JP4171967B2 - Impact resistant members and protective materials - Google Patents

Impact resistant members and protective materials Download PDF

Info

Publication number
JP4171967B2
JP4171967B2 JP2002221665A JP2002221665A JP4171967B2 JP 4171967 B2 JP4171967 B2 JP 4171967B2 JP 2002221665 A JP2002221665 A JP 2002221665A JP 2002221665 A JP2002221665 A JP 2002221665A JP 4171967 B2 JP4171967 B2 JP 4171967B2
Authority
JP
Japan
Prior art keywords
fiber
impact
resistant member
sheet
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002221665A
Other languages
Japanese (ja)
Other versions
JP2004058517A (en
Inventor
拓也 小西
幸弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002221665A priority Critical patent/JP4171967B2/en
Publication of JP2004058517A publication Critical patent/JP2004058517A/en
Application granted granted Critical
Publication of JP4171967B2 publication Critical patent/JP4171967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明に属する技術分野】
本発明は、ナイフなどの鋭利な刃物や破片弾、銃弾もしくは釘などの突起物の踏み抜きなどから身を守るために提案された耐衝撃部材で、特に刃物や破片弾などが防護材と衝突した後、防護材の変形を小さくする効果が期待できる耐衝撃部材である。
【0002】
【従来の技術】
従来の耐衝撃部材には、まず金属製鋼板が挙げられる。金属製のものは、飛翔物などを止める効果が非常に高く、また人体への衝撃についても軽減できる効果を併せ持つ優れた素材である。しかし、比重が大きいため重量感と柔軟性がないため、取り扱い性が悪いといった欠点が問題視されていた。それを補う素材として有機繊維が取り上げられるようになった。最初取り上げられた有機繊維はナイロン繊維であったが、近年の技術力の向上に伴い、断面積あたりの強度がスチール並みである高強力繊維が登場し、金属性鋼板で問題視されていた重量感や柔軟性のなさといった点を克服することができるようになった。
【0003】
しかし、有機繊維を使用した防護材は、飛翔物などを止める能力が高くても、防護材の後部変形が大きく、人体に怪我を及ぼす恐れがあった。また、織物や編物もしくはUD(一方向配列)繊維シートのみでは、織目や編目などの間を通って飛翔物などが人体側に突き通ってくる可能性が高かった。そこで、後部変形を抑え、織目や編目などの間の貫通を防ぐ方法として、防護材の人体側部分に、剛性のあるフィルム状のシートや発泡材などの緩衝材を使用し、人体への影響を極力抑える方策が取られてきた。しかし、これらの方法をもってしても、後部変形が若干軽減されただけで、十分満足行くものではなく、後部変形による人体への障害の危険性は残っていた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、後部変形を抑える目的で用いられるシートや不織布に対し、弾性率の高い繊維を熱可塑性樹脂もしくはエラストマーにより貼り合わせ、シートや不織布の変形を抑えることを目的とした耐衝撃材に関する提案とそれらを使用した防護材に関する提案である。
【0005】
【課題を解決するための手段】
発明者らは、本件について鋭意検討した結果、シートまたは不織布の耐衝撃性を補完する目的で、高強力繊維を貼り付けると、後部変形を抑える効果を得られることをつきとめ、本提案をするにいたった。
即ち本発明は、下記の構成からなる。
1.少なくとも、厚さ0.3mm以上のフィルム状のシート層と開繊繊維層と接着層とからなる耐衝撃部材であって、前記繊維の弾性率が50GPa以上であり、且つ前記接着層が熱可塑性樹脂もしくはエラストマーからなることを特徴とする耐衝撃部材。
2.少なくとも、厚さ0.3mm以上の不織布状のシート層と開繊繊維層と接着層とからなる耐衝撃部材であって、前記繊維の弾性率が50GPa以上であり、且つ前記接着層が熱可塑性樹脂もしくはエラストマーからなることを特徴とする耐衝撃部材。
3.開繊繊維層が、熱可塑性樹脂を含浸したテープ状の繊維ロッドであり、当該繊維ロッドの弾性率が12.5Gpa以上、樹脂含有率が繊維の重量に対し300重量%以下であることを特徴とする上記第1又は2記載の耐衝撃部材。
4.開繊繊維層が、平行に開繊繊維を並べ、且つ少なくとも2方向に配向積層させたシートであることを特徴とする上記第1〜3のいずれかに記載の耐衝撃部材。
5.開繊繊維層が、織物からなることを特徴とする上記第1〜3のいずれかに記載の耐衝撃部材。
6.引張強度が15cN/dtex以上の高強力繊維からなる織物またはシート材と上記第1記載の耐衝撃部材を積層してなる防護材。
7.引張強度が15cN/dtex以上の高強力繊維からなる織物またはシート材と上記第2記載の耐衝撃部材を積層してなる防護材。
8.上記第1記載の耐衝撃部材が身体に近い部分に積層されてなることを請求項6記載の防護材。
9.上記第2記載の耐衝撃部材が身体に近い部分に積層されていることを請求項7記載の防護材。
【0006】
以下、本発明を詳細に説明する。
本発明の最大の要点として、フィルム状のシートまたは不織布層に高弾性率を有する繊維を張りつける点にある。まず、フィルム状のシートまたは不織布層を用いる目的としては、飛翔物などが移動する進行方向に対し、そのエネルギーを横方向に逃がして、進行方向へのエネルギーを小さくする目的がある。フィルム状のシートまたは不織布層は、面で飛翔物などを捕らえるので、それらの効果が得られると考えられる。しかし、エネルギーを面方向に短時間に効率良く伝播させるには、素材の音弾性が重要になってくる。この音弾性は、素材の弾性率と比重から得られる特性値であり、軽く弾性率の高い素材ほど、音弾性は高くなることになる。ここで、フィルム状のシートまたは不織布層は、使用素材の特性上もしくは構造上の点から弾性率が低くなり、音弾性が高くできないといった問題がある。そこで、本発明では弾性率を付与する目的で、50GPa以上の弾性率を有する繊維をフィルム状のシートまたは不織布層に貼り付けることにより、材の弾性率を向上させ、音弾性を高くする効果が得られる。
【0007】
フィルムシートとしては、少なくとも0.3mm厚以上は必要である。この厚さが薄いと面方向へのエネルギーを伝播することなく破れてしまう可能性が高くなる為である。フィルムシートの素材として、ポリカーボネート製のものを始め、ポリエステル系、ナイロン系など様々な素材から得られるシートが挙げられるが、先に説明した通り、フィルムシートの弾性率が高い素材を選ぶことが好ましい。フィルムの表面については、樹脂で接着することを考慮して、微少な凹凸を付与するなどの方策を取る方法が挙げられる。また不織布に関しても、少なくとも0.3mm厚以上を有することが好ましい。この理由についてもフィルムと同様である。不織布の素材としては、高強度繊維からなる不織布の方が、不織布自体の弾性率が高くなるため好ましいが、汎用繊維であるポリエステルやナイロン、ポリプロピレン、ポリビニルアルコール繊維を用いて、不織布の製造条件を工夫して不織布の弾性率を向上させることも可能であるので、特に繊維の種類を限定するものではない。
【0008】
ここで、フィルムシートや不織布に高強力繊維を張り合わせる点が、本提案の重要な部分を成すが、接着剤として熱可塑性樹脂もしくはエラストマーを使用することが好ましい。熱可塑性樹脂は、熱硬化性樹脂に比べ接着作業が容易であり、接着後の材の柔軟性も柔らかく、防護衣などの衣服用途に使用しても、フィット性や着心地感といった観点で優れていると考えられる。ここで熱可塑性樹脂の種類としては、エチレン系樹脂、ウレタン系樹脂、アクリル系樹脂、ナイロン系樹脂、ポリエステル系などが挙げられる。熱可塑性樹脂の代替として、エラストマーを使用することも可能である。エラストマーの例としては、ポリエステル系、ナイロン系、ポリオレフィン系、ゴム系などが挙げられる。この時、繊維と熱可塑性樹脂もしくはエラストマーとの重量割合としては、繊維割合が高くなることが好ましいので、繊維と樹脂が十分に接着する程度の割合が最も好ましく、多くとも樹脂重量割合が繊維重量割合に対し300wt%までにすることが推奨される。また、接着熱可塑性樹脂を使用する以外の方法として、ミシンなどを使用してミシン糸で強固に貼り合わせる方法も挙げられる。
【0009】
フィルム状のシートまたは不織布層に貼りつける弾性率の高い繊維には、有機繊維ではパラアラミド繊維、ポリアリレート繊維、超高分子量ポリエチレン繊維、ポリパラフェニレンベンゾオキサゾール(PBO)繊維、無機繊維では炭素繊維などが挙げられる。ここで高弾性率を有する繊維として、先に挙げた高弾性繊維に熱可塑性樹脂を含浸させ、扁平形状であるテープ状の繊維を作成しても良い。ここで必須な点として、繊維の弾性率が少なくとも50GPa以上を有する事が必要である。理由として先にも説明したが、音弾性を高くするには弾性率を高くする必要があるためである。テープ状の繊維についても、仕上がり後の弾性率が少なくとも12.5GPa以上の物性を有し、樹脂含有率が繊維の重量に対し300重量%以下である事ることが好ましい。樹脂含有率が高過ぎると、繊維の混率が少なくなるので、フィルムシート又は不織布などの変形を抑制する効果が得られ難くなるためである。
【0010】
熱可塑性樹脂製のロッド状の繊維を使用するメリットとしては、テープ状の繊維をフィルムシートや不織布に積層し、熱をかけることで繊維に含浸されている樹脂がシートとの接着に寄与するため、熱可塑性樹脂の塗布が簡略されることが挙げられる。
【0011】
また、フィルム状のシートまたは不織布層に貼り付ける繊維の形態としては、繊維を一方向に並べたシートを0°/90°方向に積層したUDシートや、織物が加工上の面で適している。しかし、これらのシートや織物でも、繊維の弾性率を極端に減じるような組織や加工法のものでは、耐衝撃部材の高弾性率が得られないので、シートや織物の弾性率を極力落とさないものを使用することが好ましい。
【0012】
また防護材に付加する目的で本耐衝撃部材を使用するが、その積層方法については、用途の目的に応じて適宣選ぶことができる。飛翔物などから人体の損傷を防ぐ目的であれば、耐衝撃部材の積層位置としては、できるだけ人体に近い部分に使用することが望ましい。これは、耐衝撃部材の前面に高強力繊維からなる織物やFRPシートを積層していると考えられるので、それらの織物やFRPシートによって、飛翔物などのエネルギーを極力減じておいてから、本耐衝撃部材でエネルギーを面方向に分散させることができるからである。これは飛翔物などのエネルギーを面方向に分散させるには、耐衝撃物に衝突する直前の速度が遅い方が、より面方向への伝達時間が得られるためである。もちろん、本耐衝撃部材を積層の中間と人体に近い部分といった複数個所での使用も可能である。また防護材の積層方法として、本耐衝撃部材の更に人体側に発泡ポリエチレンなどの緩衝材を設けることで更に人体への損傷は防ぐことが可能になると考えられる。
【0013】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徹して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0014】
(実施例1)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)に、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)を開繊させて一方向に繊維を並べ、繊維方向を0°/90°の方向で4層積層し、ウレタン系樹脂(商品名;L9009 GOVI社製)で貼り合わせた。接着に使用した樹脂量は、耐衝撃部材部分に使用した繊維重量に対し、28wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0015】
(実施例2)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)に、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)からなるマット組織の織物を1枚積層し、ウレタン系樹脂(商品名;L9009 GOVI社製)で貼り合わせた。接着に使用した樹脂量は、耐衝撃部材部分に使用した繊維重量に対し、21wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0016】
(実施例3)
耐衝撃部材として、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)からなる目付200g/m2の不織布をカレンダー処理(温度100℃、圧力150kg/cm2)で処理し、不織布を得た。該不織布に超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)を開繊させて一方向に繊維を並べ、繊維方向を0°/90°の方向で4層積層し、ウレタン系樹脂(商品名;L9009 GOVI社製)で貼り合わせた。接着に使用した樹脂量は、耐衝撃部材部分(不織布部分の繊維を除く)に使用した繊維重量に対し、31wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0017】
(実施例4)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)に、PBO繊維(商品名;ザイロン 東洋紡績社製)にPP樹脂を含浸した細長いシート状物を作成し、該シートを使用して織物を作成した。ポリカーボネートとシートからなる織物を積層し、熱板にて180℃で熱プレスをかけ、両素材を貼り合わせた。このときの繊維重量に対するPP樹脂の含有量は180wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0018】
(実施例5)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)に、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)を開繊させて一方向に繊維を並べ、繊維方向を0°/90°の方向で4層積層し、ポリエステル系のエラストマー(東洋紡製)で貼り合わせた。接着に使用したエラストマー量は、耐衝撃部材部分に使用した繊維重量に対し、32wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ポリエステル系のエラストマーで貼り合わせサンプルを作成し、評価を行った。
【0019】
(実施例6)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)に、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)を一方向に開繊して繊維を並べ、繊維方向を0°/90°の方向で4層積層し、ウレタン系樹脂(商品名;L9009 GOVI社製)でポリカーボネートの両面に貼り合わせた。接着に使用した樹脂量は、耐衝撃部材部分に使用した繊維重量に対し、58wt%であった。防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0020】
(比較例1)
防護材として、超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。
【0021】
(比較例2)
耐衝撃部材として、ポリカーボネート(厚さ0.5mm)と、防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0022】
(比較例3)
耐衝撃部材として、超高分子量ポリエチレン繊維(商標名;ダイニーマ 東洋紡績社製)からなる目付200g/m2の不織布をカレンダー処理(温度100℃、圧力150kg/cm2)で処理した不織布と、防護材として、同じ超高分子量ポリエチレン繊維(ダイニーマSK71使用)からなる織物を47枚積層し、ミシン糸にて縫い合わせ、サンプル(目付約8kg/m2)を得た。防護材の後部に耐衝撃部材を積層し、ウレタン系樹脂で貼り合わせサンプルを作成し、評価を行った。
【0023】
(評価方法)
建設用鋲打ち銃を使用して、直径5.56mmの円筒状の飛翔物を速度650m/secの速さで、サンプルに対し垂直方向に打ち込んだ。サンプルの後部には粘土を設置し、サンプルの固定方法は、ゴムバンドで後面の粘土に密着する程度に取りつけた。粘土は「ROMA ITARIAN PLASTILINA」(SCULPTURE HOUSE社製)のもので、硬さはNo.1のものを使用した。効果の確認方法は、後部変形の大きさを粘土のへこみ量をノギスを用いて計測することにより比較した。
結果を表1に示す。
【0024】
【表1】

