JP4177566B2 - Transmitter output switching device - Google Patents

Transmitter output switching device Download PDF

Info

Publication number
JP4177566B2
JP4177566B2 JP2001183451A JP2001183451A JP4177566B2 JP 4177566 B2 JP4177566 B2 JP 4177566B2 JP 2001183451 A JP2001183451 A JP 2001183451A JP 2001183451 A JP2001183451 A JP 2001183451A JP 4177566 B2 JP4177566 B2 JP 4177566B2
Authority
JP
Japan
Prior art keywords
terminal
output
bridged
type application
application circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001183451A
Other languages
Japanese (ja)
Other versions
JP2002374176A (en
Inventor
智 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2001183451A priority Critical patent/JP4177566B2/en
Publication of JP2002374176A publication Critical patent/JP2002374176A/en
Application granted granted Critical
Publication of JP4177566B2 publication Critical patent/JP4177566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は送信機出力切替装置に関し、特に、中波帯または短波帯で使用する送信機の出力を切替える送信機出力切替装置に関する。
【0002】
【従来の技術】
従来、VHF帯やUHF帯の放送機出力切替については、特公平1−33041号公報に記載の技術が知られているが、中波帯または短波帯の送信機については、図11に示すように、出力本線に切替スイッチ10を設け、送信機11と送信機12のいずれかを負荷13に接続し出力切替を行っている。切替時は送信機11,12と切替スイッチ10を保護する観点から、送信機11,12の出力を一時遮断状態として切替える。これは、活線状態で切替えた場合、送信機11,12側からみた負荷インピーダンスに変動が生じ、電圧定在波比が増大し、反射波により送信機11,12を損傷する恐れがあるからである。
【0003】
【発明が解決しようとする課題】
従来の中波帯または短波帯の送信機の出力切替装置は、本線系統に切替スイッチ10を設けた方式が一般的に用いられ、負荷13に供給する電力を一定に保った状態で送信機を切替えることは不可能であり、一旦電力供給を停止している。
【0004】
通常、高い信頼性が要求される装置では、複数の送信機を用意し、任意の送信機出力を合成して得た規定出力を負荷に供給する方式をとっている。この方式は冗長系が確保でき、切替える必要のない送信機については動作状態のままで切替え対象となる送信機のみ停止させることができる。従って、切替時にも負荷に対して出力を供給できるものの、切替動作過程では負荷への供給電力の低下は避けられないという問題があった。
【0005】
本発明は、上記の点に鑑みなされたもので、送信機が動作状態のままで切替えを行うことができ、かつ、負荷への供給電力を一定に保った状態で切替えることができる送信機出力切替装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、中波帯または短波帯で使用する2つの送信機の出力を切替える送信機出力切替装置であって
第1送信機出力が第1端子に供給され、第2送信機出力が第2端子に供給されて、前記第1端子入力と第2端子入力が第3端子より同相で合成されて出力され、前記第1端子入力と第2端子入力が第4端子より合成されたときに打ち消されずに生じる不平衡成分出力される第1ブリッジドT型応用回路と、
前記第1ブリッジドT型応用回路の第4端子出力供給されて0度又は180度移相する位相量可変の移相器と、
前記第1ブリッジドT型応用回路および前記移相器に接続され、前記第1ブリッジドT型応用回路と同一構成の第2ブリッジドT型応用回路と、を有し、
前記第1ブリッジドT型応用回路の第3端子出力を前記第2ブリッジドT型応用回路の第3端子に供給し、前記移相器出力を前記第2ブリッジドT型応用回路の第4端子に供給し、前記第2ブリッジドT型応用回路の第1端子の出力を目的負荷に供給し、前記第2ブリッジドT型応用回路の第2端子の出力を疑似負荷に供給するよう構成され、
前記第1ブリッジドT型応用回路及び第2ブリッジドT型応用回路それぞれは、
前記第1端子が直列接続した第1,第2コイル及び直列接続した第1,第2コンデンサを介して前記第2端子に接続され、前記第1,第2コイルの接続点が第3コンデンサを介して接地されると共に前記第3端子に接続され、
前記第2コンデンサと並列にトランスの1次巻線が接続され、前記トランスの他端を接地された2次巻線の一端が前記第4端子に接続されて構成されていることにより、
第1,第2送信機出力の位相を変化させ出力電力の合成または分配を行って第1,第2送信機が動作状態のままで切替えを行うことができ、負荷への供給電力を一定に保った状態で切替えることができ、また、第1端子入力と第2端子入力を合成して第3端子から出力すると共に、第1端子入力と第2端子入力の不平衡成分を第4端子から任意に出力として取り出すことが可能となる。
【0008】
【発明の実施の形態】
本発明になる中波送信機出力切替装置について図面を参照して説明する。
【0009】
図1は、本発明の中波送信機出力切替装置の一実施例のブロック図を示す。同図中、発振器20の出力する発振信号は中波帯の送信機21,22それぞれに供給され、送信機21,22それぞれは供給される発振信号を搬送波とする変調波を出力する。
【0010】
送信機21の出力信号はブリッジドT型を応用した回路(以下、「ブリッジドT型応用回路」と称す)23の第1端子(図中▲1▼で示す)に供給され、送信機22の出力信号はブリッジドT型応用回路23の第2端子(図中▲2▼で示す)に供給される。ブリッジドT型応用回路23の第3端子(図中▲3▼で示す)から出力される信号はブリッジドT型応用回路25の第3端子に供給され、ブリッジドT型応用回路23の第4端子(図中▲4▼で示す)から出力される信号は位相量可変の移相器24を通してブリッジドT型応用回路25の第4端子に供給される。
【0011】
つまり、同一構成のブリッジドT型応用回路23,25は対称接続され、その間に可変移相器24が挿入されている。ブリッジドT型応用回路25の第1端子から出力される信号は負荷(目的負荷)26に供給され、ブリッジドT型応用回路25の第2端子から出力される信号は負荷(疑似負荷)27に供給される。
【0012】
図2(A),(B)はブリッジドT型基本回路,ブリッジドT型応用回路の一実施例の回路図を示す。図2(A)に示すブリッジドT型基本回路は、主に出力合成回路として用いられ、入力1と入力2を合成して出力し、2つの入力相互の不平衡成分は吸収抵抗R0で消費される。
【0013】
これに対し、図2(B)に示すブリッジドT型応用回路では、第1端子31は直列接続したコイルL1,L2を介して第2端子32に接続され、コイルL1,L2の接続点はコンデンサC1を介して接地されると共に第3端子33に接続されている。これと共に、第1端子31は直列接続したコンデンサC2,C3を介して第2端子32に接続され、コンデンサC3と並列にトランスT1の1次巻線が接続され、トランスT1の2次巻線は一端を第4端子34に接続され他端を接地されている。ブリッジドT型応用回路は、第1端子31入力と第2端子32入力を合成して第3端子33から出力すると共に、第1端子31入力と第2端子32入力の不平衡成分をトランスT1を介して第4端子34から任意に出力として取り出す4端子回路である。なお、上記第1端子31、第2端子32、第3端子33、第4端子34それぞれは接地レベルを基準として信号の入出力を行っている。
【0014】
次にブリッジドT型応用回路の入出力における位相関係について説明する。なお、基本回路と応用回路の位相関係は同一である。図3は、ブリッジドT型応用回路23の第1端子に入力1を供給した場合を示す。第1端子の入力1は均等分割され第3,第4端子に2つの出力(出力1,2)として現れる。各々の出力位相はベクトル図に示す通り、入力1に対して出力1は45度遅れ、出力2は45度進む。従って、出力1は出力2に対して90度位相が遅れる。
【0015】
同様に第2端子に入力2を供給した場合、図4に示すような出力関係となる。第2端子の入力2に対し、第3端子の出力1は45度遅れ、第4端子の出力2は135度遅れる。従って、出力1は出力2に対して90度位相が進む。
【0016】
図5は、ブリッジドT型応用回路23の第1,第2端子に同電力かつ同位相で入力1,入力2を供給した場合を示す。各々片方に入力した場合の結果(図3、図4)を重ね合せた出力関係となる。第3端子の出力1は入力1,2の成分が同相で合成される。この場合の合成ベクトルは図示の通りであり、入力1,入力2に対して√2倍の電圧となる。従って、出力電力は各々の入力に対して2倍になる。第4端子の出力2は逆相で合成され打消されるため出力は無い。
【0017】
次に、ブリッジドT型応用回路の入出力を逆に接続した(以下、「逆接続」と称す)場合の位相関係について示す。図6は、ブリッジドT型応用回路25の第3端子に入力1を供給した場合を示す。入力1に対し、第1,第2端子の出力1と出力2は45度位相が遅れ、出力1と出力2は同相関係となる。
【0018】
同様にブリッジドT型応用回路25の第4端子に入力2を供給した場合、図7に示すような出力関係となる。第2端子の入力2に対し、第1端子の出力1は45度位相が進み、第2端子の出力2は135度位相遅れる。従って、出力1と出力2は逆相関係となる。
【0019】
図8は、逆接続の条件で、ブリッジドT型応用回路25の第3,第4端子に同電力かつ同位相で入力1,入力2を供給した場合を示す。各々片方に入力した場合の結果(図6、図7)を重ね合せた出力関係となる。出力1,2それぞれにおいては入力1,2の成分がベクトル合成され、入力1,2に対し出力1は同相となる。また、入力1,2に対し出力2は90度位相が遅れる。この図8の位相関係から、第3,第4端子の片方の入力に移相器を設け、入力相互間に位相差を発生させ、ベクトルの合成、打ち消し作用を利用すれぱ、出力1または出力2の片方のみを出力することが可能となる。つまり、出力切替を行うことができる。
【0020】
図9に示すように、移相器35を挿入し入力1の位相を90度遅れとした場合、出力1では入力1および入力2からの成分が逆相で打ち消され出力無しとなり、出力2は入力1,2成分が同相で合成され2倍(入力1+入力2)の電力が現れる。
【0021】
また、図10に示すように、移相器36を挿入し入力1の位相を90度進めた場合、図9とは逆の結果となり、出力1は入力1,2成分が同相で合成され2倍(入力1+入力2)の電力が現れ、出力2は打ち消され出力無しとなる。
【0022】
この図9、図10の結果から、ブリッジドT型応用回路を逆接続とした場合、入力相互間の位相関係を90度変化(入力1基準とした場合、入力2が90度位相進み、または90度位相遅れ)すれば、入力合成電力を出力1または出力2に切替えて出力できる。
【0023】
入力相互間の90度の位相差は、図3,図4に示すようにブリッジドT型応用回路において各々片方のみに入力を加えた場合の出力関係で実現でき、90度移相器35,36の代わりに、2つのブリッジドT型応用回路23,25を対称接続すれぱ、任意の入力を任意の負荷に供給できる。
【0024】
従って、図1に示すブリッジドT型応用回路25の第1端子の出力を電力供給目的の負荷26に供給し、第2端子の出力を疑似の負荷27に供給する場合、以下のステップで、常に負荷26に規定出力を供給した状態での無停波切替が可能となる。
【0025】
ステップ1.送信機22を運転状態(送信機21を停止状態、移相器24の位相量は0度)として、対称接続されたブリッジドT型応用回路23,25間において、第3端子間で第4端子間よりも位相が90度進み、負荷26に出力電力が供給され、負荷27は出力無し。
【0026】
ステップ2.送信機21を運転状態(送信機22を運転状態、移相器24の位相量は0度)として、ブリッジドT型応用回路23,25間において、第3端子間のみ出力(送信機21出力の2倍の電力)が現れ、第4端子間は出力無し。負荷26および負荷27では、第3端子間の出力が均等分割される。従って、負荷26には規定出力(送信機21出力と同一電力)が供給される。
【0027】
ステップ3.送信機21,22を運転状態のままで、移相器24の位相量を180度として、ブリッジドT型応用回路23,25の第4端子間を180度移相(逆相)する。ここでは、非活線状態にある第4端子間を移相するため、負荷への影響はない。
【0028】
ステップ4.送信機22を停止する(送信機21は運転状態)。ステップ3でブリッジドT型応用回路23,25の第4端子間の位相を逆相としているため、負荷26に送信機21の電力が供給される。
【0029】
以上のステップにより、負荷26を常に規定出力に保った状態で送信機の切替が可能となる。またステップ4からステップ3,ステップ2,ステップ1の順に進んでも同様の無停波切替が可能である。
【0030】
このようにして、本発明の中波送信機出力切替装置は、無線送信を中断することで広く影響を及ぼす放送や通信等の分野で、負荷に対して無瞬断で安定的に電力供給が確保できる。負荷への電力供給を一定に保った状態で現用の送信機から予備の送信機への切替えおよび切戻しが可能となり、現用の送信機の保守、点検が容易となる。
【0031】
短波帯の送信機についても、ブリッジドT形応用回路の構成素子を周波数に応じて変更することにより、同様に無瞬断で切替えることができる。
【0032】
また、ブリッジドT形応用回路23,25を使用することで、送信機21,22相互間で全く干渉が生じないため、予備の送信機の装着、離脱および故障等による現用の送信機への影響は無く、保守、運用の面で柔軟なシステム運用が可能となる。
【0033】
なお、送信機21が請求項記載の第1送信機に対応し、送信機22が第2送信機に対応し、ブリッジドT型応用回路23が第1ブリッジドT型応用回路に対応し、ブリッジドT型応用回路25が第2ブリッジドT型応用回路に対応し、コイルL1が第1コイルに対応し、コイルL2が第2コイルに対応し、コンデンサC2が第1コンデンサに対応し、コンデンサC3が第2コンデンサに対応し、コンデンサC1が第3コンデンサに対応する。
【0034】
【発明の効果】
上述の如く、請求項1に記載の発明は、第1送信機出力が第1端子に供給され、第2送信機出力が第2端子に供給されて、前記第1端子入力と第2端子入力が第3端子より同相で合成されて出力され、前記第1端子入力と第2端子入力が第4端子より合成されたときに打ち消されずに生じる不平衡成分出力される第1ブリッジドT型応用回路と、第1ブリッジドT型応用回路の第4端子出力供給されて0度又は180度移相する位相量可変の移相器と、前記第1ブリッジドT型応用回路および前記移相器に接続され、前記第1ブリッジドT型応用回路と同一構成の第2ブリッジドT型応用回路と、を有し、第1ブリッジドT型応用回路の第3端子出力を第2ブリッジドT型応用回路の第3端子に供給し、移相器出力を第2ブリッジドT型応用回路の第4端子に供給し、第2ブリッジドT型応用回路の第1端子の出力を目的負荷に供給し、第2ブリッジドT型応用回路の第2端子の出力を疑似負荷に供給するよう構成され、第1ブリッジドT型応用回路及び第2ブリッジドT型応用回路それぞれは、第1端子が直列接続した第1,第2コイル及び直列接続した第1,第2コンデンサを介して第2端子に接続され、第1,第2コイルの接続点が第3コンデンサを介して接地されると共に第3端子に接続され、第2コンデンサと並列にトランスの1次巻線が接続され、トランスの他端を接地された2次巻線の一端が第4端子に接続されて構成されていることにより、第1,第2送信機出力の位相を変化させ出力電力の合成または分配を行って第1,第2送信機が動作状態のままで切替えを行うことができ、負荷への供給電力を一定に保った状態で切替えることができ、また、第1端子入力と第2端子入力を合成して第3端子から出力すると共に、第1端子入力と第2端子入力の不平衡成分を第4端子から任意に出力として取り出すことが可能となる。
【図面の簡単な説明】
【図1】本発明の中波送信機出力切替装置の一実施例のブロック図である。
【図2】ブリッジドT型基本回路とブリッジドT型応用回路の一実施例の回路図である。
【図3】ブリッジドT型応用回路23の第1端子に入力1を供給した場合を示す図である。
【図4】ブリッジドT型応用回路23の第2端子に入力2を供給した場合を示す図である。
【図5】ブリッジドT型応用回路23の第1,第2端子に同電力かつ同位相で入力1,入力2を供給した場合を示す図である。
【図6】ブリッジドT型応用回路25の第3端子に入力1を供給した場合を示す図である。
【図7】ブリッジドT型応用回路25の第4端子に入力2を供給した場合を示す図である。
【図8】ブリッジドT型応用回路25の第3,第4端子に同電力かつ同位相で入力1,入力2を供給した場合を示す図である。
【図9】移相器35を挿入し入力1の位相を90度遅れとした場合を示す図である。
【図10】移相器36を挿入し入力1の位相を90度進めた場合を示す図である。
【図11】従来の中波帯または短波帯の送信機出力切替装置の一例のブロック図である。
【符号の説明】
20 発振器
21,22 送信機
23,25 ブリッジドT型応用回路
24 移相器
26,27 負荷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmitter output switching device, and more particularly to a transmitter output switching device that switches the output of a transmitter used in a medium wave band or a short wave band.
[0002]
[Prior art]
Conventionally, the technology described in Japanese Patent Publication No. 1-333041 has been known for switching the output of a VHF band or UHF band, as shown in FIG. 11 for a transmitter in a medium wave band or a short wave band. In addition, a changeover switch 10 is provided on the main output line, and either the transmitter 11 or the transmitter 12 is connected to the load 13 to perform output switching. At the time of switching, from the viewpoint of protecting the transmitters 11 and 12 and the changeover switch 10, the outputs of the transmitters 11 and 12 are switched to a temporarily cut-off state. This is because, when switching in the live line state, the load impedance viewed from the transmitters 11 and 12 side fluctuates, the voltage standing wave ratio increases, and the transmitters 11 and 12 may be damaged by the reflected waves. It is.
[0003]
[Problems to be solved by the invention]
Conventional medium waveband or shortwave band transmitter output switching devices generally use a system in which a changeover switch 10 is provided in the main line system, and the transmitter is switched on while keeping the power supplied to the load 13 constant. Switching is impossible, and the power supply is temporarily stopped.
[0004]
Usually, an apparatus that requires high reliability employs a system in which a plurality of transmitters are prepared and a prescribed output obtained by combining arbitrary transmitter outputs is supplied to a load. In this method, a redundant system can be secured, and only transmitters that are to be switched can be stopped while the transmitter is not required to be switched. Therefore, although the output can be supplied to the load even at the time of switching, there has been a problem that a decrease in the power supplied to the load is inevitable during the switching operation process.
[0005]
The present invention has been made in view of the above points. A transmitter output that can be switched while the transmitter is in an operating state and can be switched while keeping the power supplied to the load constant. An object is to provide a switching device.
[0006]
[Means for Solving the Problems]
According to one aspect of the present invention, a transmitter output switching device for switching the output of the two transmitters to be used in medium wave band or short-wave band,
First transmitter output is supplied to the first terminal, the second transmitter output is supplied to the second terminal, the first terminal input and the second terminal input is being outputted synthesized in phase from third terminal, a first bridged T-applied circuit unbalanced component is output occurring without canceled when said first terminal input and the second terminal input is synthesized from the fourth terminal,
A phase amount varying the phase shifter to the fourth is supplied to terminal output 0 or 180 degrees phase shift of the first bridged T-type application circuit,
A second bridged T-type application circuit connected to the first bridged T-type application circuit and the phase shifter and having the same configuration as the first bridged T-type application circuit;
The third terminal output of the first bridged T-type application circuit is supplied to the third terminal of the second bridged T-type application circuit, and the phase shifter output is supplied to the fourth terminal of the second bridged T-type application circuit . And an output of the first terminal of the second bridged T-type application circuit is supplied to a target load, and an output of the second terminal of the second bridged T-type application circuit is supplied to a pseudo load.
Each of the first bridged T-type application circuit and the second bridged T-type application circuit,
The first terminal is connected to the second terminal via the first and second coils connected in series and the first and second capacitors connected in series, and the connection point of the first and second coils is connected to the third capacitor. And connected to the third terminal,
The primary winding of the transformer is connected in parallel with the second capacitor, and one end of the secondary winding with the other end of the transformer grounded is connected to the fourth terminal .
By changing the phase of the output of the first and second transmitters and combining or distributing the output power, the first and second transmitters can be switched while they are in operation, and the power supplied to the load can be kept constant. The first terminal input and the second terminal input are combined and output from the third terminal, and the unbalanced component of the first terminal input and the second terminal input is output from the fourth terminal. It can be arbitrarily taken out as an output.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A medium wave transmitter output switching device according to the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows a block diagram of an embodiment of a medium wave transmitter output switching device of the present invention. In the figure, the oscillation signal output from the oscillator 20 is supplied to each of the mid-band transmitters 21 and 22, and each of the transmitters 21 and 22 outputs a modulated wave using the supplied oscillation signal as a carrier wave.
[0010]
The output signal of the transmitter 21 is supplied to a first terminal (indicated by (1) in the figure) of a circuit (hereinafter referred to as “bridged T-type application circuit”) 23 to which a bridged T type is applied. The signal is supplied to the second terminal (indicated by (2) in the figure) of the bridged T-type application circuit 23. A signal output from the third terminal (indicated by (3) in the figure) of the bridged T-type application circuit 23 is supplied to the third terminal of the bridged T-type application circuit 25, and the fourth terminal ( The signal output from (4) in the figure is supplied to the fourth terminal of the bridged T-type application circuit 25 through the phase shifter 24 having a variable phase amount.
[0011]
That is, the bridged T-type application circuits 23 and 25 having the same configuration are symmetrically connected, and the variable phase shifter 24 is inserted therebetween. A signal output from the first terminal of the bridged T-type application circuit 25 is supplied to a load (target load) 26, and a signal output from the second terminal of the bridged T-type application circuit 25 is supplied to a load (pseudo load) 27. Is done.
[0012]
2A and 2B are circuit diagrams showing an embodiment of a bridged T-type basic circuit and a bridged T-type application circuit. The bridged T-type basic circuit shown in FIG. 2 (A) is mainly used as an output synthesis circuit. The input 1 and the input 2 are synthesized and output, and the unbalance component between the two inputs is consumed by the absorption resistor R0. The
[0013]
On the other hand, in the bridged T-type application circuit shown in FIG. 2B, the first terminal 31 is connected to the second terminal 32 via the coils L1 and L2 connected in series, and the connection point of the coils L1 and L2 is a capacitor. It is grounded via C 1 and connected to the third terminal 33. At the same time, the first terminal 31 is connected to the second terminal 32 via capacitors C2 and C3 connected in series. The primary winding of the transformer T1 is connected in parallel with the capacitor C3. The secondary winding of the transformer T1 is One end is connected to the fourth terminal 34 and the other end is grounded. The bridged T-type application circuit combines the first terminal 31 input and the second terminal 32 input and outputs from the third terminal 33, and converts the unbalanced component of the first terminal 31 input and the second terminal 32 input to the transformer T1. 4 is a four-terminal circuit that is arbitrarily taken out from the fourth terminal 34 as an output. Each of the first terminal 31, the second terminal 32, the third terminal 33, and the fourth terminal 34 inputs and outputs signals with reference to the ground level.
[0014]
Next, the phase relationship at the input / output of the bridged T-type application circuit will be described. The phase relationship between the basic circuit and the application circuit is the same. FIG. 3 shows a case where the input 1 is supplied to the first terminal of the bridged T-type application circuit 23. The input 1 of the first terminal is equally divided and appears as two outputs (outputs 1 and 2) at the third and fourth terminals. As shown in the vector diagram, each output phase is delayed by 45 degrees with respect to input 1 and output 2 advances by 45 degrees. Therefore, the phase of the output 1 is delayed by 90 degrees with respect to the output 2.
[0015]
Similarly, when the input 2 is supplied to the second terminal, the output relationship is as shown in FIG. The output 1 of the third terminal is delayed 45 degrees with respect to the input 2 of the second terminal, and the output 2 of the fourth terminal is delayed 135 degrees. Accordingly, output 1 is 90 degrees out of phase with output 2.
[0016]
FIG. 5 shows a case where the input 1 and the input 2 are supplied to the first and second terminals of the bridged T-type application circuit 23 with the same power and the same phase. The output relationship is obtained by superimposing the results (FIGS. 3 and 4) when each is input to one side. The output 1 of the third terminal is synthesized with the components of the inputs 1 and 2 in phase. The combined vector in this case is as shown in the figure, and is a voltage √2 times that of the input 1 and the input 2. Thus, the output power is doubled for each input. The output 2 of the fourth terminal has no output because it is synthesized and canceled in reverse phase.
[0017]
Next, the phase relationship when the input and output of the bridged T-type application circuit are connected in reverse (hereinafter referred to as “reverse connection”) is shown. FIG. 6 shows a case where the input 1 is supplied to the third terminal of the bridged T-type application circuit 25. The output 1 and the output 2 of the first and second terminals are delayed by 45 degrees with respect to the input 1, and the output 1 and the output 2 are in phase relation.
[0018]
Similarly, when the input 2 is supplied to the fourth terminal of the bridged T-type application circuit 25, the output relationship is as shown in FIG. The output 1 of the first terminal advances by 45 degrees relative to the input 2 of the second terminal, and the output 2 of the second terminal is delayed by 135 degrees. Therefore, the output 1 and the output 2 are in a reverse phase relationship.
[0019]
FIG. 8 shows a case where the input 1 and the input 2 are supplied to the third and fourth terminals of the bridged T-type application circuit 25 with the same power and the same phase under reverse connection conditions. The output relationship is obtained by superimposing the results (FIGS. 6 and 7) when the data is input to one of the two. In each of the outputs 1 and 2, the components of the inputs 1 and 2 are vector-synthesized, and the output 1 is in phase with the inputs 1 and 2. Further, the phase of the output 2 is delayed by 90 degrees with respect to the inputs 1 and 2. From the phase relationship shown in FIG. 8, a phase shifter is provided at one of the inputs of the third and fourth terminals, a phase difference is generated between the inputs, and vector synthesis or cancellation is used to obtain output 1 or output. Only one of the two can be output. That is, output switching can be performed.
[0020]
As shown in FIG. 9, when the phase shifter 35 is inserted and the phase of the input 1 is delayed by 90 degrees, in the output 1, the components from the input 1 and the input 2 cancel each other out of phase, and there is no output. The input 1 and 2 components are combined in phase, and double (input 1 + input 2) power appears.
[0021]
Further, as shown in FIG. 10, when the phase shifter 36 is inserted and the phase of the input 1 is advanced by 90 degrees, the result is opposite to that in FIG. Double power (input 1 + input 2) appears and output 2 is canceled and no output is generated.
[0022]
From the results of FIGS. 9 and 10, when the bridged T-type application circuit is reversely connected, the phase relationship between the inputs changes by 90 degrees (when the input 1 is used as a reference, the input 2 is advanced by 90 degrees, or 90 Degree of phase delay), the input combined power can be switched to output 1 or output 2 and output.
[0023]
The phase difference of 90 degrees between the inputs can be realized by the output relationship when only one of the inputs is added in the bridged T type application circuit as shown in FIGS. Instead of, two bridged T-type application circuits 23 and 25 are connected symmetrically, and an arbitrary input can be supplied to an arbitrary load.
[0024]
Accordingly, when the output of the first terminal of the bridged T-type application circuit 25 shown in FIG. 1 is supplied to the load 26 for power supply and the output of the second terminal is supplied to the pseudo load 27, the following steps are always performed. Non-stop switching in a state in which a prescribed output is supplied to the load 26 is possible.
[0025]
Step 1. The transmitter 22 is in the operating state (the transmitter 21 is in the stopped state, the phase amount of the phase shifter 24 is 0 degree), and the fourth terminal is connected between the third terminals between the symmetrically connected bridged T-type application circuits 23 and 25. The phase is advanced by 90 degrees from that in between, the output power is supplied to the load 26, and the load 27 has no output.
[0026]
Step 2. The transmitter 21 is in an operating state (the transmitter 22 is in an operating state, the phase shifter 24 has a phase amount of 0 degree), and only the output between the third terminals is output between the bridged T-type application circuits 23 and 25 (the output of the transmitter 21). Twice as much power) appears, and there is no output between the fourth terminals. In the load 26 and the load 27, the output between the third terminals is equally divided. Therefore, a prescribed output (the same power as the output of the transmitter 21) is supplied to the load 26.
[0027]
Step 3. While the transmitters 21 and 22 are in an operating state, the phase amount of the phase shifter 24 is set to 180 degrees, and the fourth terminals of the bridged T-type application circuits 23 and 25 are shifted by 180 degrees (reverse phase). Here, there is no influence on the load because the phase is shifted between the fourth terminals in the non-live line state.
[0028]
Step 4. The transmitter 22 is stopped (the transmitter 21 is in an operating state). Since the phase between the fourth terminals of the bridged T-type application circuits 23 and 25 is reversed in step 3, the power of the transmitter 21 is supplied to the load 26.
[0029]
Through the above steps, the transmitter can be switched while the load 26 is always kept at the specified output. The same non-stop switching can be performed even if the process proceeds from step 4 to step 3, step 2, and step 1.
[0030]
In this way, the medium wave transmitter output switching device of the present invention can stably supply power without interruption to the load in fields such as broadcasting and communication that are widely affected by interrupting wireless transmission. It can be secured. Switching from the current transmitter to the spare transmitter and switching back can be performed in a state where the power supply to the load is kept constant, and maintenance and inspection of the current transmitter becomes easy.
[0031]
The short-wave transmitter can be similarly switched without instantaneous interruption by changing the components of the bridged T-type application circuit according to the frequency.
[0032]
In addition, since no interference occurs between the transmitters 21 and 22 by using the bridged T-type application circuits 23 and 25, the influence on the current transmitter due to the installation, disconnection, failure, etc. of the spare transmitter. There will be no flexible system operation in terms of maintenance and operation.
[0033]
The transmitter 21 corresponds to the first transmitter described in the claims, the transmitter 22 corresponds to the second transmitter, the bridged T-type application circuit 23 corresponds to the first bridged T-type application circuit, and the bridged T Type application circuit 25 corresponds to the second bridged T type application circuit, coil L1 corresponds to the first coil, coil L2 corresponds to the second coil, capacitor C2 corresponds to the first capacitor, and capacitor C3 corresponds to the first The capacitor C1 corresponds to the third capacitor.
[0034]
【The invention's effect】
As described above, the invention according to claim 1, the first transmitter output is supplied to the first terminal, the second transmitter output is supplied to the second terminal, the first terminal input and the second terminal input There are being output synthesized in phase from third terminal, the first terminal inputs a first bridged T-type applications in which the second pin input is output unbalanced component generated without being canceled when synthesized from the fourth terminal A phase shifter that is phase-shifted by 0 degrees or 180 degrees by being supplied with the fourth terminal output of the first bridged T-type application circuit , the first bridged T-type application circuit, and the phase shifter. A second bridged T-type application circuit that is connected and has the same configuration as the first bridged T-type application circuit, and the third terminal output of the first bridged T-type application circuit is the second of the second bridged T-type application circuit . 3 is supplied to the terminal, the phase shifter outputs a second bridged T-type Was supplied to the fourth terminal of the use circuit, the output of the first terminal of the second bridged T-type application circuit is supplied to the object load, so that the output of the second terminal of the second bridged T-type application circuit is supplied to the dummy load Each of the first bridged T-type application circuit and the second bridged T-type application circuit includes a first terminal connected in series to a first coil, a second coil connected in series, and a second terminal connected in series to the first and second capacitors. And the connection point of the first and second coils is grounded via the third capacitor and connected to the third terminal, and the primary winding of the transformer is connected in parallel with the second capacitor. Since one end of the secondary winding whose end is grounded is connected to the fourth terminal, the phase of the output of the first and second transmitters is changed to synthesize or distribute the output power, so that the first , Switch while the second transmitter is still operating Can be performed, supply power to the load can be switched in a state kept constant, also with a first terminal input and the second terminal inputs and outputs from the synthesis to the third terminal, the first terminal input And the unbalanced component of the second terminal input can be arbitrarily extracted from the fourth terminal as an output.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a medium wave transmitter output switching device of the present invention.
FIG. 2 is a circuit diagram of an embodiment of a bridged T-type basic circuit and a bridged T-type application circuit.
FIG. 3 is a diagram illustrating a case where an input 1 is supplied to a first terminal of a bridged T-type application circuit 23;
4 is a diagram illustrating a case where an input 2 is supplied to a second terminal of a bridged T-type application circuit 23. FIG.
FIG. 5 is a diagram showing a case where the input 1 and the input 2 are supplied to the first and second terminals of the bridged T-type application circuit 23 with the same power and the same phase.
6 is a diagram showing a case where an input 1 is supplied to a third terminal of the bridged T-type application circuit 25. FIG.
7 is a diagram showing a case where an input 2 is supplied to the fourth terminal of the bridged T-type application circuit 25. FIG.
FIG. 8 is a diagram showing a case where the input 1 and the input 2 are supplied to the third and fourth terminals of the bridged T-type application circuit 25 with the same power and the same phase.
FIG. 9 is a diagram showing a case where a phase shifter is inserted and the phase of input 1 is delayed by 90 degrees.
FIG. 10 is a diagram showing a case where a phase shifter is inserted and the phase of input 1 is advanced by 90 degrees.
FIG. 11 is a block diagram of an example of a conventional medium waveband or shortwave band transmitter output switching device.
[Explanation of symbols]
20 Oscillators 21 and 22 Transmitters 23 and 25 Bridged T-type application circuit 24 Phase shifters 26 and 27 Load

Claims (1)

中波帯または短波帯で使用する2つの送信機の出力を切替える送信機出力切替装置であって
第1送信機出力が第1端子に供給され、第2送信機出力が第2端子に供給されて、前記第1端子入力と第2端子入力が第3端子より同相で合成されて出力され、前記第1端子入力と第2端子入力が第4端子より合成されたときに打ち消されずに生じる不平衡成分出力される第1ブリッジドT型応用回路と、
前記第1ブリッジドT型応用回路の第4端子出力供給されて0度又は180度移相する位相量可変の移相器と、
前記第1ブリッジドT型応用回路および前記移相器に接続され、前記第1ブリッジドT型応用回路と同一構成の第2ブリッジドT型応用回路と、を有し、
前記第1ブリッジドT型応用回路の第3端子出力を前記第2ブリッジドT型応用回路の第3端子に供給し、前記移相器出力を前記第2ブリッジドT型応用回路の第4端子に供給し、前記第2ブリッジドT型応用回路の第1端子の出力を目的負荷に供給し、前記第2ブリッジドT型応用回路の第2端子の出力を疑似負荷に供給するよう構成され、
前記第1ブリッジドT型応用回路及び第2ブリッジドT型応用回路それぞれは、
前記第1端子が直列接続した第1,第2コイル及び直列接続した第1,第2コンデンサを介して前記第2端子に接続され、前記第1,第2コイルの接続点が第3コンデンサを介して接地されると共に前記第3端子に接続され、
前記第2コンデンサと並列にトランスの1次巻線が接続され、前記トランスの他端を接地された2次巻線の一端が前記第4端子に接続されて構成されていることを特徴とする送信機出力切替装置。
A transmitter output switching device for switching the output of the two transmitters to be used in medium wave band or short-wave band,
First transmitter output is supplied to the first terminal, the second transmitter output is supplied to the second terminal, the first terminal input and the second terminal input is being outputted synthesized in phase from third terminal, a first bridged T-applied circuit unbalanced component is output occurring without canceled when said first terminal input and the second terminal input is synthesized from the fourth terminal,
A phase amount variable phase shifter which is supplied with a fourth terminal output of the first bridged T-type application circuit and shifts in phase by 0 degrees or 180 degrees ;
A second bridged T-type application circuit connected to the first bridged T-type application circuit and the phase shifter and having the same configuration as the first bridged T-type application circuit;
Supplying a third terminal output of said first bridged T-type application circuit to a third terminal of said second bridged T-type application circuit, supplies the phase shifter output to the fourth terminal of said second bridged T-circuit application And an output of the first terminal of the second bridged T-type application circuit is supplied to a target load, and an output of the second terminal of the second bridged T-type application circuit is supplied to a pseudo load.
Each of the first bridged T-type application circuit and the second bridged T-type application circuit,
The first terminal is connected to the second terminal via the first and second coils connected in series and the first and second capacitors connected in series, and the connection point of the first and second coils is connected to the third capacitor. And connected to the third terminal,
A primary winding of a transformer is connected in parallel with the second capacitor, and one end of a secondary winding having the other end of the transformer grounded is connected to the fourth terminal. Transmitter output switching device.
JP2001183451A 2001-06-18 2001-06-18 Transmitter output switching device Expired - Fee Related JP4177566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183451A JP4177566B2 (en) 2001-06-18 2001-06-18 Transmitter output switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183451A JP4177566B2 (en) 2001-06-18 2001-06-18 Transmitter output switching device

Publications (2)

Publication Number Publication Date
JP2002374176A JP2002374176A (en) 2002-12-26
JP4177566B2 true JP4177566B2 (en) 2008-11-05

Family

ID=19023402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183451A Expired - Fee Related JP4177566B2 (en) 2001-06-18 2001-06-18 Transmitter output switching device

Country Status (1)

Country Link
JP (1) JP4177566B2 (en)

Also Published As

Publication number Publication date
JP2002374176A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
AU770637B2 (en) A radio transceiver and a method of preventing transmission spurious response
KR100351973B1 (en) N-Way High Isolation Power Splitter / Combiner
JP3301735B2 (en) Interference wave cancellation device
US5966059A (en) Phase shifting power coupler with three signals of equal amplitude
US5392010A (en) 90 degree phase shifter
EP1973227A2 (en) Power divider/combiner and power dividing/combining method using the same
JP4501711B2 (en) Even harmonic mixer
JP4177566B2 (en) Transmitter output switching device
EP0570125B1 (en) Unbalanced-balanced converter as a mixer input circuit
US11716056B2 (en) Power amplifier with series transformer combiners and harmonic tuning
JPH0969803A (en) Leak signal removing method for circulator and its device, and radio communication equipment using the same
US5656979A (en) High frequency power distributor/synthesizer
US20040251958A1 (en) Active filter
JP3259941B2 (en) Transmission / reception switch
JP2011091682A (en) Radio signal receiver
US20230106157A1 (en) Phase shifter and phased array antenna device
JP3508835B2 (en) Multiple frequency band amplifier circuit
JP2006245997A (en) Power synthesis method, power synthesizer, tv transmitter and fm transmitter
KR0168910B1 (en) Electric power distributor synthesizer using duplication coupling transmission line pair
RU2074461C1 (en) Device which adds signals of different frequencies
Kwon et al. Wideband Switchable-Capacitor Loaded Differential Phase Shifter with Lattice Structures
JP2020205495A (en) equalizer
JPS62235815A (en) Pin diode switch
JPS6251817A (en) Variable type delay time equalizer
US6043723A (en) Load line type phase displacement unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees