JP4172405B2 - EGR gas cooling system for compression ignition internal combustion engine - Google Patents

EGR gas cooling system for compression ignition internal combustion engine Download PDF

Info

Publication number
JP4172405B2
JP4172405B2 JP2004065581A JP2004065581A JP4172405B2 JP 4172405 B2 JP4172405 B2 JP 4172405B2 JP 2004065581 A JP2004065581 A JP 2004065581A JP 2004065581 A JP2004065581 A JP 2004065581A JP 4172405 B2 JP4172405 B2 JP 4172405B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
cooling
egr cooler
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004065581A
Other languages
Japanese (ja)
Other versions
JP2005256619A (en
Inventor
清 藤原
久 大木
崇志 松本
秀 板橋
雄介 伯耆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004065581A priority Critical patent/JP4172405B2/en
Publication of JP2005256619A publication Critical patent/JP2005256619A/en
Application granted granted Critical
Publication of JP4172405B2 publication Critical patent/JP4172405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Description

本発明は、EGRガスを利用して予混合燃焼を行う予混合圧縮着火内燃機関の、該EGRガスの冷却システムに関する。   The present invention relates to a cooling system for an EGR gas of a premixed compression ignition internal combustion engine that performs premixed combustion using EGR gas.

圧縮着火内燃機関において、排出されるNOxの抑制とスモークの発生の抑制を目的として、予混合燃焼が行われる。この予混合燃焼は、一般に燃料を気筒内に圧縮行程上死点より早い時期に噴射することで、燃焼室内により均一な予混合気を形成させる。この均一な予混合気が燃焼すると、火炎温度が低く抑えられるためNOxの生成が抑制される。さらに、この予混合気は燃料と空気が均一に混合しているため、十分な量の酸素の存在下で燃料が燃焼することになり、従って、酸素不足下での燃焼に起因するスモークの発生も抑制される。   In a compression ignition internal combustion engine, premixed combustion is performed for the purpose of suppressing exhausted NOx and smoke. In this premixed combustion, fuel is generally injected into the cylinder at a time earlier than the top dead center of the compression stroke, thereby forming a uniform premixed gas in the combustion chamber. When this uniform premixed gas burns, the flame temperature is kept low, so that the generation of NOx is suppressed. In addition, since this premixed gas has a uniform mixture of fuel and air, the fuel will burn in the presence of a sufficient amount of oxygen, and therefore smoke will be generated due to combustion in the absence of oxygen. Is also suppressed.

ところが、予混合燃焼を行う圧縮着火内燃機関において、機関負荷や機関回転速度が上昇すると、気筒内に均一な予混合気を形成することが困難となり、予混合気が所定の着火時期より早い時期に着火するいわゆる過早着火が生じる可能性が高くなる。そして、過早着火が生じると、燃焼騒音が大きくなる等の問題が生じる。   However, in a compression ignition internal combustion engine that performs premixed combustion, when the engine load and the engine speed increase, it becomes difficult to form a uniform premixed gas in the cylinder, and the premixed gas is earlier than the predetermined ignition timing. There is a high possibility that so-called pre-ignition will occur. When pre-ignition occurs, problems such as increased combustion noise occur.

そこで、予混合燃焼を行う圧縮着火内燃機関において、過早着火を抑制するためにいわゆるEGRガス(既燃焼ガスを含む)を燃焼室内に多量に導入することで、混合気温度の上昇を抑制する。そして、燃焼室内へのEGRガスの導入をより効率的に行うために、圧縮着火内燃機関の冷却系とは独立したEGRガス冷却用のラジエータを設け、該ラジエータからの冷却水をEGRガス冷却のために利用する技術が公開されている(例えば、特許文献1を参照。)。
特開2003−278608号公報 特開平9−228882号公報 特開2001−173519号公報 特開2000−130200号公報
Therefore, in a compression ignition internal combustion engine that performs premixed combustion, in order to suppress premature ignition, a large amount of so-called EGR gas (including pre-combusted gas) is introduced into the combustion chamber to suppress an increase in the mixture temperature. . In order to introduce the EGR gas into the combustion chamber more efficiently, a radiator for cooling the EGR gas independent from the cooling system of the compression ignition internal combustion engine is provided, and the cooling water from the radiator is used for the EGR gas cooling. The technology used for this purpose is disclosed (for example, see Patent Document 1).
JP 2003-278608 A JP-A-9-228882 JP 2001-173519 A JP 2000-130200 A

圧縮着火内燃機関において、NOxの抑制とスモークの抑制を目的として予混合燃焼を行う場合、該内燃機関の運転状態が高負荷運転状態となって機関負荷および機関回転速度が上昇するに従い、過早着火が生じる可能性が高くなる。そこで、該内燃機関の運転状態に基づいて、予混合燃焼を行うか通常燃焼を行うかを決定する。   In a compression ignition internal combustion engine, when premixed combustion is performed for the purpose of suppressing NOx and smoke, as the operating state of the internal combustion engine becomes a high-load operating state and the engine load and the engine speed increase, There is a high possibility of ignition. Therefore, whether to perform premixed combustion or normal combustion is determined based on the operating state of the internal combustion engine.

しかし、圧縮着火内燃機関において予混合燃焼を行う場合と通常燃焼を行う場合とにおいて、いわゆるEGRガス(既燃焼ガスを含む)の気筒内への供給量が大きく異なる。即ち、予混合燃焼においては、過早着火の抑制のために通常燃焼時と比べて多量のEGRガスが必要とされる。そして、そのためにEGRクーラによってEGRガスを冷却し燃焼室内に供給されるEGRガスの体積密度を増加させる必要がある。   However, the amount of so-called EGR gas (including pre-combusted gas) supplied into the cylinder differs greatly between premixed combustion and normal combustion in a compression ignition internal combustion engine. That is, in premixed combustion, a larger amount of EGR gas is required than in normal combustion in order to suppress premature ignition. For this purpose, it is necessary to cool the EGR gas with the EGR cooler and increase the volume density of the EGR gas supplied into the combustion chamber.

ここで、EGRクーラへの冷却媒体の供給は、圧縮着火内燃機関の冷却系とは独立したEGRクーラ用ラジエータからの冷却媒体を利用すると、圧縮着火内燃機関の温度に影響されずEGRガスの冷却を行うことが可能となる。しかし、圧縮着火内燃機関を搭載する車両等の空間的制限から、EGRクーラ用ラジエータの容量は、圧縮着火内燃機関の冷却系の容量と比べて比較的小さくならざるを得ず、予混合燃焼が行われる時間が長くなると
EGRクーラ用ラジエータからの冷却媒体温度が上昇し、EGRガスの十分な冷却が困難となる。
Here, when the cooling medium supplied from the EGR cooler radiator independent of the cooling system of the compression ignition internal combustion engine is used, the supply of the cooling medium to the EGR cooler is not affected by the temperature of the compression ignition internal combustion engine. Can be performed. However, due to space limitations of vehicles equipped with a compression ignition internal combustion engine, the capacity of the EGR cooler radiator must be relatively small compared to the capacity of the cooling system of the compression ignition internal combustion engine. If the time to be performed becomes long, the temperature of the cooling medium from the radiator for the EGR cooler rises, and it becomes difficult to sufficiently cool the EGR gas.

本発明では、上記した問題に鑑み、EGRガス冷却のために圧縮着火内燃機関の冷却系とは独立したEGRクーラ用ラジエータを有する、予混合燃焼を行う圧縮着火内燃機関において、EGRガスの冷却をより確実に行い、過早着火の抑制を図ることを目的とする。   In the present invention, in view of the above-described problems, EGR gas cooling is performed in a compression ignition internal combustion engine that performs premixed combustion and has a radiator for an EGR cooler that is independent of the cooling system of the compression ignition internal combustion engine for EGR gas cooling. The purpose is to more reliably and to suppress premature ignition.

本発明は、上記した課題を解決するために、予混合燃焼を行う圧縮着火内燃機関であって、EGRガス冷却のために圧縮着火内燃機関の冷却系とは独立したEGRクーラ用ラジエータを有する場合であっても、該EGRクーラ用ラジエータからの冷却媒体温度がEGRガスの冷却に適さないと判定されるときは、該EGRクーラ用ラジエータからの冷却媒体によるEGRガスの冷却を行わずに、圧縮着火内燃機関の冷却系によってEGRガスの冷却を行うこととした。   In order to solve the above-described problems, the present invention is a compression ignition internal combustion engine that performs premixed combustion, and has an EGR cooler radiator independent of the cooling system of the compression ignition internal combustion engine for EGR gas cooling. Even when the cooling medium temperature from the EGR cooler radiator is determined to be unsuitable for cooling the EGR gas, the EGR gas is not cooled by the cooling medium from the EGR cooler radiator, and the compression is performed. The EGR gas was cooled by the cooling system of the ignition internal combustion engine.

即ち、本発明は、圧縮着火内燃機関のEGRガス冷却システムであって、圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、前記EGR通路を流れるEGRガスを冷却するEGRクーラと、前記内燃機関用冷却系から独立し前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、前記圧縮着火内燃機関において予混合燃焼が行われているとき、前記EGRクーラ用ラジエータから前記EGRクーラへの冷却媒体の導入の可否を該EGRクーラ用ラジエータの冷却媒体温度に基づいて判定し、該判定が可であるときは該EGRクーラ用ラジエータからの冷却媒体を該EGRクーラへ導入し、該判定が否であるときは該内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入する冷却媒体導入制御手段と、を備える。   That is, the present invention relates to an EGR gas cooling system for a compression ignition internal combustion engine, in which combustion performed in the compression ignition internal combustion engine is determined from a time near the top dead center of the compression stroke based on the operating state of the compression ignition internal combustion engine. In a compression ignition internal combustion engine that switches between premix combustion performed by forming a premixed gas by early fuel injection and normal combustion performed by fuel injection at a timing near the top dead center of the compression stroke, the compression ignition internal combustion engine A cooling system for an internal combustion engine that cools the engine, an EGR passage that connects an exhaust passage and an intake passage of the compression ignition internal combustion engine, and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage, and the EGR passage An EGR cooler that cools the flowing EGR gas, an EGR cooler radiator that supplies a cooling medium to the EGR cooler independently of the internal combustion engine cooling system, and When premixed combustion is performed in the compression ignition internal combustion engine, it is determined whether or not the cooling medium can be introduced from the EGR cooler radiator to the EGR cooler based on the cooling medium temperature of the EGR cooler radiator, and the determination The cooling medium from the EGR cooler radiator is introduced into the EGR cooler when it is possible, and the cooling medium from the internal combustion engine cooling system is introduced into the EGR cooler when the determination is negative Introduction control means.

上述の予混合燃焼を行う圧縮着火内燃機関(以下、単に「内燃機関」ともいう)において、内燃機関の機関回転速度や機関負荷等によって決定される運転状態が、予混合燃焼が行われる予混合燃焼領域と通常燃焼が行われる通常燃焼領域との何れに属するかによって該内燃機関で行われる燃焼が決定される。この予混合燃焼領域および通常燃焼領域は、予混合燃焼時の過早着火の生じやすさ等に基づいて実験等で予め決定されてもよい。そして、内燃機関で燃焼が行われるとき、内燃機関自身の冷却、いわゆる燃焼室内で発生した熱エネルギーによって昇温した内燃機関の冷却には内燃機関用冷却系が利用される。従って、内燃機関の機関負荷や機関回転速度等の運転状態によって変動するものの、内燃機関において燃焼が行われる限り、内燃機関用冷却系で用いられる冷却媒体温度は比較的高い温度となる。   In the compression ignition internal combustion engine (hereinafter, also simply referred to as “internal combustion engine”) that performs the above-described premixed combustion, the operation state determined by the engine speed, engine load, etc. of the internal combustion engine is premixed in which premixed combustion is performed. Combustion to be performed in the internal combustion engine is determined depending on whether it belongs to a combustion region or a normal combustion region in which normal combustion is performed. The premixed combustion region and the normal combustion region may be determined in advance through experiments or the like based on the ease of premature ignition during premixed combustion. When combustion is performed in the internal combustion engine, a cooling system for the internal combustion engine is used for cooling the internal combustion engine itself, that is, for cooling the internal combustion engine whose temperature has been raised by heat energy generated in the combustion chamber. Therefore, although it varies depending on the operating state such as the engine load and engine speed of the internal combustion engine, the temperature of the cooling medium used in the internal combustion engine cooling system is relatively high as long as combustion is performed in the internal combustion engine.

一方で、EGRガスの冷却は、その内燃機関用冷却系とは独立したEGRクーラ用ラジエータからの冷却媒体によって行われる。ここで、「内燃機関用冷却系と独立」した状態とは、EGRクーラ用ラジエータからの冷却媒体は、内燃機関の冷却に利用されることなくEGRガス冷却のためにEGRクーラにのみ供給されることを意味する。従って、内燃機関の運転状態からの影響を小さく抑えて、冷却媒体が不必要に温度上昇するのを回避して、EGRガスの冷却をより効率的に行うことが可能となる。   On the other hand, the cooling of the EGR gas is performed by a cooling medium from an EGR cooler radiator independent of the cooling system for the internal combustion engine. Here, the state “independent of the cooling system for the internal combustion engine” means that the cooling medium from the radiator for the EGR cooler is supplied only to the EGR cooler for cooling the EGR gas without being used for cooling the internal combustion engine. Means that. Therefore, the influence from the operating state of the internal combustion engine is suppressed to be small, the temperature of the cooling medium is prevented from rising unnecessarily, and the EGR gas can be cooled more efficiently.

しかし、予混合燃焼時においては燃焼室内に供給すべきEGRガス量が通常燃焼と比べて比較的多くなるため、EGRクーラで行われる熱交換量が増加し、EGRクーラ用ラジ
エータの冷却媒体温度も上昇する。その結果、EGRクーラ用ラジエータからの冷却媒体によってEGRガスを冷却しても、EGRガスを十分に冷却できず、また冷却媒体が沸騰する虞がある。
However, during premixed combustion, the amount of EGR gas to be supplied into the combustion chamber is relatively large compared to normal combustion, so the amount of heat exchange performed in the EGR cooler increases, and the cooling medium temperature of the radiator for EGR cooler also increases. To rise. As a result, even if the EGR gas is cooled by the cooling medium from the radiator for the EGR cooler, the EGR gas cannot be sufficiently cooled, and the cooling medium may boil.

そこで、冷却媒体導入制御手段によって、EGRクーラ用ラジエータからの冷却媒体温度に基づいて、EGRクーラ用ラジエータからの冷却媒体をEGRクーラへ導入することの可否を判定する。即ち、EGRクーラ用ラジエータからの冷却媒体温度が、EGRガスの冷却に十分である場合には、EGRクーラ用ラジエータからの冷却媒体をEGRクーラへ導入するが、EGRクーラ用ラジエータからの冷却媒体温度が、EGRガスの冷却に十分でない場合等には、上述したようにEGRクーラ用ラジエータからの冷却媒体の導入を行わず、代わりに内燃機関用冷却系からの冷却媒体の導入を行う。   Therefore, the cooling medium introduction control means determines whether or not the cooling medium from the EGR cooler radiator can be introduced into the EGR cooler based on the cooling medium temperature from the EGR cooler radiator. That is, when the cooling medium temperature from the EGR cooler radiator is sufficient for cooling the EGR gas, the cooling medium from the EGR cooler radiator is introduced into the EGR cooler, but the cooling medium temperature from the EGR cooler radiator is However, when the cooling of the EGR gas is not sufficient, as described above, the cooling medium is not introduced from the EGR cooler radiator, but instead, the cooling medium is introduced from the cooling system for the internal combustion engine.

尚、内燃機関用冷却系においては、その冷却媒体によって内燃機関自身を十分に冷却できない場合には、内燃機関の稼動が停止されるのが通常であり、内燃機関が稼動している限り、内燃機関用冷却系の冷却媒体が沸騰している等過度に高温の状態とはならない。そこで、冷却媒体導入制御手段によって、EGRクーラ用ラジエータからの冷却媒体の導入から、内燃機関用冷却系からの冷却媒体の導入へと切り替えられたときは、少なくともEGRガスの冷却は改善され、より確実に冷却されることで過早着火を抑制し得る。   In the internal combustion engine cooling system, when the internal combustion engine itself cannot be sufficiently cooled by the cooling medium, the operation of the internal combustion engine is normally stopped. As long as the internal combustion engine is operating, the internal combustion engine is stopped. The cooling medium of the engine cooling system does not reach an excessively high temperature such as boiling. Therefore, when the cooling medium introduction control means switches from introduction of the cooling medium from the radiator for the EGR cooler to introduction of the cooling medium from the cooling system for the internal combustion engine, at least the cooling of the EGR gas is improved. Premature ignition can be suppressed by cooling reliably.

ここで、上述の圧縮着火内燃機関のEGRガス冷却システムにおいて、前記EGRクーラ用ラジエータからの冷却媒体温度が前記内燃機関用冷却系からの冷却媒体温度を超えるとき、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入するようにしてもよい。即ち、EGRクーラ用ラジエータからの冷却媒体温度と内燃機関用冷却系からの冷却媒体温度とを比較して、温度が低い方をEGRクーラへ導入することで、EGRガスの冷却をより確実に行い、過早着火の抑制を図るものである。   Here, in the above-mentioned EGR gas cooling system for a compression ignition internal combustion engine, when the coolant temperature from the EGR cooler radiator exceeds the coolant temperature from the coolant system for the internal combustion engine, the coolant introduction control means includes: It may be determined that the introduction of the cooling medium from the EGR cooler radiator to the EGR cooler is rejected, and the cooling medium from the internal combustion engine cooling system may be introduced into the EGR cooler. That is, the coolant temperature from the radiator for the EGR cooler is compared with the coolant temperature from the cooling system for the internal combustion engine, and the one with the lower temperature is introduced into the EGR cooler, so that the EGR gas can be cooled more reliably. This is intended to suppress premature ignition.

また、上述の圧縮着火内燃機関のEGRガス冷却システムにおいて、前記EGRクーラ用ラジエータからの冷却媒体温度が所定切替温度を超えるとき、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入するようにしてもよい。上記の所定切替温度とは、EGRクーラ用ラジエータからの冷却媒体温度が、EGRガスの冷却に十分でないと判定される温度である。従って、EGRクーラ用ラジエータからの冷却媒体温度が、EGRガスの冷却に十分でないと判定されるときは、内燃機関用冷却系の冷却媒体をEGRクーラへ導入することで、EGRガスの冷却をより確実に行い、過早着火の抑制を図るものである。   In the EGR gas cooling system for the compression ignition internal combustion engine described above, when the coolant temperature from the EGR cooler radiator exceeds a predetermined switching temperature, the coolant introduction control means controls the EGR cooler from the EGR cooler radiator. The cooling medium from the internal combustion engine cooling system may be introduced to the EGR cooler by determining that the cooling medium is not introduced into the EGR cooler. The predetermined switching temperature is a temperature at which it is determined that the coolant temperature from the EGR cooler radiator is not sufficient for cooling the EGR gas. Therefore, when it is determined that the cooling medium temperature from the EGR cooler radiator is not sufficient for cooling the EGR gas, the cooling medium for the internal combustion engine cooling system is introduced into the EGR cooler to further cool the EGR gas. This is done reliably to prevent premature ignition.

また、上述の圧縮着火内燃機関のEGRガス冷却システムにおいて、前記圧縮着火内燃機関の運転状態が、予混合燃焼が行われる予混合燃焼領域であって高負荷側の高負荷側予混合燃焼領域に属し、且つ、該高負荷側予混合燃焼領域に属している時間が所定時間を超えると、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入するようにしてもよい。   Further, in the EGR gas cooling system for the compression ignition internal combustion engine described above, the operation state of the compression ignition internal combustion engine is a premixed combustion region where premixed combustion is performed and a high load side premixed combustion region. And when the time belonging to the high load side premixed combustion region exceeds a predetermined time, the cooling medium introduction control means rejects introduction of the cooling medium from the EGR cooler radiator to the EGR cooler. The cooling medium from the internal combustion engine cooling system may be introduced to the EGR cooler.

上述の圧縮着火内燃機関においては、該内燃機関の運転状態が高負荷側予混合燃焼領域に属するときは、EGRガスの温度が比較的高温となるため、EGRクーラにおける熱交換量が増加し、冷却媒体温度の上昇がより顕著となる。そこで、内燃機関の運転状態が高負荷側予混合燃焼領域に属するときは、その属している時間が所定時間を超えることで、EGRクーラ用ラジエータからの冷却媒体温度がEGRガスの冷却に十分な温度ではなくなると判定し、内燃機関用冷却系からの冷却媒体の導入に切り替える。これにより、EG
Rガスの冷却をより確実に行い、過早着火の抑制を図ることが可能となる。
In the compression ignition internal combustion engine described above, when the operating state of the internal combustion engine belongs to the high load side premixed combustion region, the temperature of the EGR gas becomes relatively high, so that the amount of heat exchange in the EGR cooler increases, The rise in the cooling medium temperature becomes more remarkable. Therefore, when the operating state of the internal combustion engine belongs to the high-load side premixed combustion region, the belonging time exceeds a predetermined time, so that the cooling medium temperature from the radiator for the EGR cooler is sufficient for cooling the EGR gas. It is determined that the temperature is not reached, and switching to introduction of a cooling medium from the internal combustion engine cooling system is performed. As a result, EG
It is possible to more reliably cool the R gas and suppress premature ignition.

次に、EGRクーラ用ラジエータの冷却媒体温度を低下するために、冷却ファンによって該EGRクーラ用ラジエータに送風を行い、これによりEGRガスの冷却を促進させることも可能である。しかし、冷却ファンの駆動には電力を消費するため、内燃機関の燃費を悪化させる要因ともなる。   Next, in order to lower the cooling medium temperature of the EGR cooler radiator, it is possible to blow air to the EGR cooler radiator by a cooling fan, thereby promoting the cooling of the EGR gas. However, driving the cooling fan consumes electric power, which causes a deterioration in fuel consumption of the internal combustion engine.

そこで、圧縮着火内燃機関のEGRガス冷却システムであって、圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、前記EGR通路を流れるEGRガスを冷却するEGRクーラと、前記内燃機関用冷却系から独立し、前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、前記EGRクーラ用ラジエータへの送風を行い冷却媒体の冷却を行う冷却ファンと、を備え、前記圧縮着火内燃機関において予混合燃焼が行われているとき、前記EGRクーラ用ラジエータから前記EGRクーラへ導入される冷却媒体の温度が所定ファン駆動温度を超えると前記冷却ファンを作動させる。   Accordingly, in an EGR gas cooling system for a compression ignition internal combustion engine, the combustion performed in the compression ignition internal combustion engine is determined based on the operating state of the compression ignition internal combustion engine at a time earlier than the timing near the top dead center of the compression stroke. An internal combustion engine that cools the compression ignition internal combustion engine in a compression ignition internal combustion engine that switches between premix combustion performed by forming a premixed gas by injection and normal combustion performed by fuel injection at a timing near the compression stroke top dead center An EGR passage that connects an engine cooling system, an exhaust passage and an intake passage of the compression ignition internal combustion engine, and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage, and an EGR gas flowing through the EGR passage An EGR cooler for cooling, an EGR cooler radiator for supplying a cooling medium to the EGR cooler independently of the cooling system for the internal combustion engine, and the EGR A cooling fan that blows air to the radiator and cools the cooling medium, and is introduced from the EGR cooler radiator to the EGR cooler when premixed combustion is performed in the compression ignition internal combustion engine. When the temperature of the cooling medium exceeds a predetermined fan driving temperature, the cooling fan is activated.

ここで、所定ファン駆動温度とは、EGRクーラ用ラジエータからの冷却媒体温度が上昇し、EGRガスの冷却を効率的に行うことが困難となる温度である。一方で、EGRガスの冷却を極めて効率的に行うためには、冷却ファンの駆動を常時行うことが好ましいが冷却ファンを駆動することで内燃機関の燃費が悪化するため、所定ファン駆動温度は、EGRガスの冷却の効率化と内燃機関の燃費を考慮して決定される。   Here, the predetermined fan driving temperature is a temperature at which the temperature of the cooling medium from the radiator for the EGR cooler rises and it is difficult to efficiently cool the EGR gas. On the other hand, in order to cool the EGR gas very efficiently, it is preferable to always drive the cooling fan. However, since the fuel consumption of the internal combustion engine is deteriorated by driving the cooling fan, the predetermined fan driving temperature is It is determined in consideration of the efficiency of cooling of the EGR gas and the fuel consumption of the internal combustion engine.

このように冷却ファンの作動をEGRクーラ用ラジエータからの冷却媒体温度に基づいて制御することで、不必要な冷却ファンの駆動時間を削減して内燃機関の燃費の悪化を抑制するとともに、EGRガスをより確実に冷却して過早着火の抑制を図ることが可能となる。   Thus, by controlling the operation of the cooling fan based on the temperature of the cooling medium from the radiator for the EGR cooler, unnecessary driving time of the cooling fan is reduced to suppress the deterioration of the fuel consumption of the internal combustion engine, and the EGR gas It is possible to more reliably cool the engine and suppress premature ignition.

更に、圧縮着火内燃機関のEGRガス冷却システムであって、圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、前記EGR通路を流れるEGRガスを冷却するEGRクーラと、前記内燃機関用冷却系から独立し、前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、前記EGRクーラ用ラジエータへの送風を行い冷却媒体の冷却を行う冷却ファンと、を備え、前記圧縮着火内燃機関において予混合燃焼が行われているとき、該圧縮着火内燃機関の運転状態が、予混合燃焼が行われる予混合燃焼領域であって高負荷側の高負荷側予混合燃焼領域に属し、且つ、該圧縮着火内燃機関を搭載する車両の速度が所定速度以下であると前記冷却ファンを作動させる。   Further, in the EGR gas cooling system for a compression ignition internal combustion engine, the combustion performed in the compression ignition internal combustion engine is performed at a time earlier than the time near the top dead center of the compression stroke based on the operating state of the compression ignition internal combustion engine. An internal combustion engine that cools the compression ignition internal combustion engine in a compression ignition internal combustion engine that switches between premix combustion performed by forming a premixed gas by injection and normal combustion performed by fuel injection at a timing near the compression stroke top dead center An EGR passage that connects an engine cooling system, an exhaust passage and an intake passage of the compression ignition internal combustion engine, and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage, and an EGR gas flowing through the EGR passage An EGR cooler for cooling, an EGR cooler radiator for supplying a cooling medium to the EGR cooler independently of the cooling system for the internal combustion engine, and the EGR cooler A cooling fan that blows air to the radiator for cooling the cooling medium, and when premixed combustion is performed in the compression ignition internal combustion engine, the operation state of the compression ignition internal combustion engine is premixed combustion. The cooling fan is operated when the vehicle is in a premixed combustion region in which high pressure is applied and belongs to a high load side premixed combustion region and the speed of a vehicle equipped with the compression ignition internal combustion engine is equal to or lower than a predetermined speed. .

また、内燃機関の運転状態が高負荷側予混合燃焼領域に属するときは、EGRガスの温度が比較的高温となるため、EGRクーラにおける熱交換量が増加し、冷却媒体温度の上昇がより顕著となるため、EGRクーラ用ラジエータの冷却が求められる。通常、車両速度が上昇するに従い、EGRクーラ用ラジエータに吹き込む自然冷却用の空気流量は増加するため、EGRクーラ用ラジエータは自然冷却される。しかし、車両速度が、所定速度
以下となるとEGRクーラ用ラジエータの自然冷却が不十分となり、EGRクーラ用ラジエータからの冷却媒体温度が上昇し、EGRガスの十分な冷却が困難となる。ここで、所定速度とは、車両速度に応じてEGRクーラ用ラジエータに吹き込む自然冷却用の空気流量が、EGRクーラ用ラジエータの冷却媒体を十分に冷却できない流量となることで、EGRガスの冷却が十分に行われないときの車両速度である。
Further, when the operating state of the internal combustion engine belongs to the high load side premixed combustion region, the temperature of the EGR gas becomes relatively high, so that the heat exchange amount in the EGR cooler increases and the temperature of the cooling medium increases more remarkably. Therefore, cooling of the radiator for the EGR cooler is required. Usually, as the vehicle speed increases, the flow rate of the natural cooling air blown into the EGR cooler radiator increases, so that the EGR cooler radiator is naturally cooled. However, when the vehicle speed is equal to or lower than the predetermined speed, the natural cooling of the EGR cooler radiator becomes insufficient, the coolant temperature from the EGR cooler radiator rises, and it becomes difficult to sufficiently cool the EGR gas. Here, the predetermined speed means that the flow rate of the natural cooling air blown into the EGR cooler radiator according to the vehicle speed becomes a flow rate at which the cooling medium of the EGR cooler radiator cannot be sufficiently cooled, thereby cooling the EGR gas. This is the vehicle speed when it is not performed sufficiently.

よって、内燃機関の運転状態が高負荷側予混合領域に属し、且つ車両速度が所定速度以下であるときに限って冷却ファンを作動させることで、不必要な冷却ファンの駆動時間を削減して内燃機関の燃費の悪化を抑制するとともに、EGRガスをより確実に冷却して過早着火の抑制を図ることが可能となる。   Therefore, by operating the cooling fan only when the operating state of the internal combustion engine belongs to the high load side premixing region and the vehicle speed is equal to or lower than the predetermined speed, unnecessary driving time of the cooling fan can be reduced. While suppressing deterioration of the fuel consumption of the internal combustion engine, it is possible to more reliably cool the EGR gas and suppress premature ignition.

EGRガス冷却のために圧縮着火内燃機関の冷却系とは独立したEGRクーラ用ラジエータを有する、予混合燃焼を行う圧縮着火内燃機関において、EGRガスの冷却をより確実に行い、過早着火の抑制を図ることが可能となる。   In a compression ignition internal combustion engine that performs premixed combustion and has a radiator for an EGR cooler that is independent of the cooling system of the compression ignition internal combustion engine for cooling the EGR gas, the EGR gas is cooled more reliably and premature ignition is suppressed. Can be achieved.

ここで、本発明に係る圧縮着火内燃機関のEGRガス冷却システムの実施の形態について図面に基づいて説明する。   Here, an embodiment of an EGR gas cooling system for a compression ignition internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本発明が適用される圧縮着火内燃機関(以下、単に「内燃機関」という)1およびその制御系統の概略構成を表すブロック図である。   FIG. 1 is a block diagram showing a schematic configuration of a compression ignition internal combustion engine (hereinafter simply referred to as “internal combustion engine”) 1 and its control system to which the present invention is applied.

内燃機関1は、4つの気筒2を有するディーゼルエンジンである。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   The internal combustion engine 1 is a diesel engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulation chamber 4 that accumulates fuel at a predetermined pressure. An intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 is connected to a combustion chamber via an intake port. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。更に、吸気管8における吸気枝管7の直上流に位置する部位には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が、更に吸気絞り弁10の上流側には、吸気管8を流れる吸気量を検出するエアフローメータ9が設けられている。尚、エアフローメータ9内には、吸気温度を測定する吸気温度センサが設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。一方、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。尚、EGRクーラ23におけるEGRガスの冷却システムについては、後述する。   The intake branch pipe 7 is connected to the intake pipe 8. Further, an intake throttle valve 10 that adjusts the flow rate of the intake air flowing through the intake pipe 8 is located at a portion of the intake pipe 8 that is located immediately upstream of the intake branch pipe 7. An air flow meter 9 for detecting the amount of intake air flowing through the pipe 8 is provided. In the air flow meter 9, an intake air temperature sensor for measuring the intake air temperature is provided. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10. On the other hand, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR for cooling EGR gas provided in order from the upstream side on the EGR passage 22. A cooler 23 and an EGR valve 24 for adjusting the flow rate of EGR gas are included. The EGR gas cooling system in the EGR cooler 23 will be described later.

ここで、エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。過給機16は、いわゆる可変容量型過給機であって、過給機16のノズルベーンの開度を調整することで、最終的に到達する吸気枝管7内の過給圧を調整することが可能となる。更に、過給機16より下流の吸気管8には、過給機16によって加圧されて高温となった吸気を冷却するためのインタークーラ
15が設けられている。また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1からの排気を浄化する排気浄化触媒14が設けられている。
Here, the intake pipe 8 positioned between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source, and the exhaust branch pipe 12 is supercharged. A turbine side of the machine 16 is provided. The supercharger 16 is a so-called variable capacity supercharger, and adjusts the supercharging pressure in the intake branch pipe 7 that is finally reached by adjusting the opening of the nozzle vane of the supercharger 16. Is possible. Further, an intercooler 15 is provided in the intake pipe 8 downstream of the supercharger 16 for cooling the intake air that has been pressurized by the supercharger 16 and has reached a high temperature. Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. An exhaust purification catalyst 14 that purifies exhaust from the internal combustion engine 1 is provided in the middle of the exhaust pipe 13.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、燃料噴射弁3は、電子制御ユニット(以下、「ECU」という)20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3における燃料の噴射時期および噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、弁毎に制御され、以て内燃機関1において予混合燃焼や、いわゆる拡散燃焼である通常燃焼が行われる。また、EGR弁24やアクチュエータ11も、ECU20からの指令に従って制御される。   Here, the fuel injection valve 3 performs an opening / closing operation by a control signal from an electronic control unit (hereinafter referred to as “ECU”) 20. That is, according to a command from the ECU 20, the fuel injection timing and the injection amount in the fuel injection valve 3 are controlled for each valve in accordance with the operation state such as the engine load of the internal combustion engine 1 and the engine rotation speed. In FIG. 1, premixed combustion or normal combustion which is so-called diffusion combustion is performed. Further, the EGR valve 24 and the actuator 11 are also controlled in accordance with a command from the ECU 20.

更に、アクセル開度センサ26がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ25がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。   Further, an accelerator opening sensor 26 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine load required for the internal combustion engine 1 based on the signal. The crank position sensor 25 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1, the engine rotational speed and the gear. The vehicle speed or the like of the vehicle on which the internal combustion engine 1 is mounted is calculated from the ratio or the like.

このように構成される内燃機関1においては、内燃機関1の運転状態を表す機関回転速度および機関負荷に基づいて、予混合燃焼と通常燃焼との切替が行われる。ここで、図2に、内燃機関1の運転状態と内燃機関1で行われる燃焼との関係を示す。尚、図2に示すグラフの横軸は内燃機関1の機関回転速度で、縦軸は内燃機関1の機関負荷を表す。内燃機関1の運転状態が、図中R1およびR2の領域で表される予混合燃焼領域に属しているときは予混合燃焼が行われ、図中R3の領域で表される通常燃焼領域に属しているときは通常燃焼が行われる。尚、予混合燃焼領域と通常燃焼領域は、内燃機関1において予混合燃焼が行われた場合に、内燃機関1の運転状態が過早着火が起こりやすいか否かという観点から区別された運転状態の領域である。   In the internal combustion engine 1 configured as described above, the premixed combustion and the normal combustion are switched based on the engine rotation speed and the engine load representing the operation state of the internal combustion engine 1. Here, FIG. 2 shows the relationship between the operating state of the internal combustion engine 1 and the combustion performed in the internal combustion engine 1. 2 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1. When the operating state of the internal combustion engine 1 belongs to the premixed combustion region represented by the regions R1 and R2 in the figure, premixed combustion is performed, and it belongs to the normal combustion region represented by the region R3 in the figure. When it is normal combustion. The premixed combustion region and the normal combustion region are distinguished from each other in terms of whether or not the operation state of the internal combustion engine 1 is likely to cause pre-ignition when premixed combustion is performed in the internal combustion engine 1. It is an area.

しかし、内燃機関1の運転状態が、予混合燃焼領域に属している場合であっても、燃焼室内温度や酸素濃度等によって過早着火が生じやすくなり、特に、高負荷側の高負荷側予混合燃焼領域R2に属している場合には、燃料噴射量が増加し、または機関回転速度の上昇に伴う均一な予混合気の形成が困難となることから過早着火が生じやすい状態となる。そこで、予混合燃焼を行うに際しては、EGR装置21によって多量のEGRガスを燃焼室へ供給することで、過早着火を抑制する必要がある。そして、そのためには、EGRガスを冷却しその体積密度を高めるのが好ましい。   However, even when the operating state of the internal combustion engine 1 belongs to the premixed combustion region, pre-ignition is likely to occur due to the temperature in the combustion chamber, the oxygen concentration, etc. In the case of belonging to the mixed combustion region R2, the fuel injection amount increases, or it becomes difficult to form a uniform premixed gas accompanying an increase in the engine speed, so that pre-ignition is likely to occur. Therefore, when performing premixed combustion, it is necessary to suppress premature ignition by supplying a large amount of EGR gas to the combustion chamber by the EGR device 21. For this purpose, it is preferable to cool the EGR gas and increase its volume density.

そこで、図3に基づいて、EGRクーラ23におけるEGRガスの冷却システムについて、内燃機関1の冷却系と併せて説明する。図3は、内燃機関1のEGRガス冷却システムの概略的なブロック図である。内燃機関1自身の冷却は、内燃機関用冷却系50によって行われる。内燃機関用冷却系50は、冷却水路52が内燃機関用ラジエータ51と内燃機関1とを環状に結び、その中に冷却水を流すことで、内燃機関1の冷却を図るものである。ここで、内燃機関用冷却系50においては、内燃機関1のクランクシャフトからの動力で駆動される機械式ポンプによって、冷却水の循環が行われる。尚、冷却水の循環方向は、図中に一点鎖線の矢印で示される。また、冷却水路52を流れる冷却水の温度は、水温センサ61によって検出され、ECU20へと伝えられる。   Therefore, the EGR gas cooling system in the EGR cooler 23 will be described together with the cooling system of the internal combustion engine 1 based on FIG. FIG. 3 is a schematic block diagram of the EGR gas cooling system of the internal combustion engine 1. The internal combustion engine 1 itself is cooled by the internal combustion engine cooling system 50. In the internal combustion engine cooling system 50, the cooling water passage 52 connects the internal combustion engine radiator 51 and the internal combustion engine 1 in an annular shape, and the cooling water is caused to flow therein, thereby cooling the internal combustion engine 1. Here, in the internal combustion engine cooling system 50, cooling water is circulated by a mechanical pump driven by power from the crankshaft of the internal combustion engine 1. In addition, the circulating direction of the cooling water is indicated by a one-dot chain line arrow in the figure. In addition, the temperature of the cooling water flowing through the cooling water channel 52 is detected by the water temperature sensor 61 and transmitted to the ECU 20.

一方で、EGRクーラ23においては、内燃機関用冷却系50とは独立したEGRクーラ用ラジエータ53において熱交換されて比較的低温となった冷却水が、冷却水路55を循環してEGRクーラ23に供給されることで、EGRガスの冷却が行われる。ここで、冷却水路55における冷却水の循環は、電動式ポンプ54によって行われ、その冷却水の循環方向は、図中に実線の矢印で示される。また、冷却水路55を流れる冷却水の温度は、EGRクーラ用ラジエータ53の直下流に位置する水温センサ62によって検出され、ECU20へと伝えられる。ここで、EGRクーラ用ラジエータ53における冷却水と空気との熱交換は、内燃機関1が搭載される車両の車両速度に応じて吹き込む空気流よる自然冷却の他に、冷却ファン60による強制冷却によっても行われる。尚、冷却ファン60の作動はECU20によって制御される。   On the other hand, in the EGR cooler 23, the cooling water which has been subjected to heat exchange in the EGR cooler radiator 53 independent of the internal combustion engine cooling system 50 and has a relatively low temperature circulates in the cooling water passage 55 to the EGR cooler 23. The EGR gas is cooled by being supplied. Here, the circulation of the cooling water in the cooling water channel 55 is performed by the electric pump 54, and the circulation direction of the cooling water is indicated by solid arrows in the drawing. Further, the temperature of the cooling water flowing through the cooling water passage 55 is detected by a water temperature sensor 62 located immediately downstream of the EGR cooler radiator 53 and transmitted to the ECU 20. Here, the heat exchange between the cooling water and the air in the EGR cooler radiator 53 is performed by forced cooling by the cooling fan 60 in addition to natural cooling by the air flow blown in accordance with the vehicle speed of the vehicle on which the internal combustion engine 1 is mounted. Is also done. The operation of the cooling fan 60 is controlled by the ECU 20.

また、冷却水路52と冷却水路55とを結ぶ連絡水路58および59が設けられている。連絡水路58は、EGRクーラ23と電動式ポンプ54との間の冷却水路55の部位から冷却水路52へと連絡する水路であり、連絡水路59は、水温センサ62とEGRクーラ23との間の冷却水路55の部位から冷却水路52へと連絡する水路である。   In addition, communication water channels 58 and 59 that connect the cooling water channel 52 and the cooling water channel 55 are provided. The communication water channel 58 is a water channel communicating with the cooling water channel 52 from a portion of the cooling water channel 55 between the EGR cooler 23 and the electric pump 54, and the communication water channel 59 is provided between the water temperature sensor 62 and the EGR cooler 23. This is a water channel that communicates from the portion of the cooling water channel 55 to the cooling water channel 52.

そして、連絡水路58および59が冷却水路55と接続する部位においては、冷却水の流路を制御する流路切替弁56および57が各々設けられている。流路切替弁56、57の状態はECU20によって制御され、二種類の開弁状態を採る。   And in the site | part which the connection water paths 58 and 59 connect with the cooling water path 55, the flow-path switching valves 56 and 57 which control the flow path of a cooling water are each provided. The states of the flow path switching valves 56 and 57 are controlled by the ECU 20 and take two types of valve open states.

先ず、第一開弁状態は、上述した図中の実線の矢印で示される冷却水の流れを確保する状態であり、冷却水路52を流れる冷却水と冷却水路55を流れる冷却水が互いに混合されない開弁状態である。この状態においては、EGRクーラ23には、EGRクーラ用ラジエータ53において熱交換され低温となった冷却水のみが供給され、内燃機関1での燃焼により高温化した冷却水路52を流れる冷却水が供給されることはないので、EGRクーラ23におけるEGRガスの冷却がより確実に行われ、以て予混合燃焼時の過早着火を抑制し得る。   First, the first valve open state is a state in which the flow of the cooling water indicated by the solid arrow in the above-described figure is ensured, and the cooling water flowing through the cooling water channel 52 and the cooling water flowing through the cooling water channel 55 are not mixed with each other. The valve is open. In this state, the EGR cooler 23 is supplied only with cooling water that has undergone heat exchange in the EGR cooler radiator 53 and has become low temperature, and is supplied with cooling water that flows through the cooling water passage 52 that has been heated by combustion in the internal combustion engine 1. Therefore, the EGR gas in the EGR cooler 23 is more reliably cooled, and thus premature ignition during premixed combustion can be suppressed.

次に、第二開弁状態は、上述した図中の二点鎖線の矢印で示される冷却水の流れを確保する状態であり、実線で表される冷却水の流れを遮断し冷却水路52を流れる冷却水を冷却水路55の一部を経てEGRクーラ23へ導入し、再び冷却水路52へと戻す開弁状態である。   Next, the second valve open state is a state in which the flow of the cooling water indicated by the two-dot chain line arrow in the above-described figure is ensured, and the cooling water flow indicated by the solid line is cut off and the cooling water passage 52 is opened. In this state, the flowing cooling water is introduced into the EGR cooler 23 through a part of the cooling water passage 55 and returned to the cooling water passage 52 again.

内燃機関1を搭載する車両の空間的制限から、実線の矢印の状態で冷却水路55を流れる冷却水量、即ちEGRクーラ用ラジエータ53において熱交換される冷却水量は、内燃機関1自身の冷却のための冷却水量よりも少ない。そのため内燃機関1において予混合燃焼が長時間続いた場合等には、冷却水路55を流れる冷却水の温度が上昇し、EGRクーラ23において十分なEGRガスの冷却を行えない虞がある。   Due to space limitations of the vehicle on which the internal combustion engine 1 is mounted, the amount of cooling water flowing through the cooling water passage 55 in the state of the solid line arrow, that is, the amount of cooling water exchanged in the EGR cooler radiator 53 is for cooling the internal combustion engine 1 itself. Less than the amount of cooling water. Therefore, when premixed combustion continues in the internal combustion engine 1 for a long time, the temperature of the cooling water flowing through the cooling water passage 55 rises, and there is a possibility that the EGR cooler 23 cannot sufficiently cool the EGR gas.

そこで、このような場合、流路切替弁56、57の開弁状態を第二開弁状態とすることで、実線の矢印の状態で冷却水路55を流れる高温の冷却水に代えて、内燃機関1の燃焼により高温化しているものの該冷却水より低温である一点鎖線の矢印の状態で冷却水路52を流れる冷却水をEGRクーラ23へと導入し、二点鎖線の矢印の冷却水の流れを形成させる。これにより、より低い温度の冷却水をEGRクーラ23に導入することが可能となるので、EGRクーラ23におけるEGRガスの冷却がより確実に行われ、以て予混合燃焼時の過早着火を可及的に抑制し得る。   Therefore, in such a case, by setting the open state of the flow path switching valves 56 and 57 to the second open state, the internal combustion engine is replaced with the high-temperature cooling water flowing through the cooling water passage 55 in the state of the solid line arrow. The cooling water flowing through the cooling water channel 52 in the state of the one-dot chain line arrow which is heated to a high temperature by the combustion of 1 but at a lower temperature than the cooling water is introduced into the EGR cooler 23, and the flow of the cooling water indicated by the two-dot chain line arrow is Let it form. As a result, cooling water having a lower temperature can be introduced into the EGR cooler 23, so that the EGR gas in the EGR cooler 23 can be cooled more reliably, thereby enabling pre-ignition during premixed combustion. It can be suppressed as much as possible.

ここで、内燃機関1において予混合燃焼を行う際に過早着火を回避すべく、EGRクーラ23によるEGRガスの冷却の制御(以下、「EGRガス冷却制御」という)について
以下に説明する。尚、EGRガス冷却制御は、一定のサイクルで繰り返し実行されるルーチンである。
Here, control of cooling of EGR gas by the EGR cooler 23 (hereinafter referred to as “EGR gas cooling control”) in order to avoid premature ignition when performing premixed combustion in the internal combustion engine 1 will be described below. The EGR gas cooling control is a routine that is repeatedly executed at a constant cycle.

S101では、内燃機関1の運転状態が予混合燃焼領域R1もしくはR2に属する運転状態となっているか否か、即ち、内燃機関1において予混合燃焼が行われているか否かが判定される。具体的には、アクセル開度センサ26の信号から算出される機関負荷と、クランクポジションセンサ25の信号から算出される機関回転速度とに基づいて、内燃機関1の運転状態が、図2に示す予混合燃焼領域R1、R2または通常燃焼領域R3の何れに属するかを判定する。内燃機関1の運転状態が予混合燃焼領域R1もしくはR2に属する運転状態であると判定されるとS102へ進み、内燃機関1の運転状態が予混合燃焼領域R1もしくはR2に属する運転状態ではなく通常燃焼領域R3に属する運転状態であると判定されると本制御を終了する。   In S101, it is determined whether or not the operating state of the internal combustion engine 1 is in an operating state belonging to the premixed combustion region R1 or R2, that is, whether or not premixed combustion is being performed in the internal combustion engine 1. Specifically, the operating state of the internal combustion engine 1 is shown in FIG. 2 based on the engine load calculated from the signal of the accelerator opening sensor 26 and the engine speed calculated from the signal of the crank position sensor 25. It is determined whether the premixed combustion region R1, R2 or the normal combustion region R3 belongs. If it is determined that the operation state of the internal combustion engine 1 is an operation state belonging to the premixed combustion region R1 or R2, the process proceeds to S102, and the operation state of the internal combustion engine 1 is not the operation state belonging to the premixed combustion region R1 or R2 but normal. When it is determined that the operating state belongs to the combustion region R3, the present control is terminated.

S102では、水温センサ62によって検出されるEGRクーラ用ラジエータ53から供給される冷却水温度Thw1が、水温センサ61によって検出される、内燃機関用冷却系50の冷却水路52を流れる冷却水温度Thw2より高いか否かが判定される。該判定においてThw1がThw2より高いと判定されたときは、S103へ進む。一方で、該判定においてThw1がThw2以下であると判定されたときは、S104へ進む。   In S102, the cooling water temperature Thw1 supplied from the EGR cooler radiator 53 detected by the water temperature sensor 62 is more than the cooling water temperature Thw2 flowing through the cooling water passage 52 of the internal combustion engine cooling system 50 detected by the water temperature sensor 61. It is determined whether it is high. If it is determined in this determination that Thw1 is higher than Thw2, the process proceeds to S103. On the other hand, when it is determined in the determination that Thw1 is equal to or less than Thw2, the process proceeds to S104.

S103では、EGRクーラ用ラジエータ53からの冷却水がEGRクーラ23へ導入されるのを中止するとともに、内燃機関用冷却系50からの冷却水がEGRクーラ23へ導入されるべく、流路切替弁56、57の開弁状態を制御する。即ち、流路切替弁の開弁状態を、上述した第二開弁状態とする。S103の処理の後、本制御を終了する。   In S103, the flow path switching valve is stopped so that the cooling water from the EGR cooler radiator 53 is stopped from being introduced into the EGR cooler 23 and the cooling water from the internal combustion engine cooling system 50 is introduced into the EGR cooler 23. The open state of 56 and 57 is controlled. That is, the open state of the flow path switching valve is set to the second open state described above. After the process of S103, this control is terminated.

S104では、内燃機関用冷却系50からの冷却水がEGRクーラ23へ導入されるのを中止するとともに、EGRクーラ用ラジエータ53からの冷却水がEGRクーラ23へ導入されるべく、流路切替弁56、57の開弁状態を制御する。即ち、流路切替弁の開弁状態を、上述した第一開弁状態とする。S103の処理の後、本制御を終了する。   In S104, the flow switching valve is stopped so that the cooling water from the internal combustion engine cooling system 50 is stopped from being introduced into the EGR cooler 23 and the cooling water from the EGR cooler radiator 53 is introduced into the EGR cooler 23. The open state of 56 and 57 is controlled. That is, the open state of the flow path switching valve is the first open state described above. After the process of S103, this control is terminated.

本制御によると、EGRクーラ23に導入する冷却水として、EGRクーラ用ラジエータ53からの冷却水または内燃機関用冷却系50の冷却水のうち温度の低い方を利用することが可能となり、可及的にEGRクーラ23に低温の冷却水を供給することが可能となる。その結果、EGRガスをより確実に冷却し、予混合燃焼における過早着火を抑制し得る。   According to this control, as the cooling water introduced into the EGR cooler 23, it is possible to use the cooling water from the EGR cooler radiator 53 or the cooling water of the cooling system 50 for the internal combustion engine which has a lower temperature. Thus, it becomes possible to supply low-temperature cooling water to the EGR cooler 23. As a result, the EGR gas can be cooled more reliably and pre-ignition in premixed combustion can be suppressed.

次に、図1に示す内燃機関1において予混合燃焼が行われるときにEGRガスの冷却を行うEGRガス冷却制御について、図5に基づいて説明する。尚、EGRガス冷却制御は、一定のサイクルで繰り返し実行されるルーチンである。また、図5に示すEGRガス冷却制御の処理のうち、図4に示すEGRガス冷却制御の処理と同一の処理については同一の参照番号を付してその説明を省略する。   Next, EGR gas cooling control for cooling the EGR gas when premixed combustion is performed in the internal combustion engine 1 shown in FIG. 1 will be described with reference to FIG. The EGR gas cooling control is a routine that is repeatedly executed at a constant cycle. Also, in the EGR gas cooling control process shown in FIG. 5, the same processes as those in the EGR gas cooling control process shown in FIG.

本制御においては、S101で内燃機関1の運転状態が予混合燃焼領域R1またはR2に属していると判定されると、S201へ進む。S201では、水温センサ62によって検出されるEGRクーラ用ラジエータ53から供給される冷却水温度Thw1が、所定切替温度Thw0より高いか否かが判定される。   In this control, when it is determined in S101 that the operation state of the internal combustion engine 1 belongs to the premixed combustion region R1 or R2, the process proceeds to S201. In S201, it is determined whether or not the cooling water temperature Thw1 supplied from the EGR cooler radiator 53 detected by the water temperature sensor 62 is higher than a predetermined switching temperature Thw0.

ここで、所定切替温度とは、EGRクーラ用ラジエータ53からの冷却水温度が、EGRガスの冷却に十分でないと判定される冷却水温度であり、換言すると、EGRクーラ用ラジエータ53からの冷却水温度が上昇したため内燃機関用冷却系50からの冷却水をE
GRクーラ23に導入してEGRガスを冷却した方が、EGRガス冷却のためには好適であると判定される冷却水温度である。該判定においてThw1がThw0より高いと判定されたときは、S103へ進む。一方で、該判定においてThw1がThw0以下であると判定されたときは、S104へ進む。
Here, the predetermined switching temperature is a cooling water temperature at which the cooling water temperature from the EGR cooler radiator 53 is determined to be insufficient for cooling the EGR gas, in other words, the cooling water from the EGR cooler radiator 53. Since the temperature has risen, the cooling water from the cooling system 50 for the internal combustion engine is used as E
The cooling water temperature determined to be suitable for cooling the EGR gas is that the EGR gas cooled by being introduced into the GR cooler 23. If it is determined in this determination that Thw1 is higher than Thw0, the process proceeds to S103. On the other hand, when it is determined in the determination that Thw1 is equal to or less than Thw0, the process proceeds to S104.

本制御によると、EGRクーラ23に導入する冷却水として、EGRクーラ用ラジエータ53からの冷却水がEGRガスの冷却に適さないと判定されるときは、内燃機関用冷却系50の冷却水が利用されることで、可及的にEGRクーラ23に低温の冷却水を供給することが可能となる。その結果、EGRガスをより確実に冷却し、予混合燃焼における過早着火を抑制し得る。尚、本制御においては、水温センサ61の設置を省略して、内燃機関1のEGRガス冷却システムのより簡便な構築が可能となる。   According to this control, when it is determined that the cooling water from the EGR cooler radiator 53 is not suitable for cooling the EGR gas as the cooling water introduced into the EGR cooler 23, the cooling water of the internal combustion engine cooling system 50 is used. By doing so, it becomes possible to supply low-temperature cooling water to the EGR cooler 23 as much as possible. As a result, the EGR gas can be cooled more reliably and pre-ignition in premixed combustion can be suppressed. In this control, the installation of the water temperature sensor 61 is omitted, and a simpler construction of the EGR gas cooling system of the internal combustion engine 1 is possible.

次に、図1に示す内燃機関1において予混合燃焼が行われるときにEGRガスの冷却を行うEGRガス冷却制御について、図6に基づいて説明する。尚、EGRガス冷却制御は、一定のサイクルで繰り返し実行されるルーチンである。また、図6に示すEGRガス冷却制御の処理のうち、図4に示すEGRガス冷却制御の処理と同一の処理については同一の参照番号を付してその説明を省略する。   Next, the EGR gas cooling control for cooling the EGR gas when premixed combustion is performed in the internal combustion engine 1 shown in FIG. 1 will be described with reference to FIG. The EGR gas cooling control is a routine that is repeatedly executed at a constant cycle. Also, in the EGR gas cooling control process shown in FIG. 6, the same processes as those of the EGR gas cooling control process shown in FIG.

本制御においては、S101で内燃機関1の運転状態が予混合燃焼領域R1またはR2に属していると判定されると、S301へ進む。S301では、更に、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属するか否かが判定される。該判定において、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属すると判定されるとS302へ進む。一方で、該判定において、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属さないと判定されると、本制御を終了する。   In this control, when it is determined in S101 that the operation state of the internal combustion engine 1 belongs to the premixed combustion region R1 or R2, the process proceeds to S301. In S301, it is further determined whether or not the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2. In this determination, if it is determined that the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2, the process proceeds to S302. On the other hand, in this determination, when it is determined that the operating state of the internal combustion engine 1 does not belong to the high load side premixed combustion region R2, this control is terminated.

S302では、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属してから所定時間経過したか否かが判定される。高負荷側予混合燃焼領域R2は、予混合燃焼領域の中でも高負荷側の領域であるため排気温度も高い。従って、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属している時間が長くなるに従い、EGRガスを冷却するためのEGRクーラ用ラジエータ53からの冷却水温度が上昇し、十分にEGRガスの冷却を行えなくなる虞がある。そこで、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属しながらEGRクーラ用ラジエータ53からの冷却水でEGRガスを十分に冷却できる時間を上記の所定時間として、EGRガスの冷却のためにEGRクーラ23へ導入される冷却水の切替を制御する。よって、該判定において所定時間が経過したと判定されたときは、S103へ進む。一方で、該判定において所定時間が経過していないと判定されたときは、S104へ進む。   In S302, it is determined whether or not a predetermined time has elapsed since the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2. Since the high load side premixed combustion region R2 is a region on the high load side in the premixed combustion region, the exhaust temperature is also high. Accordingly, as the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2, the temperature of the cooling water from the EGR cooler radiator 53 for cooling the EGR gas rises and becomes sufficiently high. There is a possibility that the EGR gas cannot be cooled. Therefore, the cooling time of the EGR gas is set to the above-mentioned predetermined time, which is the time during which the EGR gas can be sufficiently cooled with the cooling water from the EGR cooler radiator 53 while the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2. Therefore, switching of the cooling water introduced into the EGR cooler 23 is controlled. Therefore, when it is determined in the determination that a predetermined time has elapsed, the process proceeds to S103. On the other hand, when it is determined in the determination that the predetermined time has not elapsed, the process proceeds to S104.

本制御によると、EGRクーラ23に導入する冷却水として、EGRクーラ用ラジエータ53からの冷却水がEGRガスの冷却に適さないと判定されるときは、内燃機関用冷却系50の冷却水が利用されることで、可及的にEGRクーラ23に低温の冷却水を供給することが可能となる。その結果、EGRガスをより確実に冷却し、予混合燃焼における過早着火を抑制し得る。尚、本制御においては、水温センサ61および水温センサ62の設置を省略して、内燃機関1のEGRガス冷却システムのより簡便な構築が可能となる。   According to this control, when it is determined that the cooling water from the EGR cooler radiator 53 is not suitable for cooling the EGR gas as the cooling water introduced into the EGR cooler 23, the cooling water of the internal combustion engine cooling system 50 is used. By doing so, it becomes possible to supply low-temperature cooling water to the EGR cooler 23 as much as possible. As a result, the EGR gas can be cooled more reliably and pre-ignition in premixed combustion can be suppressed. In this control, the installation of the water temperature sensor 61 and the water temperature sensor 62 is omitted, and a simpler construction of the EGR gas cooling system of the internal combustion engine 1 is possible.

次に、図1に示す内燃機関1において予混合燃焼が行われるときにEGRガスの冷却を行うEGRガス冷却制御について、図7に基づいて説明する。尚、EGRガス冷却制御は、一定のサイクルで繰り返し実行されるルーチンである。また、図7に示すEGRガス冷却制御の処理のうち、図4に示すEGRガス冷却制御の処理と同一の処理については同一
の参照番号を付してその説明を省略する。
Next, EGR gas cooling control for cooling the EGR gas when premixed combustion is performed in the internal combustion engine 1 shown in FIG. 1 will be described with reference to FIG. The EGR gas cooling control is a routine that is repeatedly executed at a constant cycle. Also, in the EGR gas cooling control process shown in FIG. 7, the same processes as those of the EGR gas cooling control process shown in FIG.

本制御においては、S101で内燃機関1の運転状態が予混合燃焼領域R1またはR2に属していると判定されると、S401へ進む。S401では、水温センサ62によって検出されるEGRクーラ用ラジエータ53から供給される冷却水温度Thw1が、所定ファン駆動温度Thw_fanより高いか否かが判定される。所定ファン駆動温度Thw_fanとは、EGRクーラ用ラジエータ53からの冷却水温度が上昇すると、EGRガスの冷却を効率的に行うことが困難となることから、冷却ファン60を作動させてEGRクーラ用ラジエータ53に送風し、強制空冷により冷却水温度を低下させると決定するための基準値である。尚、冷却ファン60により送風を行っても冷却水温度は急に変動しないため、所定ファン駆動温度Thw_fanは、上述した所定切替温度Thw0より低い温度とするのが好ましい。   In this control, when it is determined in S101 that the operation state of the internal combustion engine 1 belongs to the premixed combustion region R1 or R2, the process proceeds to S401. In S401, it is determined whether or not the cooling water temperature Thw1 supplied from the EGR cooler radiator 53 detected by the water temperature sensor 62 is higher than a predetermined fan drive temperature Thw_fan. The predetermined fan drive temperature Thw_fan is that when the coolant temperature from the EGR cooler radiator 53 rises, it becomes difficult to efficiently cool the EGR gas. Therefore, the cooling fan 60 is operated to operate the EGR cooler radiator. This is a reference value for determining that the cooling water temperature is lowered by forced air cooling. Note that, even if the cooling fan 60 blows air, the cooling water temperature does not change abruptly. Therefore, the predetermined fan drive temperature Thw_fan is preferably set to a temperature lower than the predetermined switching temperature Thw0 described above.

該判定においてThw1がThw_fanより高いと判定されたときは、S402へ進み、冷却ファン60を作動させる。一方で、該判定においてThw1がThw_fan以下であると判定されたときは、S403へ進み冷却ファン60を停止させる。   When it is determined in this determination that Thw1 is higher than Thw_fan, the process proceeds to S402 and the cooling fan 60 is operated. On the other hand, when it is determined in the determination that Thw1 is equal to or less than Thw_fan, the process proceeds to S403 and the cooling fan 60 is stopped.

本制御によると、EGRクーラ23に導入する冷却水としての、EGRクーラ用ラジエータ53からの冷却水温度が上昇し、その冷却水温度を低下させる必要があるときのみ冷却ファン60が作動する。従って、冷却ファン60の作動に要する電力消費を抑えて内燃機関1の燃費悪化を抑制するとともに、EGRガスをより確実に冷却し、予混合燃焼における過早着火を抑制し得る。   According to this control, the cooling water temperature from the EGR cooler radiator 53 as the cooling water introduced into the EGR cooler 23 rises, and the cooling fan 60 operates only when the cooling water temperature needs to be lowered. Therefore, it is possible to suppress power consumption required for the operation of the cooling fan 60 and suppress deterioration in fuel consumption of the internal combustion engine 1, and more reliably cool the EGR gas and suppress premature ignition in premixed combustion.

次に、図1に示す内燃機関1において予混合燃焼が行われるときにEGRガスの冷却を行うEGRガス冷却制御について、図8に基づいて説明する。尚、EGRガス冷却制御は、一定のサイクルで繰り返し実行されるルーチンである。また、図8に示すEGRガス冷却制御の処理のうち、図4に示すEGRガス冷却制御の処理と同一の処理については同一の参照番号を付してその説明を省略する。   Next, EGR gas cooling control for cooling the EGR gas when premixed combustion is performed in the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. The EGR gas cooling control is a routine that is repeatedly executed at a constant cycle. Also, in the EGR gas cooling control process shown in FIG. 8, the same processes as those in the EGR gas cooling control process shown in FIG.

本制御においては、S101で内燃機関1の運転状態が予混合燃焼領域R1またはR2に属していると判定されると、S501へ進む。S501では、更に、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属するか否かが判定される。該判定において、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属すると判定されるとS502へ進む。一方で、該判定において、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属さないと判定されると、本制御を終了する。   In this control, if it is determined in S101 that the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1 or R2, the process proceeds to S501. In S501, it is further determined whether or not the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2. In this determination, if it is determined that the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2, the process proceeds to S502. On the other hand, in this determination, when it is determined that the operating state of the internal combustion engine 1 does not belong to the high load side premixed combustion region R2, this control is terminated.

S502では、内燃機関1を搭載した車両の車両速度が所定速度以下であるか否かが判定される。高負荷側予混合燃焼領域R2は、予混合燃焼領域の中でも高負荷側の領域であるため排気温度も高い。従って、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属している時間が長くなるに従い、EGRガスを冷却するためのEGRクーラ用ラジエータ53からの冷却水温度が上昇し、十分にEGRガスの冷却を行えなくなる虞がある。一方で、車両速度が遅くなるに従い、EGRクーラ用ラジエータ53に吹き込む空気流量が少なくなり、自然冷却による冷却効率の低下が顕著となる。   In S502, it is determined whether or not the vehicle speed of the vehicle on which the internal combustion engine 1 is mounted is equal to or lower than a predetermined speed. Since the high load side premixed combustion region R2 is a region on the high load side in the premixed combustion region, the exhaust temperature is also high. Accordingly, as the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2, the temperature of the cooling water from the EGR cooler radiator 53 for cooling the EGR gas rises and becomes sufficiently high. There is a possibility that the EGR gas cannot be cooled. On the other hand, as the vehicle speed becomes slower, the flow rate of air blown into the EGR cooler radiator 53 decreases, and the reduction in cooling efficiency due to natural cooling becomes significant.

そこで、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属するときに、車両速度が所定速度以下であるときは、EGRクーラ用ラジエータの自然冷却が不十分なため、EGRガスを冷却するために十分に低温の冷却水をEGRクーラ23に供給できないと判断し、S503へ進み、冷却ファン60を作動させる。一方で、内燃機関1の運転状態が高負荷側予混合燃焼領域R2に属するときであっても車両速度が所定速度を超えるときは
、自然冷却によってEGRクーラ用ラジエータ53での冷却効率は確保されていると判断し、S504へ進み冷却ファン60を停止させる。
Therefore, when the operating state of the internal combustion engine 1 belongs to the high load side premixed combustion region R2, when the vehicle speed is equal to or lower than the predetermined speed, the natural cooling of the EGR cooler radiator is insufficient, thereby cooling the EGR gas. Therefore, it is determined that sufficiently low-temperature cooling water cannot be supplied to the EGR cooler 23, and the process proceeds to S503, where the cooling fan 60 is operated. On the other hand, even when the operating state of the internal combustion engine 1 belongs to the high-load-side premixed combustion region R2, when the vehicle speed exceeds a predetermined speed, the cooling efficiency in the EGR cooler radiator 53 is ensured by natural cooling. The process proceeds to S504, and the cooling fan 60 is stopped.

本制御によると、EGRクーラ23に導入する冷却水としての、EGRクーラ用ラジエータ53からの冷却水温度が上昇し、その冷却水温度を低下させる必要があるときのみ冷却ファン60が作動する。従って、冷却ファン60の作動に要する電力消費を抑えて内燃機関1の燃費悪化を抑制するとともに、EGRガスをより確実に冷却し、予混合燃焼における過早着火を抑制し得る。   According to this control, the cooling water temperature from the EGR cooler radiator 53 as the cooling water introduced into the EGR cooler 23 rises, and the cooling fan 60 operates only when the cooling water temperature needs to be lowered. Therefore, it is possible to suppress power consumption required for the operation of the cooling fan 60 and suppress deterioration in fuel consumption of the internal combustion engine 1, and more reliably cool the EGR gas and suppress premature ignition in premixed combustion.

本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムが適用される圧縮着火内燃機関の概略構成を表す図である。It is a figure showing the schematic structure of the compression ignition internal combustion engine to which the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention is applied. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、圧縮着火内燃機関の運転状態とそこで行われる燃焼との関係を表す図である。In the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention, it is a figure showing the relationship between the driving | running state of a compression ignition internal combustion engine, and the combustion performed there. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムの概略構成を表す図である。It is a figure showing the schematic structure of the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、予混合燃焼が行われているときのEGRガスを冷却する制御に関する第一のフローチャートである。In the EGR gas cooling system for a compression ignition internal combustion engine according to the embodiment of the present invention, it is a first flowchart regarding control for cooling the EGR gas when premixed combustion is performed. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、予混合燃焼が行われているときのEGRガスを冷却する制御に関する第二のフローチャートである。It is a 2nd flowchart regarding the control which cools EGR gas when the premixed combustion is performed in the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、予混合燃焼が行われているときのEGRガスを冷却する制御に関する第三のフローチャートである。It is a 3rd flowchart regarding the control which cools EGR gas when the premixed combustion is performed in the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、予混合燃焼が行われているときのEGRガスを冷却する制御に関する第四のフローチャートである。It is a 4th flowchart regarding the control which cools EGR gas when the premixed combustion is performed in the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る圧縮着火内燃機関のEGRガス冷却システムにおいて、予混合燃焼が行われているときのEGRガスを冷却する制御に関する第五のフローチャートである。It is a 5th flowchart regarding the control which cools EGR gas when the premixed combustion is performed in the EGR gas cooling system of the compression ignition internal combustion engine which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1・・・・圧縮着火内燃機関(内燃機関)
7・・・・吸気枝管
12・・・・排気枝管
16・・・・過給機
20・・・・ECU
21・・・・EGR装置
22・・・・EGR通路
23・・・・EGRクーラ
25・・・・クランクポジションセンサ
26・・・・アクセル開度センサ
50・・・・内燃機関用冷却系
51・・・・内燃機関用ラジエータ
52・・・・冷却水路
53・・・・EGRクーラ用ラジエータ
55・・・・冷却水路
56、57・・・・流路切替弁
58、59・・・・連絡水路
60・・・・冷却ファン
61、62・・・・水温センサ
1. Compression compression internal combustion engine (internal combustion engine)
7 .... Intake branch pipe 12 .... Exhaust branch pipe 16 .... Supercharger 20 .... ECU
21 ... EGR device 22 ... EGR passage 23 ... EGR cooler 25 ... Crank position sensor 26 ... Accelerator opening sensor 50 ... Cooling system for internal combustion engine 51・ ・ ・ Radiator for internal combustion engine 52 ・ ・ ・ ・ Cooling water channel 53 ・ ・ ・ ・ Radiator for EGR cooler 55 ・ ・ ・ ・ Cooling water channel 56, 57 ・ ・ ・ ・ Channel switching valve 58, 59 ・ ・ ・ ・ Communication channel 60 ... Cooling fan 61, 62 ... Water temperature sensor

Claims (6)

圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、
前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、
前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、
前記EGR通路を流れるEGRガスを冷却するEGRクーラと、
前記内燃機関用冷却系から独立し、前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、
前記圧縮着火内燃機関において予混合燃焼が行われているとき、前記EGRクーラ用ラジエータから前記EGRクーラへの冷却媒体の導入の可否を該EGRクーラ用ラジエータの冷却媒体温度に基づいて判定し、該判定が可であるときは該EGRクーラ用ラジエータからの冷却媒体を該EGRクーラへ導入し、該判定が否であるときは該内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入する冷却媒体導入制御手段と、を備える圧縮着火内燃機関のEGRガス冷却システム。
Premixed combustion is performed by forming premixed fuel by fuel injection at a timing earlier than the timing near the top dead center of the compression stroke, based on the operating state of the compression ignition internal combustion engine. In a compression ignition internal combustion engine that switches to normal combustion performed by fuel injection at a timing near the top dead center of the compression stroke,
A cooling system for an internal combustion engine that cools the compression ignition internal combustion engine;
An EGR passage that connects an exhaust passage and an intake passage of the compression ignition internal combustion engine and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage;
An EGR cooler for cooling EGR gas flowing through the EGR passage;
An EGR cooler radiator that is independent of the internal combustion engine cooling system and supplies a cooling medium to the EGR cooler;
When premixed combustion is performed in the compression ignition internal combustion engine, it is determined whether or not the cooling medium can be introduced from the EGR cooler radiator to the EGR cooler based on the cooling medium temperature of the EGR cooler radiator, When the determination is possible, the cooling medium from the EGR cooler radiator is introduced into the EGR cooler, and when the determination is negative, the cooling medium from the internal combustion engine cooling system is introduced into the EGR cooler. And an EGR gas cooling system for a compression ignition internal combustion engine.
前記EGRクーラ用ラジエータからの冷却媒体温度が前記内燃機関用冷却系からの冷却媒体温度を超えるとき、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入することを特徴とする請求項1に記載の圧縮着火内燃機関のEGRガス冷却システム。 When the cooling medium temperature from the EGR cooler radiator exceeds the cooling medium temperature from the internal combustion engine cooling system, the cooling medium introduction control means introduces the cooling medium from the EGR cooler radiator to the EGR cooler. 2. The EGR gas cooling system for a compression ignition internal combustion engine according to claim 1, wherein the EGR cooler is determined to be NO and a cooling medium from the internal combustion engine cooling system is introduced into the EGR cooler. 前記EGRクーラ用ラジエータからの冷却媒体温度が所定切替温度を超えるとき、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入することを特徴とする請求項1に記載の圧縮着火内燃機関のEGRガス冷却システム。 When the cooling medium temperature from the EGR cooler radiator exceeds a predetermined switching temperature, the cooling medium introduction control means determines that introduction of the cooling medium from the EGR cooler radiator to the EGR cooler is rejected, and the internal combustion engine 2. The EGR gas cooling system for a compression ignition internal combustion engine according to claim 1, wherein a cooling medium from a cooling system is introduced into the EGR cooler. 前記圧縮着火内燃機関の運転状態が、予混合燃焼が行われる予混合燃焼領域であって高負荷側の高負荷側予混合燃焼領域に属し、且つ、該高負荷側予混合燃焼領域に属している時間が所定時間を超えると、前記冷却媒体導入制御手段は、該EGRクーラ用ラジエータから該EGRクーラへの冷却媒体の導入を否と判定し、前記内燃機関用冷却系からの冷却媒体を該EGRクーラへ導入することを特徴とする請求項1に記載の圧縮着火内燃機関のEGRガス冷却システム。 The operation state of the compression ignition internal combustion engine is a premixed combustion region where premixed combustion is performed, belongs to a high load side premixed combustion region, and belongs to the high load side premixed combustion region. When the cooling time exceeds a predetermined time, the cooling medium introduction control means determines that the introduction of the cooling medium from the EGR cooler radiator to the EGR cooler is rejected, and removes the cooling medium from the internal combustion engine cooling system. The EGR gas cooling system for a compression ignition internal combustion engine according to claim 1, wherein the EGR gas cooling system is introduced into an EGR cooler. 圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、
前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、
前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、
前記EGR通路を流れるEGRガスを冷却するEGRクーラと、
前記内燃機関用冷却系から独立し、前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、
前記EGRクーラ用ラジエータへの送風を行い冷却媒体の冷却を行う冷却ファンと、を備え、
前記圧縮着火内燃機関において予混合燃焼が行われているとき、前記EGRクーラ用ラジエータから前記EGRクーラへ導入される冷却媒体の温度が所定ファン駆動温度を超えると前記冷却ファンを作動させることを特徴とする圧縮着火内燃機関のEGRガス冷却システム。
Premixed combustion is performed by forming premixed fuel by fuel injection at a timing earlier than the timing near the top dead center of the compression stroke, based on the operating state of the compression ignition internal combustion engine. In a compression ignition internal combustion engine that switches to normal combustion performed by fuel injection at a timing near the top dead center of the compression stroke,
A cooling system for an internal combustion engine that cools the compression ignition internal combustion engine;
An EGR passage that connects an exhaust passage and an intake passage of the compression ignition internal combustion engine and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage;
An EGR cooler for cooling EGR gas flowing through the EGR passage;
An EGR cooler radiator that is independent of the internal combustion engine cooling system and supplies a cooling medium to the EGR cooler;
A cooling fan that blows air to the EGR cooler radiator and cools the cooling medium,
When premixed combustion is performed in the compression ignition internal combustion engine, the cooling fan is operated when a temperature of a cooling medium introduced from the EGR cooler radiator to the EGR cooler exceeds a predetermined fan driving temperature. An EGR gas cooling system for a compression ignition internal combustion engine.
圧縮着火内燃機関において行われる燃焼を、該圧縮着火内燃機関の運
転状態に基づいて、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とに切り替える圧縮着火内燃機関において、
前記圧縮着火内燃機関を冷却する内燃機関用冷却系と、
前記圧縮着火内燃機関の排気通路と吸気通路とを連結し該排気通路を流れる排気の一部を該吸気通路へ再循環させるEGR通路と、
前記EGR通路を流れるEGRガスを冷却するEGRクーラと、
前記内燃機関用冷却系から独立し、前記EGRクーラに冷却媒体を供給するEGRクーラ用ラジエータと、
前記EGRクーラ用ラジエータへの送風を行い冷却媒体の冷却を行う冷却ファンと、を備え、
前記圧縮着火内燃機関において予混合燃焼が行われているとき、該圧縮着火内燃機関の運転状態が、予混合燃焼が行われる予混合燃焼領域であって高負荷側の高負荷側予混合燃焼領域に属し、且つ、該圧縮着火内燃機関を搭載する車両の速度が所定速度以下であると前記冷却ファンを作動させることを特徴とする圧縮着火内燃機関のEGRガス冷却システム。
Premixed combustion is performed by forming premixed fuel by fuel injection at a timing earlier than the timing near the top dead center of the compression stroke, based on the operating state of the compression ignition internal combustion engine. In a compression ignition internal combustion engine that switches to normal combustion performed by fuel injection at a timing near the top dead center of the compression stroke,
A cooling system for an internal combustion engine that cools the compression ignition internal combustion engine;
An EGR passage that connects an exhaust passage and an intake passage of the compression ignition internal combustion engine and recirculates a part of the exhaust flowing through the exhaust passage to the intake passage;
An EGR cooler for cooling EGR gas flowing through the EGR passage;
An EGR cooler radiator that is independent of the internal combustion engine cooling system and supplies a cooling medium to the EGR cooler;
A cooling fan that blows air to the EGR cooler radiator and cools the cooling medium,
When premixed combustion is performed in the compression ignition internal combustion engine, the operation state of the compression ignition internal combustion engine is a premix combustion region in which premix combustion is performed and a high load side premix combustion region And an EGR gas cooling system for a compression ignition internal combustion engine, wherein the cooling fan is operated when the speed of a vehicle on which the compression ignition internal combustion engine is mounted is equal to or lower than a predetermined speed.
JP2004065581A 2004-03-09 2004-03-09 EGR gas cooling system for compression ignition internal combustion engine Expired - Fee Related JP4172405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065581A JP4172405B2 (en) 2004-03-09 2004-03-09 EGR gas cooling system for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065581A JP4172405B2 (en) 2004-03-09 2004-03-09 EGR gas cooling system for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005256619A JP2005256619A (en) 2005-09-22
JP4172405B2 true JP4172405B2 (en) 2008-10-29

Family

ID=35082615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065581A Expired - Fee Related JP4172405B2 (en) 2004-03-09 2004-03-09 EGR gas cooling system for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4172405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484242B2 (en) * 2004-06-17 2010-06-16 日野自動車株式会社 Engine EGR system
JP5341713B2 (en) * 2009-11-05 2013-11-13 アイシン精機株式会社 Engine cooling system and control method thereof

Also Published As

Publication number Publication date
JP2005256619A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP5962534B2 (en) Intercooler temperature controller
JP4877205B2 (en) Control device for internal combustion engine
JP5288046B2 (en) Control device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2017036695A (en) Control device of diesel engine
US6397807B1 (en) Internal combustion engine having combustion heater
JP5565283B2 (en) Cooling device for internal combustion engine
JP2020105912A (en) Intake temperature control device for engine with supercharger
JP4265382B2 (en) Premixed compression ignition internal combustion engine
JP4172405B2 (en) EGR gas cooling system for compression ignition internal combustion engine
JP2008157155A (en) Four-cycle engine with internal egr system
JP4618150B2 (en) Control device for hydrogen engine
JP4506297B2 (en) Reducing agent addition device
JP3743272B2 (en) Internal combustion engine
JP2010121596A (en) Exhaust emission control system
JP5689316B2 (en) Gasoline engine with low-pressure exhaust gas recirculation circuit
JP2010121469A (en) Exhaust emission control device
JP4719142B2 (en) Multi-cylinder 4-cycle engine with internal EGR system
JP4479524B2 (en) Start control device for compression ignition internal combustion engine
KR102406139B1 (en) Apparatus of controlling egr apparatus and method using the same
JP5083156B2 (en) Control device for variable cylinder internal combustion engine
JP3541662B2 (en) Internal combustion engine
JP2004239238A (en) Premix compression ignition internal combustion engine
JP2005325719A (en) Fuel supply device for diesel engine provided with egr passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees