an object to provide a high performance electrode material for a secondary battery. Another object of the invention of this application is to provide a highly heat-stable metal catalyst that can move many electrons and exhibits stable redox.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of this application is firstly a complex having electrical responsiveness, which has the following general formula (I):
[0012]
[Formula 4]
Figure 0004179746
[0013]
(However, Ar represents a phenylene group, a biphenylene group, or a naphthylene group , R 1 and R 2 are the same or different, and each represents a phenyl group, a biphenyl group, or a naphthyl group, and R and Ra are the same or different. different from a phenyl group or a naphthyl group, M provides a rare earth metal, tin halide (II), vanadium halide or phenyl azomethine complex represented by halogenated showing the lithium.).
[0014]
Secondly, the invention of this application is a complex having electrical responsiveness, which has the following general formula (II):
[0015]
[Chemical formula 5]
Figure 0004179746
[0016]
(However, Ar represents a phenylene group, a biphenylene group, or a naphthylene group , R 3 and R 4 are the same or different, and each represents a phenyl group, a biphenyl group, or a naphthyl group, and R b is the same or different. Represents a phenylene group, a biphenylene group, a diphenylene sulfide group, or a naphthylene group , M represents a rare earth metal , tin ( II ) halide, vanadium halide, or lithium halide, and n represents an integer of 1 or more indicating the degree of polymerization. providing polyphenyl azomethine complex represented by it.) in.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have made extensive studies to solve the above-mentioned problems, and have so far reported polyphenylazomethine derivatives that are useful as positive electrode materials for proton electrodes (Japanese Patent Application No. 2000-270712). Subsequently, it was found that rare earth metal ions have a high coordination ability with respect to these phenylazomethine derivatives and phenylenediamine derivatives. The inventors have found that a rare earth metal ion and a phenylazomethine derivative or a phenylenediamine derivative become electroactive by complex formation, leading to the invention of this application.
[0023]
The phenylazomethine complex and phenylenediamine complex of the invention of this application are useful as positive electrode materials having a much higher energy density than conventional conductive polymers because they are oxidized and reduced without ion transfer. is there. Moreover, since it can be efficiently complexed with metal ions having catalytic ability, an improvement in catalytic efficiency based on smooth electron transfer via a π-conjugated system can be expected.
[0024]
Therefore, the invention of this application provides a phenylazomethine complex or a phenylenediamine complex as an electroresponsive complex.
[0025]
As the phenylazomethine complex, the following general formula (IV)
[0026]
[Chemical 7]
Figure 0004179746
[0027]
(However, Ar represents a phenylene group, a biphenylene group, or a naphthylene group , R 1 and R 2 are the same or different, and each represents a phenyl group, a biphenyl group, or a naphthyl group, and R and Ra are the same or different. A phenyl group or a naphthyl group is also provided ) and a complex formed by coordination of a rare earth metal or a metal halide with N of the phenylazomethine derivative represented by
[0028]
The coordinated M is selected from rare earth metals or metal halides. Examples of rare earth metals include scandium (Sc), yttrium (Y), lanthanum (La), actinium (Ac), scandium group, cerium (Ce), europium (Eu), terbium (Tb), ytterbium (Yb). And lanthanoid (Ln) -based metals. Of these, La, Ce, Eu, and Tb are preferable. On the other hand, as the metal halides, SnCl 2, SnBr 2 halogens, such as tin (II), vanadium halides such as VCl 3, and halogenated lithium such as LiCl or LiBr.
[0029]
The phenylazomethine derivative represented by the general formula (IV) may be synthesized by any method. Various known methods are exemplified, and specifically, a method obtained by dehydrating diamine and diketone or aminophenylketone in the presence of an acid such as titanium tetrachloride or paratoluenesulfonic acid can be considered. Coordination of the rare earth metal or metal halide (M) to the phenylazomethine derivative thus obtained may be carried out by any method. In practice, however, the phenylazomethine derivative and M are dissolved in a solution. Coexistence is easily caused by the coexistence of. In addition, the phenylazomethine complex can be isolated by removing the solvent after coexistence in the solution.
[0030]
In the invention of this application, the following general formula (V)
[0031]
[Chemical 8]
Figure 0004179746
[0032]
(However, Ar represents a phenylene group, a biphenylene group, or a naphthylene group , R 3 and R 4 are the same or different, and each represents a phenyl group, a biphenyl group, or a naphthyl group, and R b is the same or different. A phenylene group, a biphenylene group, a diphenylene sulfide group, or a naphthylene group , and n is an integer of 1 or more indicating the degree of polymerization.) M is arranged at the N site of the polyphenylazomethine derivative represented by Coordinated polyphenylazomethine complexes are provided.
[0034]
The polyphenylazomethine derivative of the general formula (V) may be synthesized by any method, and various known synthesis methods can be applied. For example, a dehydration reaction between a diamine and a diketone or aminophenyl ketone in the presence of an acid such as titanium tetrachloride or paratoluenesulfonic acid is considered. Coordination of the rare earth metal or metal halide (M) to the polyphenylazomethine derivative thus obtained may be carried out by any method. In practice, however, the polyphenylazomethine derivative and M may be combined with each other. Complex formation easily occurs when they coexist in a solution. Moreover, if both are made to coexist in a solution and a solvent is removed, a polyphenylazomethine complex will be isolated.
[0041]
Each complex as described above is a compound that exhibits high electrical responsiveness and a stable redox potential, and these are useful as positive electrode materials for high energy density secondary batteries and highly stable metal catalysts.
[0042]
Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.
[0043]
【Example】
<Example 1> Synthesis of bis [(α-phenyl) phenylazomethine] benzene (i) According to the following chemical formula (A), bis [(α-phenyl) phenylazomethine] benzene (i) was synthesized.
[0044]
Embedded image
Figure 0004179746
[0045]
To a 100 mL three-necked flask, 1,4-dibenzoylbenzene (1.43 g, 5.0 mmol), aniline (1.8 mL, 20 mmol), diazabicyclo [2,2,2] octane (30.0 mmol) are added, and nitrogen is added. After the atmosphere, chlorobenzene (50 mL) was added as a solvent. Titanium tetrachloride (0.8 mL, 7.5 mmol) was added dropwise, and the mixture was heated to reflux at 125 ° C. for 12 hours. After completion of the reaction, the precipitate was filtered, the filtrate was concentrated, and the target product was isolated with a yield of 97% by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/10).
[0046]
The obtained object was identified by infrared absorption spectrum, mass spectrometry, and elemental analysis. The results are shown in Table 1.
[0047]
[Table 1]
Figure 0004179746
[0048]
Example 2 Complex formation and electrochemical measurement of bis [(α-phenyl) phenylazomethine] benzene and tin (II) chloride 2 mM bis [(α-phenyl) in acetonitrile solution containing 0.2 M TBABF 4 Phenylazomethine] benzene was measured by cyclic voltammetry (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: Ag / Ag + , sweep rate: 0.1 V / sec).
[0049]
When 4 mM tin (II) chloride was added to the system, a very good oxidation-reduction wave (E 1/2 = 0.65 V vs. Ag / Ag + ) based on complex formation was observed.
Example 3 Complex formation and electrochemical measurement of bis [(α-phenyl) phenylazomethine] benzene and lithium chloride In an acetonitrile solution containing 0.2 M TBABF 4 , 2 mM bis [(α-phenyl) phenylazomethine] Cyclic voltammetry measurement of benzene (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: Ag / Ag + , sweep rate: 0.1 V / sec) was performed.
[0050]
When 4 mM lithium chloride was added to the system, a very good redox wave (E 1/2 = 0.65 Vvs. Ag / Ag + ) based on complex formation was observed.
Example 4 Complex formation and electrochemical measurement of bis [(α-phenyl) phenylazomethine] and lanthanum (III) ion 2 mM bis [(α-phenyl) phenyl in acetonitrile solution containing 0.2 M TBABF 4 Azomethine] benzene was measured by cyclic voltammetry (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: Ag / Ag + , sweep rate: 0.1 V / sec).
[0051]
When 4 mM of La (OSO 2 CF 3 ) 3 was added to the system, a very good redox wave (E 1/2 = −0.55 V vs. Ag / Ag + ) based on complex formation was observed. <Example 5> Synthesis of poly [(α-phenyl) phenylazomethine] (ii) Poly [(α-phenyl) phenylazomethine] (ii) was synthesized according to the following chemical formula (B).
[0052]
Embedded image
Figure 0004179746
[0053]
To a 50 mL three-necked flask, 1,4-dibenzoylbenzene (0.286 g, 1.0 mmol), 4,4′-thiodiamine (0.216 g, 1.0 mmol), diazabicyclo [2,2,2] octane (8 0.0 mmol) was added to form a nitrogen atmosphere, chlorobenzene (20 mL) was added, and titanium tetrachloride (2.0 mmol) was added dropwise. The mixture was heated to reflux at 125 ° C. for 24 hours. After completion of the reaction, the precipitate was filtered, and the filtrate was concentrated and then reprecipitated in methanol to obtain the desired product as a yellow powder with a yield of 96%.
[0054]
The product identification results are shown in Table 2.
[0055]
[Table 2]
Figure 0004179746
[0079]
【The invention's effect】
As described in detail above, the present invention provides a positive electrode material for a secondary battery having a high energy density, and a phenylazomethine complex and a polyphenylazomethine complex useful as a stable complex catalyst.

Claims (2)

電気応答性を有する錯体であって、次の一般式(I)
Figure 0004179746
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R1およびR2は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、RおよびRaは各々同一または別異にフェニル基またはナフチル基を示し、Mは希土類金属、ハロゲン化錫( II )、ハロゲン化バナジウム、またはハロゲン化リチウムを示す。)で表されるフェニルアゾメチン錯体。
A complex having electrical responsiveness and having the following general formula (I)
Figure 0004179746
(However, Ar is a phenylene group, a biphenylene group or a naphthylene group,, R 1 and R 2 each the same or different, represents a phenyl group, a biphenyl group or a naphthyl group,, R and R a are each the same or different A phenylazomethine complex represented by a phenyl group or a naphthyl group, and M represents a rare earth metal , tin ( II ) halide, vanadium halide, or lithium halide ).
電気応答性分子を有する錯体であって、次の一般式(II)
Figure 0004179746
(ただし、Arはフェニレン基、ビフェニレン基、またはナフチレン基を示し、R3およびR4は各々同一または別異にフェニル基、ビフェニル基、またはナフチル基を示し、Rbは各々同一または別異にフェニレン基、ビフェニレン基、ジフェニレンスルフィド基、またはナフチレン基を示し、Mは希土類金属、ハロゲン化錫( II )、ハロゲン化バナジウム、またはハロゲン化リチウムを示し、nは重合度を示す1以上の整数である。)で表されるポリフェニルアゾメチン錯体。
A complex having an electroresponsive molecule having the following general formula (II)
Figure 0004179746
(However, Ar represents a phenylene group, a biphenylene group, or a naphthylene group , R 3 and R 4 are the same or different, and each represents a phenyl group, a biphenyl group, or a naphthyl group, and R b is the same or different. Represents a phenylene group, a biphenylene group, a diphenylene sulfide group, or a naphthylene group , M represents a rare earth metal , tin ( II ) halide, vanadium halide, or lithium halide, and n represents an integer of 1 or more indicating the degree of polymerization. A polyphenylazomethine complex represented by:
JP2000380981A 2000-12-14 2000-12-14 Electrically responsive complex Expired - Fee Related JP4179746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000380981A JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000380981A JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Publications (2)

Publication Number Publication Date
JP2002179635A JP2002179635A (en) 2002-06-26
JP4179746B2 true JP4179746B2 (en) 2008-11-12

Family

ID=18849077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000380981A Expired - Fee Related JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Country Status (1)

Country Link
JP (1) JP4179746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948946B2 (en) * 2006-09-07 2012-06-06 富士重工業株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND STORAGE BATTERY USING THE SAME
JP5401389B2 (en) * 2010-03-31 2014-01-29 株式会社豊田自動織機 A positive electrode active material for a lithium ion secondary battery containing an aniline derivative, a positive electrode for a lithium ion secondary battery comprising the positive electrode active material, and a lithium ion secondary battery comprising the positive electrode as components
CN103265699B (en) * 2013-05-08 2015-11-18 上海纳米技术及应用国家工程研究中心有限公司 A kind of nano-stannic oxide modifies the preparation method of polyaniline nanotube

Also Published As

Publication number Publication date
JP2002179635A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP5209649B2 (en) Malonic acid nitrile derivative anion salts and their use as ion conducting materials
CA2337590C (en) Secondary battery
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
JP5673825B2 (en) Power storage device
JPH09153362A (en) Electrode material and secondary battery
JPH06503842A (en) Bis(perfluorosulfonyl)methane derivatives, their production methods and their uses
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
EP0495073A4 (en) Methide salts, formulations, electrolytes and batteries formed therefrom
Lee et al. Synthesis and study of new cyclic boronate additives for lithium battery electrolytes
EP1189295B1 (en) Secondary battery and capacitor utilizing indole compounds
CN109312018B (en) Method for improving oxidation of secondary amine groups
JP2013020760A (en) Power storage device
Alkhayri et al. Evaluation of two-electron bispyridinylidene anolytes and a TEMPO catholyte for non-aqueous redox flow batteries
JP4179746B2 (en) Electrically responsive complex
CN107251278A (en) Electrode for the electrochemical element with organic bath, the electrochemical element comprising the electrode and polymeric material and polymeric material as electrode active material or binders for electrodes purposes
Barbarich et al. A lithium salt of a lewis acid-base complex of imidazolide for lithium-ion batteries
CN112271314A (en) Flow battery positive electrode electrolyte based on tetrathiafulvalene dicarboxylic acid ethyl ester and preparation method thereof
JP5818689B2 (en) Lithium ion secondary battery
Herath et al. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes
JP2005002278A (en) New high energy density polyaniline derivative
JP5799782B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
WO2011152476A1 (en) Condensed polycyclic aromatic compound and process for production thereof, and positive electrode active material for lithium ion secondary battery which comprises same
JP5799781B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP5401389B2 (en) A positive electrode active material for a lithium ion secondary battery containing an aniline derivative, a positive electrode for a lithium ion secondary battery comprising the positive electrode active material, and a lithium ion secondary battery comprising the positive electrode as components
JP2011222318A (en) Cathode active material for lithium ion secondary battery obtained by overcharge/overdischarge treatment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees