JP4171808B2 - High speed cutting test equipment - Google Patents

High speed cutting test equipment Download PDF

Info

Publication number
JP4171808B2
JP4171808B2 JP2006181078A JP2006181078A JP4171808B2 JP 4171808 B2 JP4171808 B2 JP 4171808B2 JP 2006181078 A JP2006181078 A JP 2006181078A JP 2006181078 A JP2006181078 A JP 2006181078A JP 4171808 B2 JP4171808 B2 JP 4171808B2
Authority
JP
Japan
Prior art keywords
speed cutting
cutting test
flying
cutting
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006181078A
Other languages
Japanese (ja)
Other versions
JP2008008821A (en
Inventor
淳 篠塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Original Assignee
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC filed Critical Ibaraki University NUC
Priority to JP2006181078A priority Critical patent/JP4171808B2/en
Publication of JP2008008821A publication Critical patent/JP2008008821A/en
Application granted granted Critical
Publication of JP4171808B2 publication Critical patent/JP4171808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

この発明は,高速切削速度と切削雰囲気が切削機構や加工仕上げ面品位に及ぼす影響を実験的に検討するための高速切削試験装置に関する。   The present invention relates to a high-speed cutting test apparatus for experimentally examining the influence of a high-speed cutting speed and a cutting atmosphere on a cutting mechanism and a finished surface quality.

切削速度を高速化すると,切削時間の短縮による加工能率の向上効果のほか,焼き入れ鋼などの高強度材料をそのまま切削加工できることや,切削仕上げ面の加工変質層の低減など切削性能が向上する効果があると期待されており,高速回転の主軸機構や高速送り機構の開発など,切削速度を高速化するための工作機械の要素技術の進歩は目覚しい。   Increasing the cutting speed improves the cutting performance by improving the machining efficiency by shortening the cutting time, cutting high-strength materials such as hardened steel as they are, and reducing the work-affected layer on the finished surface. It is expected to be effective, and the progress of elemental technology for machine tools to increase the cutting speed, such as the development of a high-speed spindle mechanism and high-speed feed mechanism, is remarkable.

しかしながら,高速切削速度が切削機構(切りくず生成機構,切削力,切削温度,加工仕上げ面品位,工具損傷など)に及ぼす影響については不明な点が多いため,切削速度を高速化すればするほど切削性能が向上するのか,どこまで高速化できるのか,高速切削速度には限界があるのか,などについては不明な点が多い。   However, there are many unclear points about the effect of high-speed cutting speed on the cutting mechanism (chip generation mechanism, cutting force, cutting temperature, finished surface quality, tool damage, etc.). There are many unclear points about whether cutting performance is improved, how fast it can be made, and whether there is a limit to the high-speed cutting speed.

さらに高速切削過程では,切削温度が高いため切削仕上げ面表層の温度も高くなり,切削仕上げ面の界面での化学的反応が切削仕上げ面品位に大きな影響を与えると考えられるため,切削速度による影響のほか切削雰囲気も考慮に入れた高速切削過程の切削機構の解明が望まれている。   Furthermore, in the high-speed cutting process, since the cutting temperature is high, the surface temperature of the cut finish surface also rises, and the chemical reaction at the interface of the cut finish surface is considered to have a large effect on the quality of the cut finish surface. In addition to this, it is desirable to clarify the cutting mechanism of the high-speed cutting process taking into account the cutting atmosphere.

こうした切削雰囲気も考慮に入れた高速切削過程の切削機構を解明するためには,切削雰囲気が制御可能で高速切削過程を実現できる加工装置を用いて,切削雰囲気と切削速度が,切りくず生成状態,切削力や切削温度,切削仕上げ面品位や工具損傷状態に及ぼす影響を実際に高速切削を行って体系的に調べ,得られた結果を包括的に検討することが必要である。   In order to elucidate the cutting mechanism of the high-speed cutting process taking into consideration such a cutting atmosphere, the cutting atmosphere and the cutting speed are controlled by the cutting atmosphere and the cutting speed using the processing equipment that can control the cutting atmosphere and realize the high-speed cutting process. Therefore, it is necessary to systematically investigate the effects of cutting force, cutting temperature, cutting finish surface quality and tool damage state by actually performing high-speed cutting, and comprehensively review the obtained results.

切削速度や切取り厚さなどの切削条件が,切りくず生成状態や切削力や切削温度などの切削機構に与える影響を切削実験により解明するための切削形式は,平面状の加工物(被削材)の表面を切取り厚さを一定として切削する平削り形式が,二次元切削過程も容易に実現でき,また後の分析も行い易いので有利である。   The cutting type to clarify the effect of cutting conditions such as cutting speed and cutting thickness on the cutting mechanism such as chip formation, cutting force and cutting temperature is a flat workpiece (workpiece) The flat cutting method that cuts the surface with a constant cutting thickness is advantageous because it can easily realize a two-dimensional cutting process and facilitate subsequent analysis.

これまでに提案されている上記の切削形式による高速切削試験装置には,被削材を弾丸として,これを火薬の爆発による高圧力により高速で飛翔させ,銃口付近に設置した工具が弾丸状の被削材の一部を削り取る方法がある。   Previously proposed high-speed cutting test equipment with the above-mentioned cutting type has a workpiece as a bullet, which is made to fly at high speed by high pressure due to explosive explosion, and a tool installed near the muzzle has a bullet-like shape. There is a method of scraping a part of the work material.

非特許文献1,2はその例を示す。   Non-patent documents 1 and 2 show such examples.

一方,工具を先端に設置した棒を管路内に挿入し,棒を圧縮気体の圧力により加速させて,静止させた被削材の一部を削り取る方法,逆に被削材を先端に設置した棒を管路内に挿入し,棒を圧縮空気の圧力により加速させて,静止させた工具により被削材の一部を削り取る方法,さらに両者を組み合わせて工具と被削材の両方を加速させて高速切削過程を実現する方法がある。   On the other hand, a tool with a tool installed at the tip is inserted into the pipe, the rod is accelerated by the pressure of the compressed gas, and a part of the stationary work material is scraped off. Conversely, the work material is placed at the tip. Insert the finished rod into the pipe line, accelerate the rod with compressed air pressure, scrape part of the work material with the stationary tool, and combine both to accelerate both the tool and the work material There is a method for realizing a high-speed cutting process.

非特許文献3,4,5はその例を示す。
上記のいずれの方法も,高速切削過程の切削力や切削温度は,固定している工具あるいは被削材の下部に力測定器や温度測定器を設置することで把握できる。
Non-patent documents 3, 4 and 5 show such examples.
In any of the above methods, the cutting force and cutting temperature during the high-speed cutting process can be grasped by installing a force measuring device or a temperature measuring device below the fixed tool or work material.

また切削雰囲気を大気と隔離するように切削が行われる領域を密閉するか,あるいは装置全体を大気と隔離できる空間に設置すれば,切削雰囲気の影響も考慮可能である。
この中で,大きな設備を要せずに手軽に高速切削実験を行うためには,1.0MPa未満の圧縮気体を使用するのが良い。
If the cutting area is sealed so as to isolate the cutting atmosphere from the atmosphere, or if the entire apparatus is installed in a space that can be isolated from the atmosphere, the influence of the cutting atmosphere can be considered.
Of these, compressed gas of less than 1.0 MPa should be used to perform high-speed cutting experiments easily without requiring large equipment.

被削材を加速させる方法では,切削距離を長くするには加速する被削材の質量が増加してしまい速度を上げることが困難となること,また工具や被削材を設置した棒を加速させる方法も棒の質量を軽量化することが困難であるため,やはり高速に飛翔させるのが困難となる。   In the method of accelerating the work material, increasing the cutting distance increases the mass of the work material to be accelerated, making it difficult to increase the speed, and accelerating the rod on which the tool or work material is installed. Since it is difficult to reduce the weight of the rod, it is also difficult to fly at high speed.

一方,工具を飛翔させる方法は,切削工具の切れ刃部分があれば全体を小型化することは可能であり質量を小さくすることができる。
そこで,小型の工具を圧縮気体で加速させる方法が適していると言える。
On the other hand, as for the method of flying the tool, if there is a cutting blade portion of the cutting tool, the whole can be reduced in size and the mass can be reduced.
Therefore, it can be said that a method of accelerating a small tool with compressed gas is suitable.

ところで切削実験において,切削過程で生成する切りくずは,その厚さからせん断角の大きさやせん断ひずみ量,その形態から切りくず生成機構が把握できるため,切削機構を解明する上で非常に重要である。   By the way, in the cutting experiment, the chip generated in the cutting process is very important for elucidating the cutting mechanism because the thickness of the shear angle, the amount of shear strain, and the shape of the chip can be grasped from the form. .

高速で飛翔する切削工具の切れ刃が停止している被削材を切削する場合,生成する切りくずは,概ね工具と同程度の大きさの速度で工具と共に飛散する。   When cutting a workpiece whose cutting edge of a cutting tool flying at high speed is stopped, the generated chips scatter with the tool at a speed approximately the same as that of the tool.

切削終了後も高速で飛翔する工具と切削過程で生成した切りくずは,実験装置の大きさの制限により短い距離で停止させる必要があるため,これまでの技術によると,何らかの衝撃吸収材に直接これらを衝突させることで強制的に運動エネルギを消費させ停止させていた。   Tools that fly at high speed after cutting and chips generated during the cutting process must be stopped at a short distance due to the size limitations of the experimental equipment. The kinetic energy was forcibly consumed and stopped by colliding.

田中義信,津和秀夫,角園睦美,“超高速切削に関する研究(第1報)”,精密機械,30巻,8号,(1964) p.637-644.Yoshinobu Tanaka, Hideo Tsuwa, Tomomi Kakuzono, “Study on Ultra High Speed Cutting (1st Report)”, Precision Machinery, Vol. 30, No. 8, (1964) p.637-644. 貴志浩三,江田弘,上野秀雄,“1200m/sに及ぶ超高速切削における表面創成(第1報)−超高速実験装置の試作と若干の実験−”,精密機械,46巻,12号,(1980) p.1499-1505.Kozo Takashi, Hiroshi Eda, Hideo Ueno, “Surface creation in ultra-high-speed cutting up to 1200 m / s (1st report)-Trial manufacture of ultra-high-speed experimental equipment and some experiments-”, Precision Machinery, Vol. 46, No. 12, ( 1980) p.1499-1505. G.Sutter, A.Molinari, L.Faure, J.R.Klepaczko, D.Dudzinski, ”An Experimental Study of High Speed Orthogonal Cutting”, Transaction of ASME Journal of Manufacturing Science and Engineering, Vol.120, February, (1998) p.169-172.G. Sutter, A. Molinari, L. Faure, JRKlepaczko, D. Dudzinski, “An Experimental Study of High Speed Orthogonal Cutting”, Transaction of ASME Journal of Manufacturing Science and Engineering, Vol. 120, February, (1998) p .169-172. K.M.Vernaza-Pena, J.J.Mason and M.Li, ”Experimental Study of the Temperature Field Generated During Orthogonal Machining of an Aluminum Alloy”, Experimental Mechanics, Vol.42, No.2, June, (2002) p.221-229.KMVernaza-Pena, JJMason and M.Li, “Experimental Study of the Temperature Field Generated During Orthogonal Machining of an Aluminum Alloy”, Experimental Mechanics, Vol.42, No.2, June, (2002) p.221-229 . J.Shinozuka and T.Obikawa, ”Development of Orthogonal Impact Cutting Testing Machine”, Key Engineering Materials, Vols.291-292, August, (2005) p.507-512.J. Shinozuka and T. Obikawa, “Development of Orthogonal Impact Cutting Testing Machine”, Key Engineering Materials, Vols. 291-292, August, (2005) p.507-512.

しかしながらこれまでの技術によると,高速で飛翔する工具や切りくずが衝撃吸収材に衝突すると,その衝撃力により工具や切りくずは変形あるいは何らかの損傷を受ける可能性がある。   However, according to the conventional technology, when a tool or chip flying at high speed collides with the shock absorber, the tool or chip may be deformed or damaged by the impact force.

これらの変形や損傷が切削過程によるものなのか,あるいは衝撃吸収材に衝突した時に受けたものなのかを見分けるのは困難であり,実験後の分析に大きな支障を来たす問題がある。
特に降伏強度が小さい被削材の場合は,この問題が顕著になる。
さらに,不連続切りくずを生成するような場合では,切削機構の解明に重要な切りくずを紛失してしまうという問題もある。
It is difficult to tell whether these deformations and damages are caused by the cutting process or when they hit the shock absorber, and there is a problem that greatly hinders analysis after the experiment.
This problem is particularly noticeable for work materials with low yield strength.
Furthermore, in the case of generating discontinuous chips, there is a problem that chips that are important for elucidating the cutting mechanism are lost.

切りくずは,上記のように切削機構を把握する上で非常に重要であるから切削過程で生成したままの状態で回収する必要がある。   Chips are very important for grasping the cutting mechanism as described above, and therefore, it is necessary to collect chips as they are generated in the cutting process.

そこでこの発明は,望ましくは大気と隔離して切削雰囲気を制御できる環境内で,管路内に設置した小型の切削工具の切れ刃を圧縮気体により加速させ,管路に接続する加工チャンバ内に設置した被削材の一部を削ることで高速切削過程を実現し,切削終了後も高速で飛翔し続ける工具と切りくずに対しては,切削過程以外の変形や損傷を受けること無しに停止させる機能を有する高速切削試験装置を提供することを課題とする。   Therefore, the present invention preferably accelerates the cutting edge of a small cutting tool installed in a pipe line with a compressed gas in an environment where the cutting atmosphere can be controlled by isolating it from the atmosphere, and puts it in a machining chamber connected to the pipe line. A high-speed cutting process is realized by cutting a part of the installed work material, and tools and chips that continue to fly at high speed after cutting are stopped without any deformation or damage other than the cutting process. It is an object to provide a high-speed cutting test apparatus having a function of causing

以上の課題を解決するために,本発明に係わる高速切削試験装置の主要な特徴は以下のとおりである。   In order to solve the above problems, the main features of the high-speed cutting test apparatus according to the present invention are as follows.

小型の切削工具の切れ刃を内蔵した飛翔容器を管路内に装填し,圧縮気体でこれを高速に加速させ,管路に接続する加工チャンバ内に設置した被削材の一部を削ることで切削過程を実現し,切削終了後も管路内を飛翔し続ける飛翔容器に対して,飛翔方向から圧縮気体の圧力により減速力を負荷させて飛翔容器を衝撃吸収材などに衝突させること無しに管路内で停止させる機能を有する。
小型の切削工具の切れ刃を内蔵した飛翔容器には,切削過程で生成した切りくずをその内に格納する機能を有する。
A flying container containing a cutting edge of a small cutting tool is loaded into the pipe line, accelerated with compressed gas at high speed, and a part of the work material installed in the processing chamber connected to the pipe line is cut. The cutting process is realized with this, and the flying container that keeps flying in the pipeline even after the cutting is finished is loaded with a deceleration force by the pressure of compressed gas from the flying direction so that the flying container does not collide with shock absorbers, etc. Has the function of stopping in the pipeline.
A flying container with a built-in cutting edge of a small cutting tool has a function of storing chips generated in the cutting process.

切削終了後に,切削工具の切れ刃と切りくずを内蔵した飛翔容器を衝撃吸収材などに衝突させること無しに管路内で停止させる機能により,切りくずと切削工具の切れ刃を切削過程以外の変形や損傷を受けること無しに回収することができる。   After cutting, the chip and cutting tool's cutting edge can be moved to a position other than the cutting process by the function of stopping the flying container with the cutting tool's cutting edge and chip inside the pipe without colliding with the shock absorber. It can be recovered without being deformed or damaged.

小型の切削工具の切れ刃を内蔵した飛翔容器が飛翔する管路と,切削過程を実現する加工チャンバは大気と隔離され,これら内部の雰囲気を制御できる機能を有する。   The pipe that the flying container with the cutting edge of a small cutting tool flies in and the processing chamber that realizes the cutting process are isolated from the atmosphere and have the function of controlling the internal atmosphere.

本発明の高速切削試験装置によれば,高速で飛翔する飛翔容器を停止させる際に衝撃吸収材等に衝突させる時のような衝撃力が飛翔容器に働かないため,飛翔容器全体,すなわち切削工具の切れ刃と切りくずを切削過程の状態のままで回収することができる。   According to the high-speed cutting test apparatus of the present invention, when the flying container flying at high speed is stopped, the impact force that occurs when it collides with an impact absorbing material or the like does not act on the flying container. The cutting edges and chips can be recovered in the state of the cutting process.

回収した切削工具の切れ刃と切りくずから,高速切削速度における切りくず生成機構が把握でき,工具すくい面や逃げ面の摩耗状態や欠損状態から高速切削過程における工具損傷状態を把握することができる。
これに付して,被削材下部に設置した力測定器や温度測定器により,高速切削過程の切削力や切削温度が把握できる。
From the collected cutting edge and chip of the cutting tool, it is possible to grasp the chip generation mechanism at high speed cutting speed, and it is possible to grasp the tool damage state in the high speed cutting process from the wear state and chipped state of the tool rake face and flank face. .
Along with this, the cutting force and cutting temperature in the high-speed cutting process can be grasped by a force measuring device and temperature measuring device installed under the work material.

さらに切削仕上げ面の表面性状や断面組織の状態,残留応力状態などを分析することにより,加工雰囲気の影響も考慮に入れて高速切削過程の切削機構を実験的に検討することができ,高速切削過程の切削諸現象を包括的に明らかにすることができる利点がある。   Furthermore, by analyzing the surface properties, cross-sectional structure, residual stress state, etc. of the finished surface, the cutting mechanism in the high-speed cutting process can be experimentally studied taking into consideration the influence of the processing atmosphere. There is an advantage that the various cutting phenomena in the process can be comprehensively clarified.

発明を実施するための最良の形態を図1から図9を用いて説明する。   The best mode for carrying out the invention will be described with reference to FIGS.

この発明の一実施形態を図1に示す。   One embodiment of the present invention is shown in FIG.

本発明の高速切削試験機は大きく分類して,その中において切削過程を実現し,切削力や切削温度を測定する加工チャンバ1,切削工具11を内蔵した飛翔容器10,該飛翔容器10を加速する管路2,該飛翔容器10を減速停止させる管路3,該飛翔容器10を加速させるための圧縮気体供給装置4,該飛翔容器10を減速停止させるための圧縮気体を噴射する圧縮気体供給装置5で構成される。   The high-speed cutting test machine according to the present invention is roughly classified into a processing chamber 1 for measuring a cutting force and a cutting temperature, a flying container 10 incorporating a cutting tool 11, and accelerating the flying container 10. A pipeline 2 for decelerating and stopping the flying container 10, a compressed gas supply device 4 for accelerating the flying container 10, and a compressed gas supply for injecting a compressed gas for decelerating and stopping the flying container 10 Consists of device 5.

管路2と管路3は,同一直線上に配置され,管路2により加速された飛翔容器10は管路3に導入されるが,所定の時間後,圧縮気体供給装置5より供給される圧縮気体により,管路3の終端において停止させる。
加工チャンバ1,管路2,管路3は大気と隔離した機構となっており,内部の雰囲気を真空や特定の気体で特定の圧力に制御することができる機構となっている。
The pipeline 2 and the pipeline 3 are arranged on the same straight line, and the flying container 10 accelerated by the pipeline 2 is introduced into the pipeline 3, but is supplied from the compressed gas supply device 5 after a predetermined time. Stop at the end of line 3 with compressed gas.
The processing chamber 1, the pipe line 2, and the pipe line 3 are mechanisms isolated from the atmosphere, and the internal atmosphere can be controlled to a specific pressure with a vacuum or a specific gas.

真空排気装置6と加工チャンバ1の中間にある電磁弁1Bは真空排気用の電磁弁であり,電磁弁1Aは真空引き後にチャンバ1,管路2,管路3の内部の雰囲気を特定の気体で特定の圧力にするための気体導入弁であり,電磁弁1Cはチャンバ1,管路2,管路3の内部の雰囲気を大気に開放するための電磁弁である。   Solenoid valve 1B in the middle of vacuum exhaust device 6 and processing chamber 1 is an electromagnetic valve for vacuum exhaust. Solenoid valve 1A uses a specific gas to evacuate chamber 1, pipe line 2, and pipe 3 inside the atmosphere. The solenoid valve 1C is a solenoid valve for opening the atmosphere inside the chamber 1, the pipeline 2, and the pipeline 3 to the atmosphere.

飛翔容器10の加速用の圧縮気体供給装置4は,圧縮気体を貯蔵する圧力容器4A,安全用の手動開閉弁(ボールバルブ)4B,圧力容器4A内の圧縮気体の開閉を遠隔操作できる弁4Cで構成される。   The compressed gas supply device 4 for accelerating the flying container 10 includes a pressure vessel 4A for storing the compressed gas, a safety manual on-off valve (ball valve) 4B, and a valve 4C that can remotely control the opening and closing of the compressed gas in the pressure vessel 4A. Consists of.

同様に,飛翔容器10の減速用の圧縮気体供給装置5は,圧縮気体を貯蔵する圧力容器5A,安全用の手動開閉弁(ボールバルブ)5B,圧力容器5A内の圧縮気体の開閉を遠隔操作できる弁5Cで構成される。
上記の電磁弁は,全て常時閉の仕様である。
Similarly, the compressed gas supply device 5 for decelerating the flying container 10 can remotely control the pressure vessel 5A for storing the compressed gas, the safety manual on-off valve (ball valve) 5B, and the opening and closing of the compressed gas in the pressure vessel 5A. Can be made up of a valve 5C.
The above solenoid valves are all normally closed.

チャンバ1内には,静的にも動的にも高剛性を有し,かつ高さをミクロン単位で微調整できる高さ調整装置12を設置する。
高さ調整装置12の上には,切削力を測定する力測定器13を設置し,その上に被削材14を設置する。
In the chamber 1, a height adjusting device 12 having high rigidity both statically and dynamically and capable of finely adjusting the height in units of microns is installed.
On the height adjusting device 12, a force measuring device 13 for measuring cutting force is installed, and a work material 14 is installed thereon.

切削温度を測定するための温度測定器15は,被削材の内部あるいはその近傍に設置する。
切削温度は,例えば被削材14に熱電対を埋め込んでおき,切削時の熱起電力の変化から把握する.あるいは被削材14付近に切削点近傍及び切削仕上げ面に焦点を合わせることができる赤外線放射温度計等を設置し,その出力から切削温度を把握する。
A temperature measuring device 15 for measuring the cutting temperature is installed in or near the work material.
The cutting temperature is obtained from the change in thermoelectromotive force during cutting, for example, by embedding a thermocouple in the work material 14. Alternatively, an infrared radiation thermometer or the like capable of focusing on the vicinity of the cutting point and the finished surface of the work is installed near the work material 14, and the cutting temperature is grasped from the output.

切取り厚さは,高さ調整装置12により被削材を上下させて制御する。
管路2と管路3の間に配置された被削材14の近傍には,飛翔容器10が通過したことを検知するための,透過型あるいは回帰反射型あるいは拡散反射型の光電センサ16と17を設置する。
The cutting thickness is controlled by moving the work material up and down by the height adjusting device 12.
In the vicinity of the work material 14 disposed between the pipe line 2 and the pipe line 3, a transmission type, regressive reflection type or diffuse reflection type photoelectric sensor 16 for detecting the passage of the flying container 10 is provided. 17 is installed.

被削材14の圧縮気体供給装置4側にある光電センサ16は,切削直前の飛翔体の通過を検知し,被削材14の圧縮気体供給装置5側にある光電センサ17は,切削直後の飛翔体の通過を検知する。   The photoelectric sensor 16 on the compressed gas supply device 4 side of the work material 14 detects the passage of the flying object just before cutting, and the photoelectric sensor 17 on the compressed gas supply device 5 side of the work material 14 Detects the passage of flying objects.

被削材近傍に設置した速度測定器18は,光あるいは電磁波を飛翔体表面に放射し,飛翔体表面で反射した光あるいは電磁波の受光量の時間変化を計測する。
切削速度は,この受光量の変化を解析して把握する。
A speed measuring device 18 installed in the vicinity of the work material radiates light or electromagnetic waves to the surface of the flying object, and measures a temporal change in the amount of light or electromagnetic waves received by the flying object surface.
The cutting speed is grasped by analyzing the change in the amount of received light.

力測定器13,温度測定器15,光電センサ16,光電センサ17,速度測定器18からのそれぞれの信号は配線により,チャンバ1の外に設置する各センサの増幅器とオシロスコープなどの記録計で構成される計測装置19に取り込まれる。
計測装置19に取り込まれた信号の一部は,弁4Cと弁5Cの開閉を自動制御する弁開閉制御装置20に取り込まれる。
Each signal from force measuring device 13, temperature measuring device 15, photoelectric sensor 16, photoelectric sensor 17, and velocity measuring device 18 is composed of amplifiers for each sensor installed outside chamber 1 and a recorder such as an oscilloscope. Is taken into the measuring device 19 to be operated.
Part of the signal captured by the measuring device 19 is captured by the valve opening / closing control device 20 that automatically controls the opening / closing of the valves 4C and 5C.

弁開閉制御装置20は,計測装置19の信号を電子的に解析し,切削開始と切削終了を判断し,その結果に基づき弁4Cと弁5Cの開閉を制御する。
なお弁開閉制御装置20には,予め開閉時間を手動で調節して設定できる調整機構を含ませておき,計測装置19からの信号が無くても,弁4Cを開けてから設定時間後に弁4Cを閉じ,また同様に設定時間後に弁5Cを開ける信号を送る機能を含ませる。
The valve opening / closing control device 20 electronically analyzes the signal of the measuring device 19, determines the start and end of cutting, and controls the opening and closing of the valves 4C and 5C based on the results.
The valve opening / closing control device 20 includes an adjustment mechanism that can be set by manually adjusting the opening / closing time in advance. Even if there is no signal from the measuring device 19, the valve 4C is opened after the setting time has elapsed after the valve 4C is opened. Is also included, and a function to send a signal to open valve 5C after a set time is included.

管路2と管路3はチャンバ1の中心でそれぞれの軸芯が一致するように連結されており,連結部には被削材の一部を管路内に挿入するための切込み溝を設けてある。
同様に,光電センサ16,光電センサ17,速度測定器18の光あるいは電磁波を管路内に投入するための穴あるいは切込み溝も,チャンバ1の中の管路2と管路3には設けてある。
The pipe 2 and the pipe 3 are connected so that the respective axes are aligned at the center of the chamber 1, and a cut groove for inserting a part of the work material into the pipe is provided at the connecting portion. It is.
Similarly, holes or slits for introducing light or electromagnetic waves from the photoelectric sensor 16, the photoelectric sensor 17, and the speed measuring device 18 into the pipeline are also provided in the pipeline 2 and the pipeline 3 in the chamber 1. is there.

次に本発明の高速切削試験装置の動作について説明する。
まず,切削工具11を内蔵した飛翔容器10を,管路2に接続する飛翔容器装填口7より,管路2内に装填する。
Next, the operation of the high speed cutting test apparatus of the present invention will be described.
First, the flying container 10 incorporating the cutting tool 11 is loaded into the pipe line 2 from the flying container loading port 7 connected to the pipe line 2.

次に,チャンバ1,管路2,管路3の内部の雰囲気を制御するために,チャンバ1にある電磁弁1Bを開き,真空排気装置6を用いて真空引きを行う。
真空引きの後,切削雰囲気を特定の気体に制御する場合は,弁1Aを開け,特定の気体を特定の圧力になるまで導入する。
加速用と減速用の安全弁4Bと5Bを開ける。
実験開始時点で,加速用の弁4Cを電子制御で開き,飛翔容器10に圧縮気体の圧力を一気に負荷させ,該飛翔容器10を加速させる。
Next, in order to control the atmosphere inside the chamber 1, the pipeline 2, and the pipeline 3, the electromagnetic valve 1 </ b> B in the chamber 1 is opened and evacuation is performed using the vacuum exhaust device 6.
To control the cutting atmosphere to a specific gas after evacuation, open the valve 1A and introduce a specific gas until a specific pressure is reached.
Open the safety valves 4B and 5B for acceleration and deceleration.
At the start of the experiment, the acceleration valve 4C is opened electronically, the compressed gas pressure is loaded on the flying container 10 at once, and the flying container 10 is accelerated.

飛翔容器10の運動の時間変化を概算する方法を図2(a)から図2(c)を用いて説明する。
概算過程では,簡単のために圧力損失,飛翔容器10に負荷する空気抵抗,飛翔容器10の表面と管路2や管路3の壁面との圧力の漏れや摩擦,切削力などを無視し,さらに弁4B,弁4C,弁5B,弁5Cの体積を無視して,飛翔容器10の運動方程式を解く。
A method of estimating the time change of the movement of the flying container 10 will be described with reference to FIGS. 2 (a) to 2 (c).
In the estimation process, for the sake of simplicity, the pressure loss, the air resistance applied to the flying container 10, the pressure leakage between the surface of the flying container 10 and the walls of the pipe 2 and the pipe 3, friction, and cutting force are ignored. Furthermore, ignoring the volume of the valve 4B, the valve 4C, the valve 5B, and the valve 5C, the equation of motion of the flying container 10 is solved.

図2(a)に示すように,圧縮気体供給装置4の圧力容器4Aの初期圧力をP4,圧力容器4Aの体積をV4,管路2の体積をV2,管路3(飛翔容器回収容器8の体積も含める)の体積をV3,管路2と管路3の断面積をA,チャンバ1の体積をV1,圧縮気体供給装置5の圧力容器5Aの初期圧力をP5,圧力容器5Aの体積をV5,飛翔容器10の質量をmとし,飛翔容器10の装填位置からの移動距離をxとする。
弁4Cを開くと,飛翔容器10を加速するために飛翔容器10には圧力Paが負荷する。
As shown in FIG. 2 (a), the initial pressure of the pressure vessel 4A of the compressed gas supply device 4 is P 4 , the volume of the pressure vessel 4A is V 4 , the volume of the pipeline 2 is V 2 , and the pipeline 3 (flying vessel) The volume of the recovery container 8 is also included) V 3 , the cross-sectional area of the pipe 2 and the pipe 3 is A, the volume of the chamber 1 is V 1 , and the initial pressure of the pressure vessel 5A of the compressed gas supply device 5 is P 5 The volume of the pressure vessel 5A is V 5 , the mass of the flying vessel 10 is m, and the moving distance from the loading position of the flying vessel 10 is x.
When the valve 4C is opened, a pressure Pa is applied to the flying container 10 in order to accelerate the flying container 10.

圧力Paは,飛翔容器10の移動距離xに応じて減少し,Pa= V4×P4/(V4+A×x)となる。
したがって,飛翔容器10の移動距離がxの時,飛翔容器10は,a1=A×Pa/m ( >0 )なる加速度で飛翔し,弁4Cを開けてからの飛翔容器10の移動速度は,加速度を時間積分することにより概算できる。
飛翔容器10が被削材14に近づき,光電センサ16からの信号に基づく計測装置19の信号により弁開閉制御装置20が切削開始直前を検知したら,弁開閉制御装置20は弁4Cを閉じる信号を出し,弁4Cを自動的に閉じる。
The pressure P a is reduced according to the movement distance x of the flying vessel 10, and P a = V 4 × P 4 / (V 4 + A × x).
Therefore, when the moving distance of the flying container 10 is x, the flying container 10 flies at an acceleration of a 1 = A × P a / m (> 0), and the moving speed of the flying container 10 after opening the valve 4C Can be estimated by integrating the acceleration over time.
When the flying container 10 approaches the work material 14 and the valve opening / closing control device 20 detects immediately before the start of cutting by the signal of the measuring device 19 based on the signal from the photoelectric sensor 16, the valve opening / closing control device 20 sends a signal for closing the valve 4C. And valve 4C is automatically closed.

この時の様子を,図2(b)に示す。
この時,管路2と管路3とチャンバ1の圧力は均一となり,その圧力はP0=V4×P4/(V1+ V2 +V3)となり,飛翔容器10には加速あるいは減速させる圧力が等しく作用する。
弁4Cを開けてから所定時間経過した後,光電センサ17からの信号に基づく計測装置19からの信号により弁開閉制御装置20が切削終了を検知したら,弁開閉制御装置20は弁5Cを開ける信号を出し,飛翔容器10に圧力容器5Aから供給される圧縮気体の圧力により減速力を負荷させる。
The situation at this time is shown in Fig. 2 (b).
At this time, the pressures in the pipeline 2, the pipeline 3 and the chamber 1 become uniform, and the pressure becomes P 0 = V 4 × P 4 / (V 1 + V 2 + V 3 ), and the flying container 10 is accelerated or The decelerating pressure acts equally.
After a predetermined time has elapsed since the valve 4C was opened, when the valve opening / closing control device 20 detects the end of cutting by a signal from the measuring device 19 based on the signal from the photoelectric sensor 17, the valve opening / closing control device 20 is a signal for opening the valve 5C. And a deceleration force is applied to the flying container 10 by the pressure of the compressed gas supplied from the pressure container 5A.

この時の様子を,図2(c)に示す。
弁5Cを開けた直後の,管路3内の圧力Pd0は,Pd0=(P5×V5+ P0×V3)/(V5+V3)である。
飛翔容器10を減速させるための圧力Pdは,飛翔容器10の移動距離に応じて増加し,Pd= (V3+ V5)×Pd0/(V2+V3+V5-A×x)となる。
The situation at this time is shown in Fig. 2 (c).
The pressure P d0 in the pipe 3 immediately after opening the valve 5C is P d0 = (P 5 × V 5 + P 0 × V 3 ) / (V 5 + V 3 ).
The pressure P d for decelerating the flying container 10 increases according to the moving distance of the flying container 10, and P d = (V 3 + V 5 ) × P d0 / (V 2 + V 3 + V 5 -A × x).

一方,飛翔容器10が管路3内を移動するに伴い,チャンバ1と管路2の圧力P'aもまた飛翔容器10に作用する。
その圧力P'aは,飛翔容器10の移動距離に応じて減少し,P'a= P0×(V1+V2)/(V1+A×x)である。
On the other hand, as the flying container 10 moves in the pipe 3, the pressure P ′ a in the chamber 1 and the pipe 2 also acts on the flying container 10.
The pressure P ′ a decreases according to the moving distance of the flying container 10 and is P ′ a = P 0 × (V 1 + V 2 ) / (V 1 + A × x).

以上より,飛翔容器10が管路3内を移動するとき,飛翔容器10には,a2=(−Pd +P'a)/m ( <0 )なる減速の加速度を受けながら運動することになる。
このようにして時間に対する飛翔容器10の装填位置からの移動距離と速度は,加速度を逐次時間積分することにより求めることができる。
減速力を受ける飛翔容器10は,弁4Cを開けてから所定時間経過した後,飛翔容器回収容器8の内で速度が0となり停止する。
From the above, when the flying container 10 moves in the pipeline 3, the flying container 10 moves while receiving a deceleration acceleration of a 2 = (− P d + P ′ a ) / m (<0). become.
Thus, the moving distance and speed from the loading position of the flying container 10 with respect to time can be obtained by sequentially integrating the acceleration over time.
The flying container 10 that receives the deceleration force stops at a speed of 0 in the flying container collection container 8 after a predetermined time has elapsed after opening the valve 4C.

飛翔容器回収容器8の断面積は管路3の断面積よりも大きいので,飛翔容器10が飛翔容器回収容器8の中で速度が0になってもなお減速用の圧縮気体が作用し続けたとしても,圧力は飛翔容器10と飛翔容器回収容器8の内壁の隙間から抜けるために,圧力が十分に負荷しなくなり飛翔容器10が管路3の中をチャンバ1の方へ押し戻されること無い。   Since the cross-sectional area of the flying container collection container 8 is larger than the cross-sectional area of the pipeline 3, the compressed gas for deceleration continued to act even when the flying container 10 became zero in the flying container collection container 8. Even so, since the pressure is released from the gap between the inner walls of the flying container 10 and the flying container collection container 8, the pressure is not sufficiently applied, and the flying container 10 is not pushed back toward the chamber 1 through the conduit 3.

飛翔容器回収容器8の中に設置した衝撃緩衝材9は,飛翔容器10が管路3内で速度が0とならない場合に,最終的にこれに衝突させて停止させるためのものであるが,圧縮気体供給装置4と圧縮気体供給装置5には圧力を調整し設定する手段を有するので,実験前に予め調整し設定しておけば,飛翔容器回収容器8の内で飛翔容器の速度を0にすることは可能である。   The shock absorbing material 9 installed in the flying container collection container 8 is used for finally causing the flying container 10 to collide with and stop when the speed of the flying container 10 does not become zero in the pipeline 3. Since the compressed gas supply device 4 and the compressed gas supply device 5 have means for adjusting and setting the pressure, if the pressure is adjusted and set in advance before the experiment, the speed of the flying container within the flying container collection container 8 is reduced to 0. It is possible to make it.

実験が終了すれば,弁5Cを閉じ,大気開放用の電磁弁1Cを開け,チャンバ1,管路2,管路3の内部を大気開放した後,飛翔容器10を飛翔容器回収容器8から取り出し,飛翔容器10の中の工具と切りくずを取り出す。   When the experiment is completed, the valve 5C is closed, the electromagnetic valve 1C for opening the atmosphere is opened, the inside of the chamber 1, the pipe line 2, and the pipe line 3 is opened to the atmosphere, and then the flying container 10 is taken out from the flying container collection container 8. , Take out the tools and chips in the flying container 10.

被削材14は,高さ調整装置12を用いて管路から遠ざけるように移動することで取り出すことができ,切削仕上げ面の表面性状,切削面の材料組織の観察や残留応力分布の測定などの分析を行うことができる。   The work material 14 can be removed by moving away from the pipe line using the height adjustment device 12, and the surface properties of the finished surface of the cut surface, observation of the material structure of the cut surface, measurement of residual stress distribution, etc. Can be analyzed.

次に,図3から図9を用いて,飛翔容器10の構造と,飛翔容器10が切りくずを格納する機構について詳しく説明する。
図3は,管路2と管路3の断面図であり,それぞれの管路の内壁には複数の溝21が軸方向に沿って設けてある。
なお,図3では3本の溝を設けてあるが溝の本数はそれ以上でも構わない。
Next, the structure of the flying container 10 and the mechanism in which the flying container 10 stores chips will be described in detail with reference to FIGS.
FIG. 3 is a cross-sectional view of the pipeline 2 and the pipeline 3, and a plurality of grooves 21 are provided along the axial direction on the inner wall of each pipeline.
In FIG. 3, three grooves are provided, but the number of grooves may be more than that.

図4は,飛翔容器10と被削材14の位置関係を示した模式的に示した俯瞰図である。
被削材14は基本的に直方体であり,被削材の材質は,金属,非鉄金属,ガラス,プラスチック,木材など何でも良い。
なお一般的に行われているように,真実切取り厚さを求めるために被削材14の切削面には予め段差を設けておいても良い。
飛翔容器10には,飛翔容器10が管路2と管路3の中で回転しながら飛翔することを防止するために,管路2と管路3に設けた溝21に合致する突起22が外周に設けてある。
突起22が溝21に係合しつつ管路内を移動するので,切削工具11が被削材14を回転せずに切削可能となる。
FIG. 4 is a bird's-eye view schematically showing the positional relationship between the flying container 10 and the work material 14.
The work material 14 is basically a rectangular parallelepiped, and the work material may be any material such as metal, non-ferrous metal, glass, plastic, and wood.
As is generally done, a step may be provided in advance on the cutting surface of the work material 14 in order to obtain the true cut thickness.
In order to prevent the flying container 10 from flying while rotating in the pipe line 2 and the pipe line 3, the flying container 10 has a protrusion 22 that matches the groove 21 provided in the pipe line 2 and the pipe line 3. It is provided on the outer periphery.
Since the protrusion 22 moves in the pipe line while engaging with the groove 21, the cutting tool 11 can cut the work material 14 without rotating.

図5,6,7は,それぞれ,工具を内蔵する飛翔容器10の分解図,飛翔方向から見た正面図,飛翔方向からみた側面の断面図である。
飛翔容器10は,空気抵抗を低減するための流線型のキャップ部10Aと工具を保持固定する工具設置部10Bの2分割で構成される。
工具設置部10Bの後端部には,圧縮気体の圧力を飛翔容器の軸中心部に集中させて推力を高めるためのほか,飛翔姿勢を安定させるための目的で,流線型の窪み10Dを設けてある。
キャップ部10Aの中には,切りくずを格納するための空間23が切削工具の切れ刃11Aの前方に設けてある。
飛翔容器10(キャップ部10Aと工具設置部10B)は,軽量化のため密度が小さくかつ剛性と強度のある硬質プラスチックあるいは樹脂と強化繊維や強化粒子から構成される複合材料などで成型するのが良い。
5, 6 and 7 are an exploded view, a front view seen from the flying direction, and a side sectional view seen from the flying direction, respectively, of the flying container 10 incorporating the tool.
The flying container 10 is composed of two parts, a streamlined cap part 10A for reducing air resistance and a tool installation part 10B for holding and fixing a tool.
A streamlined depression 10D is provided at the rear end of the tool installation section 10B for the purpose of increasing the thrust by concentrating the pressure of the compressed gas on the center of the axis of the flight vessel and stabilizing the flight attitude. is there.
In the cap portion 10A, a space 23 for storing chips is provided in front of the cutting edge 11A of the cutting tool.
The flying container 10 (cap part 10A and tool installation part 10B) is molded with a hard plastic or resin that has low density and rigidity and strength for weight reduction, or a composite material composed of resin, reinforced fiber, and reinforcing particles. good.

切削工具11は,切削工具の切れ刃11Aと支柱11Bをろう付け等で接続して構成する。
支柱11B部分を工具設置部10Bの中に挿入することで切削工具の切れ刃を飛翔容器10内に内蔵させる。
切削工具の切れ刃の材質は,高速度鋼,超硬合金,cBN,ダイヤモンド,あるいはコーティング皮膜を施したものなど,なんでも良い。
切削工具の切れ刃の形状は例えば図5や図6のように,主切れ刃のみの単一の切れ刃形状とすれば二次元切削過程を実験できる。
The cutting tool 11 is configured by connecting a cutting edge 11A of a cutting tool and a support 11B by brazing or the like.
The cutting blade of the cutting tool is built in the flying container 10 by inserting the column 11B portion into the tool installation portion 10B.
The cutting edge material of the cutting tool may be anything such as high speed steel, cemented carbide, cBN, diamond, or a coating film.
If the cutting tool has a single cutting edge shape as shown in Fig. 5 and 6, for example, the two-dimensional cutting process can be tested.

また,切れ刃形状を主切れ刃と副切れ刃を有する三次元形状にすれば,三次元切削過程を実験できるので,飛翔容器10の内に収まれば形状はなんでも良い。
切削工具の切れ刃11Aは飛翔容器10からはみ出ないこと,またキャップ部10Aは,図7に示す被削材14の切取り厚さ24の高さ分だけ,飛翔容器10の内部に干渉することになるから,飛翔容器10の下部には,干渉防止の窪み10Cが入っている。
干渉防止の窪み10Cの深さは,キャップ部10Aが深く,工具設置部10Bが浅い。
さらにキャップ部10Aの下部には,切りくず25を切りくず格納空間23に導入するための穴10Eが設けてある。
Further, if the cutting edge shape is a three-dimensional shape having a main cutting edge and a sub-cutting edge, the three-dimensional cutting process can be tested, so any shape can be used as long as it fits within the flying container 10.
The cutting edge 11A of the cutting tool does not protrude from the flying container 10, and the cap portion 10A interferes with the inside of the flying container 10 by the height of the cut thickness 24 of the work material 14 shown in FIG. Therefore, a depression 10C for preventing interference is contained in the lower part of the flying container 10.
The depth of the recess 10C for preventing interference is deep in the cap portion 10A and shallow in the tool installation portion 10B.
Further, a hole 10E for introducing the chip 25 into the chip storage space 23 is provided in the lower portion of the cap portion 10A.

図8は,切削により生成した切りくず25が,キャップ部10Aの中の切りくず格納空間23に導入する様子を模式的に示した断面図である。
切りくず25は,キャップ部10Aの切りくず導入口10Eより,キャップ部10A内に進入する。
ここで,切りくず格納空間23の容量は,切りくずを十分に格納できる空間が必要であり,これは切削距離(被削材14の長さ)から決定する必要がある。
FIG. 8 is a cross-sectional view schematically showing how the chips 25 generated by cutting are introduced into the chip storage space 23 in the cap portion 10A.
The chip 25 enters the cap part 10A from the chip introduction port 10E of the cap part 10A.
Here, the capacity of the chip storage space 23 needs to be a space in which chips can be sufficiently stored, and this needs to be determined from the cutting distance (length of the work material 14).

図9は,切削終了後,切りくず25が飛翔容器10の中に格納された様子を模式的に示した断面図である。
このように切削終了後,切削工具の切れ刃11Aと切りくず25は,飛翔容器10と一体になって運動する。
切削終了後に飛翔容器10が圧縮気体供給装置5からの圧縮気体により減速力を受け,飛翔容器回収容器8の中で衝撃吸収材9などに衝突直前の位置または軽く衝突する位置に停止すれば,切りくず25と工具刃先部11Aを,切削過程以外の変形や損傷を受けずに,切削過程における変形あるいは損傷状態のままで回収することができる。
FIG. 9 is a cross-sectional view schematically showing a state in which the chips 25 are stored in the flying container 10 after the end of cutting.
Thus, after the end of cutting, the cutting edge 11A and the chip 25 of the cutting tool move together with the flying container 10.
If the flying container 10 receives a deceleration force due to the compressed gas from the compressed gas supply device 5 after the cutting is finished, and stops at the position immediately before the collision with the shock absorbing material 9 or the like in the flying container recovery container 8, The chip 25 and the tool edge portion 11A can be recovered in the state of deformation or damage in the cutting process without being deformed or damaged other than in the cutting process.

図10は,切削距離60mm,飛翔容器4の質量を約35g,管路2の長さを3m,管路3の長さを3m,圧力容器4Aの圧力を0.9MPa,圧力容器5Aの圧力を1.0MPaと仮定した場合に,上記の簡略的な解析手法を用いて,弁4Cを開けて飛翔容器10を発射してからの経過時間に対する,弁4Cと弁5Cの開閉状況,飛翔容器10に負荷する圧力(加速を正,減速を負),飛翔体の速度の関係を計算した結果である。
これより上記条件の場合,発射から約27ms後に切削過程が実現される。
切削時間は,約0.3msである。
その切削開始直前に弁4Cを閉じ,切削終了直後に弁5Cを開けば,飛翔容器10は発射から約56ms後に速度が0となる。
Figure 10 shows a cutting distance of 60 mm, the mass of the flying vessel 4 is about 35 g, the length of the pipe 2 is 3 m, the length of the pipe 3 is 3 m, the pressure of the pressure vessel 4A is 0.9 MPa, and the pressure of the pressure vessel 5A is Assuming 1.0 MPa, using the above simple analysis method, the opening / closing status of the valve 4C and valve 5C relative to the elapsed time after opening the valve 4C and firing the flying container 10, This is the result of calculating the relationship between the applied pressure (acceleration is positive and deceleration is negative) and the speed of the flying object.
As a result, in the case of the above conditions, the cutting process is realized about 27 ms after the launch.
Cutting time is about 0.3ms.
If the valve 4C is closed immediately before the start of cutting and the valve 5C is opened immediately after the end of cutting, the flying container 10 becomes zero in speed after about 56 ms.

図11は,同様に計算して,圧力容器4Aの圧力を例えば0.9MPaや0.3MPaとした場合の圧力容器5Aの圧力が飛翔容器10の移動距離に及ぼす影響を示した図である。
図11より,圧力容器5Aの圧力は圧力容器4Aの圧力の約1.1倍とすれば,飛翔容器10は移動距離6m,すなわち管路3の末端の飛翔容器回収容器8内で停止する。
図12は例として,上記の概略計算により求めた,加速用の圧力容器4Aの圧力に対する,飛翔容器10の最大速度すなわち切削速度と,減速用の圧力容器5Aの圧力の関係である。
FIG. 11 is a diagram showing the influence of the pressure of the pressure vessel 5A on the moving distance of the flying vessel 10 when the pressure of the pressure vessel 4A is set to, for example, 0.9 MPa or 0.3 MPa, similarly calculated.
From FIG. 11, if the pressure in the pressure vessel 5A is about 1.1 times the pressure in the pressure vessel 4A, the flying vessel 10 stops within the flying distance 6m, that is, the flying vessel collection vessel 8 at the end of the pipe 3.
FIG. 12 shows, as an example, the relationship between the maximum speed of the flying container 10, that is, the cutting speed, and the pressure of the deceleration pressure vessel 5A with respect to the pressure of the acceleration pressure vessel 4A obtained by the above-described rough calculation.

このように,加速用の圧縮気体の圧力と速度の関係,加速用の圧縮気体の圧力と飛翔容器10を飛翔容器回収容器8部分で停止させるために必要な減速用の圧力の関係を予め計算あるいは予備実験等で検討しておけば,高速切削実験を能率良く行うことができる。   In this way, the relationship between the pressure and speed of the compressed gas for acceleration and the relationship between the pressure of the compressed gas for acceleration and the pressure for deceleration required to stop the flying vessel 10 at the flying vessel collection vessel 8 part are calculated in advance. Alternatively, high-speed cutting experiments can be performed efficiently if studied in preliminary experiments.

本発明の実施形態に係わる高速切削試験装置の構成図である。It is a block diagram of the high-speed cutting test apparatus concerning embodiment of this invention. 本発明の実施形態に係わる飛翔容器の加速時の運動の計算過程を説明するための模式図である。It is a schematic diagram for demonstrating the calculation process of the motion at the time of the acceleration of the flying container concerning embodiment of this invention. 本発明の実施形態に係わる飛翔容器の切削時の運動の計算過程を説明するための模式図である。It is a schematic diagram for demonstrating the calculation process of the motion at the time of the cutting of the flying container concerning embodiment of this invention. 本発明の実施形態に係わる飛翔容器の減速時の運動の計算過程を説明するための模式図である。It is a schematic diagram for demonstrating the calculation process of the motion at the time of the deceleration of the flying container concerning embodiment of this invention. 本発明の実施形態に係わる加速用と減速用の管路の模式的な断面図である。It is typical sectional drawing of the pipe line for acceleration and deceleration concerning embodiment of this invention. 本発明の実施形態に係わる飛翔容器と被削材の位置関係を模式的に示した俯瞰図である。It is the bird's-eye view which showed typically the positional relationship of the flying container and work material concerning embodiment of this invention. 本発明の実施形態に係わる飛翔容器の模式的な分解図である。It is a typical exploded view of a flying container concerning an embodiment of the present invention. 本発明の実施形態に係わる飛翔容器の模式的な正面図である。It is a typical front view of the flying container concerning the embodiment of the present invention. 本発明の実施形態に係わる飛翔容器,切削工具,被削材の位置関係を示す模式的な断面図である。It is typical sectional drawing which shows the positional relationship of the flying container, cutting tool, and work material concerning embodiment of this invention. 本発明の実施形態に係わる切りくずが飛翔容器内に格納される様子を模式的に示した図である。It is the figure which showed typically a mode that the chip concerning embodiment of this invention was stored in a flying container. 本発明の実施形態に係わる切りくずを飛翔容器の中に格納した状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which stored the chip concerning embodiment of this invention in the flying container. 本発明の実施例に係わる加速用の弁と減速用の弁の開閉状態,飛翔容器に負荷する圧力や飛翔容器の速度の時間変化を概略計算で求めた結果の例である。It is an example of the result of having calculated | required the time change of the opening / closing state of the valve for acceleration and the valve for deceleration concerning the Example of this invention, the pressure loaded on a flying container, and the speed of a flying container by rough calculation. 本発明の実施例に係わる減速用の圧力が飛翔容器の移動距離に及ぼす関係を概略計算で求めた結果の例である。It is an example of the result of having calculated | required the relationship which the pressure for deceleration concerning the Example of this invention has on the movement distance of a flying container by rough calculation. 本発明の実施例に係わる加速用の圧力と最大切削速度の関係,飛翔容器を飛翔容器回収容器の中で停止せるための減速用の圧力の関係を概略計算で求めた結果の例である。It is an example of the result of having calculated | required the relationship between the pressure for acceleration concerning the Example of this invention, the maximum cutting speed, and the relationship between the pressure for deceleration for stopping a flying container in a flying container collection container by rough calculation.

符号の説明Explanation of symbols

1 加工チャンバ
1A 気体導入用電磁弁
1B 真空排気用電磁弁
1C 大気開放用電磁弁
2 飛翔容器加速用管路
3 飛翔容器減速用管路
4 飛翔容器加速用の圧縮気体供給装置
4A 圧力容器
4B 安全用ボールバルブ
4C 電磁あるいは空気制御の開閉弁
5 飛翔容器減速停止用の圧縮気体供給装置
5A 圧力容器
5B 安全用ボールバルブ
5C 電磁あるいは空気制御の開閉弁
6 真空排気装置
7 飛翔容器装填口
8 飛翔容器回収容器
9 衝撃吸収材
10 飛翔容器
10A キャップ部
10B 工具設置部
10C 被削材干渉防止の窪み
10D 飛翔容器の推進力を軸中心に集中させ安定して飛翔させるための流線型の窪み
10E 切りくず導入口
11 切削工具
11A 切削工具の切れ刃
11B 支柱
12 高さ調整装置
13 力測定器
14 被削材
15 温度測定器
16 光電センサ(切削開始直前を検知)
17 光電センサ(切削終了直後を検知)
18 速度測定器
19 計測装置
20 弁開閉制御装置
21 回転防止用溝
22 回転防止用突起
23 切りくず格納空間
24 切り取り厚さ
25 切りくず
DESCRIPTION OF SYMBOLS 1 Processing chamber 1A Gas introduction solenoid valve 1B Vacuum exhaust solenoid valve 1C Atmospheric release solenoid valve 2 Flying vessel acceleration pipeline 3 Flying vessel deceleration pipeline 4 Flying vessel acceleration compressed gas supply device 4A Pressure vessel 4B Safety Ball valve 4C Open / close valve 5 for electromagnetic or air control Compressed gas supply device 5A for pressure reduction and stop of flying container 5B Pressure ball valve 5C Safety valve 5C Open / close valve 6 for electromagnetic or air control Vacuum exhaust device 7 Flying container loading port 8 Flying container Recovery container 9 Impact absorbing material 10 Flying container 10A Cap part 10B Tool installation part 10C Indentation 10D for preventing interference of work material Streamlined indentation 10E for concentrating the propulsive force of the flying container on the axis center and allowing it to fly stably Mouth 11 Cutting tool 11A Cutting tool cutting edge 11B Post 12 Height adjusting device 13 Force measuring device 14 Work material 15 Temperature measuring device 16 Photoelectric sensor (detecting the cutting immediately before the start)
17 Photoelectric sensor (detects immediately after cutting)
18 Speed measuring device 19 Measuring device 20 Valve opening / closing control device 21 Anti-rotation groove 22 Anti-rotation protrusion 23 Chip storage space 24 Cut thickness 25 Chip

Claims (16)

切削試験用の切れ刃を設置した飛翔体容器を被削材に飛翔させ、該披削材の一部を削る
高速切削過程により切削試験を行う高速切削試験装置であって、
前記飛翔体容器に密に内接する第1の管路と、
該第1の管路の一端から該第1の管路に供給する圧縮気体を収納する第1圧力容器と、
該第1の管路の一端と該第1圧力容器の間に設けた第1開閉弁と、
前記飛翔体容器に密に内接する第2の管路と、
該第2の管路の一端から該第2の管路に供給する圧縮気体を収納する第2圧力容器と、
該第2の管路の一端と該第2圧力容器の間に設けた第2開閉弁とからなり、
第1の管路と該第2の管路を同一直線上に配置し、前記被削材は該第1の管路の他端と
該第2の管路の他端の間に配置し、該第1限閉弁を作動させた後、該第2開閉弁を作動さ
せる構成としたことを特徴とする高速切削試験装置。
A high-speed cutting test apparatus for performing a cutting test by a high-speed cutting process in which a flying object container provided with a cutting blade for a cutting test is made to fly to a work material and a part of the cutting material is cut.
A first conduit closely inscribed in the flying object container;
A first pressure vessel containing compressed gas supplied from one end of the first pipe to the first pipe;
A first on-off valve provided between one end of the first pipe line and the first pressure vessel;
A second conduit closely inscribed in the flying object container;
A second pressure vessel containing compressed gas supplied from one end of the second pipe to the second pipe ;
A second on-off valve provided between one end of the second pipe and the second pressure vessel;
The first conduit and the second conduit is arranged on the same straight line, the work material is disposed between the other ends of the second conduit of the first conduit A high-speed cutting test apparatus characterized in that the second on-off valve is operated after the first limit valve is operated.
請求項1記載の高速切削試験装置において、前記第1圧力容器又は前記第1圧力容器に収納する圧縮気体の圧力を調整する手段を設け、前記飛翔体容器が前記第2の管路の出側において停止するよう前記圧縮気体の圧力を調整することを特徴とする高速切削試験装置。   2. The high-speed cutting test apparatus according to claim 1, wherein means for adjusting the pressure of the compressed gas stored in the first pressure container or the first pressure container is provided, and the flying object container is provided on the outlet side of the second pipe line. The high-speed cutting test apparatus is characterized in that the pressure of the compressed gas is adjusted so as to stop. 請求項1記載の高速切削試験装置において、該第1の管路の他端と該第2の管路の他端は接続され前記被削材を収容し大気から隔離するチャンバを設けたことを特徴とする高速切削試験装置。   2. The high-speed cutting test apparatus according to claim 1, wherein a chamber is provided in which the other end of the first pipe line and the other end of the second pipe line are connected to accommodate the work material and to be isolated from the atmosphere. A high-speed cutting test device. 請求項3記載の高速切削試験装置において、該チャンバに接続され該チャンバを真空排気する真空排気装置を設けたことを特徴とする高速切削試験装置。   4. The high speed cutting test apparatus according to claim 3, further comprising a vacuum exhaust device connected to the chamber for evacuating the chamber. 請求項3記載の高速切削試験装置において、該チャンバに接続され該チャンバを大気開放する大気開放弁を設けたことを特徴とする高速切削試験装置。   4. The high speed cutting test apparatus according to claim 3, further comprising an air release valve connected to the chamber and opening the chamber to the atmosphere. 請求項3記載の高速切削試験装具において、該チャンバに接続され該チャンバに特定の気体を導入する気体導入弁を設けたことを特徴とする高速切削試験装置。   4. The high-speed cutting test equipment according to claim 3, further comprising a gas introduction valve connected to the chamber for introducing a specific gas into the chamber. 請求項1記載の高速切削試験装置において、該第1の管路の他端と該第2の管路の他端の間に、前記被削材の近傍に飛翔してきた前記飛翔体容器を検出する検出器を設置し、該検出器の出力により前記第1開閉弁を閉じることを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein the flying object container flying near the work material is detected between the other end of the first conduit and the other end of the second conduit. A high-speed cutting test apparatus characterized in that a detector is installed and the first on-off valve is closed by the output of the detector. 請求項1記載の高速切削試験装置において、該第1の管路の他端と該第2の管路の他端の間に、前記被削材の近傍に飛翔してきた前記飛翔体容器を検出する検出器を設置し、該検出器の出力により前記第2開閉弁を開くことを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein the flying object container flying near the work material is detected between the other end of the first conduit and the other end of the second conduit. A high-speed cutting test apparatus characterized in that a detector is installed and the second on-off valve is opened by the output of the detector. 請求項1記載の高速切削試験装置において、前記被削材の前方又は後方に飛翔してきた前記飛翔体容器を検出する検出器を設置し、該検出器の出力により前記第1開閉弁を閉じることを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein a detector for detecting the flying object container flying in front of or behind the work material is installed, and the first on-off valve is closed by an output of the detector. High-speed cutting test equipment characterized by 請求項1記載の高速切削試験装置において、前記被削材の前方又は後方に飛翔してきた前記飛翔体容器を検出する検出器を設置し、該検出器の出力により前記第2開閉弁を開くことを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein a detector for detecting the flying object container flying in front of or behind the work material is installed, and the second on-off valve is opened by an output of the detector. High-speed cutting test equipment characterized by 請求項1記載の高速切削試験装置において、前記被削材の前方に飛翔してきた前記飛翔体容器を検出する第1検出器を設置し、該第1検出器の出力により前記第1開閉弁を閉じるとともに、前記被削材の後方に飛翔してきた前記飛翔体容器を検出する第2検出器を設置し、該第2検出器の出力により前記第2開閉弁を開くことを特徴とする高速切削試験装置。   2. The high-speed cutting test apparatus according to claim 1, wherein a first detector that detects the flying object container flying in front of the work material is installed, and the first on-off valve is controlled by an output of the first detector. A high-speed cutting characterized in that a second detector for detecting the flying object container flying after the work material is installed and the second on-off valve is opened by the output of the second detector. Test equipment. 請求項1記載の高速切削試験装置において、前記被削材は該第1の管路の他端と該第2の管路の他端の間に配置されたステージの上に設置され、削られる前記被削材の厚さの調整は、前記ステージの高さを制御することにより行う構成としたことを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein the work material is placed on a stage disposed between the other end of the first pipe line and the other end of the second pipe line and is cut. The high-speed cutting test apparatus characterized in that the thickness of the work material is adjusted by controlling the height of the stage. 請求項1記載の高速切削試験装置において、前記飛翔体容器の飛翔方向前部に切りくず収納空間を有するキャップ部を設けたことを特徴とする高速切削試験装置。   2. The high-speed cutting test apparatus according to claim 1, wherein a cap portion having a chip storage space is provided at a front portion in the flight direction of the flying object container. 請求項12記載の高速切削試験装置において、前記切削工具刃先と前記キャップ部の間に前記被削材を導入する導入口を設けたことを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 12, wherein an introduction port for introducing the work material is provided between the cutting tool cutting edge and the cap portion. 請求項12記載の高速切削試験装置において、前記キャップ部に切り取る前記被削材の干渉を防止する窪みを設けたことを特徴とする高速切削試験装置。   13. The high-speed cutting test apparatus according to claim 12, wherein a recess for preventing interference of the work material cut out in the cap portion is provided. 請求項1記載の高速切削試験装置において、前記第2の管路の一端に飛翔容器回収容器を設け、該飛翔容器回収容器の断面積を前記第2の管路の断面積より大きくしたことを特徴とする高速切削試験装置。   The high-speed cutting test apparatus according to claim 1, wherein a flying container collection container is provided at one end of the second conduit, and the sectional area of the flying container collection container is made larger than the sectional area of the second conduit. A high-speed cutting test device.
JP2006181078A 2006-06-30 2006-06-30 High speed cutting test equipment Active JP4171808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181078A JP4171808B2 (en) 2006-06-30 2006-06-30 High speed cutting test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181078A JP4171808B2 (en) 2006-06-30 2006-06-30 High speed cutting test equipment

Publications (2)

Publication Number Publication Date
JP2008008821A JP2008008821A (en) 2008-01-17
JP4171808B2 true JP4171808B2 (en) 2008-10-29

Family

ID=39067155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181078A Active JP4171808B2 (en) 2006-06-30 2006-06-30 High speed cutting test equipment

Country Status (1)

Country Link
JP (1) JP4171808B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539265A (en) * 2012-02-13 2012-07-04 中国科学院力学研究所 High-speed cutting experiment device based on light-gas gun loading technique
JP6797599B2 (en) * 2016-08-12 2020-12-09 学校法人 芝浦工業大学 How to measure the deformation characteristic value of a material
CN107274776B (en) * 2017-06-08 2019-05-17 天津大学 A kind of Modular high-speed cutting experiment platform based on Hopkinson pressure bar device
CN109623035B (en) * 2018-11-19 2020-10-27 西安近代化学研究所 Cylindrical medicine end face shaping device
CN109900598B (en) * 2019-03-04 2023-11-14 莆田学院 Diffusion experiment device with controllable temperature and pressure
CN114211312A (en) * 2021-11-29 2022-03-22 华中科技大学 High-speed cutting in-situ imaging experiment system
CN115824806B (en) * 2022-12-02 2024-04-05 江苏银家不锈钢管业有限公司 Toughness detection device of stainless steel pipe

Also Published As

Publication number Publication date
JP2008008821A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4171808B2 (en) High speed cutting test equipment
Liu et al. Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design
KR101476085B1 (en) Pressure wave generator with movable control rod for generating a pressure wave in a medium
Momber et al. Principles of abrasive water jet machining
Sheldon et al. An investigation of impingement erosion using single particles
Hlaváč et al. The model of product distortion in AWJ cutting
Gildfind et al. Free-piston driver optimisation for simulation of high Mach number scramjet flow conditions
Li et al. Experimental study on hole quality and its impact on tensile behavior following pure and abrasive waterjet cutting of plain woven CFRP laminates
CN112084659B (en) Method for predicting penetration performance of projectile high-speed impact concrete considering erosion effect
Burchell et al. Crater ellipticity in hypervelocity impacts on metals
Nanda et al. Fluidized bed abrasive jet machining (FB-AJM) of K-99 alumina ceramic using SiC abrasives
Walker et al. Momentum enhancement due to hypervelocity impacts into pumice
Momber et al. An energy balance of high-speed abrasive water jet erosion
Liu et al. Piercing in delicate materials with abrasive-waterjets
Pradhan et al. An integrated approach of simulation, modeling and computer-aided design of hot abrasive jet machining setup
Schäfer et al. Shape effects in hypervelocity impact on semi-infinite metallic targets
CN111896396A (en) Rock dynamic mechanical property experimental device and experimental method thereof
CN113879451B (en) Combined disc type cavitation structure for underwater navigation of navigation body
Nyaboro et al. Numerical and experimental characterization of kerf formation in abrasive waterjet machining
Bivin et al. Mechanics of dynamic penetration into soil medium
Al-Qaham et al. Sand Erosion Testing of Polymeric Coatings of Steel Sheets
Kim et al. Design of small impact test device for concrete panels subject to high speed collision
Andilevko et al. Specific features of mass transfer of discrete microparticles in the process of metallic target treatment with a powder flux
Mizobuchi et al. Miniature drilling of chemically strengthened glass plate using electroplated diamond tool
Miller et al. Ballistic performance model of crater formation in monolithic, porous thermal protection systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150