Figure 0004171967
【0025】
【発明の効果】
飛翔物や突起物などから身を守るため、人体に接する衣類やヘルメット、靴などにおいて、飛翔物などのエネルギーを面方向に分散させるために、フィルムシートや不織布の片面もしくは両面に、弾性率50GPa以上の物性を有する繊維を貼り合わせ、該耐衝撃部材の弾性率を向上させることにより、エネルギーをより面方向に分散させることのできる耐衝撃部材である。
【図面の簡単な説明】
【図1】耐衝撃部材と防護材の積層構成の事例。
【図2】評価試験の変形量の測定方法を示した図
【図3】変形量の測定要領
【符号の説明】
(1)防護材、(2)フィルムシート又は不織布、(3)高強力繊維からなるシート
(4)変形量を計る粘土、(5)飛翔物、(6)粘土の変形した部分、(7)ノギス[0001]
[Technical field belonging to the invention]
The present invention is an impact-resistant member proposed for protecting the body from sharp blades such as knives and stepping-out of protrusions such as shards, bullets or nails, and in particular, blades and shards collided with protective materials. It is an impact resistant member that can be expected to reduce the deformation of the protective material.
[0002]
[Prior art]
A conventional impact-resistant member first includes a metal steel plate. Metal materials are excellent materials that have an extremely high effect of stopping flying objects and that can also reduce the impact on the human body. However, since the specific gravity is large, there is no sense of weight and flexibility, and there has been a problem that the handling property is poor. Organic fiber has been taken up as a material to supplement it. The organic fiber that was first picked up was nylon fiber, but with the recent improvement in technical capabilities, high-strength fibers with the same strength per cross-sectional area as steel appeared, and the weight that was regarded as a problem with metallic steel sheets It has become possible to overcome such points as feeling and lack of flexibility.
[0003]
However, even if the protective material using organic fibers has a high ability to stop flying objects, the rear deformation of the protective material is large and there is a risk of injury to the human body. Further, with only a woven fabric, a knitted fabric, or a UD (unidirectional array) fiber sheet, there is a high possibility that flying objects or the like pass through between the weaves and the stitches. Therefore, as a method of suppressing rear deformation and preventing penetration between textures and stitches, a cushioning material such as a rigid film-like sheet or foam material is used on the human body side part of the protective material, Measures have been taken to minimize the impact. However, even with these methods, the rear deformation is only slightly reduced, which is not satisfactory, and there remains a risk of injury to the human body due to the rear deformation.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide an impact resistant material for the purpose of suppressing deformation of a sheet or nonwoven fabric by bonding fibers having a high elastic modulus with a thermoplastic resin or elastomer to a sheet or nonwoven fabric used for the purpose of suppressing rearward deformation. And proposals for protective materials using them.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the present case, the inventors have found that the effect of suppressing rearward deformation can be obtained by attaching high-strength fibers for the purpose of complementing the impact resistance of the sheet or nonwoven fabric, and the present proposal is made. It was.
That is, this invention consists of the following structures.
1. An impact resistant member comprising at least a film-like sheet layer having a thickness of 0.3 mm or more, a spread fiber layer, and an adhesive layer, wherein the elastic modulus of the fiber is 50 GPa or more, and the adhesive layer is thermoplastic. An impact resistant member made of resin or elastomer.
2. An impact-resistant member comprising at least a non-woven sheet layer having a thickness of 0.3 mm or more, a spread fiber layer, and an adhesive layer, wherein the elastic modulus of the fiber is 50 GPa or more, and the adhesive layer is thermoplastic. An impact resistant member made of resin or elastomer.
3. The opened fiber layer is a tape-like fiber rod impregnated with a thermoplastic resin, wherein the fiber rod has an elastic modulus of 12.5 Gpa or more and a resin content of 300% by weight or less based on the weight of the fiber. The impact-resistant member according to 1 or 2 above.
4). 4. The impact-resistant member according to any one of the first to third aspects, wherein the spread fiber layer is a sheet in which spread fibers are arranged in parallel and oriented and laminated in at least two directions.
5. 4. The impact-resistant member according to any one of the first to third aspects, wherein the spread fiber layer is made of a woven fabric.
6). A protective material formed by laminating a woven or sheet material made of high-strength fibers having a tensile strength of 15 cN / dtex or more and the impact-resistant member described above.
7). A protective material formed by laminating a woven fabric or sheet material made of high-strength fibers having a tensile strength of 15 cN / dtex or more and the impact-resistant member described above.
8). The protective material according to claim 6, wherein the impact-resistant member according to the first aspect is laminated on a portion close to the body.
9. The protective material according to claim 7, wherein the impact-resistant member according to the second aspect is laminated on a portion close to the body.
[0006]
Hereinafter, the present invention will be described in detail.
The most important point of the present invention is that a fiber having a high elastic modulus is attached to a film-like sheet or nonwoven fabric layer. First, the purpose of using a film-like sheet or non-woven fabric layer is to release energy in the lateral direction with respect to the traveling direction in which the flying object moves, and reduce the energy in the traveling direction. Since the film-like sheet or the nonwoven fabric layer catches flying objects or the like on the surface, it is considered that those effects can be obtained. However, the acoustic elasticity of the material becomes important in order to efficiently propagate energy in the surface direction in a short time. This acoustoelasticity is a characteristic value obtained from the elastic modulus and specific gravity of the material. The lighter the elastic material, the higher the acoustoelasticity. Here, the film-like sheet or the nonwoven fabric layer has a problem that the elastic modulus is low from the viewpoint of the characteristics or structure of the material used, and the acoustic elasticity cannot be increased. Therefore, in the present invention, for the purpose of imparting an elastic modulus, by attaching a fiber having an elastic modulus of 50 GPa or more to a film-like sheet or non-woven fabric layer, the elastic modulus of the material is improved and the acoustic elasticity is increased. can get.
[0007]
The film sheet needs to have a thickness of at least 0.3 mm. This is because if this thickness is small, the possibility of tearing without propagating energy in the surface direction increases. Examples of the film sheet material include sheets obtained from various materials such as polycarbonate, nylon, and the like. As described above, it is preferable to select a material having a high elastic modulus of the film sheet. . With respect to the surface of the film, there is a method of taking measures such as giving minute irregularities in consideration of bonding with a resin. The nonwoven fabric also preferably has a thickness of at least 0.3 mm. This reason is the same as that of the film. As the material of the nonwoven fabric, the nonwoven fabric made of high-strength fibers is preferable because the elastic modulus of the nonwoven fabric itself is higher. However, the production conditions of the nonwoven fabric can be set using general-purpose fibers such as polyester, nylon, polypropylene, and polyvinyl alcohol fibers. Since it is possible to improve the elastic modulus of the nonwoven fabric, the type of fiber is not particularly limited.
[0008]
Here, the point that the high-strength fibers are bonded to the film sheet or the nonwoven fabric is an important part of the proposal, but it is preferable to use a thermoplastic resin or an elastomer as the adhesive. Thermoplastic resins are easier to bond than thermosetting resins, and the softness of the material after bonding is soft. Even when used for clothing such as protective clothing, it is excellent in terms of fit and comfort. It is thought that. Here, examples of the thermoplastic resin include ethylene resin, urethane resin, acrylic resin, nylon resin, and polyester resin. As an alternative to the thermoplastic resin, it is possible to use an elastomer. Examples of elastomers include polyester, nylon, polyolefin, rubber and the like. At this time, the weight ratio between the fiber and the thermoplastic resin or elastomer is preferably a high fiber ratio. Therefore, the ratio that the fiber and the resin are sufficiently bonded is most preferable, and the resin weight ratio is at most the fiber weight. It is recommended that the ratio be up to 300 wt%. Further, as a method other than using an adhesive thermoplastic resin, a method in which a sewing machine or the like is used to firmly bond with a sewing thread is also exemplified.
[0009]
High elastic modulus fibers to be attached to film-like sheets or non-woven fabric layers include para-aramid fibers, polyarylate fibers, ultrahigh molecular weight polyethylene fibers, polyparaphenylene benzoxazole (PBO) fibers for organic fibers, carbon fibers for inorganic fibers, etc. Is mentioned. Here, as the fiber having a high elastic modulus, the above-mentioned high elastic fiber may be impregnated with a thermoplastic resin to produce a flat tape-like fiber. Here, it is essential that the elastic modulus of the fiber is at least 50 GPa or more. As described above, the reason is that it is necessary to increase the elastic modulus in order to increase the acoustic elasticity. The tape-like fiber also preferably has a physical property of at least 12.5 GPa after finishing and a resin content of 300% by weight or less based on the weight of the fiber. This is because if the resin content is too high, the fiber mixing ratio decreases, and it is difficult to obtain the effect of suppressing deformation of the film sheet or the nonwoven fabric.
[0010]
The advantage of using rod-like fibers made of thermoplastic resin is that tape-like fibers are laminated on a film sheet or nonwoven fabric, and the resin impregnated in the fibers contributes to adhesion to the sheet by applying heat. The application of the thermoplastic resin is simplified.
[0011]
Moreover, as a form of the fiber stuck on a film-like sheet or a nonwoven fabric layer, the UD sheet which laminated | stacked the sheet | seat which arranged the fiber in one direction at 0 degree / 90 degree direction, and a textile fabric are suitable on the surface on a process. . However, even in these sheets and fabrics, the high modulus of impact-resistant members cannot be obtained with a structure or processing method that extremely reduces the modulus of fibers, so the elastic modulus of sheets and fabrics is not reduced as much as possible. It is preferable to use one.
[0012]
Further, the impact resistant member is used for the purpose of adding to the protective material, and the lamination method can be appropriately selected according to the purpose of the application. For the purpose of preventing damage to the human body from flying objects, it is desirable to use the impact resistant member as close to the human body as possible. This is thought to be because fabrics and FRP sheets made of high-strength fibers are laminated on the front surface of the impact-resistant member, so that the energy of flying objects and the like is reduced as much as possible with these fabrics and FRP sheets. This is because energy can be dispersed in the surface direction by the impact resistant member. This is because, in order to disperse energy such as flying objects in the surface direction, transmission time in the surface direction can be obtained more when the speed immediately before the collision with the impact resistant object is slower. Of course, the impact-resistant member can be used in a plurality of locations such as the middle of the stack and a portion close to the human body. Further, as a method of laminating the protective material, it is considered that further damage to the human body can be prevented by providing a shock absorbing material such as foamed polyethylene on the human body side of the impact resistant member.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and any change in design based on the gist of the preceding and following descriptions is technical It is included in the range.
[0014]
(Example 1)
As an impact resistant member, polycarbonate (thickness 0.5 mm) is opened with ultra high molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.), and the fibers are arranged in one direction, and the fiber direction is 0 ° / 90 °. 4 layers were laminated in the direction of, and bonded together with a urethane-based resin (trade name; manufactured by L9009 GOVI). The amount of resin used for bonding was 28 wt% with respect to the fiber weight used for the impact-resistant member portion. As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0015]
(Example 2)
As a shock-resistant member, a sheet of mat fabric made of ultrahigh molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.) is laminated on polycarbonate (thickness 0.5 mm), and urethane resin (trade name; L9009) Pasted together by GOVI). The amount of resin used for bonding was 21 wt% with respect to the fiber weight used for the impact-resistant member. As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0016]
(Example 3)
A non-woven fabric with a basis weight of 200 g / m 2 made of ultra high molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.) is treated with a calendar treatment (temperature 100 ° C., pressure 150 kg / cm 2 ) as an impact resistant member to obtain a non-woven fabric. It was. Ultra high molecular weight polyethylene fibers (trade name; manufactured by Dyneema Toyobo Co., Ltd.) are opened on the nonwoven fabric, the fibers are arranged in one direction, and four layers are laminated in a direction of 0 ° / 90 °, and urethane resin ( A product name; L9009 manufactured by GOVI) was attached. The amount of resin used for bonding was 31 wt% with respect to the fiber weight used for the impact-resistant member portion (excluding the fibers of the nonwoven fabric portion). As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0017]
Example 4
As an impact-resistant member, a long and slender sheet-like material in which PP resin is impregnated with polycarbonate (thickness: 0.5 mm) and PBO fibers (trade name; manufactured by Zylon Toyobo Co., Ltd.) is created, and a woven fabric is created using the sheet. did. Fabrics made of polycarbonate and sheets were laminated and hot pressed at 180 ° C with a hot plate to bond the two materials together. The PP resin content relative to the fiber weight at this time was 180 wt%. As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0018]
(Example 5)
As an impact resistant member, polycarbonate (thickness 0.5 mm) is opened with ultra high molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.), and the fibers are arranged in one direction, and the fiber direction is 0 ° / 90 °. 4 layers were laminated in this direction, and bonded together with a polyester-based elastomer (Toyobo). The amount of elastomer used for adhesion was 32 wt% with respect to the fiber weight used for the impact resistant member. As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact-resistant member was laminated on the rear part of the protective material, and a sample was laminated with a polyester elastomer and evaluated.
[0019]
(Example 6)
As an impact-resistant member, polycarbonate (thickness: 0.5 mm) and ultrahigh molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.) are opened in one direction to arrange the fibers, and the fiber direction is 0 ° / 90 °. 4 layers were laminated in this direction, and bonded to both sides of the polycarbonate with urethane resin (trade name; manufactured by L9009 GOVI). The amount of resin used for bonding was 58 wt% with respect to the fiber weight used for the impact-resistant member portion. As a protective material, 47 woven fabrics made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn with sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0020]
(Comparative Example 1)
As a protective material, 47 woven fabrics made of ultrahigh molecular weight polyethylene fibers (using Dyneema SK71) were laminated and sewn together with a sewing thread to obtain a sample (approx. 8 kg / m 2 ).
[0021]
(Comparative Example 2)
47 pieces of woven fabric made of the same ultra-high molecular weight polyethylene fiber (using Dyneema SK71) as a protective material is laminated as an impact-resistant member and sewn with sewing thread, and a sample (approx. 8 kg) / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0022]
(Comparative Example 3)
A non-woven fabric with a weight per unit area of 200 g / m 2 made of ultra high molecular weight polyethylene fiber (trade name; manufactured by Dyneema Toyobo Co., Ltd.) as an impact-resistant member is treated with a calendar treatment (temperature 100 ° C., pressure 150 kg / cm 2 ) and protection As a material, 47 woven fabrics made of the same ultra high molecular weight polyethylene fiber (using Dyneema SK71) were laminated and sewn together with a sewing thread to obtain a sample (approx. 8 kg / m 2 ). An impact resistant member was laminated on the rear part of the protective material, and a sample was bonded with a urethane-based resin for evaluation.
[0023]
(Evaluation methods)
Using a construction hammer, a cylindrical projectile with a diameter of 5.56 mm was driven in a direction perpendicular to the sample at a speed of 650 m / sec. Clay was placed at the rear of the sample, and the sample was fixed so that it was in close contact with the back clay with a rubber band. The clay used was “ROMA ITARIAN PLASTILINA” (manufactured by SCULPTURE HOUSE) and the hardness was No.1. The method of confirming the effect was compared by measuring the amount of rear deformation by measuring the amount of dents in the clay using a caliper.
The results are shown in Table 1.
[0024]
[Table 1]
Figure 0004171967
[0025]
【The invention's effect】
An elastic modulus of 50 GPa on one or both sides of a film sheet or non-woven fabric in order to disperse the energy of flying objects in clothing, helmets, shoes, etc. that touch the human body in order to protect yourself from flying objects and protrusions. By bonding together fibers having the above physical properties and improving the elastic modulus of the impact resistant member, the impact resistant member can disperse energy more in the surface direction.
[Brief description of the drawings]
FIG. 1 shows an example of a laminated structure of an impact resistant member and a protective material.
2 is a diagram showing a method for measuring the amount of deformation in an evaluation test. FIG. 3 is a method for measuring the amount of deformation.
(1) Protective material, (2) Film sheet or non-woven fabric, (3) Sheet made of high strength fiber
(4) Clay to measure deformation, (5) Projectile, (6) Deformed part of clay, (7) Vernier caliper

Claims (5)

少なくとも、厚さ0.3mm以上のフィルム状のシート層と、繊維を一方向に並べたシートを0°/90°方向に積層したUDシート又は織物からなる繊維層と、接着層とからなる耐衝撃部材であって、前記繊維の弾性率が50GPa以上であり、且つ前記接着層がエラストマーからなることを特徴とする耐衝撃部材。At least a film-like sheet layer having a thickness of 0.3 mm or more, a fiber layer made of a UD sheet or a woven fabric in which fibers arranged in one direction are laminated in a 0 ° / 90 ° direction, and an adhesive layer. An impact-resistant member, wherein the elastic modulus of the fiber is 50 GPa or more, and the adhesive layer is made of an elastomer. 少なくとも、厚さ0.3mm以上の不織布状のシート層と、繊維を一方向に並べたシートを0°/90°方向に積層したUDシート又は織物からなる繊維層と、接着層とからなる耐衝撃部材であって、前記繊維の弾性率が50GPa以上であり、且つ前記接着層がエラストマーからなることを特徴とする耐衝撃部材。At least a non-woven sheet layer having a thickness of 0.3 mm or more, a fiber layer made of a UD sheet or woven fabric in which fibers arranged in one direction are laminated in a 0 ° / 90 ° direction, and an adhesive layer. An impact-resistant member, wherein the elastic modulus of the fiber is 50 GPa or more, and the adhesive layer is made of an elastomer . 少なくとも、厚さ0.3mm以上のフィルム状又は不織布状のシート層と、熱可塑性樹脂を含浸したテープ状の繊維ロッドであって、当該繊維ロッドの弾性率が12.5Gpa以上、樹脂含有率が繊維の重量に対し300重量%以下である繊維層と、接着層とからなる耐衝撃部材であって、前記繊維の弾性率が50GPa以上であり、且つ前記接着層がエラストマーからなることを特徴とする耐衝撃部材。At least a film layer or non-woven sheet layer having a thickness of 0.3 mm or more and a tape-like fiber rod impregnated with a thermoplastic resin, the elastic modulus of the fiber rod is 12.5 Gpa or more, and the resin content is An impact-resistant member comprising a fiber layer that is 300% by weight or less based on the weight of the fiber and an adhesive layer, wherein the elastic modulus of the fiber is 50 GPa or more, and the adhesive layer is made of an elastomer. Impact resistant member. 引張強度が15cN/dtex以上の高強力繊維からなる織物又はシート材と請求項1〜3いずれかに記載の耐衝撃部材を積層してなることを特徴とする防護材。A protective material comprising a woven fabric or sheet material made of high-strength fibers having a tensile strength of 15 cN / dtex or more and the impact-resistant member according to any one of claims 1 to 3. 請求項1〜3いずれかに記載の耐衝撃部材が身体に近い部分に積層されてなることを特徴とする請求項4記載の防護材。The protective material according to claim 4, wherein the impact resistant member according to any one of claims 1 to 3 is laminated on a portion close to the body.
JP2002221665A 2002-07-30 2002-07-30 Impact resistant members and protective materials Expired - Fee Related JP4171967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221665A JP4171967B2 (en) 2002-07-30 2002-07-30 Impact resistant members and protective materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221665A JP4171967B2 (en) 2002-07-30 2002-07-30 Impact resistant members and protective materials

Publications (2)

Publication Number Publication Date
JP2004058517A JP2004058517A (en) 2004-02-26
JP4171967B2 true JP4171967B2 (en) 2008-10-29

Family

ID=31941913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221665A Expired - Fee Related JP4171967B2 (en) 2002-07-30 2002-07-30 Impact resistant members and protective materials

Country Status (1)

Country Link
JP (1) JP4171967B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189803A1 (en) * 2011-01-21 2012-07-26 Albany International Corp. Ultra-resilient pad and method of making thereof
CA2866498A1 (en) * 2012-02-29 2013-11-28 E. I. Du Pont De Nemours And Company Ballistic composite containing a thermoplastic overlay
US9261333B2 (en) * 2012-09-10 2016-02-16 Tencate Advanced Armor Usa, Inc. Flame retardant ballistic laminate
WO2016094285A1 (en) * 2014-12-10 2016-06-16 Xu Luoyu Roy Armor, shields and helmets with highly property-mismatched interface materials to reduce dynamic force and damage

Also Published As

Publication number Publication date
JP2004058517A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US10245807B2 (en) Panel for absorbing mechanical impact energy and method of manufacturing
JP4262749B2 (en) Unique bulletproof composition
TWI243234B (en) Energy absorbing device for ballistic body armor
EP2519668B1 (en) Enhanced lightweight ballistic materials
US6846545B2 (en) Impact absorbing material
US20100080971A1 (en) Impact and sharp implement resistant protective armor
KR20070058008A (en) Lightweight armor against mutiple high velocity bullets
JPS62210397A (en) Armor plate composite body with ceramic shock layer
TW200933118A (en) Multilayered material sheet for use in soft ballistics
US20180092420A1 (en) Add-on impact energy absorbing pad structure for outside of military and sport helmets
JPWO2010035453A1 (en) Impact-resistant laminated molded body, method for producing the same, and impact-resistant material
JP2000507339A (en) Protective fabric
CA2285325C (en) A stab-resisting material, a coated carrier to be used therewith, and clothing made of said material
JP4171967B2 (en) Impact resistant members and protective materials
GB2130073A (en) Protective shield
JP2009028944A (en) Bullet-resistant protection member and bullet-resistant protection product
US20030190850A1 (en) Stab-resisting material, a coated carrier to be used therewith, and clothing made of said material
US6605334B2 (en) Tactical body armor
CN103750597A (en) Flexible and high-energy-absorbing stab and cut resistant shoe sole
JP3689649B2 (en) Protective components, protective clothing, and protective articles
JP2008544109A (en) Fabric with increased bulletproof performance coated with polymer stripes
JPH09174765A (en) Composite molding
WO2019058599A1 (en) Stab-proof laminate and stab-proof implement using same, and nonwoven fabric for stab-proof implement
JPS6262198A (en) Protective tool for armared and edge protection
JP3892623B2 (en) Material for protective clothing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R151 Written notification of patent or utility model registration

Ref document number: 4171967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees