JP2002179635A - Electroresponsive complex - Google Patents

Electroresponsive complex

Info

Publication number
JP2002179635A
JP2002179635A JP2000380981A JP2000380981A JP2002179635A JP 2002179635 A JP2002179635 A JP 2002179635A JP 2000380981 A JP2000380981 A JP 2000380981A JP 2000380981 A JP2000380981 A JP 2000380981A JP 2002179635 A JP2002179635 A JP 2002179635A
Authority
JP
Japan
Prior art keywords
complex
substituent
rare earth
metal
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000380981A
Other languages
Japanese (ja)
Other versions
JP4179746B2 (en
Inventor
Kimihisa Yamamoto
公寿 山元
Masayoshi Higuchi
昌芳 樋口
Toyohiko Saikai
豊彦 西海
Kumiko Takagi
久美子 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000380981A priority Critical patent/JP4179746B2/en
Publication of JP2002179635A publication Critical patent/JP2002179635A/en
Application granted granted Critical
Publication of JP4179746B2 publication Critical patent/JP4179746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode material for a high-performance secondary cell which has a small size and a light weight, has a long life, and exhibits high-speed responsiveness, and a metal catalyst which performs multielectron transfer, exhibits stable oxidation and reduction, and has high heat stability. SOLUTION: An electrically responsive complex comprising a phenylazomethine complex expressed by formula (I) (wherein, Ar is an aromatic π-conjugated molecule, R1 and R2 are each H, or a substituent selected from an alkyl and an aryl group; R and R' are each a substituent selected from an alkyl and an aromatic group; and M is a rare earth metal ion or a metal halide).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、電気応答
性錯体に関するものである。さらに詳しくは、この出願
の発明は、二次電池の正極材料や錯体触媒として有効に
作用するフェニルアゾメチン錯体およびフェニレンジア
ミン錯体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroresponsive complex. More specifically, the invention of this application relates to a phenylazomethine complex and a phenylenediamine complex that effectively act as a cathode material of a secondary battery and a complex catalyst.

【0002】[0002]

【従来の技術とその課題】近年、ノート型パソコンや携
帯電話の普及、あるいは電気自動車の開発、実用化に伴
って、二次電池の軽量化、長寿命化、高性能化が望まれ
ている。
2. Description of the Related Art In recent years, with the spread of notebook personal computers and mobile phones, or the development and commercialization of electric vehicles, it has been desired to reduce the weight, extend the life and enhance the performance of secondary batteries. .

【0003】従来の二次電池は、電極材料としてニッケ
ル、水素吸蔵合金などを用いたニッケル水素電池やニッ
ケルカドミウム(ニカド)電池などが一般的であった
が、最近では、より高いエネルギー密度を有するリチウ
ム二次電池が注目されており、携帯端末用の小型電池と
してのみならず、自動車用、宇宙用の大型電池としても
期待され、研究が盛んに行われている。
[0003] Conventional secondary batteries are generally nickel-metal hydride batteries or nickel-cadmium (NiCd) batteries using nickel, a hydrogen storage alloy or the like as an electrode material, but recently have higher energy densities. Lithium secondary batteries are attracting attention, and are expected to be used not only as small batteries for mobile terminals, but also as large batteries for automobiles and space, and are being actively studied.

【0004】このようなリチウム二次電池では、主に正
極材料としてコバルト酸リチウムが用いられているが、
コバルトの埋蔵量が僅か840万トンと極めて少ないた
め、材料のコストが高く、価格も変動しやすいという問
題があった。そこで、低コスト化を図るために、ニッケ
ル、マンガン、バナジウムなどの他の金属酸化物を用い
た正極材料が開発され、一部で採用されている。
In such a lithium secondary battery, lithium cobalt oxide is mainly used as a positive electrode material.
Since the reserves of cobalt are extremely small at only 8.4 million tons, there is a problem that the cost of the material is high and the price is liable to fluctuate. Therefore, in order to reduce the cost, positive electrode materials using other metal oxides such as nickel, manganese, and vanadium have been developed and partially adopted.

【0005】しかし、これらの金属材料を主体とする二
次電池は重く、携帯電子機器等の小型用途ではもちろん
のこと、自動車用、宇宙用等の大型用途においては、二
次電池の重量が大きくなるために実現可能な大きさが制
限されるという問題があった。
[0005] However, secondary batteries mainly composed of these metal materials are heavy and heavy in secondary applications such as automobiles and space as well as small applications such as portable electronic devices. Therefore, there is a problem that the size that can be realized is limited.

【0006】また、二次電池の性能という面では、リチ
ウム二次電池の移動イオンが金属イオンであるため、移
動速度が遅く、充放電できる電流量はあまり大きくな
く、応答性も低いという問題があった。さらに、リチウ
ム二次電池では、充放電の際にリチウムイオンが電極材
料(結晶)に繰り返し挿入(充電)、放出(放電)され
るため、電極材料の構造変化が大きく、劣化が生じ易か
った。これにより、電池の繰り返し寿命が短くなってし
まうという問題があった。さらに、以上のとおりのリチ
ウム二次電池を含む一般の電池では、正極と負極を隔離
するために、液体の電解質が使用されている。したがっ
て、電解質溶液の漏洩が起こる可能性があり、薄型化も
困難であった。
Further, in terms of the performance of the secondary battery, since the mobile ions of the lithium secondary battery are metal ions, the moving speed is slow, the amount of current that can be charged and discharged is not so large, and the response is low. there were. Further, in a lithium secondary battery, lithium ions are repeatedly inserted (charged) and released (discharged) into and from an electrode material (crystal) during charge and discharge, so that a structural change of the electrode material is large and deterioration easily occurs. As a result, there is a problem that the repetitive life of the battery is shortened. Further, in a general battery including the lithium secondary battery as described above, a liquid electrolyte is used to separate the positive electrode and the negative electrode. Therefore, leakage of the electrolyte solution may occur, and it has been difficult to reduce the thickness.

【0007】そこで、ポリマーと電解質塩のみから構成
されるポリマー電解質やこれらを有機溶媒でゲル化した
ゲル状ポリマー電解質が開発され、実用化されている。
しかし、このようなポリマー電解質を用いたポリマー二
次電池においても、大きなイオン種が移動するため内部
抵抗が高く、応答性が悪いという問題があった。また、
これらのポリマー電池は、リチウム二次電池と同様に、
電極材料の主体がコバルト酸リチウム等の金属材料であ
るため、上記の種々の問題も解決されずに残っていたの
である。
Therefore, a polymer electrolyte composed of only a polymer and an electrolyte salt and a gel polymer electrolyte obtained by gelling these with an organic solvent have been developed and put into practical use.
However, even in a polymer secondary battery using such a polymer electrolyte, there is a problem that the internal resistance is high and the responsiveness is poor because large ionic species move. Also,
These polymer batteries, like lithium secondary batteries,
Since the main material of the electrode material is a metal material such as lithium cobalt oxide, the above various problems remain without being solved.

【0008】これらの問題に対応する有効な解決するた
めに、適当な電極材料として導電性高分子が考慮され
る。しかし、現在のところ、そのような導電性高分子材
料は実用化には至っておらず、高性能の高分子電極材料
が望まれていたのが実情である。
In order to effectively solve these problems, a conductive polymer is considered as a suitable electrode material. However, at present, such a conductive polymer material has not been put into practical use, and a high-performance polymer electrode material has been desired.

【0009】一方、従来より化学反応用の金属触媒とし
ては種々のものが報告、提供されているが、工業レベル
での使用において有用な金属触媒として、安定な酸化還
元を示し、かつ多電子の移動が可能なものが求められて
いる。また、金属触媒が工業的に使用されるためには、
触媒効率の更なる向上とともに、熱安定性も求められて
いるが、そのような金属触媒はこれまでにあまり多く知
られていないのが実情である。
On the other hand, various types of metal catalysts for chemical reactions have been reported and provided so far. However, as metal catalysts useful in industrial use, they exhibit stable oxidation-reduction and are multi-electron. What can be moved is required. In order for metal catalysts to be used industrially,
Along with further improvement of the catalyst efficiency, thermal stability is also required. However, such metal catalysts have not been known so far.

【0010】そこで、この出願の発明は、以上のとおり
の事情に鑑みてなされたものであり、従来技術の問題点
を解消し、二次電池の小型化、軽量化が可能で、長い寿
命と高速応答性を示す高性能な二次電池用の電極材料を
提供することを課題としている。また、この出願の発明
は、合わせて、多電子を移動でき、安定な酸化還元を示
す、熱安定性の高い金属触媒を提供することを課題とし
ている。
Therefore, the invention of this application has been made in view of the circumstances described above, and solves the problems of the prior art, which enables a secondary battery to be reduced in size and weight, and has a long life. An object of the present invention is to provide a high-performance secondary battery electrode material exhibiting high-speed response. Another object of the invention of the present application is to provide a metal catalyst having high thermal stability and capable of transferring multiple electrons and exhibiting stable redox.

【0011】[0011]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、電気応答
性を有する錯体であって、次の一般式(I)
Means for Solving the Problems According to the invention of the present application, as a solution to the above-mentioned problems, firstly, an electrically responsive complex represented by the following general formula (I):

【0012】[0012]

【化4】 Embedded image

【0013】(ただし、Arは芳香族π共役系置換基、
1およびR2は各々同一または別異に水素原子、または
置換基を有していてもよい炭化水素基であり、Rおよび
aは、各々同一または別異にアルキル基または芳香族
基、Mは希土類金属またはハロゲン化金属を示す)で表
されるフェニルアゾメチン錯体を提供する。
(Where Ar is an aromatic π-conjugated substituent,
R 1 and R 2 are the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent; R and R a are each the same or different and are an alkyl group or an aromatic group; M represents a rare earth metal or a metal halide).

【0014】第2には、この出願の発明は、電気応答性
分子を有する錯体であって、次の一般式(II)
Secondly, the invention of the present application relates to a complex having an electroresponsive molecule, which has the following general formula (II):

【0015】[0015]

【化5】 Embedded image

【0016】(ただし、Arは芳香族π共役系置換基、
3およびR4は各々同一または別異に水素原子、または
置換基を有していてもよい炭化水素基であり、Rbは、
置換基を有していてもよい炭化水素基、Mは希土類金属
またはハロゲン化金属を示し、nは重合度を示す1以上
の整数である)で表されるポリフェニルアゾメチン錯体
を提供する。忠正 さらに、この出願の発明は、第3に
は、電気応答性を有する錯体であって、次の一般式(II
I)
(Where Ar is an aromatic π-conjugated substituent,
R 3 and R 4 are the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent, and R b is
A hydrocarbon group which may have a substituent, M represents a rare earth metal or a metal halide, and n is an integer of 1 or more indicating the degree of polymerization. Thirdly, the invention of this application is, thirdly, a complex having electrical responsiveness, which is represented by the following general formula (II)
I)

【0017】[0017]

【化6】 Embedded image

【0018】(ただし、R5およびR6は各々同一または
別異に水素原子、または置換基を有していてもよい炭化
水素基であり、Rcは、置換基を有していてもよい炭化
水素基、Mは希土類金属またはハロゲン化金属であり、
nは重合度を示す1以上の整数である)で表されるポリ
フェニレンジアミン錯体を提供する。
(Wherein R 5 and R 6 are the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent, and R c may have a substituent. A hydrocarbon group, M is a rare earth metal or a metal halide,
n is an integer of 1 or more indicating the degree of polymerization).

【0019】この出願の発明は、第4には、ポリアニリ
ンが希土類金属イオンまたはハロゲン化金属と錯形成し
て成るポリアニリン錯体を提供する。
Fourth, the invention of this application provides a polyaniline complex in which polyaniline forms a complex with a rare earth metal ion or a metal halide.

【0020】第5には、この出願の発明は、前記第1か
ら第4のいずれかの錯体を含有する二次電池の正極材料
を提供する。
Fifthly, the invention of this application provides a positive electrode material for a secondary battery containing any of the first to fourth complexes.

【0021】そして、第6には、この出願の発明は、前
記第1から第4のいずれかの錯体を含有する酸化還元触
媒をも提供する。
Sixth, the invention of this application also provides an oxidation-reduction catalyst containing any one of the first to fourth complexes.

【0022】[0022]

【発明の実施の形態】発明者等は、前記の課題を解決す
べく、鋭意研究を重ね、これまでにプロトン電極の正極
材料として有用なポリフェニルアゾメチン誘導体を報告
している(特願平2000−270712)。その後、
希土類金属イオンがこれらのフェニルアゾメチン誘導体
やフェニレンジアミン誘導体類に対して高い配位能を有
することを見出した。そして、希土類金属イオンとフェ
ニルアゾメチン誘導体やフェニレンジアミン誘導体が、
錯形成することにより電気活性となることを見出し、こ
の出願の発明に至ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies to solve the above-mentioned problems, and have reported a polyphenylazomethine derivative useful as a positive electrode material of a proton electrode (Japanese Patent Application No. 2000-2000). -270712). afterwards,
It has been found that rare earth metal ions have high coordination ability to these phenylazomethine derivatives and phenylenediamine derivatives. And rare earth metal ion and phenylazomethine derivative or phenylenediamine derivative,
They have found that they become electroactive by forming a complex, leading to the invention of this application.

【0023】この出願の発明のフェニルアゾメチン錯体
やフェニレンジアミン錯体は、イオン移動を伴わずに酸
化還元されるため、従来の導電性高分子類に比べ、格段
に高いエネルギー密度を持つ正極材料として有用なもの
である。また、触媒能を有する金属イオンと効率よく錯
形成できるため、π共役系を介した円滑な電子移動に基
づく触媒効率の向上も期待できる。
The phenylazomethine complex and phenylenediamine complex of the invention of this application are redox-reduced without ion transfer, and are therefore useful as cathode materials having a much higher energy density than conventional conductive polymers. It is something. In addition, since complex formation can be efficiently performed with metal ions having a catalytic ability, improvement in catalytic efficiency based on smooth electron transfer via a π-conjugated system can be expected.

【0024】したがって、この出願の発明は、電気応答
性錯体としてフェニルアゾメチン錯体やフェニレンジア
ミン錯体を提供するものである。
Accordingly, the invention of this application provides a phenylazomethine complex or a phenylenediamine complex as an electroresponsive complex.

【0025】フェニルアゾメチン錯体としては、次の一
般式(IV)
The phenylazomethine complex is represented by the following general formula (IV)

【0026】[0026]

【化7】 Embedded image

【0027】(ただし、Arは芳香族π共役系置換基、
1およびR2は各々同一または別異に水素原子、または
置換基を有していてもよい炭化水素基であり、Rおよび
aは、各々同一または別異にアルキル基または芳香族
基を示す)で表されるフェニルアゾメチン誘導体のNに
希土類金属、またはハロゲン化金属が配位し、錯形成し
たものが提供される。
(Where Ar is an aromatic π-conjugated substituent,
R 1 and R 2 are the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent; R and R a are each the same or different and each represents an alkyl group or an aromatic group; The complex is formed by coordinating a rare earth metal or a metal halide to N of the phenylazomethine derivative represented by the following formula:

【0028】このようなフェニルアゾメチン錯体におい
て、Arで表される芳香族π共役系置換基としては、フ
ェニル基、ビフェニル基、ナフチル基等が例示される。
1およびR2が炭化水素基の場合には、置換基を有して
いてもよいアルキル基または芳香族基であることが好ま
しい。具体的には、水素原子、メチル、エチル、プロピ
ル、イソプロピル、n−ブチル、t−ブチルなどのアル
キル基、フェニル、ビフェニル、ナフチルなどの芳香族
基が例示される。なかでも錯体中のπ共役系を広げるフ
ェニル基やナフチル基等の芳香族基が好ましい。また、
RおよびRaは、置換基を有していてもよい炭化水素
基、例えばアルキル基および芳香族基から選択される置
換基である。具体的には、メチル、エチル、プロピル、
n−ブチル、t−ブチル、sec−ブチル、フェニル、
ナフチル等の置換基が例示される。中でも芳香族基、と
くにフェニル基が好ましい。さらに、配位するMは、希
土類金属またはハロゲン化金属から選択される。希土類
金属としては、スカンジウム(Sc)、イットリウム
(Y)、ランタン(La)、アクチニウム(Ac)から
選択されるスカンジウム族やセリウム(Ce)、ユウロ
ピウム(Eu)、テルビウム(Tb)、イッテルビウム
(Yb)等のランタノイド(Ln)系の金属が挙げられ
る。中でもLa、Ce、Eu、Tbが好ましい。一方、
ハロゲン化金属としては、種々のものが例示されるが、
好ましくは、SnCl2、SnBr2等のハロゲン化錫
(II)、VCl3等のハロゲン化バナジウム、LiCl
やLiBr等のハロゲン化リチウムが挙げられる。
In such a phenylazomethine complex, examples of the aromatic π-conjugated substituent represented by Ar include a phenyl group, a biphenyl group and a naphthyl group.
When R 1 and R 2 are a hydrocarbon group, it is preferably an alkyl group or an aromatic group which may have a substituent. Specific examples include a hydrogen atom, an alkyl group such as methyl, ethyl, propyl, isopropyl, n-butyl and t-butyl, and an aromatic group such as phenyl, biphenyl and naphthyl. Among them, an aromatic group such as a phenyl group or a naphthyl group that expands the π-conjugated system in the complex is preferable. Also,
R and Ra are a hydrocarbon group which may have a substituent, for example, a substituent selected from an alkyl group and an aromatic group. Specifically, methyl, ethyl, propyl,
n-butyl, t-butyl, sec-butyl, phenyl,
Substituents such as naphthyl are exemplified. Among them, an aromatic group, particularly a phenyl group, is preferred. Further, the coordinating M is selected from rare earth metals or metal halides. As the rare earth metal, scandium group selected from scandium (Sc), yttrium (Y), lanthanum (La), and actinium (Ac), cerium (Ce), europium (Eu), terbium (Tb), ytterbium (Yb) And other lanthanoid (Ln) -based metals. Among them, La, Ce, Eu and Tb are preferred. on the other hand,
As the metal halide, various ones are exemplified.
Preferably, tin (II) halides such as SnCl 2 and SnBr 2 , vanadium halides such as VCl 3 , LiCl
And lithium halides such as LiBr.

【0029】上記一般式(IV)に示されるようなフェニ
ルアゾメチン誘導体は、どのような方法で合成されるも
のであってもよい。種々の公知の方法が例示されるが、
具体的には、四塩化チタンやパラトルエンスルホン酸な
どの酸存在下、ジアミンとジケトン、もしくはアミノフ
ェニルケトンを脱水反応して得る方法が考えられる。こ
のようにして得られたフェニルアゾメチン誘導体への希
土類金属やハロゲン化金属(M)の配位は、どのような
方法で行われてもよいが、実際には、フェニルアゾメチ
ン誘導体とMを溶液中で共存させることにより容易に錯
形成が起こる。また、溶液中で共存させた後、溶媒を除
去すれば、フェニルアゾメチン錯体が単離できる。
The phenylazomethine derivative represented by the above general formula (IV) may be synthesized by any method. Various known methods are exemplified,
Specifically, a method in which a diamine and a diketone or an aminophenyl ketone are obtained by a dehydration reaction in the presence of an acid such as titanium tetrachloride or paratoluenesulfonic acid can be considered. The coordination of the rare earth metal or the metal halide (M) to the phenylazomethine derivative thus obtained may be performed by any method. In practice, however, the phenylazomethine derivative and M are dissolved in a solution. Complex formation easily occurs by coexisting with the above. Further, the phenylazomethine complex can be isolated by removing the solvent after coexisting in the solution.

【0030】この出願の発明では、さらに、次の一般式
(V)
In the invention of this application, the following general formula (V)

【0031】[0031]

【化8】 Embedded image

【0032】(ただし、Arは芳香族π共役系置換基、
3およびR4は各々同一または別異に水素原子、または
置換基を有していてもよい炭化水素基であり、Rbは、
置換基を有していてもよい炭化水素基、Mは希土類金属
またはハロゲン化金属を示し、nは重合度を示す1以上
の整数である)で表されるポリフェニルアゾメチン誘導
体のN部位に上記のとおりのMが配位したポリフェニル
アゾメチン錯体が提供される。
(Where Ar is an aromatic π-conjugated substituent,
R 3 and R 4 are the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent, and R b is
A hydrocarbon group which may have a substituent, M represents a rare earth metal or a metal halide, and n is an integer of 1 or more indicating the degree of polymerization. And a polyphenylazomethine complex coordinated by M is provided.

【0033】このようなポリフェニルアゾメチン誘導体
において、Arは前記のとおりのものである。また、R
3およびR4が炭化水素基の場合には、前記のR1および
2と同様のものである。中でもフェニル基等の芳香族
基が好ましい。さらに、Rbは、置換基を有していても
よい炭化水素基である。このような炭化水素基は、エチ
レン鎖やプロピレン鎖のように鎖状のものであっても、
フェニレンのように環状のものであってもよい。また、
アミド、イミド、エステル、チオエーテル等のように
S、N、O原子を有する置換基有する置換基であっても
よい。好ましくは、ポリフェニルアゾメチン誘導体の主
鎖にS、N、O等の異種原子を導入するような置換基で
ある。このようなポリフェニルアゾメチン誘導体のNに
配位するMとしては、前記と同様の希土類金属やハロゲ
ン化金属が好ましく例示される。
In such a polyphenylazomethine derivative, Ar is as described above. Also, R
When 3 and R 4 are hydrocarbon groups, they are the same as R 1 and R 2 described above. Among them, an aromatic group such as a phenyl group is preferred. Further, R b is a hydrocarbon group which may have a substituent. Such a hydrocarbon group may be chain-like such as an ethylene chain or a propylene chain,
It may be cyclic, such as phenylene. Also,
It may be a substituent having a substituent having S, N, and O atoms, such as amide, imide, ester, and thioether. Preferably, it is a substituent that introduces a heteroatom such as S, N, or O into the main chain of the polyphenylazomethine derivative. Preferable examples of M coordinated to N of such a polyphenylazomethine derivative include the same rare earth metals and metal halides as described above.

【0034】一般式(V)のポリフェニルアゾメチン誘
導体は、どのような方法で合成されるものであってもよ
く、種々の公知の合成法が適用できる。例えば、四塩化
チタン、パラトルエンスルホン酸などの酸存在下におけ
る、ジアミンとジケトン、もしくはアミノフェニルケト
ンの脱水反応が考慮される。このようにして得られたポ
リフェニルアゾメチン誘導体への希土類金属やハロゲン
化金属(M)の配位は、どのような方法で行われてもよ
いが、実際には、ポリフェニルアゾメチン誘導体とMを
溶液中で共存させることにより容易に錯形成が起こる。
また、溶液中で両者を共存させた後、溶媒を除去すれ
ば、ポリフェニルアゾメチン錯体が単離される。
The polyphenylazomethine derivative of the general formula (V) may be synthesized by any method, and various known synthesis methods can be applied. For example, a dehydration reaction of diamine and diketone or aminophenylketone in the presence of an acid such as titanium tetrachloride or paratoluenesulfonic acid is considered. The coordination of the rare earth metal or metal halide (M) to the polyphenylazomethine derivative thus obtained may be performed by any method. Complex formation easily occurs by coexisting in a solution.
After coexisting both in a solution, the solvent is removed to isolate the polyphenylazomethine complex.

【0035】この出願の発明は、さらに、電気応答性分
子錯体として、次の一般式(VI)
The invention of this application further provides an electrically responsive molecular complex represented by the following general formula (VI):

【0036】[0036]

【化9】 Embedded image

【0037】(ただし、R5およびR6は各々同一または
別異に水素原子、または置換基を有していてもよい炭化
水素基であり、RcおよびRdは、置換基を有していても
よい炭化水素基、nは重合度を示す1以上の整数であ
る)で表されるポリフェニレンジアミン誘導体のN部位
に上記のとおりのMが配位したポリフェニレンジアミン
錯体を提供する。
(Provided that R 5 and R 6 are the same or different hydrogen atoms or hydrocarbon groups which may have a substituent, and R c and R d each have a substituent. And n is an integer of 1 or more indicating the degree of polymerization.) A polyphenylenediamine complex in which M is coordinated to the N site of the polyphenylenediamine derivative represented by the formula (1) is provided.

【0038】このようなポリフェニレンジアミン誘導体
において、R5およびR6としては、水素原子以外では、
前記のR1〜R4と同様の置換基が例示される。好ましく
はフェニル基等の芳香族基とする。RcおよびRdは、置
換基を有していてもよい炭化水素基であり、エチレン鎖
やプロピレン鎖のように鎖状のものであっても、フェニ
レンのように環状のものであってもよい。また、アミ
ド、イミド、エステル、チオエーテル等のようにS、
N、O等の異種原子を含む置換基を有するものであって
もよい。好ましくは、ポリフェニレンジアミンの主鎖に
S、N、O等の異種原子を導入するような置換基とす
る。RcおよびRdとしては、具体的には、フェニレンス
ルフィドが例示される。
In such a polyphenylenediamine derivative, R 5 and R 6 are each other than a hydrogen atom.
The same substituents as those described above for R 1 to R 4 are exemplified. Preferably, it is an aromatic group such as a phenyl group. R c and R d are a hydrocarbon group which may have a substituent, and may be a chain-like one such as an ethylene chain or a propylene chain, or a cyclic one such as phenylene. Good. S, such as amide, imide, ester, thioether, etc.
It may have a substituent containing a hetero atom such as N or O. Preferably, it is a substituent that introduces a heteroatom such as S, N, or O into the main chain of polyphenylenediamine. Specific examples of R c and R d include phenylene sulfide.

【0039】前記一般式(VI)に示されるポリフェニレ
ンジアミン誘導体は、どのような方法で合成されるもの
であってもよく、種々の公知の方法が考慮される。例え
ば、ジブロモ化したフェニレンジアミン誘導体とジスタ
ン化アリールまたはジボロン酸アリールとのパラジウム
触媒下でのカップリング反応、あるいはフェニレンジイ
ミン誘導体へのチオール基やアミノ基等の求核性を有す
る官能基を有する化合物のマイケル付加反応によって行
う方法が考慮される。このようにして得られたポリフェ
ニレンジアミン誘導体に金属(M)を導入するには、単
純に希土類金属やハロゲン化金属と溶液中で共存させれ
ばよい。
The polyphenylenediamine derivative represented by the general formula (VI) may be synthesized by any method, and various known methods are considered. For example, a palladium-catalyzed coupling reaction between a dibrominated phenylenediamine derivative and an aryl distanned or aryl diboronate, or a phenylenediimine derivative having a nucleophilic functional group such as a thiol group or an amino group Methods performed by Michael addition of compounds are contemplated. In order to introduce the metal (M) into the polyphenylenediamine derivative thus obtained, it may be simply made to coexist with a rare earth metal or a metal halide in a solution.

【0040】この出願の発明は、さらに、電気応答性を
有する錯体として、ポリアニリンと希土類金属またはハ
ロゲン金属が錯形成して成るポリアニリン錯体をも提供
する。このとき、ポリアニリンは、どのようなものであ
ってもよく、環構造の炭素原子に置換基が結合したも
の、例えば、アルキル基、アリール基、アルコキシ基等
の適宜なものが結合した種々のポリアニリン類が考慮さ
れる。また、ポリアニリンに配位する希土類金属および
ハロゲン金属は、前記のとおりのものが例示される。こ
れらの中でも、希土類金属がとくに好ましい。錯形成の
方法はとくに限定されないが、公知の方法で合成された
ポリアニリンと希土類金属を溶液中で共存させたり、ポ
リアニリン固相膜を希土類金属の溶解した溶液に浸すこ
とにより錯形成が起こり、この出願の発明のポリアニリ
ン錯体が得られる。
The invention of this application further provides, as a complex having electrical responsiveness, a polyaniline complex formed by forming a complex of polyaniline and a rare earth metal or a halogen metal. At this time, the polyaniline may be any polyaniline in which a substituent is bonded to a carbon atom of the ring structure, for example, various polyanilines in which an appropriate one such as an alkyl group, an aryl group, or an alkoxy group is bonded. Kind is considered. The rare earth metal and halogen metal coordinated to polyaniline are as described above. Of these, rare earth metals are particularly preferred. The method of complex formation is not particularly limited.However, polyaniline and a rare earth metal synthesized by a known method are allowed to coexist in a solution, or a polyaniline solid film is immersed in a solution in which a rare earth metal is dissolved, thereby forming a complex. The polyaniline complex of the invention of the application is obtained.

【0041】以上のとおりの各錯体は、高い電気応答性
と安定な酸化還元電位を示す化合物であり、これらは高
エネルギー密度二次電池の正極材料や安定性の高い金属
触媒として有用である。
Each of the above complexes is a compound exhibiting high electrical responsiveness and stable oxidation-reduction potential, and is useful as a positive electrode material of a high energy density secondary battery or a highly stable metal catalyst.

【0042】以下、実施例を示し、この発明の実施の形
態についてさらに詳しく説明する。もちろん、この発明
は以下の例に限定されるものではなく、細部については
様々な態様が可能であることは言うまでもない。
Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

【0043】[0043]

【実施例】<実施例1> ビス[(α−フェニル)フェ
ニルアゾメチン]ベンゼン(i)の合成 以下の化学式(A)に従って、ビス[(α−フェニル)
フェニルアゾメチン]ベンゼン(i)を合成した。
EXAMPLES Example 1 Synthesis of Bis [(α-phenyl) phenylazomethine] benzene (i) According to the following chemical formula (A), bis [(α-phenyl)
Phenylazomethine] benzene (i) was synthesized.

【0044】[0044]

【化10】 Embedded image

【0045】100mLの三口フラスコに、1,4−ジ
ベンゾイルベンゼン(1.43g、5.0mmol)、
アニリン(1.8mL、20mmol)、ジアザビシク
ロ[2,2,2]オクタン(30.0mmol)を加
え、窒素雰囲気下とした後、溶媒としてクロロベンゼン
(50mL)を加えた。四塩化チタン(0.8mL、
7.5mmol)を滴下し、125℃で12時間加熱還
流した。反応終了後、沈殿物を濾過し、濾液を濃縮し、
シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキ
サン/酢酸エチル=1/10)により目的物を収率97
%で単離した。
In a 100 mL three-necked flask, 1,4-dibenzoylbenzene (1.43 g, 5.0 mmol),
Aniline (1.8 mL, 20 mmol) and diazabicyclo [2,2,2] octane (30.0 mmol) were added, and the mixture was placed under a nitrogen atmosphere, and chlorobenzene (50 mL) was added as a solvent. Titanium tetrachloride (0.8 mL,
(7.5 mmol) was added dropwise, and the mixture was heated under reflux at 125 ° C. for 12 hours. After completion of the reaction, the precipitate was filtered, and the filtrate was concentrated.
The target product was obtained in a yield of 97 by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/10).
%.

【0046】得られた目的物を、赤外吸収スペクトル、
質量分析、および元素分析により同定した。結果を表1
に示した。
The obtained target substance was analyzed by infrared absorption spectrum,
It was identified by mass spectrometry and elemental analysis. Table 1 shows the results
It was shown to.

【0047】[0047]

【表1】 [Table 1]

【0048】<実施例2> ビス[(α−フェニル)フ
ェニルアゾメチン]ベンゼンと塩化錫(II)の錯形成と
電気化学測定 0.2M TBABF4を含むアセトニトリル溶液中にお
いて、2mMのビス[(α−フェニル)フェニルアゾメ
チン]ベンゼンのサイクリックボルタンメトリー測定
(作用電極:炭素電極、対極:白金電極、参照電極:A
g/Ag+、掃引速度:0.1V/sec)を行った。
Example 2 Complex formation of bis [(α-phenyl) phenylazomethine] benzene and tin (II) chloride and electrochemical measurement In acetonitrile solution containing 0.2 M TBABF 4 , 2 mM bis [(α -Phenyl) phenylazomethine] cyclic voltammetry measurement of benzene (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: A
g / Ag + , sweep rate: 0.1 V / sec).

【0049】系中に4mMの塩化錫(II)を加えたとこ
ろ、錯形成に基づく極めて良好な酸化還元波(E1/2
0.65Vvs.Ag/Ag+)が観測された。 <実施例3> ビス[(α−フェニル)フェニルアゾメ
チン]ベンゼンと塩化リチウムの錯形成と電気化学測定 0.2M TBABF4を含むアセトニトリル溶液中にお
いて、2mMのビス[(α−フェニル)フェニルアゾメ
チン]ベンゼンのサイクリックボルタンメトリー測定
(作用電極:炭素電極、対極:白金電極、参照電極:A
g/Ag+、掃引速度:0.1V/sec)を行った。
When 4 mM of tin (II) chloride was added to the system, a very good oxidation-reduction wave (E 1/2 =
0.65Vvs. Ag / Ag + ) was observed. <Example 3> Complex formation of bis [(α-phenyl) phenylazomethine] benzene and lithium chloride and electrochemical measurement 2 mM bis [(α-phenyl) phenylazomethine] in an acetonitrile solution containing 0.2 M TBABF 4 Cyclic voltammetry measurement of benzene (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: A
g / Ag + , sweep rate: 0.1 V / sec).

【0050】系中に4mMの塩化リチウムを加えたとこ
ろ、錯形成に基づく極めて良好な酸化還元波(E1/2
0.65Vvs.Ag/Ag+)が観測された。 <実施例4> ビス[(α−フェニル)フェニルアゾメ
チン]とランタン(III)イオンの錯形成と電気化学測
定 0.2M TBABF4を含むアセトニトリル溶液中にお
いて、2mMのビス[(α−フェニル)フェニルアゾメ
チン]ベンゼンのサイクリックボルタンメトリー測定
(作用電極:炭素電極、対極:白金電極、参照電極:A
g/Ag+、掃引速度:0.1V/sec)を行った。
When 4 mM lithium chloride was added to the system, a very good oxidation-reduction wave (E 1/2 =
0.65Vvs. Ag / Ag + ) was observed. <Example 4> Complex formation of bis [(α-phenyl) phenylazomethine] and lanthanum (III) ion and electrochemical measurement 2 mM bis [(α-phenyl) phenyl in acetonitrile solution containing 0.2 M TBABF 4 Azomethine] cyclic voltammetry measurement of benzene (working electrode: carbon electrode, counter electrode: platinum electrode, reference electrode: A
g / Ag + , sweep rate: 0.1 V / sec).

【0051】系中に4mMのLa(OSO2CF33
加えたところ、錯形成に基づく極めて良好な酸化還元波
(E1/2=−0.55Vvs.Ag/Ag+)が観測され
た。 <実施例5> ポリ[(α−フェニル)フェニルアゾメ
チン](ii)の合成 次の化学式(B)に従ってポリ[(α−フェニル)フェ
ニルアゾメチン](ii)を合成した。
When 4 mM La (OSO 2 CF 3 ) 3 was added to the system, a very good oxidation-reduction wave (E 1/2 = −0.55 V vs. Ag / Ag + ) based on complex formation was observed. Was. Example 5 Synthesis of Poly [(α-phenyl) phenylazomethine] (ii) Poly [(α-phenyl) phenylazomethine] (ii) was synthesized according to the following chemical formula (B).

【0052】[0052]

【化11】 Embedded image

【0053】50mLの三口フラスコに、1,4−ジベ
ンゾイルベンゼン(0.286g、1.0mmol)、
4,4’−チオジアミン(0.216g、1.0mmo
l)、ジアザビシクロ[2,2,2]オクタン(8.0
mmol)を加え、窒素雰囲気下とした後、クロロベン
ゼン(20mL)を加え、四塩化チタン(2.0mmo
l)を滴下した。125℃で24時間加熱還流した。反
応終了後、沈殿物を濾過し、濾液を濃縮した後、メタノ
ール中で再沈殿して、目的物を黄色粉体として収率96
%で得た。
In a 50 mL three-necked flask, 1,4-dibenzoylbenzene (0.286 g, 1.0 mmol),
4,4'-thiodiamine (0.216 g, 1.0 mmol
l), diazabicyclo [2,2,2] octane (8.0
mmol) under a nitrogen atmosphere, chlorobenzene (20 mL) was added, and titanium tetrachloride (2.0 mmol) was added.
l) was added dropwise. The mixture was heated and refluxed at 125 ° C. for 24 hours. After completion of the reaction, the precipitate was filtered, the filtrate was concentrated, and the precipitate was reprecipitated in methanol to give the target compound as a yellow powder in a yield of 96.
%.

【0054】生成物の同定結果を表2に示した。The results of product identification are shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】<実施例6> フェニレンジアミン誘導体
を導入したポリフェニレンスルフィド(PPS−PD
A)(v)の合成 (a)モノマー(TB−2PDI)(iv)の合成:化学
式(C)に従って、モノマー(TB−2PDI)(iv)
を合成した。
Example 6 Polyphenylene sulfide into which a phenylenediamine derivative was introduced (PPS-PD
A) Synthesis of (v) (a) Synthesis of monomer (TB-2PDI) (iv): According to chemical formula (C), monomer (TB-2PDI) (iv)
Was synthesized.

【0057】[0057]

【化12】 Embedded image

【0058】4,4’−チオビスベンゼンチオール(T
B、0.123g、0.5mmol)を塩化メチレン5
0mLに溶解させ、この溶液に滴下ロートを用いて塩化
メチレン100mLに溶解させたN,N’−ジフェニル
−1,4−フェニレンジアミン(PDI、0.260
g、1.0mmol)を加えた。反応溶液を室温で2時
間攪拌したところ、溶液の色がオレンジ色から黄色に変
化し、反応の進行が確認された。反応終了後、モノマー
の前駆体(TB−2PDA)(iii)をシリカゲルカラ
ムクロマトグラフィーにより収率31%で単離した。
4,4'-thiobisbenzenethiol (T
B, 0.123 g, 0.5 mmol) in methylene chloride 5
0, and N, N′-diphenyl-1,4-phenylenediamine (PDI, 0.260) dissolved in 100 mL of methylene chloride using a dropping funnel.
g, 1.0 mmol). When the reaction solution was stirred at room temperature for 2 hours, the color of the solution changed from orange to yellow, and the progress of the reaction was confirmed. After the completion of the reaction, the monomer precursor (TB-2PDA) (iii) was isolated by silica gel column chromatography in a yield of 31%.

【0059】TB−2PDA(iii)(0.153g、
0.2mmol)をN−メチルピロリドン(NMP、4
mL)に溶解させ、カルシウムヒポクロレイト(0.1
72g、1.2mmol)を加え、室温で4時間反応さ
せた。溶液の色が黄色からオレンジ色へと変化した。反
応混合物を水中で再沈殿し、濾過することにより目的と
するモノマー(TB−2PDI)(iv)を98%の収率
で得た。
TB-2PDA (iii) (0.153 g,
0.2 mmol) with N-methylpyrrolidone (NMP, 4
dissolved in calcium hypochlorate (0.1 mL).
72 g, 1.2 mmol) and reacted at room temperature for 4 hours. The color of the solution changed from yellow to orange. The reaction mixture was reprecipitated in water and filtered to obtain the desired monomer (TB-2PDI) (iv) in a yield of 98%.

【0060】(b)ポリマー(PPS−PDA)(v)
の合成:化学式(D)に従って、ポリマー(PPS−P
DA)(v)を合成した。
(B) Polymer (PPS-PDA) (v)
Synthesis of polymer (PPS-P) according to chemical formula (D)
DA) (v) was synthesized.

【0061】[0061]

【化13】 Embedded image

【0062】TB−2PDI(iv)(0.2mmol)
を塩化メチレン(25ml)に溶かした溶液に、TB
(50mg、0.2mmol)を塩化メチレン(25m
L)に溶かした溶液を滴下ロートを用いて加えた。室温
で24時間反応させた。反応終了後、メタノール中で再
沈殿することにより、PPS−PDA(v)を60%の
収率で得た。
TB-2 PDI (iv) (0.2 mmol)
Was dissolved in methylene chloride (25 ml) with TB
(50 mg, 0.2 mmol) in methylene chloride (25 m
The solution dissolved in L) was added using a dropping funnel. The reaction was performed at room temperature for 24 hours. After completion of the reaction, PPS-PDA (v) was obtained at a yield of 60% by reprecipitation in methanol.

【0063】得られたPPS−PDA(v)を赤外吸収
スペクトルおよび元素分析により同定し、結果を表3に
示した。
The obtained PPS-PDA (v) was identified by infrared absorption spectrum and elemental analysis, and the results are shown in Table 3.

【0064】[0064]

【表3】 [Table 3]

【0065】<実施例7> フェニレンジアミン誘導体
を導入したポリパラフェニレン(PPP−PDA)の合
成 (a)モノマーA(PDA−2Br)(vi)の合成:以
下の化学式(E)に従って、モノマーA(PDA−2B
r)(vi)を合成した。
Example 7 Synthesis of polyparaphenylene (PPP-PDA) into which phenylenediamine derivative was introduced (a) Synthesis of monomer A (PDA-2Br) (vi): Monomer A was synthesized according to the following chemical formula (E). (PDA-2B
r) (vi) was synthesized.

【0066】[0066]

【化14】 Embedded image

【0067】200mLの三口フラスコ中で、アニリン
(10.3g)をクロロベンゼン(40mL)に溶解さ
せ、窒素雰囲気下、滴下ロートにより四塩化チタン
(1.24mL)を滴下した。クロロベンゼン(20m
L)を加えた後、さらにクロロベンゼン(100mL)
に溶解させた2,5−ジブロモ−1,4−ベンゾキノン
(2.07mL)を滴下し、125℃で12時間反応さ
せた。反応終了後、溶液を濃縮し、シリカゲルカラムク
ロマトグラフィーによりPDA−2Br(vi)を65%
の収率で得た。
In a 200 mL three-necked flask, aniline (10.3 g) was dissolved in chlorobenzene (40 mL), and titanium tetrachloride (1.24 mL) was added dropwise from a dropping funnel under a nitrogen atmosphere. Chlorobenzene (20m
L) and then chlorobenzene (100 mL)
2,5-Dibromo-1,4-benzoquinone (2.07 mL) was added dropwise and reacted at 125 ° C. for 12 hours. After the completion of the reaction, the solution was concentrated, and PDA-2Br (vi) was reduced to 65% by silica gel column chromatography.
In a yield of

【0068】(b)モノマーB(BB)(vii)の合
成:以下の化学式(F)に従って、モノマーB(BB)
(vii)を合成した。
(B) Synthesis of monomer B (BB) (vii): According to the following chemical formula (F), monomer B (BB)
(Vii) was synthesized.

【0069】[0069]

【化15】 Embedded image

【0070】100mLの三口フラスコに4,4’−ジ
ブロモビフェニル(1.56g、5mmol)を加え、
減圧乾燥した後窒素下とし、エーテル(50mL)およ
びTHF(10mL)を加えた。氷冷し、1.14Mメ
チルリチウム/エーテル溶液(9.7mL、11mmo
l)を加え、30分攪拌した後、−78℃で1.54M
t−ブチルリチウム/ペンタン溶液(14.6mL、2
2.5mmol)を加えた。さらに、室温で30分攪拌
した後、再び−78℃で冷却し、THF(40mL)、
およびトリブチル錫クロリド(7mL、25mmol)
を加え、40分攪拌した後、さらに室温で30分攪拌し
た。反応終了後、反応溶液を水(300mL)に注ぎ、
エーテルで有機層を抽出した後、目的とするモノマー
(BB)(vii)をシリカゲルカラムクロマトグラフィ
ーにより収率95%で単離した。
4,4′-dibromobiphenyl (1.56 g, 5 mmol) was added to a 100 mL three-necked flask.
After drying under reduced pressure, the mixture was placed under nitrogen, and ether (50 mL) and THF (10 mL) were added. After cooling on ice, a 1.14 M methyllithium / ether solution (9.7 mL, 11 mmol
l) and stirred for 30 minutes, then 1.54M at -78 ° C.
t-butyllithium / pentane solution (14.6 mL, 2
2.5 mmol) was added. After further stirring at room temperature for 30 minutes, the mixture was cooled again at -78 ° C, and THF (40 mL),
And tributyltin chloride (7 mL, 25 mmol)
Was added, and the mixture was stirred for 40 minutes, and further stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction solution was poured into water (300 mL),
After extracting the organic layer with ether, the desired monomer (BB) (vii) was isolated by silica gel column chromatography in a yield of 95%.

【0071】(c)ポリマー(PPP−PDA)(vii
i)の合成:以下の化学式(G)に従って、ポリマー
(PPP−PDA)(viii)を合成した。
(C) Polymer (PPP-PDA) (vii
Synthesis of i): Polymer (PPP-PDA) (viii) was synthesized according to the following chemical formula (G).

【0072】[0072]

【化16】 Embedded image

【0073】二口フラスコに、PDA−2Br(0.1
mmol)、BB(0.1mmol)、Pd(PP
34(5.0mmol)、CuI(5.0mmol)
を入れ、窒素雰囲気下とした後、NMP(2mL)、T
HF(1mL)を加えた。100℃で24時間反応させ
た後、フッ化カリウム水溶液を加え、クェンチし、メタ
ノールで再沈殿することにより、目的とするポリマー
(PPP−PDA)を定量的に得た。
In a two-necked flask, PDA-2Br (0.1
mmol), BB (0.1 mmol), Pd (PP
h 3 ) 4 (5.0 mmol), CuI (5.0 mmol)
Into a nitrogen atmosphere, then NMP (2 mL), T
HF (1 mL) was added. After reacting at 100 ° C. for 24 hours, an aqueous solution of potassium fluoride was added, quenched, and reprecipitated with methanol to quantitatively obtain a target polymer (PPP-PDA).

【0074】得られたポリマーの同定結果を表4に示し
た。
Table 4 shows the results of identification of the obtained polymer.

【0075】[0075]

【表4】 [Table 4]

【0076】<実施例8> フェニレンジアミン誘導体
ポリマー(PPP−PDA)とユーロビウム(III)イ
オンの錯形成と電気化学測定 0.2M TBABF4を含むアセトニトリル溶液中にお
いて、1mMのPPP−PDAのサイクリックボルタン
メトリー測定(作用電極:炭素電極、対極:白金電極、
参照電極:Ag/Ag+、掃引速度:0.1V/se
c)を行った。
Example 8 Complexation of Phenylenediamine Derivative Polymer (PPP-PDA) with Eurobium (III) Ion and Electrochemical Measurement In acetonitrile solution containing 0.2 M TBABF 4 , 1 mM of PPP-PDA was cyclically applied. Voltammetric measurement (working electrode: carbon electrode, counter electrode: platinum electrode,
Reference electrode: Ag / Ag + , sweep speed: 0.1 V / se
c) was performed.

【0077】系中に10mMのEu(OSO2CF33
を加えたところ、錯形成に基づく極めて良好な酸化還元
波(E1/2=0.28,0.55Vvs.Ag/Ag+
が観測された。 <実施例9> ポリアニリンとランタン(III)イオン
錯形成と電気化学的測定 0.1M TBABF4を含むアセトニトリル溶液中にお
いて、ポリアニリン修飾電極のサイクリックボルタンメ
トリー測定(作用電極:炭素電極、対極:白金電極、参
照電極:Ag/Ag+、掃引速度:0.1V/sec)
を行った。
In the system, 10 mM Eu (OSO 2 CF 3 ) 3
, A very good oxidation-reduction wave based on complex formation (E 1/2 = 0.28, 0.55 V vs. Ag / Ag + )
Was observed. <Example 9> polyaniline and lanthanum (III) acetonitrile solution containing ions complexing with electrochemical measuring 0.1 M TBABF 4, cyclic voltammetry measurements of the polyaniline-modified electrode (working electrode: a carbon electrode, counter electrode: platinum electrode , Reference electrode: Ag / Ag + , sweep speed: 0.1 V / sec)
Was done.

【0078】系中に5mMのLa(OSO2CF33
加えたところ、錯形成に基づく極めて良好な酸化還元波
(E1/2=0.05,0.60Vvs.Ag/Ag+)が
観測された。
When 5 mM La (OSO 2 CF 3 ) 3 was added to the system, a very good oxidation-reduction wave based on complex formation (E 1/2 = 0.05, 0.60 V vs. Ag / Ag + ) was obtained. Was observed.

【0079】[0079]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、高エネルギー密度を有する二次電池の正極材料
や、安定な錯体触媒として有用なフェニルアゾメチン錯
体、ポリアニリン錯体、およびフェニレンジアミン錯体
が提供される。
As described above, according to the present invention, a phenylazomethine complex, a polyaniline complex, and a phenylenediamine complex useful as a cathode material for a secondary battery having a high energy density and a stable complex catalyst are provided. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07F 5/00 C07F 5/00 D 4J043 7/22 7/22 U 5H029 C08G 61/02 C08G 61/02 5H050 H01M 4/60 H01M 4/60 // C08G 73/02 C08G 73/02 H01M 4/02 H01M 4/02 C 10/40 10/40 Z Fターム(参考) 4G069 BA27A BA27B BC22B BC38A BC42B BE16A BE16B BE33A BE33B BE37A BE37B CB02 CB07 CC32 ED10 4H006 AA01 AB84 TA04 TB14 4H048 AA01 AB78 VA50 VA70 VB10 4H049 VN03 VP02 VQ43 VU24 4J032 CA03 CA06 CB01 CC01 CD01 CG01 4J043 PA02 QB46 RA12 SA06 SB01 TA71 TB01 UA121 UA122 UB152 ZB47 5H029 AJ04 AK11 AK16 AK18 HJ02 5H050 AA09 CA17 CA25 CA29 DA02 EA21 HA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07F 5/00 C07F 5/00 D 4J043 7/22 7/22 U 5H029 C08G 61/02 C08G 61/02 5H050 H01M 4/60 H01M 4/60 // C08G 73/02 C08G 73/02 H01M 4/02 H01M 4/02 C 10/40 10/40 Z F term (reference) 4G069 BA27A BA27B BC22B BC38A BC42B BE16A BE16B BE33A BE33B BE37A BE37B CB02 CB07 CC32. CA29 DA02 EA21 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電気応答性を有する錯体であって、次の
一般式(I) 【化1】 (ただし、Arは芳香族π共役系置換基、R1およびR2
は各々同一または別異に水素原子、または置換基を有し
ていてもよい炭化水素基であり、RおよびRaは、各々
同一または別異にアルキル基または芳香族基、Mは希土
類金属またはハロゲン化金属を示す)で表されるフェニ
ルアゾメチン錯体。
1. An electrically responsive complex, which is represented by the following general formula (I): (Where Ar is an aromatic π-conjugated substituent, R 1 and R 2
Is the same or different hydrogen atom or a hydrocarbon group which may have a substituent, R and R a are the same or different alkyl group or aromatic group, M is a rare earth metal or A phenylazomethine complex represented by a metal halide).
【請求項2】 電気応答性分子を有する錯体であって、
次の一般式(II) 【化2】 (ただし、Arは芳香族π共役系置換基、R3およびR4
各々同一または別異に水素原子、または置換基を有し
ていてもよい炭化水素基であり、Rbは、置換基を有し
ていてもよい炭化水素基、Mは希土類金属またはハロゲ
ン化金属を示し、nは重合度を示す1以上の整数であ
る)で表されるポリフェニルアゾメチン錯体。
2. A complex having an electrically responsive molecule,
The following general formula (II) (Where Ar is an aromatic π-conjugated substituent, R 3 and R 4
Are the same or different hydrogen atoms or hydrocarbon groups which may have a substituent, R b is a hydrocarbon group which may have a substituent, M is a rare earth metal or halogenated Represents a metal, and n is an integer of 1 or more indicating the degree of polymerization).
【請求項3】 電気応答性を有する錯体であって、次の
一般式(III) 【化3】 (ただし、R5およびR6は各々同一または別異に水素原
子、または置換基を有していてもよい炭化水素基であ
り、RcおよびRdは、各々同一または別異に置換基を有
していてもよい炭化水素基、Mは希土類金属またはハロ
ゲン化金属であり、nは重合度を示す1以上の整数であ
る)で表されるポリフェニレンジアミン錯体。
3. An electrically responsive complex, which is represented by the following general formula (III): (However, R5 and R6 are each the same or different and each is a hydrogen atom or a hydrocarbon group which may have a substituent, and Rc and Rd are each the same or different and each have a substituent. A hydrocarbon group, M is a rare earth metal or a metal halide, and n is an integer of 1 or more indicating the degree of polymerization.)
【請求項4】 電気応答性を有する錯体であって、ポリ
アニリンが希土類金属イオンまたはハロゲン化金属と錯
形成して成ることを特徴とするポリアニリン錯体。
4. A polyaniline complex having electrical responsiveness, wherein the polyaniline is formed by forming a complex with a rare earth metal ion or a metal halide.
【請求項5】 請求項1ないし4のいずれかの錯体を含
有する二次電池の正極材料。
5. A positive electrode material for a secondary battery, comprising the complex according to claim 1.
【請求項6】 請求項1ないし4のいずれかの錯体を含
有する酸化還元触媒。
6. An oxidation-reduction catalyst containing the complex according to claim 1. Description:
JP2000380981A 2000-12-14 2000-12-14 Electrically responsive complex Expired - Fee Related JP4179746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000380981A JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000380981A JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Publications (2)

Publication Number Publication Date
JP2002179635A true JP2002179635A (en) 2002-06-26
JP4179746B2 JP4179746B2 (en) 2008-11-12

Family

ID=18849077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000380981A Expired - Fee Related JP4179746B2 (en) 2000-12-14 2000-12-14 Electrically responsive complex

Country Status (1)

Country Link
JP (1) JP4179746B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
JP2011216371A (en) * 2010-03-31 2011-10-27 Toyota Industries Corp Positive electrode active material for lithium ion secondary battery containing aniline derivative or polyaniline derivative
CN103265699A (en) * 2013-05-08 2013-08-28 上海纳米技术及应用国家工程研究中心有限公司 Nanometer tin dioxide modified polyaniline nano-tube preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
JP2011216371A (en) * 2010-03-31 2011-10-27 Toyota Industries Corp Positive electrode active material for lithium ion secondary battery containing aniline derivative or polyaniline derivative
CN103265699A (en) * 2013-05-08 2013-08-28 上海纳米技术及应用国家工程研究中心有限公司 Nanometer tin dioxide modified polyaniline nano-tube preparation method
CN103265699B (en) * 2013-05-08 2015-11-18 上海纳米技术及应用国家工程研究中心有限公司 A kind of nano-stannic oxide modifies the preparation method of polyaniline nanotube

Also Published As

Publication number Publication date
JP4179746B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5209649B2 (en) Malonic acid nitrile derivative anion salts and their use as ion conducting materials
WO1993009092A1 (en) Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
Jähnert et al. Synthesis and Charge–Discharge Studies of Poly (ethynylphenyl) galvinoxyles and Their Use in Organic Radical Batteries with Aqueous Electrolytes
JP2017082242A (en) Secondary battery, functional polymer and synthesis method thereof
JP5907373B2 (en) COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL AND POSITIVE FOR NON-AQUEOUS SECONDARY BATTERY, NON-AQUEOUS SECONDARY BATTERY, AND VEHICLE
CN107251278A (en) Electrode for the electrochemical element with organic bath, the electrochemical element comprising the electrode and polymeric material and polymeric material as electrode active material or binders for electrodes purposes
JP3855278B2 (en) Conjugated N-fluoropyridinium salt-containing polymer and use thereof
JP2002179635A (en) Electroresponsive complex
JP2005002278A (en) New high energy density polyaniline derivative
Herath et al. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes
JP5799782B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
WO2011152476A1 (en) Condensed polycyclic aromatic compound and process for production thereof, and positive electrode active material for lithium ion secondary battery which comprises same
JP5401389B2 (en) A positive electrode active material for a lithium ion secondary battery containing an aniline derivative, a positive electrode for a lithium ion secondary battery comprising the positive electrode active material, and a lithium ion secondary battery comprising the positive electrode as components
JP5799781B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP6694628B2 (en) Solid electrolyte containing organic / metal hybrid polymer, method for producing the same, and secondary battery using the same
JP2011222318A (en) Cathode active material for lithium ion secondary battery obtained by overcharge/overdischarge treatment
JP5617828B2 (en) Cross-linked polyaniline derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
WO2023183567A1 (en) Contorted macromolecular ladders for fast-charging and long-life lithium batteries
JP2002083598A (en) Polyphenyl-azomethine derivative and proton secondary battery using it as positive electrode material
JPH0446292B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees