JP4175495B2 - Cutting method of cylindrical ceramics - Google Patents

Cutting method of cylindrical ceramics Download PDF

Info

Publication number
JP4175495B2
JP4175495B2 JP2002015072A JP2002015072A JP4175495B2 JP 4175495 B2 JP4175495 B2 JP 4175495B2 JP 2002015072 A JP2002015072 A JP 2002015072A JP 2002015072 A JP2002015072 A JP 2002015072A JP 4175495 B2 JP4175495 B2 JP 4175495B2
Authority
JP
Japan
Prior art keywords
cutting
ceramic
cylindrical
ceramics
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015072A
Other languages
Japanese (ja)
Other versions
JP2002308636A (en
Inventor
本 純 橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2002015072A priority Critical patent/JP4175495B2/en
Publication of JP2002308636A publication Critical patent/JP2002308636A/en
Application granted granted Critical
Publication of JP4175495B2 publication Critical patent/JP4175495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状のセラミックスの切断方法に関し、更に詳細に説明すると、円筒状のセラミックスを所望とする切断位置でセラミックスの軸心方向と直交する方向に切断する円筒状のセラミックスの切断方法に関する。
【0002】
【従来の技術】
従来より、機械や電子機器には各種のセラミックスが使用され、これらのセラミックスの切断は主としてダイヤモンド砥石や鋸刃等の刃物により行われている。この刃物による切断の場合には切屑や騒音を発生させ、作業環境を悪化させる虞れを有し、また切断までにかなりの時間とエネルギーを要し、刃物の摩耗による損傷も著しく経済性に欠けるものであった。
【0003】
また、円筒(中空)状及び円柱(中実)状のセラミックスをディスキング装置に配置してセラミックスに側圧(外周面からの絞込み圧)を負荷し、セラミックスを側圧による破壊を利用したディスキングと呼ばれる切断方法により切断することがすでに開発されている。
【0004】
このディスキングによる切断方法は、図1に示すディスキング装置1により行われる。このディスキング装置1は圧力容器3の内部に円筒状のセラミックス5が挿入されてる。この円筒状のセラミックス5は外径d、肉厚tである。両端開放状態の円筒状のセラミックス5の外周面にセラミックス5の軸心方向と直交する方向に複数の切欠溝7を適宜の間隔で、例えば間隔bで設け、このセラミックス5の外周面を側圧伝達筒9で被覆する。この側圧伝達筒9はセラミックス5よりもヤング率が非常に小さいアクリル樹脂等から形成されている。
【0005】
また圧力容器3の圧力負荷口11を挟んで左右一対のOリング13,13が側圧伝達筒9の外周の両端に設けられ、この左右一対のOリング13,13間に前記側圧伝達筒9を保持するカラー15が設けられ、更にそれらの位置決めをする保持環17と前記圧力容器3の外側に圧力の漏れを防止するための螺子19が設けられている。
【0006】
斯かるディスキング装置1の構成において、圧力容器3の圧力負荷口11より圧力容器3の内部に内圧Pを負荷すれば、セラミックス5は両端開放の状態で側圧を受け、側圧がある値に達することにより左右一対のOリング13,13間の1つの切欠溝7を通る断面で亀裂が進展し切断する。更に側圧を負荷すればセラミックス5は別の切欠溝7を通る断面で順次切断する。この場合のセラミックス5の切断面は平滑である。これがディスキングによる切断である。
【0007】
【発明が解決しようとする課題】
セラミックスの切断法として、従来から行われているダイヤモンド砥石や鋸刃等の刃物による切断法の欠点である切屑や騒音の発生を防止し、また切断までの時間とエネルギーを僅少にすると共に、刃物の摩耗による損傷を防止した円筒状のセラミックスの切断法の開発を行う。一方、前記ディスキングは円筒(中空)状のみならず円柱(中実)状のセラミックスの切断において、上記欠点を解消したセラミックスの切断を可能にしている。しかし、このときの切断圧力は高圧であることから、できるだけ低圧で切断を可能とする切断法の開発が望まれる。また前記ディスキングはセラミックスの大きさに適する圧力容器を必要とすることからセラミックスの大きさに関わらず、どのような大きさにも対応できる切断法の開発も望まれる。
【0008】
本発明の目的は、前記課題に鑑みてなされたもので、円筒状のセラミックスに側圧(外周からの絞込み圧)を加えて小さな力で切断を可能にし、また種々の外径の大きさにも適する切断を可能にすることであって、切断では破壊時に発生する亀裂の進展を積極的に切断に利用することにより、刃物による切断法の欠点を解消し、切屑や騒音を発生させる虞れがなく、作業環境を悪化させる虞れがなく、簡易迅速に一瞬で切断することができ、切断面が平滑で経済性に優れた円筒状のセラミックスの切断方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明は上述せる課題に鑑みてなされたもので、本発明の請求項1に記載の円筒状のセラミックスの切断方法は、円筒状のセラミックスを所望とする切断位置でセラミックスの軸心方向と直交する方向に切断する円筒状のセラミックスの切断方法において、前記円筒状のセラミックスの所望とする切断位置の軸心方向と直交する方向に切欠溝を形成し、次いでセラミックスの切欠溝に引張応力を誘起させるようにセラミックスの外周面に線状体又は帯状体を巻き回し、該線状体又は帯状体に引張荷重を負荷してセラミックスの外周面に側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする。
【0010】
また、本発明の請求項2に記載の円筒状のセラミックスの切断方法は、請求項1に係る発明において、前記切欠溝は前記円筒状のセラミックスの外周面の所望とする切断位置の軸心方向と直交する方向に形成し、セラミックスの切欠溝から6mmの間隔を置いてセラミックスの外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする。
【0011】
また、本発明の請求項3に記載の円筒状のセラミックスの切断方法は、請求項1に係る発明において、前記切欠溝は前記円筒状のセラミックスの内周面の所望とする切断位置の軸心方向と直交する方向に形成し、次いでセラミックスの切欠溝位置の外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする。
【0014】
【発明の実施の形態】
以下本発明に係る円筒状のセラミックスの切断方法を図面を参照して詳述する。
図2には、本発明に係る円筒状のセラミックスの切断方法の概略が示されており、TはY−Y断面で切断しようとする外径d(肉厚t)が一定の円筒状のセラミックスである。この円筒状のセラミックスTのA−B部分の外周に沿って側圧p(外周面からの絞込み圧)を負荷すると円筒状のセラミックスTの外径dはd’に減少するが、側圧を受けていないC−D部分は最初の状態を保つ。このとき円筒状のセラミックスTには外径dの変化に比例した応力が自動的に発生し、B−C部分における円筒状のセラミックスTの外表面の一部に引張応力が誘起する。
【0015】
一方、セラミックスは圧縮に強く引張りに弱いのが特徴である。いま、所望する切断位置のY−Y断面における円筒外周線上の一部にガラス切り等の工具により切欠きsを設けているものとし、さらにその切欠きsの位置がB−C部分にあるものとする。この状態で側圧pがある値に達すると、応力集中により切欠きsから引張破壊によるき裂が発生し、円筒状のセラミックスTは切欠きsを通り、所望する切断位置のY−Y断面で一瞬にして分割される。これがここで言う円筒状のセラミックスTの切断である。
【0016】
ガラスはオールドセラミックスと呼ばれ、一種のセラミックスである。尚、本実施の形態ではオールドセラミックスに本発明を適用した場合につき説明するが、同様にニューセラミックスにも適用することができるものである。ここではガラス円筒とガラス瓶を上述の切断法を利用して切断した実施例について分けて述べる。
【0017】
参考例】
ディスキング装置1は図1に示しているものであり、円筒状のセラミックス5としての切断しようとするガラス円筒はパイレックス(登録商標)ガラスからなる外径d=60mm、肉厚t=4.5mmのものである。また側圧伝達筒9はポリエチレンからなり、外径68mm、肉厚3.5mm、軸長49mmのものである。まず、円筒に市販のガラス切りで切欠溝7としての切欠きsを円筒端面から60mmの位置の円筒外表面に軸と直角に長さ約3mmに設けて切断位置を指定した。
【0018】
そして切欠きsの位置を側圧伝達筒9の端面から6mmの間隔を置いた位置にし、更に上述の図2に示すように円筒の外周面に側圧を静的に負荷すると、円筒は側圧P=18MPaでピンという微弱音を発して切欠きsを通る横断面で切断された。その切断面は平滑で鏡面となっている。尚、円筒端面から切欠きsまでの長さを変えても切欠きsを通り正確に切断されると共に切断面も極めて良好であった。また切断時の側圧をPaで表すと、切断圧力Paは軸長にかかわらず約一定値を示した。
【0019】
円筒状のセラミックスTの外周に設けた切欠きsの位置を前記側圧伝達筒9の端面から外方にある長さx、例えば、x=3mm〜10mmとして円筒状のセラミックスTを配設した。尚、図3(a)にx=3mm〜10mmとした場合の試験結果を示す。ここでPaは切断圧力であり、δは切断面の状態を示すものである。
【0020】
図3(b)に示すものはx=3mmの場合の切断面の状態であり、このときの切断面は平滑とはならず、外周から内部に入り込んでる。ここでその入り込んだ最大距離をδで表す。切断面の状態には2種類のものがあることから、外周から内部に入り込んだものをaで示し、逆に外周から内部に突出したものをbで示す。この切断面の状態を図3(a)の備考欄に示す。図3(a)に示す試験結果から、x=6mmのデータを見ると、切断圧力Pa及びδの絶対値が最小値を示しており、x=6mmとするのが切断に適していることが判る。
【0021】
【実施例
ここではワイヤー21を用いて円筒状のセラミックスとしてのガラス瓶Tを切断した実施例について述べる。尚、本実施の形態では線状体としてのワイヤーを用いたが、他の線状体を用い、または帯状体等を用いてもよい。
図4に示す如く、準備したワイヤー21は直径約4mmからなるスチール製のワイヤーであり、またガラス瓶T(外径65mm、肉厚3mm、高さ140mm) に切欠きsを市販のガラス切りでガラス瓶Tの外部底面から60mmの位置の外表面に軸心方向と直角に長さ約3mmに設けて切断位置を指定した。
【0022】
そして、図4に示すようにガラス瓶Tの外表面に1本のワイヤー21を二重にして巻き回し、ワイヤー21の交差時に一方を二重のワイヤー21の間に通し、そのワイヤー21の両端を夫々反対方向に引張るためワイヤー21に引張荷重Wを試験機により静的に負荷した。この時の切欠きsとワイヤー21との間隔はx=6mmとした。ガラス瓶Tは外周面に沿って側圧が負荷され、引張荷重W=2.94kNでピッシィという微弱音を発して切欠きsを通る横断面で切断された。このワイヤー21を用いる場合には、ワイヤー21が破断しない限り、ガラス瓶Tの外径に関わらずどのような大きさの円筒状のセラミックスTでも容易に切断することができるものである。
【0028】
次いで、本発明の異なる実施の形態を図5及び図6を参照して説明する。この実施の形態では、図2に示した円筒状のセラミックスTの外周に設けた切欠きsの位置をセラミックスTの内周に設けたことを特徴とするものである。
【0029】
先ず、図5を参照して切断原理を説明すると、TはY−Y断面で切断しようとする外径d(肉厚t)が一定の円筒状のセラミックスである。いまY−Y断面を通る円筒状のセラミックスTの外周線上に側圧pを負荷すると、円筒状のセラミックスTの直径dはd´に減少するが、側圧を受けていない部分は最初の状態を保つ。このため円筒状のセラミックスTには外径dの変化に比例した応力が発生し、Y−Y断面における円筒内周線上の軸心方向に最大引張応力が誘起する。
【0030】
いま、円筒状のセラミックスTの切断する位置であるY−Y断面における円筒内周線上の一部に、ガラス切り等の工具により切欠きSを設ける。この状態で円筒状のセラミックスTに側圧pを負荷すると、円筒状のセラミックスTの切欠きS部には、最大引張応力のみならず切欠きSによる応力集中が重畳されるため、側圧pがある値に達すると切欠きSから亀裂が発生すると共に、この亀裂が伝播して円筒状のセラミックスTは所望とする位置のY−Y断面で一瞬に切断される。
【0031】
前記切断原理を用いた円筒状のセラミックスTの切断方法を図6に示す。尚、図4に示すと同様の方法を用いることができる。本実施の形態では、図6に示す如く、Tは外径d、肉厚t、軸長lの円筒状のセラミックスである。円筒状のセラミックスTの切断位置における円筒内周面には切欠きSを予め設けておく。
【0032】
円筒状のセラミックスTの切断位置である切欠きSを通る円筒外周線上に、1本のワイヤー21を二重にして図4に示すと同様に巻き回す。このとき側圧が円筒外周面に均一に負荷されるように滑車Kを用いている。また巻き回したワイヤー21が拡がらないように、即ち図5に示すような線上の側圧pが負荷されるようにリングRを利用してワイヤー21を配置する。
【0033】
この状態で、ワイヤー21の上端と、下端の滑車K間に引張荷重Wを負荷し、引張荷重Wがある値に達すると、前述した切断原理により亀裂が切欠きS部より発生すると共に、この亀裂が伝播して円筒状のセラミックスTは切欠きSを通る横断面で一瞬にして切断される。尚、ワイヤー21の太さは適宜増減させることができる。
【0034】
【実施例
この実施例では円筒状のセラミックスTとしてのガラス円筒につき切断を試みた。切断しようとするガラス円筒はパイレックス(登録商標)ガラスからなり、切断では軸長を二等分するように円筒中央の位置に内周に沿って長さ約3mmの切欠きSを円筒内周面に市販のガラス切りで設けた。
【0035】
次いで、図6に示す如く、鋼製のリングRと滑車Kを利用して直径1.5mmのスチールワイヤー21をガラス円筒に巻き回し、引張荷重Wを静的に負荷し、ガラス円筒の切断時の引張荷重、即ち切断荷重Waとガラス円筒の切断状態を調べた。
【0036】
に外径d=40mm、軸長l=80mmを一定にして、肉厚tのみを変化させて、ガラス円筒を中央で二等分したときの切断結果を示す。切断は同一寸法のガラス円筒を3本準備し、切断荷重Waとしてはその平均で示している。ガラス円筒は表の切断荷重Waに達したとき、ピシッという微弱音を発して切欠きSを通る横断面で一瞬に切断された。その切断面は平滑で鏡面となっていて、本発明の切断方法では切断時に切り屑の発生がない。
【0037】
【表1】
【0038】
ガラス円筒の切断荷重Waは表に示すように肉厚tに依存し、肉厚tを増すと切断荷重Waも増すが、ガラス円筒の切断面は肉厚tにかかわらず、何れも極めて良好であった。
【0039】
次に、表に肉厚t=3.2mm、軸長l=80mmを一定にして、ガラス円筒の外径dのみを変化させてガラス円筒を中央で2等分したときの切断結果を示す。切断は同一寸法のガラス円筒を3本準備し、切断荷重Waとしてはその平均で示している。ガラス円筒は表の切断荷重Waで切欠きSを通る横断面で一瞬に切断された。
【0040】
【表2】
【0041】
の切断結果から明らかなように、ガラス円筒の切断荷重Waは外径dに依存し、外径dを大きくすると切断荷重Waが増大するが、ガラス円筒の切断面は外径dにかかわらず、何れも極めて良好であった。
【0042】
参考例
この参考例では円筒状のセラミックスTとしてのガラス瓶につき切断を試みた。切断しようとするガラス瓶は外径77mm、肉厚4mm、高さ290mmの焼酎用のものと、外径67mm、肉厚3mm、高さ195mmの日本酒用のものである。ガラス瓶の場合には容器の内周面にガラス切りで切欠きSを設けることが困難な場合がある。本実施の形態では、切断を希望する位置に、ガラス切りで切欠きSを設ける代わりに、直径2mmのドリルによりガラス瓶に貫通する横穴を穿設した。このとき横穴の位置はガラス瓶の外部底面から前者では90mmであり、後者では40mmであった。尚、横穴の大きさは適宜増減することができ、また長穴とすることもできる。
【0043】
次いで、図6に示すと同様に、鋼製のリングRと滑車Kを利用して直径1.5mmのスチールワイヤー21をガラス瓶に巻き回し、引張荷重Wを静的に負荷した。両者のガラス瓶は何れも横穴を通る横断面で一瞬に切断された。ガラス瓶の切断時の切断荷重Waは前者でWa=1200Nであり、後者でWa=1110Nであった。両者のガラス瓶は所望とする位置で切断されたばかりでなく、切断面も極めて良好であった。
【0044】
【発明の効果】
以上が本発明に係る円筒状のセラミックスの切断方法の実施の形態であるが、本発明の請求項1に記載の円筒状のセラミックスの切断方法によれば、円筒状のセラミックスの所望とする切断位置の軸心方向と直交する方向に切欠溝を形成し、次いでセラミックスの切欠溝に引張応力を誘起させるようにセラミックスの外周面に線状体又は帯状体を巻き回し、該線状体又は帯状体に引張荷重を負荷してセラミックスの外周面に側圧を負荷することによりセラミックスを前記切欠溝位置で切断するので、刃物による切断の欠点を解消し、切屑や騒音を発生させる虞れがなく、作業環境を悪化させる虞れがなく、簡易迅速に円筒状のセラミックスを小さな力で一瞬に切断することができ、平滑な切断面を得ることができる。
また、線状体又は帯状体を使用してセラミックスの外周面に側圧を負荷するので、どのような外径の円筒状のセラミックスにも対応することができる。
【0045】
本発明の請求項2に記載の円筒状のセラミックスの切断方法によれば、請求項1に係る発明において、前記切欠溝は前記円筒状のセラミックスの外周面の所望とする切断位置の軸心方向と直交する方向に形成し、セラミックスの切欠溝から6mmの間隔を置いてセラミックスの外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断するので、刃物による切断の欠点を解消し、切屑や騒音を発生させる虞れがなく、作業環境を悪化させる虞れがなく、簡易迅速に円筒状のセラミックスを小さな力で一瞬に切断することができ、平滑な切断面を得ることができる。
【0046】
本発明の請求項3に記載の円筒状のセラミックスの切断方法によれば、請求項1に係る発明において、前記切欠溝は前記円筒状のセラミックスの内周面の所望とする切断位置の軸心方向と直交する方向に形成し、次いでセラミックスの切欠溝位置の外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断するので、切欠きを設けた切断位置と側圧を負荷する位置とを一致させることにより簡易迅速に切断作業を行うことができ、刃物による切断の欠点を解消し、切屑や騒音を発生させる虞れがなく、作業環境を悪化させる虞れがなく、簡易迅速に円筒状のセラミックスを小さな力で一瞬に切断することができ、平滑な切断面を得ることができる。
【0049】
本発明によれば、刃物による切断の欠点を解消し、切屑や騒音を発生させる虞れがなく、作業環境を悪化させる虞れがなく、簡易迅速に円筒状のセラミックスを一瞬に切断することができ、切断に要するエネルギーを減少させることができ、切断面が平滑で経済性に優れた円筒状のセラミックスの切断方法を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る円筒状のセラミックスの切断方法に用いられるディスキング装置の断面図。
【図2】本発明に係る円筒状のセラミックスの切断方法の概略を示す断面説明図。
【図3】本発明に係る円筒状のセラミックスの切断方法を示すもので、(a)は試験結果を示す表、(b)は切断面の状態を示す説明図。
【図4】本発明に係る円筒状のセラミックスの切断方法を示す斜視説明図。
【図5】本発明に係る円筒状のセラミックスの切断方法の異なる実施の形態を示す断面説明図。
【図6】本発明に係る円筒状のセラミックスの切断方法の異なる実施の形態を示す斜視説明図。
【符号の説明】
1 ディスキング装置
3 圧力容器
5 円筒状のセラミックス
7 切欠溝
9 側圧伝達筒
11 圧力負荷口
13 Oリング
15 カラー
17 保持環
19 螺子
21 ワイヤー
T 円筒状のセラミックス(ガラス瓶)
s 切欠き(円筒外周面に設けた場合)
W 引張荷重
P 圧力容器に負荷する内圧(側圧伝達筒に負荷する側圧)
d セラミックスの外径
t セラミックスの肉厚
b 切欠溝の間隔
p セラミックスに負荷される側圧
d´ 側圧により減少したセラミックスの外径
X 側圧伝達筒の端面からの長さ
Pa 切断圧力
δ 切断面の状態を示す最大距離
l セラミックスの軸長
S 切欠き(円筒内周面に設けた場合)
K 滑車
R リング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cutting cylindrical ceramics, and more particularly, to a method for cutting cylindrical ceramics in which cylindrical ceramics are cut at a desired cutting position in a direction orthogonal to the axial direction of the ceramics. .
[0002]
[Prior art]
Conventionally, various ceramics have been used for machines and electronic devices, and cutting of these ceramics has been mainly performed by a blade such as a diamond grindstone or a saw blade. In the case of cutting with this cutter, there is a risk that chips and noise are generated, the working environment may be deteriorated, and it takes a considerable amount of time and energy to cut, and damage due to wear of the cutter is extremely economical. It was a thing.
[0003]
In addition, by placing cylindrical (hollow) and cylindrical (solid) ceramics in a discing device, loading the ceramics with side pressure (squeezing pressure from the outer peripheral surface), and using the discing that uses the side pressure to destroy the ceramics Cutting with a so-called cutting method has already been developed.
[0004]
This cutting method by disking is performed by the disking apparatus 1 shown in FIG. In the disking apparatus 1, a cylindrical ceramic 5 is inserted into a pressure vessel 3. The cylindrical ceramic 5 has an outer diameter d and a wall thickness t. A plurality of cutout grooves 7 are provided at appropriate intervals, for example, at an interval b, on the outer peripheral surface of the cylindrical ceramic 5 with both ends open, in a direction orthogonal to the axial direction of the ceramic 5. Cover with cylinder 9. The side pressure transmission cylinder 9 is made of an acrylic resin having a Young's modulus much smaller than that of the ceramic 5.
[0005]
A pair of left and right O-rings 13, 13 are provided at both ends of the outer periphery of the side pressure transmission cylinder 9 across the pressure load port 11 of the pressure vessel 3, and the side pressure transmission cylinder 9 is interposed between the pair of left and right O-rings 13, 13. A holding collar 15 is provided, and a holding ring 17 for positioning them and a screw 19 for preventing pressure leakage are provided outside the pressure vessel 3.
[0006]
In such a configuration of the disking device 1, if an internal pressure P is applied to the inside of the pressure vessel 3 from the pressure load port 11 of the pressure vessel 3, the ceramic 5 receives a side pressure with both ends open, and the side pressure reaches a certain value. As a result, a crack develops and cuts in a cross section passing through one notch groove 7 between the pair of left and right O-rings 13 and 13. Further, when a side pressure is applied, the ceramic 5 is sequentially cut in a cross section passing through another notch groove 7. In this case, the cut surface of the ceramic 5 is smooth. This is cutting by disking.
[0007]
[Problems to be solved by the invention]
As a cutting method of ceramics, it prevents the generation of chips and noise, which are the disadvantages of conventional cutting methods such as diamond grindstones and saw blades, and reduces the time and energy until cutting, and the blade. We develop a cutting method for cylindrical ceramics that prevents damage due to wear. On the other hand, the discing makes it possible to cut ceramics in which not only the cylindrical (hollow) shape but also the columnar (solid) shape ceramics are eliminated. However, since the cutting pressure at this time is high, development of a cutting method that enables cutting at as low a pressure as possible is desired. Further, since the disking requires a pressure vessel suitable for the size of the ceramic, it is desired to develop a cutting method that can handle any size regardless of the size of the ceramic.
[0008]
The object of the present invention has been made in view of the above-mentioned problems, and by applying a side pressure (squeezing pressure from the outer periphery) to a cylindrical ceramic, it is possible to cut with a small force, and also for various outer diameters. It is possible to cut appropriately, and by using the progress of cracks that occur at the time of breakage for cutting positively, the disadvantages of the cutting method with a blade can be eliminated, and there is a risk of generating chips and noise. The present invention provides a method for cutting cylindrical ceramics that can be easily and quickly cut in a short time, has a smooth cut surface, and is excellent in economic efficiency.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems, and the method of cutting cylindrical ceramics according to claim 1 of the present invention is orthogonal to the axial direction of the ceramics at a cutting position where the cylindrical ceramics are desired. In the method of cutting cylindrical ceramics that cut in the direction of cutting, a notch groove is formed in a direction perpendicular to the axial direction of the desired cutting position of the cylindrical ceramic, and then a tensile stress is induced in the notch groove of the ceramic A linear body or a belt-like body is wound around the outer peripheral surface of the ceramic so that a tensile load is applied to the linear body or the belt-like body, and a lateral pressure is applied to the outer peripheral surface of the ceramic so that the ceramic is placed at the notch groove position. It is characterized by cutting.
[0010]
The cylindrical ceramic cutting method according to a second aspect of the present invention is the method according to the first aspect, wherein the notch groove is an axial direction of a desired cutting position on the outer peripheral surface of the cylindrical ceramic. The ceramic is cut at the position of the notch groove by applying a lateral pressure to the outer peripheral surface of the ceramic with the linear body or the band-like body at an interval of 6 mm from the notch groove of the ceramic. And
[0011]
According to a third aspect of the present invention, there is provided a method for cutting cylindrical ceramics according to the first aspect of the invention, wherein the notch groove is an axial center of a desired cutting position on the inner peripheral surface of the cylindrical ceramics. form shape in a direction perpendicular to the direction, and then characterized by cutting the ceramic in the cutout groove position by loading the lateral pressure in the linear member or strip to the outer circumferential surface of the cutout groove position of ceramics.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for cutting cylindrical ceramics according to the present invention will be described in detail with reference to the drawings.
FIG. 2 shows an outline of a method for cutting cylindrical ceramics according to the present invention, where T is a cylindrical ceramic with a constant outer diameter d (thickness t) to be cut in a YY section. It is. When a lateral pressure p (squeezing pressure from the outer circumferential surface) is applied along the outer periphery of the AB portion of the cylindrical ceramic T, the outer diameter d of the cylindrical ceramic T decreases to d ′, but the lateral pressure is received. No CD part keeps the initial state. At this time, a stress proportional to the change in the outer diameter d is automatically generated in the cylindrical ceramic T, and a tensile stress is induced on a part of the outer surface of the cylindrical ceramic T in the B-C portion.
[0015]
On the other hand, ceramics are characterized by being strong in compression and weak in tension. Now, it is assumed that a notch s is provided by a tool such as a glass cutter in a part on the outer circumference of the cylinder in the YY cross section at a desired cutting position, and the position of the notch s is in the B-C portion. And When the side pressure p reaches a certain value in this state, a crack due to tensile fracture occurs from the notch s due to stress concentration, and the cylindrical ceramic T passes through the notch s and crosses the Y-Y section at the desired cutting position. Divide instantly. This is the cutting of the cylindrical ceramic T referred to here.
[0016]
Glass is called old ceramics and is a kind of ceramics. In the present embodiment, the case where the present invention is applied to an old ceramic will be described. However, the present invention can also be applied to a new ceramic. Here, the Example which cut | disconnected the glass cylinder and the glass bottle using the above-mentioned cutting method is divided and described.
[0017]
[ Reference example]
The discing apparatus 1 is as shown in FIG. 1, and the glass cylinder to be cut as the cylindrical ceramic 5 is an outer diameter d = 60 mm made of Pyrex (registered trademark) glass, and a wall thickness t = 4.5 mm. belongs to. The side pressure transmission cylinder 9 is made of polyethylene and has an outer diameter of 68 mm, a wall thickness of 3.5 mm, and an axial length of 49 mm. First, a notch s as a notch groove 7 was provided on the cylinder by a commercially available glass cut on the outer surface of the cylinder at a position 60 mm from the end face of the cylinder at a length of about 3 mm perpendicular to the axis, and the cutting position was designated.
[0018]
When the position of the notch s is set to a position spaced 6 mm from the end face of the side pressure transmission cylinder 9 and a side pressure is statically applied to the outer peripheral surface of the cylinder as shown in FIG. It was cut at a cross section passing through the notch s with a weak sound of a pin at 18 MPa. The cut surface is smooth and mirror surface. Even if the length from the cylindrical end surface to the cutout s was changed, the cut was made accurately through the cutout s and the cut surface was very good. Moreover, when the side pressure at the time of cutting was expressed by Pa, the cutting pressure Pa showed an approximately constant value regardless of the axial length.
[0019]
Cylindrical ceramics T was arranged such that the position of notch s provided on the outer periphery of cylindrical ceramics T was a length x outward from the end face of side pressure transmission cylinder 9, for example, x = 3 mm to 10 mm. FIG. 3A shows the test results when x = 3 mm to 10 mm. Here, Pa is the cutting pressure, and δ indicates the state of the cut surface.
[0020]
FIG. 3B shows the state of the cut surface when x = 3 mm, and the cut surface at this time does not become smooth, but enters the inside from the outer periphery. Here, the maximum distance entered is represented by δ. Since there are two types of states of the cut surface, the one that enters the inside from the outer periphery is indicated by a, and the one that protrudes from the outer periphery to the inside is indicated by b. The state of this cut surface is shown in the remarks column of FIG. From the test results shown in FIG. 3 (a), when the data of x = 6 mm is seen, the absolute values of the cutting pressures Pa and δ show the minimum values, and it is suitable for cutting that x = 6 mm I understand.
[0021]
[Example 1 ]
Here, the Example which cut | disconnected the glass bottle T as cylindrical ceramics using the wire 21 is described. In addition, although the wire as a linear body was used in this Embodiment, you may use another linear body or a strip | belt-shaped body.
As shown in FIG. 4, the prepared wire 21 is a steel wire having a diameter of about 4 mm, and a glass bottle T (outer diameter 65 mm, wall thickness 3 mm, height 140 mm) with a notch s made by commercially available glass cutting. A cutting position was specified by providing a length of about 3 mm perpendicular to the axial direction on the outer surface 60 mm from the outer bottom surface of T.
[0022]
Then, as shown in FIG. 4, a single wire 21 is wound around the outer surface of the glass bottle T, and when the wires 21 intersect, one of the wires 21 is passed between the double wires 21. A tensile load W was statically applied to the wire 21 by a testing machine in order to pull in the opposite directions. At this time, the distance between the notch s and the wire 21 was set to x = 6 mm. A side pressure was applied along the outer peripheral surface of the glass bottle T, and the glass bottle T was cut at a cross section passing through the notch s with a slight beeping sound with a tensile load W = 2.94 kN. When this wire 21 is used, as long as the wire 21 is not broken, the cylindrical ceramic T having any size can be easily cut regardless of the outer diameter of the glass bottle T.
[0028]
Next, different embodiments of the present invention will be described with reference to FIGS. In this embodiment, the position of the notch s provided on the outer periphery of the cylindrical ceramic T shown in FIG. 2 is provided on the inner periphery of the ceramic T.
[0029]
First, the cutting principle will be described with reference to FIG. 5. T is a cylindrical ceramic with a constant outer diameter d (thickness t) to be cut in the YY section. When a side pressure p is applied to the outer circumference of the cylindrical ceramic T passing through the Y-Y cross section, the diameter d of the cylindrical ceramic T decreases to d ', but the portion not receiving the side pressure maintains the initial state. . For this reason, a stress proportional to the change in the outer diameter d is generated in the cylindrical ceramic T, and a maximum tensile stress is induced in the axial direction on the inner circumferential line of the cylinder in the YY section.
[0030]
Now, a notch S is provided by a tool such as glass cutting on a part of the cylindrical inner peripheral line in the YY section, which is a position where the cylindrical ceramic T is cut. When the side pressure p is applied to the cylindrical ceramic T in this state, not only the maximum tensile stress but also the stress concentration due to the notch S is superimposed on the notch S portion of the cylindrical ceramic T, so there is a side pressure p. When the value reaches the value, a crack is generated from the notch S, and the crack propagates and the cylindrical ceramic T is instantaneously cut along the YY section at a desired position.
[0031]
A method of cutting the cylindrical ceramic T using the cutting principle is shown in FIG. A method similar to that shown in FIG. 4 can be used. In the present embodiment, as shown in FIG. 6, T is a cylindrical ceramic having an outer diameter d, a wall thickness t, and an axial length l. A notch S is provided in advance on the cylindrical inner peripheral surface at the cutting position of the cylindrical ceramic T.
[0032]
A single wire 21 is doubled and wound in the same manner as shown in FIG. 4 on a cylindrical outer peripheral line passing through a notch S which is a cutting position of the cylindrical ceramic T. At this time, the pulley K is used so that the lateral pressure is uniformly applied to the outer peripheral surface of the cylinder. Further, the wire 21 is arranged using the ring R so that the wound wire 21 does not spread, that is, the side pressure p on the line as shown in FIG. 5 is applied.
[0033]
In this state, when a tensile load W is applied between the upper end of the wire 21 and the pulley K at the lower end, and the tensile load W reaches a certain value, a crack is generated from the notch S portion according to the cutting principle described above. The crack propagates and the cylindrical ceramic T is instantaneously cut along a cross section passing through the notch S. In addition, the thickness of the wire 21 can be increased / decreased suitably.
[0034]
[Example 2 ]
In Example 2 , an attempt was made to cut a glass cylinder as the cylindrical ceramic T. The glass cylinder to be cut is made of Pyrex (registered trademark) glass, and in the cutting, a notch S having a length of about 3 mm along the inner circumference is formed at the center of the cylinder so that the axial length is divided into two equal parts. It was provided with a commercially available glass cutter.
[0035]
Next, as shown in FIG. 6, a steel wire 21 having a diameter of 1.5 mm is wound around a glass cylinder using a steel ring R and a pulley K, a tensile load W is statically applied, and the glass cylinder is cut. Tensile load, that is, the cutting load Wa and the cutting state of the glass cylinder were examined.
[0036]
Table 1 shows the cutting results when the outer diameter d = 40 mm and the axial length l = 80 mm are constant, only the thickness t is changed, and the glass cylinder is bisected at the center. For the cutting, three glass cylinders having the same dimensions are prepared, and the cutting load Wa is shown as an average. When the cutting load Wa shown in Table 1 was reached, the glass cylinder was instantaneously cut in a cross-section passing through the notch S with a faint sound. The cut surface is smooth and mirror-finished, and the cutting method of the present invention does not generate chips during cutting.
[0037]
[Table 1]
[0038]
As shown in Table 1 , the cutting load Wa of the glass cylinder depends on the wall thickness t. When the wall thickness t is increased, the cutting load Wa increases, but the cut surface of the glass cylinder is extremely good regardless of the wall thickness t. Met.
[0039]
Next, Table 2 shows the cutting results when the glass cylinder is divided into two equal parts at the center by changing only the outer diameter d of the glass cylinder while keeping the wall thickness t = 3.2 mm and the axial length l = 80 mm constant. . For the cutting, three glass cylinders having the same dimensions are prepared, and the cutting load Wa is shown as an average. The glass cylinder was instantaneously cut at a cross section passing through the notch S with the cutting load Wa shown in Table 2 .
[0040]
[Table 2]
[0041]
As apparent from the cutting results in Table 2 , the cutting load Wa of the glass cylinder depends on the outer diameter d, and increasing the outer diameter d increases the cutting load Wa. However, the cutting surface of the glass cylinder is related to the outer diameter d. All were very good.
[0042]
[ Reference example ]
In this reference example , an attempt was made to cut a glass bottle as a cylindrical ceramic T. The glass bottles to be cut are for shochu with an outer diameter of 77 mm, a wall thickness of 4 mm, and a height of 290 mm, and for sake with an outer diameter of 67 mm, a wall thickness of 3 mm, and a height of 195 mm. In the case of a glass bottle, it may be difficult to provide a notch S by cutting glass on the inner peripheral surface of the container. In the present embodiment, instead of providing a notch S by cutting glass at a position where cutting is desired, a horizontal hole penetrating the glass bottle is drilled by a drill having a diameter of 2 mm. At this time, the position of the horizontal hole was 90 mm in the former from the outer bottom surface of the glass bottle, and 40 mm in the latter. The size of the horizontal hole can be increased or decreased as appropriate, and can also be a long hole.
[0043]
Next, as shown in FIG. 6, a steel wire 21 having a diameter of 1.5 mm was wound around a glass bottle using a steel ring R and a pulley K, and a tensile load W was statically applied. Both glass bottles were cut instantly at a cross section passing through the side hole. The cutting load Wa when cutting the glass bottle was Wa = 1200N in the former, and Wa = 1110N in the latter. Both glass bottles were not only cut at the desired position, but the cut surfaces were also very good.
[0044]
【The invention's effect】
The above is an embodiment of the method for cutting cylindrical ceramics according to the present invention. According to the method for cutting cylindrical ceramics according to claim 1 of the present invention, desired cutting of cylindrical ceramics is performed. A notch groove is formed in a direction perpendicular to the axial direction of the position, and then a linear body or a band-like body is wound around the outer peripheral surface of the ceramic so as to induce a tensile stress in the notch groove of the ceramic. Since the ceramic is cut at the notch groove position by applying a tensile load to the body and applying a side pressure to the outer peripheral surface of the ceramic, there is no risk of generating chips and noise, eliminating the disadvantages of cutting with a blade, There is no possibility of deteriorating the working environment, and the cylindrical ceramic can be cut quickly and easily with a small force, and a smooth cut surface can be obtained.
In addition, since a side pressure is applied to the outer peripheral surface of the ceramic using a linear body or a band-shaped body, it is possible to deal with cylindrical ceramics having any outer diameter.
[0045]
According to the method for cutting cylindrical ceramics according to claim 2 of the present invention, in the invention according to claim 1, the notch groove is an axial direction of a desired cutting position on the outer peripheral surface of the cylindrical ceramics. Since the ceramic is cut at the position of the notch groove by applying a side pressure to the outer peripheral surface of the ceramic with the linear body or belt-like body at a distance of 6 mm from the notch groove of the ceramic, This eliminates the disadvantages of cutting by cutting, and there is no risk of generating chips or noise, there is no risk of deteriorating the work environment, and cylindrical ceramics can be cut quickly and easily with a small force and smooth. A cut surface can be obtained.
[0046]
According to the method for cutting cylindrical ceramics according to claim 3 of the present invention, in the invention according to claim 1, the notch groove is an axial center of a desired cutting position on the inner peripheral surface of the cylindrical ceramics. form shape in a direction perpendicular to the direction, then since cutting the ceramic in the cutout groove position by loading the lateral pressure in the linear member or strip to the outer circumferential surface of the cutout groove position of ceramics, it provided a notch By matching the cutting position with the position where the side pressure is applied, the cutting work can be performed quickly and easily, eliminating the disadvantages of cutting with the blade, eliminating the possibility of generating chips and noise, and deteriorating the working environment. There is no fear, the cylindrical ceramic can be cut quickly and easily with a small force, and a smooth cut surface can be obtained.
[0049]
According to the present invention, it is possible to eliminate the shortcomings of cutting with a blade, there is no possibility of generating chips and noise, there is no possibility of deteriorating the working environment, and a cylindrical ceramic can be cut quickly and easily. In addition, the energy required for cutting can be reduced, and a method for cutting cylindrical ceramics having a smooth cut surface and excellent economy can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a discing apparatus used in a method for cutting cylindrical ceramics according to the present invention.
FIG. 2 is an explanatory cross-sectional view showing an outline of a method for cutting cylindrical ceramics according to the present invention.
3A and 3B show a method for cutting cylindrical ceramics according to the present invention, in which FIG. 3A is a table showing test results, and FIG. 3B is an explanatory view showing a state of a cut surface.
FIG. 4 is an explanatory perspective view showing a cylindrical ceramic cutting method according to the present invention.
FIG. 5 is a cross-sectional explanatory view showing different embodiments of the method for cutting cylindrical ceramics according to the present invention.
FIG. 6 is an explanatory perspective view showing different embodiments of the method for cutting cylindrical ceramics according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Discking apparatus 3 Pressure vessel 5 Cylindrical ceramics 7 Notch groove 9 Side pressure transmission cylinder 11 Pressure load port 13 O-ring 15 Collar 17 Holding ring 19 Screw 21 Wire T Cylindrical ceramics (glass bottle)
s Notch (when provided on the outer circumference of the cylinder)
W Tensile load P Internal pressure applied to the pressure vessel (side pressure applied to the side pressure transmission cylinder)
d Ceramic outer diameter t Ceramic thickness b Notch groove spacing p Side pressure applied to ceramic d 'Ceramic outer diameter reduced by side pressure X Length from end face of side pressure transmission cylinder Cutting pressure δ Cutting surface condition Maximum distance 1 indicating the axial length S of the ceramic S Notch (when provided on the inner circumferential surface of the cylinder)
K pulley R ring

Claims (3)

円筒状のセラミックスを所望とする切断位置でセラミックスの軸心方向と直交する方向に切断する円筒状のセラミックスの切断方法において、前記円筒状のセラミックスの所望とする切断位置の軸心方向と直交する方向に切欠溝を形成し、次いでセラミックスの切欠溝に引張応力を誘起させるようにセラミックスの外周面に線状体又は帯状体を巻き回し、該線状体又は帯状体に引張荷重を負荷してセラミックスの外周面に側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする円筒状のセラミックスの切断方法。In a method for cutting cylindrical ceramics, the cylindrical ceramics is cut at a desired cutting position in a direction perpendicular to the axial direction of the ceramics, and is orthogonal to the axial direction of the desired cutting position of the cylindrical ceramics. A notched groove is formed in the direction, and then a linear body or strip is wound around the outer peripheral surface of the ceramic so as to induce a tensile stress in the notched groove of the ceramic, and a tensile load is applied to the linear body or the strip. A method of cutting a cylindrical ceramic, comprising cutting the ceramic at the position of the notch groove by applying a lateral pressure to the outer peripheral surface of the ceramic. 前記切欠溝は前記円筒状のセラミックスの外周面の所望とする切断位置の軸心方向と直交する方向に形成し、セラミックスの切欠溝から6mmの間隔を置いてセラミックスの外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする請求項1に記載の円筒状のセラミックスの切断方法。The notch groove is formed in a direction perpendicular to the axial direction of a desired cutting position on the outer peripheral surface of the cylindrical ceramic, and the linear body is formed on the outer peripheral surface of the ceramic at a distance of 6 mm from the notch groove of the ceramic. 2. The method for cutting cylindrical ceramics according to claim 1, wherein the ceramic is cut at the position of the notch groove by applying a lateral pressure with a belt-like body. 前記切欠溝は前記円筒状のセラミックスの内周面の所望とする切断位置の軸心方向と直交する方向に形成し、次いでセラミックスの切欠溝位置の外周面に前記線状体又は帯状体で側圧を負荷することによりセラミックスを前記切欠溝位置で切断することを特徴とする請求項1に記載の円筒状のセラミックスの切断方法。 The slit is form shape in a direction perpendicular to the axial direction of the cutting position to obtain a desired inner peripheral surface of the cylindrical ceramic, then with the linear member or strip to the outer circumferential surface of the cutout groove position of ceramics 2. The method for cutting a cylindrical ceramic according to claim 1, wherein the ceramic is cut at the position of the notch groove by applying a side pressure.
JP2002015072A 2001-01-31 2002-01-24 Cutting method of cylindrical ceramics Expired - Fee Related JP4175495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015072A JP4175495B2 (en) 2001-01-31 2002-01-24 Cutting method of cylindrical ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-24098 2001-01-31
JP2001024098 2001-01-31
JP2002015072A JP4175495B2 (en) 2001-01-31 2002-01-24 Cutting method of cylindrical ceramics

Publications (2)

Publication Number Publication Date
JP2002308636A JP2002308636A (en) 2002-10-23
JP4175495B2 true JP4175495B2 (en) 2008-11-05

Family

ID=26608665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015072A Expired - Fee Related JP4175495B2 (en) 2001-01-31 2002-01-24 Cutting method of cylindrical ceramics

Country Status (1)

Country Link
JP (1) JP4175495B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058171A1 (en) * 2003-12-15 2005-06-30 Nihon University Bone cutting device
JP4951494B2 (en) * 2007-12-21 2012-06-13 東ソー・クォーツ株式会社 Glass tube cutting method

Also Published As

Publication number Publication date
JP2002308636A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
Bridgman On torsion combined with compression
JP3735584B2 (en) Step drill
CN101267905A (en) Low-vibration tool holder
JP4175495B2 (en) Cutting method of cylindrical ceramics
US9066773B2 (en) Rotary drive cutter for dentistry
Industrial Administration and Engineering Production Group et al. The influence of rate of strain-hardening in machining
JP2019515746A (en) Ultrasonic surgical instrument and method of manufacturing the same
US5056225A (en) Flat scraper tool
GB2100990A (en) Surgical cutting tool for eye and other operations
TWI321074B (en) Tool holder
RU2229371C1 (en) Apparatus for cutting and finishing outer and inner metal surfaces (variants)
JP2002096222A (en) Drill shank
JP2012513314A (en) Holder for cutting tool, cutting tool, and cutting insert
JPH0712485B2 (en) Material for wire drawing die and wire drawing die using the material
SU837797A1 (en) Ultrasonic tool for working external cylindrical surfaces
JP2002001723A (en) Method for cutting work piece by side pressure
HUE026149T2 (en) Packing cups manufacturing
KR970014929A (en) Honing processing method and apparatus
Birinci et al. Axisymmetric circumferential internal crack problem of a thick-walled cylinder with inner and outer claddings
JP3910060B2 (en) Broaching and holding device
RU2203792C1 (en) Apparatus for feeding cutting fluids at working small-diameter openings
CN217991137U (en) Steel pipe angle cutting machine for machining stainless steel pipe
WO2004010168A3 (en) Device for radial optic neurotomy
JP2002113697A (en) Cutting method and cutting device for workpiece
JPS6076902A (en) Highly hard material cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees