JP4178079B2 - Granular reduced metal production method and production apparatus thereof - Google Patents

Granular reduced metal production method and production apparatus thereof Download PDF

Info

Publication number
JP4178079B2
JP4178079B2 JP2003162451A JP2003162451A JP4178079B2 JP 4178079 B2 JP4178079 B2 JP 4178079B2 JP 2003162451 A JP2003162451 A JP 2003162451A JP 2003162451 A JP2003162451 A JP 2003162451A JP 4178079 B2 JP4178079 B2 JP 4178079B2
Authority
JP
Japan
Prior art keywords
raw material
hearth
particle size
reduced metal
granular reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162451A
Other languages
Japanese (ja)
Other versions
JP2004360041A (en
Inventor
理彦 鉄本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003162451A priority Critical patent/JP4178079B2/en
Publication of JP2004360041A publication Critical patent/JP2004360041A/en
Application granted granted Critical
Publication of JP4178079B2 publication Critical patent/JP4178079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Tunnel Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化金属と炭素質還元材を主成分とする粒状還元金属原料を移動炉床炉で還元する技術の分野に属する。
【0002】
なお、以下の従来技術、発明が解決しようとする課題および発明の実施の形態においては、酸化金属、粒状還元金属原料および還元金属として、それぞれ酸化鉄、粒状還元鉄原料および還元鉄を例に挙げて説明するが、これに限定されるものではない。本発明に係る酸化金属、粒状還元金属原料および還元金属に含まれる金属元素としては、鉄(Fe)の他にMn、Ni、Cr、Mo、Ti等の非鉄金属元素をも対象とし、さらには、これらの鉄および非鉄金属元素のうちの任意の複数種を含むものも対象とする。
【0003】
【従来の技術】
[従来技術1]
酸化鉄と炭素質還元材とを主成分とするペレット状やブリケット状の粒状還元鉄原料を還元するのに、従来から移動炉床炉が使用されている。この移動炉床炉に粒状還元鉄原料を供給する場合は、造粒機で造粒した粒状還元鉄原料を乾燥機で乾燥させ、乾燥させた粒状還元鉄原料を原料供給装置、つまり昇降可能に構成された垂直な供給パイプを介して移動炉床炉の炉床に供給し、この供給パイプを上下動させて、この供給パイプの下端と炉床との間の隙間を調整することにより、粒状還元鉄原料の供給量を高精度で調整するようにしたものが開示されている(特許文献1参照)。
[従来技術2]
また、粒状還元鉄原料を原料供給手段を介して移動式炉床炉の炉床上に供給し、この原料供給手段から粒状還元鉄原料を排出する原料排出口より炉床移動方向の下流側で炉床上の粒状還元鉄原料を、均し機(均し装置)の螺旋羽根を回転することにより炉床の幅方向に移動させるとともに、原料粒状還元鉄原料の供給量の変動に追随させて、炉床と均し機の螺旋羽根との間の隙間を変化させるように均し機を昇降させることにより、粒状還元鉄原料を確実に分散し均すようにしたものが開示されている(特許文献2参照。)
【0004】
[従来技術3]
また、粒状還元鉄原料を移動炉床炉で還元する際に、粒状還元鉄原料の80%以上を目標粒径の±2mm以内とすることにより、均質な粒状還元鉄を製造するようにしたものが開示されている(特許文献3参照)。
【0005】
【特許文献1】
特許第3075722号公報
【特許文献2】
特許第3208385号公報
【特許文献3】
特許第3020494号公報
【0006】
【発明が解決しようとする課題】
粒状還元鉄原料は、例えば酸化鉄源としての粉状鉄鉱石と炭素質還元材としての粉状石炭を主とする混合原料をペレットやブリケットに成形して得られる。ここで、ペレットは造粒機による転動造粒で成形できるため、ブリケットプレス等による加圧成形を要するブリケットに比べて生産性が高く、かつダイスの磨耗等によるメンテナンスも必要としない。このため、粒状還元鉄原料は、上記混合原料の造粒性が悪くペレット化が困難な場合を除いて、ペレットとして製造されることが一般的である。
【0007】
ペレットを製造する造粒機としては、通常、パン型ペレタイザまたはドラム型ペレタイザが用いられる。いずれの造粒機を用いても、その造粒原理から、得られるペレットは広い粒度分布を有する。参考として、図4に、移動炉床炉を用いた還元鉄製造プラントのパン型ペレタイザで粉状鉄鉱石と粉状石炭を主とする混合原料をペレットに造粒したときの粒度分布を示す。図4中の多数の折れ線は、粒度分布の時間的な変動を示すものである(なお、折れ線の数が多いため(a)と(b)とに分けて示した)。図示されるように、ペレットの粒径は平均粒径を中心にして±5〜10mm程度の広い範囲に分布するとともに、時間的にもその平均粒径が大きく変動することがわかる。
【0008】
ここで、上記従来技術3に開示されたように、粒状還元鉄原料の80%以上を目標粒径の±2mm以内とすれば均質な粒状還元鉄が得られることが知られている。しかしながら、粒状還元鉄原料としてペレットを用いる場合は、上記のようにペレット粒径は広い範囲に分布し、かつ平均粒径も大きく変動するため、このような狭い粒径範囲のものだけを使用することは造粒歩留を考慮すると現実的には不可能である。ここに、造粒歩留とは、全造粒量のうち移動炉床炉に供給されるペレット量の割合をいう。つまり、図4粒度分布において、上記従来技術3よりは現実的な例えば13〜22mm径のペレットだけを用いたとすると、その造粒歩留は40%強から90%程度の範囲で変動することとなる(図5参照)。したがって、この変動範囲の下限の造粒歩留40%強を考慮すると、造粒機の造粒能力(実機プラントにおいて造粒機を複数台設ける場合には複数の造粒機の合計造粒能力)は還元に必要なペレット量の2倍以上の造粒能力を必要とする。また、このような余裕を持った造粒機を設置したとすると、歩留が90%程度になったときには、生ペレットの性質上貯蔵することが困難であることから、折角還元に適した粒径のペレットを余剰分として混合原料にリサイクル処理する必要に迫られる。
【0009】
したがって、ほとんどの移動炉床炉を用いた還元鉄製造プラントにおいては、造粒機の造粒能力にこのような過大な余裕は持たせず、使用する粒径範囲を広げて高歩留を維持するように操業するのが一般的である。上記図4に示すような粒度分布を持つ造粒機においては、使用するペレットの粒径範囲を9〜25mm程度ないしはそれ以上に広げて操業している(図5参照)。
【0010】
ここで、伝熱および還元反応を考慮したシミュレーション計算により、単一粒径のペレットを炉床上に1層、2層または3層にそれぞれ積層して移動炉床炉内で雰囲気温度1350℃にて加熱還元して金属化率90%の還元鉄を得る場合における、ペレット粒径と還元鉄の生産性との関係を図6に示す。1層または2層の場合はペレット粒径の増大とともに生産性が増大し、粒径16mm以上で約150kg/(m2・h)の生産性が得られる。これに対し、3層の場合は、粒径10mm以上で生産性は頭打ちとなり、生産性は約100kg/(m2・h)に留まっている。これは、3層になると最下層のペレットは上2層のペレットの陰になって雰囲気または炉壁からの輻射加熱の効果がほとんどなくなるためと考えられる。
【0011】
また、上記シミュレーション計算により、18mmの単一粒径のペレットを炉床上に1層に敷いた場合に金属化率92%の還元鉄が得られる、雰囲気温度および滞留時間の操業条件下において、粒径範囲9〜25mmのペレットを上記従来技術1,2の方法により炉床上に供給した場合を想定する計算を行った。上記従来技術1,2の方法ではペレットは炉床上にほぼ一定層厚で積層される。このため、10.5mmの単一粒径のペレットでは2層に積層され、その下層側のペレットの金属化率は約75%が得られるものの、9mmの単一粒径のペレットでは3層に積層され、その最下層のペレットの金属化率は約40%しか得られないという計算結果が得られた。
【0012】
上記従来技術1の方法により上記のような広い粒径範囲のペレットを炉床に供給するには、供給パイプの下端と炉床との間の隙間をペレットの最大粒径に合わせて調整する必要がある。また、上記従来技術2の方法により上記のような広い粒径範囲のペレットを炉床上に均すには、炉床と均し機の螺旋羽根との間の隙間をペレットの最大粒径に合わせて調整する必要がある。このため、実操業において従来技術1,2の方法を用いると、小粒径のペレットが大粒径のペレット間の隙間に供給されたり、小粒径ペレットが3層以上の多層に積層されたりしやすかった。このため、上記シミュレーション計算の結果から予測されるように、還元鉄の生産性を高位に維持しようとすると下層部の陰になった小粒径のペレットの金属化率が低下することにより還元鉄の平均金属化率が低下し製品品質が低下してしまう。一方、製品品質の維持、すなわち還元鉄の平均金属化率を目標金属化率に維持するために滞留時間を延長して下層部のペレットの金属化率を高めようとすると、還元鉄の生産性が大幅に低下してしまうという問題があった。
また、酸化亜鉛を含有する粒状還元鉄原料を移動炉床炉内で加熱還元して脱亜鉛還元鉄を製造する場合においても、上記と同様の理由により、還元鉄の生産性を高位に維持しようとすると下層部の小粒径のペレットの脱亜鉛率が低下することにより還元鉄の平均脱亜鉛率が低下し製品品質が低下してしまう。一方、製品品質の維持、すなわち還元鉄の平均脱亜鉛率を目標脱亜鉛率に維持するために滞留時間を延長して下層部のペレットの脱亜鉛率を上昇させると、還元鉄の生産性が大幅に低下してしまうという問題があった。
【0013】
そこで本発明は、ペレット(粒状還元金属原料)を移動炉床炉の炉床上に供給し、この炉床上の粒状還元金属原料を前記移動炉床炉内で加熱し還元することにより粒状還元金属となす粒状還元金属の製造方法において、ペレット(粒状還元金属原料)の造粒歩留を低下させることなく、高品質の粒状還元金属を高生産性で製造し得る方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1に記載の発明は、粒状還元金属原料を原料分級手段により予め複数の粒径範囲に分級する原料分級工程と、前記それぞれの粒径範囲のものごとに複数の原料供給手段を介して、移動炉床炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給するとともに、前記異なる領域のうち粒度の細かい粒径範囲のものが供給された領域ほど、前記炉床上の原料層厚が小さくなるように、前記複数の原料供給手段による原料供給量を調整する原料供給工程と、この供給された粒状還元金属原料を前記炉床の移動とともに前記移動炉床炉内を通過させて加熱し還元することにより粒状還元金属となす還元工程と、を備え、前記複数の原料供給手段が、それぞれ、原料受入ホッパとその下端開口部に接続された供給パイプを備え、前記複数の原料供給手段による原料供給量の調整を、前記各供給パイプの下端と前記炉床の間の隙間を調整することにより行うことを特徴とする粒状還元金属の製造方法である。
【0016】
請求項に記載の発明は、粒状還元金属原料を原料分級手段により予め複数の粒径範囲に分級する原料分級工程と、前記それぞれの粒径範囲のものごとに複数の原料供給手段を介して、移動炉床炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給する原料供給工程と、前記異なる領域のうち粒度の細かい粒径範囲のものが供給される領域ほど、前記炉床と均し手段の螺旋羽根との間の隙間が小さくなるように構成し、前記螺旋羽根を回転することにより前記炉床上の粒状還元金属原料を前記炉床の幅方向に分散させることによって、前記粒度の細かい粒径範囲のものが供給される領域ほど前記炉床上の原料層厚が小さくなるように前記炉床上の粒状還元金属原料を均す原料均し工程と、この均された粒状還元金属原料を前記炉床の移動とともに前記移動炉床炉内を通過させて加熱し還元することにより粒状還元金属となす還元工程と、を備えたことを特徴とする粒状還元金属の製造方法である。
【0017】
請求項に記載の発明は、粒状還元金属原料を予め複数の粒径範囲に分級する原料分級手段と、前記分級されたそれぞれの粒径範囲のものごとに、炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給する複数の原料供給手段と、粒状還元金属原料を、炉内を移動する炉床上に供給する原料供給手段と、前記異なる領域のうち粒度の細かい粒径範囲のものが供給される領域ほど、前記炉床と均し手段の螺旋羽根との間の隙間が小さくなるように構成され、前記螺旋羽根を回転することにより前記炉床上の粒状還元金属原料を前記炉床の幅方向に分散させることによって、前記粒度の細かい粒径範囲のものが供給される領域ほど前記炉床上の原料層厚が小さくなるように前記炉床上の粒状還元金属原料を均す均し手段と、この均された粒状還元金属原料を前記炉床の移動とともに炉内を通過させて加熱し還元することにより粒状還元金属となす移動炉床炉と、を備えたことを特徴とする粒状還元金属の製造装置である。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態について図を参照しつつ詳細に説明する。図1に、本発明の実施形態に係る粒状還元鉄原料の供給部の概略を示す。ここに、符号1は分級手段としてのローラスクリーン、符号2(21,22,23)は原料供給手段としての原料供給装置、符号3は移動炉床炉、符号4は炉床、符号5は均し手段としての均し装置、符号6は均し装置5に設けられた螺旋羽根を示す。
【0019】
[原料分級工程]:図示しない乾燥機で乾燥された酸化鉄と炭素質還元剤を主成分とする粒状還元鉄原料としてのペレットPは、ベルトコンベア11によりローラスクリーン1上に供給される。ローラスクリーン1は、図示されるように複数の回転自在のローラからなり、ベルトコンベア11からのペレットPの落ち口側(手前側という)のローラ間隔を小さくし、先端側にいくに従いローラ間隔を大きくしておき、先端側が手前側より低くなるように傾斜させて設置する。これにより、ローラスクリーン1に供給されたペレットPは、ローラ間隔に応じて手前側に小粒径のペレット、先端側に大粒径のペレットと順次異なる粒径範囲ごとに分けて分級される。本実施形態ではペレットPは、粒度の小さい側からP1,P2,P3の順番に3つの粒径範囲に分級されるものとした。
【0020】
[原料供給工程]:ローラスクリーン1の下方には、粒径ごとに分級されたペレットP1,P2,P3をそれぞれ別個に移動炉床炉3内を移動する炉床4の幅方向の異なる領域R1,R2,R3に分けて供給する原料供給装置21,22,23が設けられている。なお、移動炉床炉3の炉床4には、水平に回転する円形状形式のものや直進する直線状形式のものがあるが、炉床4の形式はいずれの形式であってもよい。また、ペレットPは造粒後に乾燥することなく、そのまま移動炉床炉3に供給して還元される場合もある。
【0021】
原料供給装置21は、ローラスクリーン1から分級されて落下してくるペレットP1を受け入れる原料受入ホッパ21aと、この原料受入ホッパ21aに受け入れられたペレットP1を炉床4上の領域R1に供給する供給パイプ21bとからなる。原料供給装置22,23についても原料供給装置21と同様の構成である。
【0022】
ローラスクリーン1は炉床4の幅方向に沿って(すなわち、炉床4の移動方向に対し直角方向に)設置し、各原料受入ホッパ21a,22a,23aは、ローラスクリーン1の真下の位置であって、ペレットP1,P2,P3がそれぞれ落下してくる位置に順次隣接させて設ける。そして、各原料受入ホッパ21a,22a,23aの下端開口部に供給パイプ21b,22b,23bをそれぞれ接続し、供給パイプ21b,22b,23bの下端は、ペレットP1,P2,P3が安定して供給できるように、炉床4とそれぞれ適当な大きさの隙間を開けて設置する。これにより、粒径範囲の異なるペレットP1,P2,P3は、供給パイプ21b,22b,23bの下端から炉床4上の幅方向の異なる領域R1,R2,R3に分けて供給される。このようにして粒径範囲の異なるペレットP1,P2,P3を炉床4上の幅方向の異なる領域R1,R2,R3に分けて載置することによって、小粒径のペレットP1が大粒径のペレットP3間の隙間に供給されて陰になることがなく、また供給パイプ21bの下端と炉床3の間の隙間を調整することにより小粒径のペレットP1の供給量だけを単独に調整することができ、小粒径のペレットが3層以上の多層に積層されることを容易に防止できる。
【0023】
また、粒度の細かい粒径範囲のペレットが供給された領域ほど炉床4上の原料層厚が小さくなるように供給するためには、例えば供給パイプ21b,22b,23bと炉床3の間の各隙間をこの順番で順次大きくすればよい。これにより、元のペレットPの粒径範囲が広くても、各粒径範囲のペレットP1,P2,P3ごとに原料層厚を変更できるため、粒度の最も細かい粒径範囲のペレットP1が供給された領域R1でも3層以上の多層に積層されることがなく、すべての粒径範囲ごとに2層以下とすることができる。
【0024】
[原料均し工程]:また、供給パイプ21b,22b,23bの炉床移動方向の下流側に、炉床4幅方向に沿い(すなわち、炉床移動方向に対し直角方向に)水平な回転軸7に備えられた螺旋羽根6を有する均し装置5を設け、粒度の細かい粒径範囲のものが供給される領域ほど、炉床4と均し装置5の螺旋羽根6との間の隙間を小さくするように構成してもよい。これにより、供給パイプ21b,22b,23bにより炉床4上に供給されたペレットP1,P2,P3が螺旋羽根6の回転にともなって炉床4の幅方向に移動して均されるとともに、粒度の細かい粒径範囲のペレットが供給された領域ほど炉床4上の原料層厚を小さくできる。
【0025】
粒度の細かい粒径範囲のものが供給される領域ほど炉床4と均し装置5の螺旋羽根6との間の隙間を小さくするためには、例えば図1に示すように、上記従来技術2と同様の、外径が一定の螺旋羽根6を備えた均し装置5を、その回転軸7を水平でなく(すなわち、炉床4と平行でなく)、粒度の細かい粒径範囲のものが供給される領域R1の方が粒度の粗い粒径範囲のものが供給される領域R3より低くなるように傾けて設置するとよい。
【0026】
あるいは、図示していないが、螺旋羽根6の外径を、上記従来技術2と異なり、粒度の細かい粒径範囲のものが供給される領域ほど大きくし、回転軸7は上記従来技術2と同様に水平(すなわち、炉床4と平行)に設置することによっても可能である。
【0027】
このようにして、粒度の細かい粒径範囲のペレットが供給された領域ほど炉床4上の原料層厚が小さくなるように均したことにより、粒度の最も細かい粒径範囲のペレットP1が供給された領域R1でも3層以上の多層に積層されることがなく、すべての粒径範囲ごとに確実に2層以下となる。
【0028】
[還元工程]:この2層以下に均されたペレットP1,P2,P3を、炉床4の移動とともに高温雰囲気中の移動炉床炉3内を通過させることにより、ペレットP1,P2,P3は下層まで迅速に加熱還元されるので、高金属化率の粒状還元鉄を高生産性で得ることができる。
【0029】
上記実施形態では、3つの粒径範囲に分級する場合について説明したが、これに限られるものではなく、炉床4幅等に応じて適宜分級の数を変更しうるものである。また、ローラスクリーン1のローラ間隔は、供給されるペレットの粒度分布の変更・変動等に対応できるように可変として調整可能としておくのが望ましい。また、図1においては隣接する原料受入ホッパの間(21aと22aの間、22aと23aの間)には仕切り壁を設けていないがこれに限られず、異なる粒径範囲のペレットが混入しないように仕切り壁を設けることも好ましい。また、図1においては供給パイプ21b,22b,23bは炉床4に対し直角方向に設置したがこれに限られず、ローラスクリーン1および原料受入ホッパ21a,22a,23aの位置と供給したい炉床4上の領域R1,R2,R3との位置関係等によっては傾斜させて設置してもよい。また、供給パイプ21b,22b,23bおよび均し装置5は、供給されるペレットの粒度分布の変動に対応して炉床4との隙間を調整できるように昇降可能に構成しておくことも望ましい(上記従来技術1,2参照)。
【0030】
【実施例】
[実施例]
図1に示す構成の装入部を備えた回転炉床炉(移動炉床炉)による還元鉄製造設備を用いて還元鉄の製造試験を行った。図1において、図面左側が回転炉床炉3の外周側を示す。ローラスクリーン1のローラ間隔は、ペレットPの落ち口側から9〜18mm、18〜21mm、21〜25mmの3種類に調整し、これら各粒径範囲に分級されたペレットP1,P2,P3が原料受入ホッパ21a,22a,23aおよび供給パイプ21b,22b,23bを介して炉床上の異なる領域R1,R2,R3に供給されるようにした。なお、上記3種類の粒径範囲は、各粒径範囲のペレットP1,P2,P3の供給量がほぼ等しくなるように設定したものである。そして、外径一定の螺旋羽根6を備えたレベラ(均し装置)の回転軸7を水平から傾けて、炉床4と螺旋羽根6との間の隙間が、回転炉床炉3の外周側(図面左側)から炉床4幅の1/3の位置で21mm、2/3の位置で25mmとなるように調整した。
【0031】
[比較例]
図1において、ローラスクリーン1は設けず、原料供給装置は図1の真中の1基(符号22)のみ設置し、外径一定の螺旋羽根6を備えたレベラ(均し装置)5は、炉床4と螺旋羽根6との間の隙間が25mm一定となるように水平に設置した。
【0032】
[還元試験結果]
パン型ペレタイザで造粒後、乾燥機で乾燥して得られた9〜25mmのペレットPを、上記実施例および比較例の設備をそれぞれ用いて、回転炉床炉3に供給し還元試験を行った。回転炉床炉3内の雰囲気温度はともに1350℃とした。
【0033】
図2および図3に、上記実施例および比較例の設備によりそれぞれ装入したときの、炉床4の幅方向断面におけるペレットの積層状態を模式的に示す。
【0034】
図2より明らかなように、上記実施例の設備により供給したときは、粒径範囲が18〜21mmの領域R2および粒径範囲が21〜25mmの領域R3においては、ともにペレットは1層に均され、粒径範囲が9〜18mmの領域R1においては、粒径が18mmに近いペレットでは1層に、粒径が9mmに近いペレットでは2層に均されている。
【0035】
これに対し、図3に見られるとおり、上記比較例の設備により供給したときは、粒径が9mmに近い小粒径のペレットは、粒径18〜25mmの大粒径のペレット間の隙間に存在したり、3層に積層されているのがわかる。
【0036】
上記実施例においてペレットの炉内滞留時間を8minにしたところ、領域R3のペレットの金属化率は83%前後であったが、領域R1およびR2のペレットは93%前後の高い金属化率が得られ、還元鉄全体の平均では約90%の高い金属化率が得られた。このときの生産性も125〜130kg/(m2・h)と高い生産性を維持することができた。
【0037】
これに対し、上記比較例においてペレットの炉内滞留時間を上記実施例と同じ8minにしたところ、上記実施例の領域R3に相当する領域に存在する粒径21〜25mmのペレットの金属化率は上記実施例と同様の83%前後であったが、大粒径のペレット間の隙間や3層となっている部分に存在する粒径9mmに近い小粒径のペレットの金属化率は約75%と低く、還元鉄全体の平均では80%弱であった。また、還元鉄の品質を向上させるためにペレットの炉内滞留時間を延長して還元鉄全体の平均金属化率90%が得られるようにした場合には、生産性は約100kg/(m2・h)まで低下させる必要があった。
【0038】
なお、造粒歩留は、上記実施例、比較例とも時間平均で90%以上を達成できた。
【0039】
【発明の効果】
以上より、本発明によれば、ペレット(粒状還元金属原料)を移動炉床炉の炉床上に供給し、この炉床上の粒状還元金属原料を前記移動炉床炉内で加熱し還元することにより粒状還元金属となす粒状還元金属の製造方法において、ペレット(粒状還元金属原料)の造粒歩留を低下させることなく、高品質の粒状還元金属を高生産性で製造できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る粒状還元鉄原料の供給部の概略を示す垂直断面図である。
【図2】実施例の装入設備により装入されたペレットの積層状態を模式的に示す炉床幅方向の垂直断面図である。
【図3】比較例の装入設備により装入されたペレットの積層状態を模式的に示す炉床幅方向の垂直断面図である。
【図4】パン型ペレタイザで造粒されたペレットの粒度分布を示すグラフ図である。
【図5】パン型ペレタイザで造粒されたペレットの造粒歩留の変動を示すグラフ図である。
【図6】ペレット粒径と還元鉄の生産性との関係を示すグラフ図である。
【符号の説明】
1…原料分級手段(ローラスクリーン)
2,21,22,23…原料供給手段(原料供給装置)
21a,22a,23a…原料受入ホッパ
21b,22b,23b…供給パイプ
3…移動炉床炉
4…炉床
5…均し手段(均し装置)
6…螺旋羽根
7…回転軸
11…ベルトコンベア
P,P1,P2,P3…粒状還元金属原料(ペレット)
R1,R2,R3…領域
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the field of technology for reducing granular reduced metal raw materials mainly composed of metal oxide and carbonaceous reducing material in a moving hearth furnace.
[0002]
In the following prior art, problems to be solved by the invention and embodiments of the invention, iron oxide, granular reduced iron raw material and reduced iron are exemplified as the metal oxide, granular reduced metal raw material and reduced metal, respectively. However, the present invention is not limited to this. In addition to iron (Fe), non-ferrous metal elements such as Mn, Ni, Cr, Mo, and Ti are also targeted as the metal elements contained in the metal oxide, granular reduced metal raw material, and reduced metal according to the present invention. In addition, those containing any plural kinds of these iron and non-ferrous metal elements are also targeted.
[0003]
[Prior art]
[Prior art 1]
Conventionally, a moving hearth furnace has been used to reduce pelletized or briquetted granular reduced iron raw materials mainly composed of iron oxide and a carbonaceous reducing material. When supplying granular reduced iron raw material to this moving hearth furnace, the granular reduced iron raw material granulated by the granulator is dried by a dryer, and the dried granular reduced iron raw material can be moved up and down, that is, can be moved up and down. It is supplied to the hearth of the moving hearth furnace through the configured vertical supply pipe, and this supply pipe is moved up and down to adjust the gap between the lower end of this supply pipe and the hearth, The thing which adjusted the supply amount of reduced iron raw material with high precision is disclosed (refer patent document 1).
[Prior art 2]
Further, the granular reduced iron raw material is supplied onto the hearth of the mobile hearth furnace through the raw material supply means, and the furnace is provided downstream of the raw material discharge port from which the granular reduced iron raw material is discharged from the raw material supply means. The granular reduced iron raw material on the floor is moved in the width direction of the hearth by rotating the spiral blades of the leveling machine (equalizing device), and the fluctuation of the supply amount of the raw granular reduced iron raw material is followed. Disclosed is a material in which the granular reduced iron raw material is reliably dispersed and leveled by raising and lowering the leveler so as to change the gap between the floor and the spiral blade of the leveling machine (Patent Document). (See 2.)
[0004]
[Prior art 3]
In addition, when reducing granular reduced iron raw material in a moving hearth furnace, uniform granular reduced iron is produced by setting 80% or more of the granular reduced iron raw material to be within ± 2 mm of the target particle size. Is disclosed (see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent No. 3075722 [Patent Document 2]
Japanese Patent No. 3208385 [Patent Document 3]
Japanese Patent No. 3020494 [0006]
[Problems to be solved by the invention]
The granular reduced iron raw material is obtained, for example, by forming a mixed raw material mainly composed of powdered iron ore as an iron oxide source and powdered coal as a carbonaceous reducing material into pellets and briquettes. Here, since the pellet can be formed by rolling granulation using a granulator, the productivity is higher than that of a briquette that requires pressure molding using a briquette press or the like, and maintenance due to die wear or the like is not required. For this reason, the granular reduced iron raw material is generally produced as a pellet except when the granulated property of the mixed raw material is poor and pelletization is difficult.
[0007]
As a granulator for producing pellets, a bread-type pelletizer or a drum-type pelletizer is usually used. Regardless of which granulator is used, the pellets obtained have a wide particle size distribution due to the granulation principle. For reference, FIG. 4 shows a particle size distribution when a mixed raw material mainly composed of powdered iron ore and powdered coal is granulated into pellets by a pan-type pelletizer of a reduced iron manufacturing plant using a moving hearth furnace. A large number of polygonal lines in FIG. 4 indicate temporal fluctuations in the particle size distribution (note that the number of polygonal lines is large, and is shown separately in (a) and (b)). As shown in the figure, it can be seen that the particle size of the pellets is distributed over a wide range of about ± 5 to 10 mm centering on the average particle size, and the average particle size varies greatly with time.
[0008]
Here, as disclosed in the prior art 3, it is known that homogeneous granular reduced iron can be obtained if 80% or more of the granular reduced iron raw material is within ± 2 mm of the target particle size. However, when pellets are used as the granular reduced iron raw material, the pellet particle size is distributed over a wide range as described above, and the average particle size varies greatly. Therefore, only those having such a narrow particle size range are used. This is practically impossible considering the granulation yield. Here, the granulation yield refers to the ratio of the amount of pellets supplied to the moving hearth furnace out of the total granulation amount. That is, in the particle size distribution shown in FIG. 4, if only pellets having a diameter of, for example, 13 to 22 mm, which is more realistic than the above-described prior art 3, are used, the granulation yield varies from a little over 40% to about 90%. (See FIG. 5). Therefore, considering the granulation yield of more than 40%, which is the lower limit of the fluctuation range, the granulation capacity of the granulator (the total granulation capacity of multiple granulators when multiple granulators are installed in the actual plant) ) Requires a granulation capacity more than twice the amount of pellets required for reduction. Also, if a granulator with such a margin is installed, it is difficult to store due to the nature of raw pellets when the yield reaches about 90%. There is an urgent need to recycle the pellets of diameter as a surplus to the mixed material.
[0009]
Therefore, most of the reduced iron production plants using moving hearth furnaces do not have such an excessive margin in the granulation capacity of the granulator, and maintain a high yield by expanding the particle size range used. It is common to operate. In the granulator having the particle size distribution as shown in FIG. 4, the operation is performed by expanding the particle size range of the pellets used to about 9 to 25 mm or more (see FIG. 5).
[0010]
Here, by simulation calculation considering heat transfer and reduction reaction, pellets of a single particle size are laminated on the hearth in one layer, two layers, or three layers, respectively, and the atmosphere temperature is 1350 ° C. in the moving hearth furnace. FIG. 6 shows the relationship between the pellet particle size and the reduced iron productivity when reducing iron with a metallization rate of 90% is obtained by heat reduction. In the case of one layer or two layers, the productivity increases as the pellet particle size increases, and a productivity of about 150 kg / (m 2 · h) is obtained at a particle size of 16 mm or more. On the other hand, in the case of three layers, the productivity reaches a peak at a particle size of 10 mm or more, and the productivity remains at about 100 kg / (m 2 · h). This is presumably because in the case of three layers, the lowermost layer pellets are behind the upper two layer pellets and the effect of radiant heating from the atmosphere or the furnace wall is almost lost.
[0011]
Further, according to the above simulation calculation, reduced particles with a metalization rate of 92% can be obtained when pellets having a single particle size of 18 mm are laid on the hearth in one layer. Calculations were performed assuming that pellets having a diameter range of 9 to 25 mm were supplied onto the hearth by the methods of the prior arts 1 and 2 described above. In the prior arts 1 and 2, the pellets are laminated on the hearth with a substantially constant layer thickness. For this reason, the pellets with a single particle size of 10.5 mm are laminated in two layers, and the metallization ratio of the pellets on the lower layer side is about 75%, but the pellets with a single particle size of 9 mm are divided into three layers. A calculation result was obtained that the metallization rate of the laminated pellets of the lowermost layer was only about 40%.
[0012]
In order to supply pellets having a wide particle size range as described above to the hearth by the method of Prior Art 1, it is necessary to adjust the gap between the lower end of the supply pipe and the hearth to the maximum particle size of the pellets. There is. In addition, in order to level the above-mentioned pellet having a wide particle size range on the hearth by the method of Prior Art 2, the gap between the hearth and the spiral blade of the leveler is adjusted to the maximum particle size of the pellet. Need to be adjusted. For this reason, when the methods of the prior art 1 and 2 are used in actual operation, small particle size pellets are supplied to the gaps between large particle size pellets, or small particle size pellets are laminated in three or more layers. It was easy. For this reason, as predicted from the results of the above simulation calculation, when the productivity of reduced iron is maintained at a high level, the metallization rate of the small particle size pellets hidden behind the lower layer portion decreases, thereby reducing the reduced iron. As a result, the average metallization rate is lowered and the product quality is lowered. On the other hand, when maintaining the product quality, that is, to maintain the average metallization rate of reduced iron at the target metallization rate, if the residence time is extended to increase the metallization rate of the pellets in the lower layer, the productivity of reduced iron is increased. There was a problem that would be significantly reduced.
Also, when producing reduced dezincified iron by heating and reducing granular reduced iron material containing zinc oxide in a moving hearth furnace, maintain the reduced iron productivity at a high level for the same reason as above. Then, since the dezincification rate of the pellets having a small particle size in the lower layer portion is lowered, the average dezincification rate of the reduced iron is lowered and the product quality is lowered. On the other hand, when maintaining the product quality, that is, maintaining the average dezincification rate of the reduced iron at the target dezincification rate, increasing the residence time and increasing the dezincification rate of the pellets in the lower layer will reduce the productivity of reduced iron. There was a problem of a significant drop.
[0013]
Therefore, the present invention supplies pellets (granular reduced metal raw material) onto the hearth of a moving hearth furnace, and heats and reduces the granular reduced metal raw material on the hearth in the moving hearth furnace, An object of the present invention is to provide a method for producing a high-quality granular reduced metal with high productivity without reducing the granulation yield of pellets (granular reduced metal raw material). .
[0014]
[Means for Solving the Problems]
The invention according to claim 1 includes a raw material classification step of classifying the granular reduced metal raw material into a plurality of particle size ranges in advance by a raw material classification means, and a plurality of raw material supply means for each of the respective particle size ranges. , And separately supplying different regions in the width direction of the hearth moving in the moving hearth furnace, and the regions supplied with the finer particle size range of the different regions are on the hearth A raw material supply step of adjusting the raw material supply amount by the plurality of raw material supply means so that the raw material layer thickness is reduced, and the supplied granular reduced metal raw material passes through the moving hearth furnace along with the movement of the hearth. and a particulate reduced metal and forming a reducing process by reducing heating by said plurality of material supply means, respectively, provided with a supply pipe connected to the lower end opening as a raw material receiving hopper, said plurality of Fee adjustment of the material supply amount of the supply means, wherein a method for producing a granular reduced metal, which comprises carrying out by adjusting the lower and the furnace alcove gaps between the supply pipe.
[0016]
The invention according to claim 2 is a raw material classification step in which the granular reduced metal raw material is preliminarily classified into a plurality of particle size ranges by the raw material classification means, and a plurality of raw material supply means for each of the respective particle size ranges. The raw material supply step of supplying separately in different regions in the width direction of the hearth moving in the moving hearth furnace, and the region where the fine particle size range of the different regions is supplied, The gap between the hearth and the spiral blade of the leveling means is configured to be small, and by rotating the spiral blade, the granular reduced metal raw material on the hearth is dispersed in the width direction of the hearth. A raw material leveling step for leveling the granular reduced metal raw material on the hearth so that the thickness of the raw material layer on the hearth becomes smaller as the region in which the finer particle size range is supplied, and this leveled granularity Reduced metal raw material of the hearth A particulate reduced metal and form reduction step by with dynamic heated by passing through the moving hearth furnace reduction is a method for producing a granular reducing metal comprising the.
[0017]
According to a third aspect of the present invention, there is provided a raw material classifying means for classifying the granular reduced metal raw material into a plurality of particle size ranges in advance, and a hearth moving within the furnace for each of the classified particle size ranges. A plurality of raw material supply means for supplying separately into different regions in the width direction, a raw material supply means for supplying the granular reduced metal raw material onto the hearth moving in the furnace, and a fine particle size among the different regions The region to which the one in the range is supplied is configured such that the gap between the hearth and the spiral blade of the leveling means is reduced, and the granular reduced metal raw material on the hearth is rotated by rotating the spiral blade. By dispersing in the width direction of the hearth, the granular reduced metal raw material on the hearth is leveled so that the raw material layer thickness on the hearth becomes smaller in the region where the finer particle size range is supplied. Leveling means and this leveling A granular reduced metal production apparatus comprising: a moving hearth furnace which is converted into a granular reduced metal by passing the inside of the furnace floor with the movement of the hearth and reducing by heating and reducing the reduced metal raw material. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, the outline of the supply part of the granular reduced iron raw material which concerns on embodiment of this invention is shown. Here, reference numeral 1 is a roller screen as classification means, reference numeral 2 (21, 22, 23) is a raw material supply device as raw material supply means, reference numeral 3 is a moving hearth furnace, reference numeral 4 is a hearth, reference numeral 5 is leveling. A leveling device as a leveling means, 6 is a spiral blade provided in the leveling device 5.
[0019]
[Raw material classification step]: Pellets P as granular reduced iron raw materials mainly composed of iron oxide and a carbonaceous reducing agent dried by a drier not shown are supplied onto the roller screen 1 by the belt conveyor 11. The roller screen 1 is composed of a plurality of rotatable rollers as shown in the figure, and the roller interval on the dropping side (referred to as the front side) of the pellet P from the belt conveyor 11 is reduced, and the roller interval is increased toward the tip side. Keep it large and tilt it so that the tip side is lower than the near side. As a result, the pellets P supplied to the roller screen 1 are classified according to different particle size ranges sequentially from a small particle size pellet on the front side and a large particle size pellet on the front side according to the roller interval. In this embodiment, the pellets P are classified into three particle size ranges in the order of P1, P2, and P3 from the smaller particle size side.
[0020]
[Raw material supply step]: Below the roller screen 1, different regions R1 in the width direction of the hearth 4 in which the pellets P1, P2, P3 classified according to the particle diameter are individually moved in the moving hearth furnace 3. , R2 and R3, and raw material supply devices 21, 22, and 23 are provided. The hearth 4 of the moving hearth furnace 3 includes a circular type that rotates horizontally and a linear type that goes straight, but the type of the hearth 4 may be any type. Further, the pellet P may be supplied to the moving hearth furnace 3 as it is without being dried after granulation and may be reduced.
[0021]
The raw material supply device 21 supplies the raw material receiving hopper 21a that receives the pellets P1 classified and dropped from the roller screen 1, and supplies the pellets P1 received by the raw material receiving hopper 21a to the region R1 on the hearth 4 It consists of a pipe 21b. The material supply devices 22 and 23 have the same configuration as the material supply device 21.
[0022]
The roller screen 1 is installed along the width direction of the hearth 4 (that is, in a direction perpendicular to the moving direction of the hearth 4), and the raw material receiving hoppers 21a, 22a, 23a are positioned immediately below the roller screen 1. Therefore, the pellets P1, P2, and P3 are provided adjacent to the positions where the pellets P1 and P3 fall sequentially. And supply pipe 21b, 22b, 23b is connected to the lower end opening part of each raw material receiving hopper 21a, 22a, 23a, respectively, and pellet P1, P2, P3 is stably supplied to the lower end of supply pipe 21b, 22b, 23b. In order to be able to do so, it is installed with a gap of an appropriate size from the hearth 4. Thereby, the pellets P1, P2, and P3 having different particle size ranges are supplied separately from the lower ends of the supply pipes 21b, 22b, and 23b to the regions R1, R2, and R3 in the width direction on the hearth 4 different from each other. In this way, the pellets P1, P2, P3 having different particle size ranges are placed in different regions R1, R2, R3 in the width direction on the hearth 4 so that the small particle size pellet P1 has a large particle size. It is supplied to the gaps between the pellets P3 and is not shaded, and by adjusting the gap between the lower end of the supply pipe 21b and the hearth 3, only the supply amount of the small-diameter pellets P1 is adjusted independently. It is possible to easily prevent the pellets having a small particle diameter from being laminated in three or more layers.
[0023]
Moreover, in order to supply the raw material layer thickness on the hearth 4 to be smaller in the region where pellets having a finer particle size range are supplied, for example, between the supply pipes 21b, 22b, 23b and the hearth 3 What is necessary is just to enlarge each clearance gap sequentially in this order. Thereby, even if the particle size range of the original pellet P is wide, the raw material layer thickness can be changed for each pellet P1, P2, P3 of each particle size range, so that the pellet P1 having the finest particle size range is supplied. Also, the region R1 is not laminated in a multilayer of three or more layers, and can be two or less for every particle size range.
[0024]
[Raw material leveling step]: Further, a horizontal rotation axis along the width direction of the hearth 4 (that is, in a direction perpendicular to the hearth movement direction) downstream of the supply pipes 21b, 22b, and 23b in the hearth movement direction. 7 is provided with the leveling device 5 having the spiral blades 6, and the gap between the hearth 4 and the spiral blades 6 of the leveling device 5 is increased in the region where the finer particle size range is supplied. You may comprise so that it may become small. As a result, the pellets P1, P2, and P3 supplied onto the hearth 4 by the supply pipes 21b, 22b, and 23b move in the width direction of the hearth 4 along with the rotation of the spiral blade 6 and are leveled. The thickness of the raw material layer on the hearth 4 can be reduced in the region where pellets having a fine particle size range are supplied.
[0025]
In order to reduce the gap between the hearth 4 and the spiral blade 6 of the leveling device 5 in the region where the finer particle size range is supplied, for example, as shown in FIG. The leveling device 5 having a spiral blade 6 having a constant outer diameter is similar to the above, and the rotating shaft 7 is not horizontal (that is, not parallel to the hearth 4), and has a fine particle size range. The region R1 to be supplied may be inclined and installed so as to be lower than the region R3 in which the coarser particle size range is supplied.
[0026]
Alternatively, although not shown in the drawing, the outer diameter of the spiral blade 6 is increased as the region to which the fine particle size is supplied is different from the prior art 2, and the rotating shaft 7 is the same as the prior art 2. It can also be installed horizontally (that is, parallel to the hearth 4).
[0027]
Thus, the pellet P1 having the finest particle size range is supplied by leveling the raw material layer thickness on the hearth 4 to be smaller in the region where the fine particle size range pellets are supplied. Even in the region R1, there is no lamination of three or more layers, and two or less layers are ensured for every particle size range.
[0028]
[Reduction step]: By passing the pellets P1, P2, P3, which have been leveled into two or less layers, through the moving hearth furnace 3 in a high temperature atmosphere together with the movement of the hearth 4, the pellets P1, P2, P3 are Since it is rapidly heated and reduced to the lower layer, granular reduced iron having a high metallization rate can be obtained with high productivity.
[0029]
In the above embodiment, the case of classification into three particle size ranges has been described. However, the present invention is not limited to this, and the number of classifications can be changed as appropriate according to the width of the hearth 4 and the like. Further, it is desirable that the roller interval of the roller screen 1 be adjustable so as to be able to cope with a change / fluctuation in the particle size distribution of the supplied pellets. Further, in FIG. 1, no partition wall is provided between adjacent raw material receiving hoppers (between 21a and 22a, and between 22a and 23a), but this is not restrictive, so that pellets having different particle size ranges are not mixed. It is also preferable to provide a partition wall. In FIG. 1, the supply pipes 21b, 22b, and 23b are installed in a direction perpendicular to the hearth 4. However, the present invention is not limited to this, and the positions of the roller screen 1 and the raw material receiving hoppers 21a, 22a, and 23a and the hearth 4 to be supplied. Depending on the positional relationship with the upper regions R1, R2, R3, etc., they may be inclined. It is also desirable that the supply pipes 21b, 22b, 23b and the leveling device 5 are configured to be movable up and down so that the gap with the hearth 4 can be adjusted in response to fluctuations in the particle size distribution of the supplied pellets. (See the prior arts 1 and 2 above).
[0030]
【Example】
[Example]
A reduced iron production test was conducted using a reduced iron production facility using a rotary hearth furnace (moving hearth furnace) having a charging section having the configuration shown in FIG. In FIG. 1, the left side of the drawing shows the outer peripheral side of the rotary hearth furnace 3. The roller interval of the roller screen 1 is adjusted to three types of 9 to 18 mm, 18 to 21 mm, and 21 to 25 mm from the outlet side of the pellet P, and the pellets P1, P2, and P3 classified into these respective particle size ranges are used as raw materials. It was made to supply to different area | region R1, R2, R3 on a hearth via receiving hopper 21a, 22a, 23a and supply pipe 21b, 22b, 23b. The three types of particle size ranges are set so that the supply amounts of the pellets P1, P2, and P3 in each particle size range are substantially equal. And the rotating shaft 7 of the leveler (equalizing device) provided with the spiral blade 6 having a constant outer diameter is inclined from the horizontal so that the gap between the hearth 4 and the spiral blade 6 is the outer peripheral side of the rotary hearth furnace 3. (Left side of the drawing) was adjusted to be 21 mm at the position 1/3 of the width of the hearth 4 and 25 mm at the position 2/3.
[0031]
[Comparative example]
In FIG. 1, the roller screen 1 is not provided, the raw material supply apparatus is installed only in the middle (reference numeral 22) in FIG. 1, and the leveler (equalizing apparatus) 5 having a spiral blade 6 having a constant outer diameter is a furnace. It installed horizontally so that the clearance gap between the floor 4 and the spiral blade | wing 6 might become fixed 25 mm.
[0032]
[Reduction test results]
The pellet P of 9 to 25 mm obtained by granulating with a pan-type pelletizer and then dried with a dryer is supplied to the rotary hearth furnace 3 using the equipment of the above-mentioned examples and comparative examples, and a reduction test is performed. It was. The atmospheric temperature in the rotary hearth furnace 3 was set to 1350 ° C.
[0033]
FIG. 2 and FIG. 3 schematically show the stacked state of the pellets in the cross section in the width direction of the hearth 4 when charged with the facilities of the above-described examples and comparative examples.
[0034]
As is apparent from FIG. 2, when supplied by the equipment of the above-described embodiment, the pellets are averaged in one layer in the region R2 having a particle size range of 18 to 21 mm and the region R3 having a particle size range of 21 to 25 mm. In the region R1 having a particle size range of 9 to 18 mm, the pellets with a particle size close to 18 mm are leveled into one layer, and the pellets with a particle size close to 9 mm are leveled into two layers.
[0035]
On the other hand, as seen in FIG. 3, when supplied by the equipment of the above comparative example, the small particle size pellets close to 9 mm are in the gaps between the large particle size pellets of 18 to 25 mm particle size. It can be seen that it exists or is laminated in three layers.
[0036]
In the above example, when the pellet residence time in the furnace was 8 min, the metallization rate of the pellets in the region R3 was about 83%, but the pellets in the regions R1 and R2 had a high metallization rate of about 93%. As a result, a high metallization rate of about 90% was obtained on the average of the total reduced iron. The productivity at this time was 125 to 130 kg / (m 2 · h), and high productivity could be maintained.
[0037]
On the other hand, when the residence time of the pellets in the furnace in the comparative example was set to 8 min, which was the same as that in the above example, the metallization rate of the pellets having a particle diameter of 21 to 25 mm existing in the region corresponding to the region R3 in the above example was Although it was around 83% as in the above example, the metallization rate of the pellets having a small particle size close to 9 mm in the gaps between the large particle size pellets and the three-layered portion was about 75. %, And the average total reduced iron was less than 80%. Further, in order to improve the quality of the reduced iron, if the residence time of the pellets in the furnace is extended so that an average metallization rate of 90% of the entire reduced iron is obtained, the productivity is about 100 kg / (m 2・ It was necessary to reduce to h).
[0038]
In addition, the granulation yield was able to achieve 90% or more on a time average in both the above Examples and Comparative Examples.
[0039]
【The invention's effect】
As described above, according to the present invention, pellets (granular reduced metal raw material) are supplied onto the hearth of the moving hearth furnace, and the granular reduced metal raw material on the hearth is heated and reduced in the moving hearth furnace. In the method for producing granular reduced metal to be used as granular reduced metal, high quality granular reduced metal can be produced with high productivity without reducing the granulation yield of pellets (granular reduced metal raw material).
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an outline of a supply portion of granular reduced iron raw material according to an embodiment of the present invention.
FIG. 2 is a vertical sectional view in the hearth width direction schematically showing a stacked state of pellets charged by the charging equipment of the example.
FIG. 3 is a vertical sectional view in the hearth width direction schematically showing a stacked state of pellets charged by a charging facility of a comparative example.
FIG. 4 is a graph showing the particle size distribution of pellets granulated with a bread-type pelletizer.
FIG. 5 is a graph showing fluctuations in granulation yield of pellets granulated with a bread-type pelletizer.
FIG. 6 is a graph showing the relationship between pellet particle size and reduced iron productivity.
[Explanation of symbols]
1 ... Raw material classification means (roller screen)
2, 21, 22, 23 ... Raw material supply means (raw material supply device)
21a, 22a, 23a ... Raw material receiving hoppers 21b, 22b, 23b ... supply pipe 3 ... moving hearth furnace 4 ... hearth 5 ... leveling means (equalizing device)
6 ... spiral blade 7 ... rotating shaft 11 ... belt conveyors P, P1, P2, P3 ... granular reduced metal raw material (pellet)
R1, R2, R3 ... region

Claims (3)

粒状還元金属原料を原料分級手段により予め複数の粒径範囲に分級する原料分級工程と、
前記それぞれの粒径範囲のものごとに複数の原料供給手段を介して、移動炉床炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給するとともに、前記異なる領域のうち粒度の細かい粒径範囲のものが供給された領域ほど、前記炉床上の原料層厚が小さくなるように、前記複数の原料供給手段による原料供給量を調整する原料供給工程と、
この供給された粒状還元金属原料を前記炉床の移動とともに前記移動炉床炉内を通過させて加熱し還元することにより粒状還元金属となす還元工程と、
を備え
前記複数の原料供給手段が、それぞれ、原料受入ホッパとその下端開口部に接続された供給パイプを備え、前記複数の原料供給手段による原料供給量の調整を、前記各供給パイプの下端と前記炉床の間の隙間を調整することにより行うことを特徴とする粒状還元金属の製造方法。
A raw material classification step of preliminarily classifying the granular reduced metal raw material into a plurality of particle size ranges by a raw material classification means;
For each of the respective particle size ranges, a plurality of raw material supply means are used to separately supply different regions in the width direction of the hearth moving in the moving hearth furnace, and the particle size of the different regions A raw material supply step of adjusting a raw material supply amount by the plurality of raw material supply means so that a raw material layer thickness on the hearth becomes smaller as a region in which a fine particle size range is supplied,
A reduction step of converting the supplied granular reduced metal raw material into a granular reduced metal by passing the inside of the moving hearth furnace with the movement of the hearth and heating and reducing,
Equipped with a,
Each of the plurality of raw material supply means includes a raw material receiving hopper and a supply pipe connected to the lower end opening thereof, and the adjustment of the raw material supply amount by the plurality of raw material supply means is adjusted to the lower end of each of the supply pipes and the furnace. A method for producing a granular reduced metal, which is performed by adjusting a gap between floors .
粒状還元金属原料を原料分級手段により予め複数の粒径範囲に分級する原料分級工程と、
前記それぞれの粒径範囲のものごとに複数の原料供給手段を介して、移動炉床炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給する原料供給工程と、
前記異なる領域のうち粒度の細かい粒径範囲のものが供給される領域ほど、前記炉床と均し手段の螺旋羽根との間の隙間が小さくなるように構成し、前記螺旋羽根を回転することにより前記炉床上の粒状還元金属原料を前記炉床の幅方向に分散させることによって、前記粒度の細かい粒径範囲のものが供給される領域ほど前記炉床上の原料層厚が小さくなるように前記炉床上の粒状還元金属原料を均す原料均し工程と、
この均された粒状還元金属原料を前記炉床の移動とともに前記移動炉床炉内を通過させて加熱し還元することにより粒状還元金属となす還元工程と、
を備えたことを特徴とする粒状還元金属の製造方法。
A raw material classification step of preliminarily classifying the granular reduced metal raw material into a plurality of particle size ranges by a raw material classification means;
A raw material supply step for supplying each of the respective particle size ranges separately into different regions in the width direction of the hearth moving in the moving hearth furnace through a plurality of raw material supply means,
The region in which the finer particle size in the different region is supplied is configured such that the gap between the hearth and the spiral blade of the leveling means is reduced, and the spiral blade is rotated. By dispersing the granular reduced metal raw material on the hearth in the width direction of the hearth, the raw material layer thickness on the hearth becomes smaller in the region where the finer particle size range is supplied. A raw material leveling process for leveling the granular reduced metal raw material on the hearth;
A reduction step of converting the averaged granular reduced metal raw material into a granular reduced metal by passing the inside of the moving hearth furnace with the movement of the hearth and reducing by heating and reducing,
A method for producing a granular reduced metal, comprising:
粒状還元金属原料を予め複数の粒径範囲に分級する原料分級手段と、
前記分級されたそれぞれの粒径範囲のものごとに、炉内を移動する炉床の幅方向の異なる領域に分けて別個に供給する複数の原料供給手段と、
前記異なる領域のうち粒度の細かい粒径範囲のものが供給される領域ほど、前記炉床と均し手段の螺旋羽根との間の隙間が小さくなるように構成され、前記螺旋羽根を回転することにより前記炉床上の粒状還元金属原料を前記炉床の幅方向に分散させることによって、前記粒度の細かい粒径範囲のものが供給される領域ほど前記炉床上の原料層厚が小さくなるように前記炉床上の粒状還元金属原料を均す均し手段と、
この均された粒状還元金属原料を前記炉床の移動とともに炉内を通過させて加熱し還元することにより粒状還元金属となす移動炉床炉と、
を備えたことを特徴とする粒状還元金属の製造装置。
Raw material classification means for classifying the granular reduced metal raw material into a plurality of particle size ranges in advance,
A plurality of raw material supply means for separately supplying each of the classified particle size ranges divided into different regions in the width direction of the hearth moving in the furnace,
The region in which the finer particle size in the different region is supplied is configured such that the gap between the hearth and the spiral blade of the leveling means is reduced, and the spiral blade is rotated. By dispersing the granular reduced metal raw material on the hearth in the width direction of the hearth, the raw material layer thickness on the hearth becomes smaller in the region where the finer particle size range is supplied. Leveling means for leveling the granular reduced metal raw material on the hearth;
A moving hearth furnace that turns into a granular reduced metal by heating and reducing the averaged granular reduced metal raw material while passing through the furnace with the movement of the hearth;
An apparatus for producing a granular reduced metal, comprising:
JP2003162451A 2003-06-06 2003-06-06 Granular reduced metal production method and production apparatus thereof Expired - Fee Related JP4178079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162451A JP4178079B2 (en) 2003-06-06 2003-06-06 Granular reduced metal production method and production apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162451A JP4178079B2 (en) 2003-06-06 2003-06-06 Granular reduced metal production method and production apparatus thereof

Publications (2)

Publication Number Publication Date
JP2004360041A JP2004360041A (en) 2004-12-24
JP4178079B2 true JP4178079B2 (en) 2008-11-12

Family

ID=34054593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162451A Expired - Fee Related JP4178079B2 (en) 2003-06-06 2003-06-06 Granular reduced metal production method and production apparatus thereof

Country Status (1)

Country Link
JP (1) JP4178079B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407436B2 (en) * 2008-03-05 2014-02-05 Jfeスチール株式会社 Raw material charging method and raw material charging apparatus for mobile hearth furnace
JP5406543B2 (en) * 2009-01-29 2014-02-05 株式会社神戸製鋼所 Raw pellet sieving method with roller screen
JP5341593B2 (en) * 2009-03-31 2013-11-13 本田技研工業株式会社 Abrasive grain classifier

Also Published As

Publication number Publication date
JP2004360041A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US6284017B1 (en) Method and facility for producing reduced iron
TW565617B (en) Raw pellets containing oxidized metal for a reduction furnace, a method for production the same, a method for reducing the raw pellets and a reducing apparatus
JP2010132956A (en) Method for conveying granule
JP4178079B2 (en) Granular reduced metal production method and production apparatus thereof
RU2675883C2 (en) Method and device for producing granulates
JP2012144788A (en) Method and device for producing hot briquette iron
CN109868361B (en) Ring type roasting machine and ring type roasting radial uniform-thickness uniform-distribution device thereof
KR101427311B1 (en) Pellitizer
US7311519B2 (en) Raw material feeding apparatus for rotary hearth furnace
CN103038368B (en) Method for producing starting material for sintering
JP2010242226A (en) Method for pretreating raw material for sintering
JP2005226113A (en) Method for charging sintering raw material
CN210394476U (en) Breaking and mixing machine
CN210104035U (en) Ring type roasting machine and ring type roasting radial uniform-thickness material distribution device thereof
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP2001347228A (en) Sifting apparatus for lumpy raw material and sifting process
JP2005154867A (en) Method for charging raw material into vertical furnace
CN116144921B (en) Material distribution method for composite agglomeration of sintering machine and composite agglomerate ore
JP5079968B2 (en) Method and apparatus for manufacturing fixed floor
US3864119A (en) Method and apparatus for simultaneously producing large and small heat hardened agglomerates of mineral ore
WO2018083372A1 (en) Sintering equipment, a plant for exploiting dust and waste from iron production and use thereof
JP3772377B2 (en) Rotating chute for bellless type furnace top charging equipment for blast furnace
JP5853977B2 (en) Raw material charging method to blast furnace
JPH1112626A (en) Production of reduced iron
JP3867506B2 (en) Product discharger for mobile hearth furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees