JP4171794B2 - Peptides and their uses - Google Patents

Peptides and their uses Download PDF

Info

Publication number
JP4171794B2
JP4171794B2 JP2005213988A JP2005213988A JP4171794B2 JP 4171794 B2 JP4171794 B2 JP 4171794B2 JP 2005213988 A JP2005213988 A JP 2005213988A JP 2005213988 A JP2005213988 A JP 2005213988A JP 4171794 B2 JP4171794 B2 JP 4171794B2
Authority
JP
Japan
Prior art keywords
peptide
amino acid
fmoc
acid sequence
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005213988A
Other languages
Japanese (ja)
Other versions
JP2006008698A (en
Inventor
三郎 斉藤
淳子 川口
一樹 平原
明郎 白石
伸記 芹澤
雅司 栗木
克彦 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Daiichi Sankyo Co Ltd
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Daiichi Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK, Daiichi Sankyo Co Ltd filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority to JP2005213988A priority Critical patent/JP4171794B2/en
Publication of JP2006008698A publication Critical patent/JP2006008698A/en
Application granted granted Critical
Publication of JP4171794B2 publication Critical patent/JP4171794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

この発明は、スギ花粉アレルゲンに特異的に反応するT細胞を活性化するペプチド、及び、そのペプチドを有効成分として含んでなる免疫療法剤に関する。   The present invention relates to a peptide that activates a T cell that specifically reacts with a cedar pollen allergen, and an immunotherapeutic agent comprising the peptide as an active ingredient.

ここ数十年来、我国においては、春先になるとスギ花粉症による鼻炎や結膜炎を訴える人の数が増加し続けている。スギ花粉症はアルレギー症の一種であり、その主因はスギ花粉中の抗原性物質、すなわち、スギ花粉症アレルゲンであるといわれている。大気中に飛散したスギ花粉がヒトの体内に侵入すると、スギ花粉アレルゲンに対するイムノグロブリンE抗体が産生する。この状態で次にスギ花粉が侵入すると、その花粉中のアレルゲンとこのイムノグロブリンE抗体が免疫反応を起し、アレルギー症状を呈することとなる。   In recent decades, in Japan, the number of people complaining of rhinitis and conjunctivitis due to cedar pollinosis continues to increase in early spring. Cedar pollinosis is a type of arlegiosis, and the main cause is said to be an antigenic substance in cedar pollen, that is, cedar pollinosis allergen. When cedar pollen scattered in the atmosphere enters the human body, immunoglobulin E antibodies against cedar pollen allergen are produced. Next, when cedar pollen invades in this state, the allergen in the pollen and the immunoglobulin E antibody cause an immune reaction, and allergic symptoms are exhibited.

スギ花粉中に抗原性の相違する少なくとも二種類のアレルゲンの存在することが現在までに知られている。その一つは、ヤスエダ等が『ジャーナル・オブ・アレルギー・アンド・クリニカル・イムノロジー』、第71巻、第1号、第77〜86頁(1983年)に報告しているアレルゲンであり、今日、これは「Cryj1」と呼称されている(非特許文献1)。なお、Cryj1 はその全長アミノ酸配列が決定され、国際出願されている(特許文献1:WO 93/01213)。   It has been known to date that at least two types of allergens having different antigenicity are present in cedar pollen. One of them is the allergen reported by Yasuda et al. In “Journal of Allergy and Clinical Immunology”, Vol. 71, No. 1, pp. 77-86 (1983). This is called “Cryj1” (Non-Patent Document 1). Cryj1 has its full-length amino acid sequence determined and has been filed internationally (Patent Document 1: WO 93/01213).

もう一つは、タニアイ等『エフ・イー・ビー・エス・レターズ』、第239巻、第2号、第329〜332頁(1988年)やサカグチ等『アレルギー』、第45号、第309〜312頁(1990年)に報告されているアレルゲンであり、今日、これは「Cry j 2」と呼称されている(非特許文献2及び3)。なお、Cry j 2はその全長アミノ酸配列が決定され、国際出願されている(特許文献2:WO 94/11512)。また、 Komiyama らも別個にCryj2の全長アミノ酸配列を決定しているがBiochem. Biophys. Res, Comm., vol.201, No.2, 1021-1028, (1994)(非特許文献4)、WO 94/11512記載のアミノ酸配列とはアミノ酸残基が4か所異なっている。   The other is Taniyai et al. “EF SB Letters”, Vol. 239, No. 2, pp. 329-332 (1988) and Sakaguchi et al., “Allergy”, No. 45, No. 309- It is an allergen reported on page 312 (1990), and today it is called “Cry j 2” (Non-patent Documents 2 and 3). Cry j 2 has been determined for its full-length amino acid sequence and has been internationally filed (Patent Document 2: WO 94/11512). Komiyama et al. Also separately determined the full-length amino acid sequence of Cryj2, but Biochem. Biophys. Res, Comm., Vol. 201, No. 2, 1021-1028, (1994) (non-patent document 4), WO The amino acid sequence described in 94/11512 differs in 4 amino acid residues.

スギ花粉中には、通常、Cryj1とCryj2が約50:1乃至5:1の割合で存在し、花粉症患者から採取した血清の殆どがCryj1にもCryj2にも反応すると云われている。澤谷らは、『アレルギー』、第42巻、第6号、第738〜747頁(1993年)において、Cryj2は、皮内反応試験やRAST試験において、Cryj1と同程度の抗原性を発揮すると報告している(非特許文献5)。   In cedar pollen, Cryj1 and Cryj2 are usually present in a ratio of about 50: 1 to 5: 1, and it is said that most of the serum collected from hay fever responds to both Cryj1 and Cryj2. Sawatani et al., Allergy, Vol. 42, No. 6, pp. 738-747 (1993), reported that Cryj2 exhibits the same level of antigenicity as Cryj1 in intradermal reaction tests and RAST tests. (Non-Patent Document 5).

このように、スギ花粉アレルゲンが既に幾つか単離され、その性質、性状もある程度解明されたことから、精製スギ花粉アレルゲンをヒトに投与して減感作することにより、スギ花粉症を治療・予防できる見通しがついてきた。最近ではそのための減感作剤も幾つか考案されており、例えば、特許文献3:特開平1−156926号公報や特許文献4:特開平3−93730号公報には、N末端からのアミノ酸配列がAsp−Asn−Pro−Ile−Asp−Ser又はAla−Ile−Asn−Ile−Phe−Asnで表わされるスギ花粉アレルゲンに糖質を共有結合せしめ、生成した複合体を減感作剤としてヒトに投与する提案が為されている。   In this way, several cedar pollen allergens have already been isolated and their properties and properties have been elucidated to some extent. The prospects that can be prevented have come. Recently, several desensitizers have been devised for this purpose. For example, Patent Document 3: JP-A-1-156926 and Patent Document 4: JP-A-3-93730 disclose amino acid sequences from the N-terminus. Is covalently bound to a cedar pollen allergen represented by Asp-Asn-Pro-Ile-Asp-Ser or Ala-Ile-Asn-Ile-Phe-Asn, and the resulting complex is used as a desensitizing agent in humans. Proposal to administer has been made.

しかしながら、アレルギー症の診断や減感作療法には、通常、高純度のアレルゲンが大量に必要とされ、スギ花粉中のアレルゲンは僅少であるうえに安定性が低く、スギ花粉症の診断剤や減感作剤をスギ花粉だけで賄おうとすると、多大の困難が伴なう。このようなことから、最近のアレルギー疾患の治療・予防においては、これまでのように、患者にアレルゲン全体を投与するのではなく、アレルゲン中のT細胞が特異的に認識する最小領域、すなわち、本質的にT細胞エピトープのみからなる低分子のペプチドを投与する免疫療法が注目されている。   However, diagnosis and desensitization of allergies usually require large amounts of high-purity allergens, and allergens in cedar pollen are scarce and have low stability. It is very difficult to cover the desensitizer with cedar pollen alone. For this reason, in the recent treatment and prevention of allergic diseases, instead of administering the whole allergen to the patient as in the past, the minimum region that T cells in the allergen specifically recognize, that is, Attention has been focused on immunotherapy in which a small peptide consisting essentially of a T cell epitope is administered.

一般に、アレルゲンは、マクロファージなどの抗原提示細胞に取込まれると、そこで消化され、消化断片が免疫提示細胞表層のHLA(Human Leucocyte Antigen )蛋白質に結合し、抗原提示されることとなる。抗原提示される断片は、HLA蛋白質に対する親和性などにより、アレルゲンにおける一部の特定領域に限られ、斯かる領域のうち、T細胞が特異的に認識する領域は、通常、「T細胞エピトープ」と呼称される。実質的にT細胞エプトープのみからなるペプチドを投与する免疫療法には、
(i) ペプチドがB細胞エピトープを欠いている、すなわち、アレルゲンに特異的なイムノグロブリンE抗体が反応しないので、従来の粗製又は精製アレルゲンで頻発していたアナフィラキシーなどの副作用が起こり得ない。
(ii) 少量からスタートし、有効投与量に達するまでの期間が、従来の減感作剤に比較して、大幅に短縮できる。
(iii) 経口免疫寛容を誘導し、アレルゲンに対するアレルギー反応を減弱することができる。などの利点がある。
In general, when allergens are taken into antigen-presenting cells such as macrophages, they are digested there, and the digested fragments bind to HLA (Human Leucocyte Antigen) protein on the surface of immune-presenting cells and presented as antigens. The antigen-presented fragment is limited to a specific region of the allergen due to its affinity for the HLA protein. Among these regions, the region specifically recognized by T cells is usually a “T cell epitope”. It is called. For immunotherapy in which a peptide consisting essentially of only a T cell eptop is administered,
(i) Since the peptide lacks the B cell epitope, that is, the immunoglobulin E antibody specific to the allergen does not react, side effects such as anaphylaxis that frequently occur with conventional crude or purified allergens cannot occur.
(ii) The period from starting with a small amount to reaching an effective dose can be significantly shortened compared to conventional desensitizers.
(iii) It can induce oral tolerance and attenuate allergic reactions to allergens. There are advantages such as.

WO 93/01213WO 93/01213 WO 94/11512WO 94/11512 特開平1−156926号公報JP-A-1-156926 特開平3−93730号公報Japanese Patent Laid-Open No. 3-93730 ヤスエダ等、『ジャーナル・オブ・アレルギー・アンド・クリニカル・イムノロジー』、第71巻、第1号、第77〜86頁(1983年)Yasuda et al., "Journal of Allergy and Clinical Immunology", Volume 71, No. 1, pp. 77-86 (1983) タニアイ等、『エフ・イー・ビー・エス・レターズ』、第239巻、第2号、第329〜332頁(1988年)Taniai et al., FB Letters, Vol. 239, No. 2, pp. 329-332 (1988) サカグチ等、『アレルギー』、第45号、第309〜312頁(1990年)Sakaguchi et al., “Allergy”, No. 45, pp. 309-312 (1990) コミヤマ等、『バイオケミカル・バイオフィジカル・リサーチ・コミュニケーション』第201巻、第2号、第1021〜1028頁(1994年)Komiyama et al., “Biochemical Biophysical Research Communication” Vol. 201, No. 2, pages 1021-1028 (1994) サワタニ等、『アレルギー』、第42巻、第6号、第738〜747頁(1993年)Sawatani et al., “Allergy”, Vol. 42, No. 6, pp. 738-747 (1993)

本発明者らは、上記T細胞エピトープを構成する最小単位のアミノ酸配列を見出し、本発明を完成した。この発明の第一の課題は、本質的のスギ花粉アレルゲンのT細胞エピトープのみからなるペプチドを提供することにある。この発明の第二の課題は、有効成分として上記ペプチドを含んでなる抗スギ花粉症剤を提供することにある。   The present inventors have found the amino acid sequence of the minimum unit constituting the T cell epitope and completed the present invention. The first object of the present invention is to provide a peptide consisting only of a T cell epitope of an essential cedar pollen allergen. The second object of the present invention is to provide an anti-cedar pollinosis agent comprising the above peptide as an active ingredient.

本発明は、
(1)配列番号2のアミノ酸配列から成るペプチド。
(2)配列番号3のアミノ酸配列から成るペプチド。
(3)配列番号9のアミノ酸配列から成るペプチド。
(4)配列番号10のアミノ酸配列から成るペプチド。
(5)配列番号17のアミノ酸配列から成るペプチド。
(6)配列番号18のアミノ酸配列から成るペプチド。
(7)配列番号19のアミノ酸配列から成るペプチド。
The present invention
(1) A peptide consisting of the amino acid sequence of SEQ ID NO: 2.
(2) A peptide consisting of the amino acid sequence of SEQ ID NO: 3.
(3) A peptide consisting of the amino acid sequence of SEQ ID NO: 9.
(4) A peptide consisting of the amino acid sequence of SEQ ID NO: 10.
(5) A peptide consisting of the amino acid sequence of SEQ ID NO: 17.
(6) A peptide consisting of the amino acid sequence of SEQ ID NO: 18.
(7) A peptide consisting of the amino acid sequence of SEQ ID NO: 19.

(8)配列番号2のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(9)配列番号3のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(10)配列番号4のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(11)配列番号5のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(12)配列番号6のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(13)配列番号9のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(8) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 2 as an active ingredient.
(9) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 3 as an active ingredient.
(10) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 4 as an active ingredient.
(11) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 5 as an active ingredient.
(12) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 6 as an active ingredient.
(13) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 9 as an active ingredient.

(14)配列番号10のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(15)配列番号11のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(16)配列番号12のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(17)配列番号13のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(18)配列番号14のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(19)配列番号15のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(20)配列番号16のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(21)配列番号17のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(14) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 10 as an active ingredient.
(15) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 11 as an active ingredient.
(16) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 12 as an active ingredient.
(17) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 13 as an active ingredient.
(18) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 14 as an active ingredient.
(19) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 15 as an active ingredient.
(20) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 16 as an active ingredient.
(21) An anti-cedar pollinosis agent comprising a peptide consisting of the amino acid sequence of SEQ ID NO: 17 as an active ingredient.

(22)配列番号18のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(23)配列番号19のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(24)配列番号20のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(25)配列番号21のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(26)配列番号22のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(27)配列番号23のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(28)配列番号24のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。
(22) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 18 as an active ingredient.
(23) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 19 as an active ingredient.
(24) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 20 as an active ingredient.
(25) An anti-cedar pollinosis agent comprising a peptide consisting of the amino acid sequence of SEQ ID NO: 21 as an active ingredient.
(26) An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 22 as an active ingredient.
(27) An anti-cedar pollinosis agent comprising a peptide having the amino acid sequence of SEQ ID NO: 23 as an active ingredient.
(28) An anti-cedar pollinosis agent containing a peptide consisting of the amino acid sequence of SEQ ID NO: 24 as an active ingredient.

本発明により、スギ花粉アレルゲンのT細胞エピトープのみからなるペプチド及びそれらを有効成分として含んでなる抗スギ花粉症剤を提供することができた。そして、本発明のペプチドは、スギ花粉アレルゲンに特異的なイムノグロブリンE抗体に実質的に反応しないので、ヒトを含む哺乳類一般に投与すると、実質的にアナフィラキシーを引起こすことなく、スギ花粉アレルゲンに特異的なT細胞を活性化することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it was possible to provide a peptide comprising only a T cell epitope of a cedar pollen allergen and an anti-cedar pollinosis agent comprising them as an active ingredient. The peptide of the present invention does not substantially react with the immunoglobulin E antibody specific for the cedar pollen allergen. Therefore, when administered to mammals including humans, it does not cause anaphylaxis substantially and is specific for the cedar pollen allergen. T cells can be activated.

以下、本発明を詳しく説明する。本発明における好ましいペプチドの例は表1の通りである。   The present invention will be described in detail below. Examples of preferred peptides in the present invention are shown in Table 1.

Figure 0004171794
Figure 0004171794

なお、上記のペプチド1は、配列表の配列番号1のアミノ酸配列で示されるペプチド、
上記のペプチド2は、配列表の配列番号2のアミノ酸配列で示されるペプチド、
上記のペプチド3は、配列表の配列番号3のアミノ酸配列で示されるペプチド、
上記のペプチド4は、配列表の配列番号4のアミノ酸配列で示されるペプチド、
上記のペプチド5は、配列表の配列番号5のアミノ酸配列で示されるペプチド、
上記のペプチド6は、配列表の配列番号6のアミノ酸配列で示されるペプチド、
上記のペプチド7は、配列表の配列番号7のアミノ酸配列で示されるペプチド、
上記のペプチド8は、配列表の配列番号8のアミノ酸配列で示されるペプチド、
上記のペプチド9は、配列表の配列番号9のアミノ酸配列で示されるペプチド、
上記のペプチド10は、配列表の配列番号10のアミノ酸配列で示されるペプチド、
上記のペプチド11は、配列表の配列番号11のアミノ酸配列で示されるペプチド、
上記のペプチド12は、配列表の配列番号12のアミノ酸配列で示されるペプチド、
上記のペプチド13は、配列表の配列番号13のアミノ酸配列で示されるペプチド、
上記のペプチド14は、配列表の配列番号14のアミノ酸配列で示されるペプチド、
上記のペプチド15は、配列表の配列番号15のアミノ酸配列で示されるペプチド、
上記のペプチド16は、配列表の配列番号16のアミノ酸配列で示されるペプチド、
上記のペプチド17は、配列表の配列番号17のアミノ酸配列で示されるペプチド、
上記のペプチド18は、配列表の配列番号18のアミノ酸配列で示されるペプチド、
上記のペプチド19は、配列表の配列番号19のアミノ酸配列で示されるペプチド、
上記のペプチド20は、配列表の配列番号20のアミノ酸配列で示されるペプチド、
上記のペプチド21は、配列表の配列番号21のアミノ酸配列で示されるペプチド、
上記のペプチド22は、配列表の配列番号22のアミノ酸配列で示されるペプチド、
上記のペプチド23は、配列表の配列番号23のアミノ酸配列で示されるペプチド、
上記のペプチド24は、配列表の配列番号24のアミノ酸配列で示されるペプチド、をそれぞれ表す。
The above peptide 1 is a peptide represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing,
Peptide 2 is a peptide represented by the amino acid sequence of SEQ ID NO: 2 in the sequence listing,
Peptide 3 is a peptide represented by the amino acid sequence of SEQ ID NO: 3 in the sequence listing,
Peptide 4 is a peptide represented by the amino acid sequence of SEQ ID NO: 4 in the sequence listing,
The peptide 5 is a peptide represented by the amino acid sequence of SEQ ID NO: 5 in the sequence listing,
The peptide 6 is a peptide represented by the amino acid sequence of SEQ ID NO: 6 in the sequence listing,
The peptide 7 is a peptide represented by the amino acid sequence of SEQ ID NO: 7 in the sequence listing,
Peptide 8 is a peptide represented by the amino acid sequence of SEQ ID NO: 8 in the sequence listing,
The peptide 9 is a peptide represented by the amino acid sequence of SEQ ID NO: 9 in the sequence listing,
The peptide 10 is a peptide represented by the amino acid sequence of SEQ ID NO: 10 in the sequence listing,
The peptide 11 is a peptide represented by the amino acid sequence of SEQ ID NO: 11 in the sequence listing,
The peptide 12 is a peptide represented by the amino acid sequence of SEQ ID NO: 12 in the sequence listing,
The peptide 13 is a peptide represented by the amino acid sequence of SEQ ID NO: 13 in the sequence listing,
The peptide 14 is a peptide represented by the amino acid sequence of SEQ ID NO: 14 in the sequence listing,
The peptide 15 is a peptide represented by the amino acid sequence of SEQ ID NO: 15 in the sequence listing,
The peptide 16 is a peptide represented by the amino acid sequence of SEQ ID NO: 16 in the sequence listing,
The peptide 17 is a peptide represented by the amino acid sequence of SEQ ID NO: 17 in the sequence listing,
The peptide 18 is a peptide represented by the amino acid sequence of SEQ ID NO: 18 in the sequence listing,
The peptide 19 is a peptide represented by the amino acid sequence of SEQ ID NO: 19 in the sequence listing,
The peptide 20 is a peptide represented by the amino acid sequence of SEQ ID NO: 20 in the Sequence Listing,
The peptide 21 is a peptide represented by the amino acid sequence of SEQ ID NO: 21 in the sequence listing,
The peptide 22 is a peptide represented by the amino acid sequence of SEQ ID NO: 22 in the sequence listing,
The peptide 23 is a peptide represented by the amino acid sequence of SEQ ID NO: 23 in the sequence listing,
Each of the peptides 24 represents a peptide represented by the amino acid sequence of SEQ ID NO: 24 in the sequence listing.

上記(1)乃至(7)に記載のペプチドは、「固相法」又は「液相法」として知られる斯界において慣用のペプチド合成法により、容易に調製することができる。例えば、社団法人日本生化学会編『新生化学実験講座』、第1巻、「タンパク質VI」、第3〜44頁、1992年、東京化学同人発行などにはペプチド合成の詳細が記載されている。また、該ペプチドは、マルチペプチドシンセサイザー SYMPHONY (プロティンテクノロジー社製)を用い、Fmoc (9-fluorenyl methyloxycarbonyl) 固相合成法にて同装置のプロトコールに従って合成することができる。すなわち、合成する各ペプチドのC末端に相当するアミノ酸が導入されている Fmoc-L-アミノ酸 Wang 樹脂を上記ペプチド合成装置の反応容器にセットし、デプロテクション溶液を用いて Fmoc を除く。さらにC末端から2番目のアミノ酸に相当するアミノ酸溶液とアクチベーター溶液を反応せしめ、反応後再び Fmoc 基のデプロテクションを行い、同様の操作を繰り返すことにより、目的とするペプチドを合成することができる。   The peptides described in the above (1) to (7) can be easily prepared by a peptide synthesis method commonly used in this field known as “solid phase method” or “liquid phase method”. For example, the details of peptide synthesis are described in the Japan Biochemical Society, “New Chemistry Laboratory”, Volume 1, “Protein VI”, pp. 3-44, 1992, published by Tokyo Kagaku Dojin. Further, the peptide can be synthesized according to the protocol of the same apparatus by Fmoc (9-fluorenyl methyloxycarbonyl) solid phase synthesis method using a multi-peptide synthesizer SYMPHONY (manufactured by Protein Technology). That is, Fmoc-L-amino acid Wang resin into which an amino acid corresponding to the C-terminal of each peptide to be synthesized is introduced is set in the reaction vessel of the peptide synthesizer, and Fmoc is removed using a deprotection solution. Furthermore, the target peptide can be synthesized by reacting an amino acid solution corresponding to the second amino acid from the C-terminus with an activator solution, deprotecting the Fmoc group again after the reaction, and repeating the same operation. .

本発明のペプチドは化学合成により調製されたものに限定されず、例えば、スギの花粉又は雄花から採取するか、組換えDNA技術により調製したスギ花粉アレルゲンを適宜分解し、分解物から採取したものであってもよく、例えば、上記(1)乃至(7)に記載されたペプチドをコードするDNAを調製し、これを自律複製可能なベクターに挿入して組換えDNAとし、これを大腸菌、枯草菌、放線菌、酵母などの適宜宿主に導入して形質転換体とし、その培養物からこの発明のペプチドを採取してもよい。   The peptides of the present invention are not limited to those prepared by chemical synthesis, for example, those collected from cedar pollen or male flowers, or from cedar pollen allergens prepared by recombinant DNA technology, and collected from degradation products For example, a DNA encoding the peptide described in (1) to (7) above is prepared, and this is inserted into a vector capable of autonomous replication to obtain a recombinant DNA. The peptide of the present invention may be collected from the culture by introducing it into a suitable host such as a fungus, actinomycetes, or yeast.

さらに、この発明のペプチドは、斯くして得られるペプチドに糖質やポリエチレングリコールを付加して得られる複合体としての形態、さらには、ペプチドをアセチル化、アミド化及び/又は多官能試験により架橋重合させて得られる誘導体又は重合体としての形態であってもよい。   Furthermore, the peptide of the present invention is in the form of a complex obtained by adding a carbohydrate or polyethylene glycol to the peptide thus obtained, and further, the peptide is crosslinked by acetylation, amidation and / or multifunctional test. It may be in the form of a derivative or polymer obtained by polymerization.

この発明のペプチドは、比較的粗な形態で投与しても所期の治療・予防効果を発揮するが、通常は使用に先立って精製される。精製には、例えば、濾過、濃縮、遠心分離、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、高速液体クロマトグラフィー、アフィニティークロマトグラフィー、ゲル電気泳動、等電点電気泳動などのペプチド乃至蛋白質を精製するための斯界における慣用の方法が用いられ、必要に応じて、これら方法を適宜組合せればよい。そして、最終使用形態に応じて、精製したペプチドを濃縮、凍結乾燥して液状又は固状にすればよい。   The peptide of the present invention exerts the intended therapeutic / preventive effect even when administered in a relatively crude form, but is usually purified prior to use. For purification, for example, to purify peptides or proteins such as filtration, concentration, centrifugation, gel filtration chromatography, ion exchange chromatography, high performance liquid chromatography, affinity chromatography, gel electrophoresis, isoelectric focusing etc. Conventional methods in this field are used, and these methods may be appropriately combined as necessary. Then, the purified peptide may be concentrated and lyophilized to make it liquid or solid depending on the final use form.

本発明のペプチドがT細胞エピトープとしての活性を有することは、スギ花粉アレルゲンに特異的なT細胞の 3H−チミジンの取込みを計測することにより確認することができる。この計測には、例えば以下の方法を用いることができる。すなわち、フィコール・ハイパック比重遠心法等により花粉症患者の末梢血またはCryj2で免疫したマウス等の実験動物からCryj2に特異的なT細胞を含む単核細胞群を分離し、この細胞群をRPMI 1640 等の培地に浮遊させ、96ウェルマイクロプレート上に分注する。次に被検物質であるペプチドを加えインキュベートする。このインキュベートの温度・時間は各実験毎に適宜調整することができるが、37℃、2日間が好適である。その後 3H−チミジンを培地に加え、さらに一定時間インキュベーションを続け、単核細胞群における 3H−チミジンの取り込み量を測定することにより、本発明のペプチドのT細胞エピトープとしての活性を算定することができる。なお、本発明では、同時にペプチドを含まない系を設けてこれを陰性対照とし、 3H−チミジンの取り込み量が陰性対照の2倍以上に達した系を「陽性」、達しなかった系を「陰性」とした。 It can be confirmed that the peptide of the present invention has activity as a T cell epitope by measuring the uptake of 3 H-thymidine of T cells specific for the cedar pollen allergen. For example, the following method can be used for this measurement. That is, a mononuclear cell group containing T cells specific for Cryj2 is isolated from peripheral blood of hay fever patients or experimental animals such as mice immunized with Cryj2 by Ficoll-Hypaque specific gravity centrifugation, etc., and this cell group is separated from RPMI. Suspend in a medium such as 1640 and dispense onto a 96-well microplate. Next, the test substance peptide is added and incubated. The incubation temperature and time can be appropriately adjusted for each experiment, but 37 ° C. and 2 days are preferable. Thereafter, 3 H-thymidine is added to the medium, and further incubation is continued for a certain period of time. By measuring the amount of 3 H-thymidine incorporation in the mononuclear cell group, the activity of the peptide of the present invention as a T cell epitope is calculated. Can do. In the present invention, a system that does not contain a peptide at the same time is set as a negative control. A system in which the amount of 3 H-thymidine incorporation reaches twice or more that of the negative control is “positive”, and a system that has not reached “ Negative.

スギ花粉アレルゲンに特異的なT細胞の 3H−チミジンの取込みの計測は、以下の方法によっても行うことができる。予めマウス等の実験動物をCryj2で免疫し、その後顎下リンパ節等よりリンパ球を採取する。その後、上記と同様の方法により被検体であるペプチドで刺激し、 3H−チミジンの取り込み量を測定することにより、本発明のペプチドのT細胞エピトープとしての活性を算定することができる。ペプチドの「陽性」及び「陰性」の判定は、上記と同様の基準で行った。 Measurement of 3 H-thymidine incorporation of T cells specific for cedar pollen allergen can also be performed by the following method. An experimental animal such as a mouse is immunized with Cryj2 in advance, and then lymphocytes are collected from a submandibular lymph node or the like. Then, the activity as a T cell epitope of the peptide of the present invention can be calculated by stimulating with the subject peptide by the same method as described above and measuring the amount of 3 H-thymidine incorporation. The determination of peptide “positive” and “negative” was performed based on the same criteria as described above.

本発明のペプチドが花粉症患者に予防効果を有することは、例えば以下の実験により確認することができる。予めマウス等の実験動物に対し本発明のペプチドを投与し、該ペプチドに対する免疫寛容を誘導しておく。一定期間経過後に当該実験動物にCryj2をコレラ毒素等のアジュバントとともに投与し免疫する。さらに、一定期間経過後に当該実験動物より顎下リンパ節細胞を摘出し細胞懸濁液を調製する。   It can be confirmed, for example, by the following experiment that the peptide of the present invention has a preventive effect on hay fever patients. In advance, the peptide of the present invention is administered to an experimental animal such as a mouse to induce immune tolerance against the peptide. After a certain period of time, the experimental animal is immunized by administering Cryj2 together with an adjuvant such as cholera toxin. Furthermore, after a certain period of time, submandibular lymph node cells are removed from the experimental animal to prepare a cell suspension.

また、これとは別の無処理の実験動物より脾臓を抽出し脾臓細胞懸濁液を調製して、これにX線を照射し細胞増殖活性を消失させこれを抗原提示細胞含有懸濁液とする。このものを先の顎下リンパ節細胞懸濁液と混合し、これにCryj2を添加して培養を継続し、さらに 3H−チミジンを添加して、このものの取り込みを測定し、T細胞の増殖を測定することができる。 In addition, a spleen is extracted from another untreated experimental animal to prepare a spleen cell suspension, which is irradiated with X-rays to lose cell proliferation activity. To do. This was mixed with the previous submandibular lymph node cell suspension, Cryj2 was added thereto, and the culture was continued. Further, 3 H-thymidine was added to measure the uptake of this, and T cell proliferation was observed. Can be measured.

予め本発明のペプチドで免疫寛容を誘導していない動物では、Cryj2による免疫化によりそのT細胞が抗原提示細胞に結合したCryj2に反応し増殖する。一方、予め本発明のペプチドで免疫寛容を誘導した動物では、その後Cryj2による免疫を行ってもT細胞が抗原提示細胞に結合したCryj2に反応せず増殖しない。その差を測定することにより、本発明のペプチドの花粉症に対する予防効果を確認することができる。   In animals in which immune tolerance has not been previously induced with the peptide of the present invention, the T cells respond to Cryj2 bound to antigen-presenting cells and proliferate by immunization with Cryj2. On the other hand, in animals whose immune tolerance was previously induced with the peptide of the present invention, T cells do not react with Cryj2 bound to antigen-presenting cells and do not proliferate even when immunization with Cryj2 is subsequently performed. By measuring the difference, the preventive effect against hay fever of the peptide of the present invention can be confirmed.

さらに、上述の免疫動物の顎下リンパ節細胞懸濁液と抗原提示細胞含有懸濁液の混合液にCryj2を添加して培養を継続した場合に培養液中にインターロイキン4等のサイトカインが分泌されるが、本発明のペプチドを前投与し免疫寛容誘導を行った実験動物と前投与しなかった実験動物とで、このサイトカインの分泌量を比較することによっても、本発明のペプチドの花粉症に対する予防効果を確認することができる。   Furthermore, when Cryj2 is added to the mixed solution of the above-mentioned immunized animal submandibular lymph node cell suspension and the antigen-presenting cell-containing suspension and the culture is continued, cytokines such as interleukin 4 are secreted in the culture solution. However, the hay fever of the peptide of the present invention can also be obtained by comparing the amount of secretion of this cytokine between an experimental animal that has been pre-administered with the peptide of the present invention to induce immune tolerance and an experimental animal that has not been pre-administered. The preventive effect can be confirmed.

本発明のペプチドが花粉症患者に治療効果を有することは、例えば以下の実験により確認することができる。予めマウス等の実験動物に対し、Cryj2をコレラ毒素のアジュバンドとともに投与し免疫する。一定期間経過後に当該実験動物にCryj2をコレラ毒素のアジュバンドとともに投与し追加免疫する。さらに、一定期間経過後に当該実験動物より顎下リンパ節細胞を摘出し細胞懸濁液を調製した後、上記と同様の方法によりT細胞の増殖を測定する。   It can be confirmed, for example, by the following experiment that the peptide of the present invention has a therapeutic effect on pollinosis patients. An experimental animal such as a mouse is immunized by administering Cryj2 together with an adjuvant of cholera toxin. After a certain period of time, Cryj2 is administered to the experimental animal together with adjuvant of cholera toxin and boosted. Furthermore, after a certain period of time, submandibular lymph node cells are removed from the experimental animal to prepare a cell suspension, and then T cell proliferation is measured by the same method as described above.

本発明のペプチドで治療を施していない動物では、Cryj2による免疫によりそのT細胞が抗原提示細胞に結合したCryj2に反応し増殖する。一方、本発明のペプチドで治療した動物では、その後Cryj2による免疫を行ってもT細胞が抗原提示細胞に結合したCryj2に反応せず増殖しない。その差を測定することにより、本発明のペプチドの花粉症に対する治療効果を確認することができる。   In animals not treated with the peptide of the present invention, the T cells respond to Cryj2 bound to antigen-presenting cells and proliferate by immunization with Cryj2. On the other hand, in the animal treated with the peptide of the present invention, T cells do not react with Cryj2 bound to antigen-presenting cells and do not proliferate even if immunization with Cryj2 is subsequently performed. By measuring the difference, the therapeutic effect on hay fever of the peptide of the present invention can be confirmed.

[作 用]
本発明のペプチドは、スギ花粉アレルゲンに特異的なイムノグロブリンE抗体に実質的に反応しないので、ヒトを含む哺乳類一般に投与すると、実質的にアナフィラキシーを引起こすことなく、スギ花粉アレルゲンに特異的なT細胞を活性化することができる。有効成分としてかかるペプチドを含んでなる本発明の抗スギ花粉症剤は、ヒトを含む哺乳類一般に投与すると、実質的にアナフィラキシーを引起こすことなくスギ花粉症に対して顕著な治療・予防効果を発揮する。
[Operation]
Since the peptide of the present invention does not substantially react with an immunoglobulin E antibody specific for a cedar pollen allergen, it is specific to a cedar pollen allergen without substantially causing anaphylaxis when administered to mammals including humans. T cells can be activated. The anti-cedar pollinosis agent of the present invention comprising such a peptide as an active ingredient exerts a remarkable therapeutic / preventive effect on cedar pollinosis without substantially causing anaphylaxis when administered to mammals including humans in general. To do.

有効成分としてこの発明のペプチドを含んでなる抗スギ花粉症剤は、スギ花粉症に罹患してヒトを含む哺乳類一般に投与すると、アナフィラキシーなどの副作用を実質的に引起こすことなく、スギ花粉症を治療することができる。一方、この発明の抗スギ花粉症例を、スギ花粉が飛散し始める前に健常な個体や潜在的なスギ花粉症の個体に投与するときには、スギ花粉症に対して顕著な予防効果を発揮するとともに、発症時のアレルギー症状の緩解に著効を発揮する。   An anti-cedar pollinosis agent comprising the peptide of the present invention as an active ingredient is effective in causing cedar pollinosis without substantially causing side effects such as anaphylaxis when administered to mammals including humans suffering from cedar pollinosis. Can be treated. On the other hand, when the anti-cedar pollen case of this invention is administered to a healthy individual or an individual with potential cedar pollinosis before the cedar pollen begins to scatter, it exhibits a remarkable preventive effect against cedar pollinosis Effective in relieving allergic symptoms at the time of onset.

この発明の抗スギ花粉症剤につきさらに詳しく説明すると、この発明の抗スギ花粉症剤は、通常、この発明によるペプチドの1種又は2種以上を0.01乃至100%(w/w) 、望ましくは、0.05乃至50%(w/v) 、さらに望ましくは、0.5乃至5.0%(w/w) 含んでなる。この発明の抗スギ花粉症剤は、当該ペプチド単独の形態はもとより、その以外の生理的に許容される、例えば、血清アルブミン、ゼラチン、マンニトールなどの担体、賦形剤、免疫助成剤、安定剤、さらには、必要に応じて、ステロイドホルモンやクリモグリク酸ナトリウムなどの抗炎症剤や抗ヒスタミン剤を含む1種又は2種以上の他の薬剤との組成物としての形態を包含する。さらに、この発明の抗スギ花粉症剤は、投薬単位形態の薬剤をも包含し、その投薬単位形態の薬剤とは、この発明のポリペプチドを、例えば、1日当たりの用量又はその整数倍(4倍まで)又はその約数(1/40まで)に相当する量を含有し、投与に適する物理的に分離した一体の剤形にある薬剤を意味する。このような投薬単位形態の薬剤としては、散剤、細粒剤、顆粒剤、丸剤、錠剤、カプセル剤、トローチ剤、シロップ剤、乳剤、軟鋼剤、硬膏剤、パップ剤、坐剤、点眼剤、点鼻剤、噴霧剤、注射剤などが挙げられる。   The anti-cedar pollinosis agent of the present invention will be described in more detail. The anti-cedar pollinosis agent of the present invention usually contains 0.01 to 100% (w / w) of one or more of the peptides according to the present invention. Preferably, it comprises 0.05 to 50% (w / v), more preferably 0.5 to 5.0% (w / w). The anti-cedar pollinosis agent of the present invention is not only in the form of the peptide alone but also physiologically acceptable, for example, carriers such as serum albumin, gelatin, mannitol, excipients, immune aids, stabilizers Furthermore, it includes a form as a composition with one or two or more other drugs including anti-inflammatory drugs such as steroid hormones and sodium crimoglycate and antihistamines as required. Further, the anti-cedar pollinosis agent of the present invention includes a drug in a dosage unit form, and the drug in the dosage unit form includes, for example, a dose per day or an integral multiple thereof (4 Means an agent in a physically separate, unitary dosage form that contains an amount equivalent to (up to twice) or a fraction thereof (up to 1/40) and is suitable for administration. Such dosage unit forms include powders, fine granules, granules, pills, tablets, capsules, troches, syrups, emulsions, mild steels, plasters, poultices, suppositories, eye drops. Nasal drops, sprays, injections and the like.

この発明の抗スギ花粉症剤の使用方法について説明すると、この発明の抗スギ花粉症剤は、スギ花粉症の治療・予防を目的に、ヒトを含む哺乳類一般に経皮、経口、点鼻、点眼又は注射投与される。ヒトにおける投与量は、投与の目的や症状に依っても変わるが、通常、対象者の症状や投与後の経過を観察しながら、成人1日当たり0.01乃至1.0g 、望ましくは、0.01乃至0.1g を目安に、毎週1回乃至毎月1回の頻度で、約1乃至6カ月間、通常、用量を増やしながら反復投与される。   The method of using the anti-cedar pollinosis agent of the present invention will be described. The anti-cedar pollinosis agent of the present invention is generally transdermally, orally, nasally, and instilled for mammals including humans for the purpose of treating and preventing cedar pollinosis. Or it is administered by injection. The dose in humans varies depending on the purpose and symptom of administration, but is usually 0.01 to 1.0 g per day for adults, preferably 0.0 while observing the subject's symptoms and the course after administration. As a guideline, the dose is usually repeated once a week to once a month for about 1 to 6 months with increasing doses.

本発明のポリペプチドの急性毒性
常法により、生後20日のマウスに後述の製剤例1乃至4の方法により得た免疫治療剤を経口又は腹腔内投与した。その結果、これら免疫療法剤は、いずれの投与経路によって200mg/kg 以上のLD50であることが判明した。このことは、この発明のペプチドが、ヒトを含むほ乳類に対する免疫療法剤に安全に配合使用し得ることを示している。
According to the conventional acute toxicity of the polypeptide of the present invention, the immunotherapeutic agent obtained by the method of Preparation Examples 1 to 4 described later was orally or intraperitoneally administered to a 20-day-old mouse. As a result, these immunotherapeutic agents were found to have an LD 50 of 200 mg / kg or more by any administration route. This indicates that the peptide of the present invention can be safely used in an immunotherapeutic agent for mammals including humans.

試験例1.
スギ花粉症患者より単離したT細胞を用い、本発明のペプチド1乃至ペプチド6、及びペプチド9乃至ペプチド24がスギ花粉抗原T細胞エピトープ活性を有することを確認した。皮膚テストにおいて、スギ花粉アレルゲンに対し陽性を示し、かつ、抗スギ花粉アレルゲン IgE 反応に陽性を示す患者から20mlの末梢血を採取した。遠心分離後、バフィーコートを得て、更にフィコール・パック比重遠心法により、末梢血単核球(Peripheral Blood Mononuelear Cells:PBMC)を採取した。このPBMCを培地(RPMI-1640 、5%の熱不活性化ヒトAB型血清を含む。)に、7.5×105細胞/mlになるように懸濁した。
Test Example 1
Using T cells isolated from a cedar pollinosis patient, it was confirmed that peptides 1 to 6 and peptides 9 to 24 of the present invention have cedar pollen antigen T cell epitope activity. In a skin test, 20 ml of peripheral blood was collected from a patient who was positive for cedar pollen allergen and positive for anti-cedar pollen allergen IgE reaction. After centrifugation, buffy coat was obtained, and peripheral blood mononuclear cells (PBMC) were collected by Ficoll-Pak specific gravity centrifugation. This PBMC was suspended in a medium (RPMI-1640, containing 5% heat-inactivated human AB serum) at 7.5 × 10 5 cells / ml.

96ウェルの丸底プレートにおいて、1.5×105 の細胞を、各ウェル200μl の培地中で20ngのペプチドと37℃5%CO2存在下で48時間培養した。その後、1μCiのトリチウム化チミジンを加え、さらに16時間培養した。細胞に取り込まれたカウントを測定するため、セルハーベスターを用いて細胞をガラス繊維フィルター上に集め、液体シンチレーションカウンターで測定した。この結果を以下の表2に示す。 In 96-well round bottom plates, 1.5 × 10 5 cells were cultured in 200 μl of each well for 48 hours in the presence of 20 ng peptide and 37 ° C. 5% CO 2 . Thereafter, 1 μCi of tritiated thymidine was added and further cultured for 16 hours. In order to measure the count taken up by the cells, the cells were collected on a glass fiber filter using a cell harvester and measured with a liquid scintillation counter. The results are shown in Table 2 below.

Figure 0004171794
Figure 0004171794

以上の結果より、これらのペプチドは、Cryj2アレルゲンのT細胞エピトープを含有していることが示された。   From the above results, these peptides were shown to contain a T cell epitope of Cryj2 allergen.

試験例2.
Cryj2を文献記載の方法(Allergy, 1990, 45, 309-312) で精製した。精製したCryj2 1μg とコレラ毒素Bサブユニット1μg (コレラ毒素0.5%含有)を0.01M リン酸緩衝液(pH 7.4) に溶解させた抗原溶液を、アバチン麻酔下の Balb/c マウス(5〜6週齢:チャールズリバージャパン社)に点鼻投与し免疫した。その2週間後、再び同様の方法により同マウスを追加免疫した。その1週間後、マウスの顎下リンパ節細胞を摘出した。これをナイロンメッシュに通し、さらに培地(RPMI 1640 10%子牛胎児血清含有)に懸濁して懸濁液を調製した。
Test Example 2
Cryj2 was purified by the method described in the literature (Allergy, 1990, 45, 309-312). An antigen solution prepared by dissolving 1 μg of purified Cryj2 and 1 μg of cholera toxin B subunit (containing 0.5% cholera toxin) in 0.01 M phosphate buffer (pH 7.4) was added to Balb / c mice (5 to 5) under an abatin anesthesia. 6 weeks of age: Charles River Japan) was administered nasally and immunized. Two weeks later, the mice were boosted again by the same method. One week later, mouse submandibular lymph node cells were removed. This was passed through a nylon mesh and further suspended in a medium (containing RPMI 1640 10% calf fetal serum) to prepare a suspension.

また、Cryj2で免疫化していないマウスより脾臓細胞を摘出し、上記と同様の方法でリンパ節細胞懸濁液を調製した。この懸濁液に3000 RadのX線を照射して細胞の増殖活性を消失させ、抗原提示細胞懸濁液として用いた。平底96ウェルプレート(コーニング社)に、1ウェル当たりリンパ節細胞3×106、抗原提示細胞6×105 となるように分注し、ペプチド7又はペプチド8の存在下(0.5μg/ml)、あるいはこれらペプチドの非存在下で、37℃、5%CO2の条件下3日間培養した。 In addition, spleen cells were excised from mice not immunized with Cryj2, and a lymph node cell suspension was prepared by the same method as described above. This suspension was irradiated with 3000 Rad X-rays to eliminate cell growth activity, and used as an antigen-presenting cell suspension. A flat bottom 96-well plate (Corning) was dispensed at 3 × 10 6 lymph node cells and 6 × 10 5 antigen-presenting cells per well, and in the presence of peptide 7 or peptide 8 (0.5 μg / ml). Or in the absence of these peptides, the cells were cultured for 3 days at 37 ° C. and 5% CO 2 .

最後の16時間は、 3H-Thymidine 存在下で培養し、この間に細胞核内DNAに取り込まれた 3H-Thymidine 量を、ガラスフィルターに吸着したDNAの放射線量を液体シンチレーション法により測定することにより算定した。ペプチド存在下での 3H-Thymidine 取り込み量を、ペプチド非存在下での取り込み量で割った値を反応倍率として、これを細胞増殖活性の指標とした。 The last 16 hours were cultured in the presence of 3 H-Thymidine, and during this time, the amount of 3 H-Thymidine incorporated into the intracellular DNA was measured by measuring the radiation dose of DNA adsorbed on the glass filter by the liquid scintillation method. Calculated. A value obtained by dividing the amount of 3 H-Thymidine incorporation in the presence of the peptide by the amount of incorporation in the absence of the peptide was used as a reaction fold, and this was used as an index of cell proliferation activity.

リンパ節細胞は、ペプチド7に対しては3倍程度、ペプチド8に対しては5倍程度増殖率が増大した。従って、これらのペプチドは、Cryj2アレルゲンのT細胞エピトープを含有していることが示された。   The proliferation rate of lymph node cells increased about 3 times for peptide 7 and about 5 times for peptide 8. Thus, these peptides were shown to contain the T cell epitope of the Cryj2 allergen.

試験例3.
ペプチド7又は8について、 Balb/c マウスに対して免疫寛容を誘導した。すなわち、リン酸緩衝液(0.01M (pH 7.4)) に溶解させた各ペプチド溶液について、マウス尾静脈に一匹当たり20μg のペプチド量となるように静脈投与を行った。または、同ペプチド溶液を、1匹1回当たり1mgのペプチド量となるように経口投与を行い、この経口投与を2週間に4回繰り返した。その後、当該マウスについて、試験例2と同様の方法で、Cryj2による免疫を行った。
Test Example 3
For peptide 7 or 8, immune tolerance was induced in Balb / c mice. That is, each peptide solution dissolved in a phosphate buffer (0.01 M (pH 7.4)) was intravenously administered to the mouse tail vein so that the amount of peptide was 20 μg per mouse. Alternatively, the peptide solution was orally administered so that the amount of the peptide was 1 mg per animal, and this oral administration was repeated 4 times in 2 weeks. Thereafter, the mouse was immunized with Cryj2 in the same manner as in Test Example 2.

試験例2と同様の方法で該マウスより顎下リンパ節細胞を摘出して顎下リンパ節細胞懸濁液とし、また、ペプチドによる寛容化とCryj2による免疫誘導を行っていない別個のマウスより脾臓を摘出してX線により増殖活性を消失させ抗原提示細胞懸濁液として、これらをCryj2の存在(1μg/ml)下で共培養して、試験例2と同様の方法で 3H-Thymidine 取り込み量を測定し細胞増殖活性を算定した。 Submandibular lymph node cells were removed from the mouse by the same method as in Test Example 2 to form a submandibular lymph node cell suspension, and the spleen was obtained from a separate mouse that had not been tolerized with peptide and immunized with Cryj2. And the proliferative activity is eliminated by X-rays to obtain antigen-presenting cell suspensions, which are co-cultured in the presence of Cryj2 (1 μg / ml) and incorporated with 3 H-Thymidine in the same manner as in Test Example 2. The amount was measured and the cell proliferation activity was calculated.

また、リンパ節細胞及び抗原提示細胞の懸濁液を調製培地により調製した。1ウェル当たりリンパ節細胞1.5×106、抗原提示細胞3×106 となるように、24ウェルプレート(コーニング)に分注し、これらの細胞をCryj2(1μg/ml)と共に37℃、5%CO2の条件下で3日間培養した。培養終了後、培養上清液を採取し、測定に用いるまで20℃で凍結保存した。培養液中に含まれるインターロイキン4の量を市販の測定キット(Endogen 社)にて測定した。 In addition, a suspension of lymph node cells and antigen-presenting cells was prepared using a preparation medium. Distribute the cells into 24-well plates (Corning) so that there are 1.5 × 10 6 lymph node cells and 3 × 10 6 antigen-presenting cells per well, and these cells are combined with Cryj2 (1 μg / ml) at 37 ° C. The cells were cultured for 3 days under 5% CO 2 conditions. After completion of the culture, the culture supernatant was collected and stored frozen at 20 ° C. until used for measurement. The amount of interleukin 4 contained in the culture solution was measured with a commercially available measurement kit (Endogen).

(1)ペプチド7の静脈投与による免疫寛容の誘導
マウス尾静脈にペプチド7の溶液を投与した。対照群のマウスには、リン酸緩衝液(0.01M (pH 7.4)) のみを静脈投与した。その後、上記の方法に従って、両群のマウスをCryj2で経鼻的に免疫した。その後、当該マウスより摘出した顎下リンパ節細胞及び他のマウスより摘出した抗原提示細胞をCryj2と共に培養すると、あらかじめペプチド7を投与したマウスからのリンパ節細胞の増殖活性は、対照群に比較して29.5%低下していた。これによりペプチド7には、スギアレルゲンに対する免疫応答を抑制する活性があることが明らかとなった。
(1) Induction of immune tolerance by intravenous administration of peptide 7 A solution of peptide 7 was administered to the tail vein of mice. Only the phosphate buffer (0.01 M (pH 7.4)) was intravenously administered to the control group of mice. Thereafter, both groups of mice were immunized intranasally with Cryj2 according to the method described above. Thereafter, when submandibular lymph node cells excised from the mouse and antigen-presenting cells excised from other mice were cultured with Cryj2, the proliferation activity of the lymph node cells from the mice pre-administered with peptide 7 was compared with that of the control group. 29.5%. As a result, it was revealed that peptide 7 has an activity of suppressing an immune response against a spear allergen.

(2)ペプチド7の経口投与による免疫寛容の誘導
マウスにT細胞ペプチド7の溶液を2週間の間に4回、上記の方法に従い経口投与した。対照群のマウスには、リン酸緩衝液(0.01M (pH 7.4)) のみを経口投与した。その後、両群のマウスをCryj2で経鼻的に免疫した。その後、当該マウスより摘出した顎下リンパ節細胞及び他のマウスより摘出した抗原提示細胞をCryj2と共に3日間培養し、その培養上清中のサイトカイン量を測定した。その結果、あらかじめペプチド7を投与したマウスからのリンパ節細胞から産生されるインターロイキン4の量は、対照群に比較して49.8%低下していた。これによりペプチド7を経口的に投与することにより、スギアレルゲンに対する免疫応答を抑制することが示された。
(2) Induction of immune tolerance by oral administration of Peptide 7 A T cell peptide 7 solution was orally administered to mice 4 times in 2 weeks according to the above method. Only the phosphate buffer (0.01 M (pH 7.4)) was orally administered to the control group of mice. Thereafter, both groups of mice were immunized intranasally with Cryj2. Thereafter, submandibular lymph node cells excised from the mice and antigen-presenting cells excised from other mice were cultured with Cryj2 for 3 days, and the amount of cytokine in the culture supernatant was measured. As a result, the amount of interleukin 4 produced from lymph node cells from mice pre-administered with peptide 7 was 49.8% lower than that in the control group. Thus, it was shown that the peptide 7 was orally administered to suppress the immune response to squirrel allergen.

(3)ペプチド8の静脈投与による免疫寛容の誘導
マウス尾静脈にペプチド8の溶液を投与した。対照群のマウスには、リン酸緩衝液(0.01M (pH 7.4)) のみを静脈投与した。その後、上記の方法に従って、両群のマウスをCryj2で経鼻的に免疫した。その後、当該マウスより摘出した顎下リンパ節細胞及び他のマウスより摘出した抗原提示細胞をCryj2と共に培養すると、あらかじめペプチド8を投与したマウスからのリンパ節細胞の増殖活性は、対照群に比較して30.9%低下していた。これによりペプチド8には、スギアレルゲンに対する免疫応答を抑制する活性があることが明らかとなった。
(3) Induction of immune tolerance by intravenous administration of peptide 8 A solution of peptide 8 was administered to the tail vein of mice. Only the phosphate buffer (0.01 M (pH 7.4)) was intravenously administered to the control group of mice. Thereafter, both groups of mice were immunized intranasally with Cryj2 according to the method described above. Thereafter, when submandibular lymph node cells excised from the mouse and antigen-presenting cells excised from other mice were cultured together with Cryj2, the proliferation activity of the lymph node cells from mice pre-administered with peptide 8 was compared with the control group. 30.9%. As a result, it was revealed that peptide 8 has an activity of suppressing an immune response to a spear allergen.

(4)ペプチド8の経口投与による免疫寛容の誘導
マウスにT細胞ペプチド8の溶液を2週間の間に4回、上記の方法に従い経口投与した。対照群のマウスには、リン酸緩衝液(0.01M (pH 7.4)) のみを経口投与した。その後、両群のマウスをCryj2で経鼻的に免疫した。その後、当該マウスより摘出した顎下リンパ節細胞及び他のマウスより摘出した抗原提示細胞をCryj2と共に培養すると、あらかじめペプチド8を投与したマウスからのリンパ節細胞の増殖活性は、対照群に比較して73.1%低下していた。これによりペプチド8には、スギアレルゲンに対する免疫応答を抑制する活性があることが明らかとなった。
(4) Induction of immune tolerance by oral administration of Peptide 8 A T cell peptide 8 solution was orally administered to mice 4 times in 2 weeks according to the above method. Only the phosphate buffer (0.01 M (pH 7.4)) was orally administered to the control group of mice. Thereafter, both groups of mice were immunized intranasally with Cryj2. Thereafter, when submandibular lymph node cells excised from the mouse and antigen-presenting cells excised from other mice were cultured together with Cryj2, the proliferation activity of the lymph node cells from mice pre-administered with peptide 8 was compared with the control group. 73.1%. As a result, it was revealed that peptide 8 has an activity of suppressing an immune response to a spear allergen.

試験例4
ペプチド8について、Balb/cマウスに対して、治療を施した。すなわち、精製したCryj2 1μgとコレラ毒素Bサブユニット1μg(コレラ毒素0.5%含有)を0.01Mリン酸緩衝液(pH7.4)に溶解させた抗原溶液を、アバチン麻酔下の2群のBalb/cマウス(5〜6週齢:チャールズリバージャパン社)に点鼻投与し免疫した。一週間後より、実験群のマウスに対して、0.01Mリン酸緩衝液(pH7.4)に溶解させたペプチド8の溶液を、一匹について一回あたり200 μgのペプチド量となるように経口投与し、この経口投与を2週間の間に4回繰り返した。対照群のマウスには、0.01Mリン酸緩衝液(pH7.4)のみを同様に投与した。4回目の経口投与から4日後に、両群のマウスに再度Cryj2で経鼻的に免疫した。一週間後、試験例3と同様の方法により当該マウスより摘出した顎下リンパ節細胞と他のマウスより摘出した抗原提示細胞とをCryj2と共に培養すると、実験群マウス由来のリンパ節細胞の増殖は、対照群に比較して46.0%低下していた。この結果より、ペプチド8は、スキアレルゲンで免疫された後のマウスに投与した場合にも、スキアレルゲンに対する免疫応答を抑制する活性を有することが明らかとなった。
Test example 4
For peptide 8, Balb / c mice were treated. That is, an antigen solution prepared by dissolving 1 μg of purified Cryj2 and 1 μg of cholera toxin B subunit (containing 0.5% of cholera toxin) in 0.01 M phosphate buffer (pH 7.4) was added to two groups of Balb under abatin anesthesia. / c mice (5-6 weeks old: Charles River Japan) were nasally administered and immunized. From one week later, the peptide 8 solution dissolved in 0.01 M phosphate buffer (pH 7.4) was orally administered to the mice in the experimental group so that the amount of the peptide was 200 μg per mouse. And this oral administration was repeated 4 times over 2 weeks. Only 0.01M phosphate buffer (pH 7.4) was similarly administered to the control group of mice. Four days after the fourth oral administration, both groups of mice were again immunized intranasally with Cryj2. One week later, when submandibular lymph node cells excised from the mouse by the same method as in Test Example 3 and antigen-presenting cells excised from other mice were cultured with Cryj2, the proliferation of the lymph node cells derived from the experimental group mice was It was 46.0% lower than the control group. From this result, it was revealed that peptide 8 has an activity of suppressing an immune response to a skier allergen even when administered to a mouse immunized with a skier allergen.

以上のように、本発明のペプチドは、ヒトを含む哺乳類一般に投与すると、実質的にアナフィラキシーを引起こすことなく、スギ花粉アレルゲンに特異的なT細胞を活性化することができる。有効成分として斯かるペプチドを含んでなる本発明の抗スギ花粉症剤は、ヒトを含む哺乳類一般に投与すると、実質的にアナフィラキシーを引起こすことなくスギ花粉症に対して顕著な治療・予防効果を発揮する。   As described above, the peptide of the present invention can activate T cells specific for the cedar pollen allergen without substantially causing anaphylaxis when administered to mammals including humans in general. The anti-cedar pollinosis agent of the present invention comprising such a peptide as an active ingredient has a remarkable therapeutic / preventive effect on cedar pollinosis substantially without causing anaphylaxis when administered to mammals including humans. Demonstrate.

有効成分としてこの発明のペプチドを含んでなる抗スギ花粉症剤は、スギ花粉症に罹患してヒトを含む哺乳類一般に投与すると、アナフィラキシーなどの副作用を実質的に引起こすことなく、スギ花粉症を治療することができる。一方、この発明の抗スギ花粉症剤を、スギ花粉が飛散し始める前に健常な個体や潜在的なスギ花粉症の個体に投与するときには、スギ花粉症に対して顕著な予防効果を発揮するとともに、発症時のアレルギー症状の緩解に著効を発揮する。   An anti-cedar pollinosis agent comprising the peptide of the present invention as an active ingredient is effective in causing cedar pollinosis without substantially causing side effects such as anaphylaxis when administered to mammals including humans suffering from cedar pollinosis. Can be treated. On the other hand, when the anti-cedar pollinosis agent of this invention is administered to healthy individuals or individuals with potential cedar pollinosis before the cedar pollen begins to scatter, it exerts a remarkable preventive effect against cedar pollinosis. At the same time, it is effective in relieving allergic symptoms at the onset.

以下、実施例、製剤例により本発明をさらに詳細に説明するが、本発明はこれらによりその技術的範囲が限定されるものではない。   EXAMPLES Hereinafter, although an Example and a formulation example demonstrate this invention further in detail, this invention does not limit the technical scope by these.

実施例1
ペプチド1:
Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
樹脂に固定したアミノ酸誘導体に1個ずつアミノ酸をカルボキシル末端側から結合させていく方法(固相合成法)でペプチドを化学合成した。各サイクルで使用するアミノ酸はαアミノ基及び残基部分の反応基が保護基でブロックされた特殊なアミノ酸誘導体を用いた。ここで、それぞれのαアミノ基が Fmoc (9-fluorenyl methyloxycarbonyl) によりブロックされているアミノ酸を用いた(Fmoc法)。また、ペプチド合成は樹脂に結合したアミノ酸のαアミノ基の Fmoc を脱保護し、次にカルボキシル基が活性化したアミノ酸誘導体を結合させるという反応を順次繰り返して行った。
Example 1
Peptide 1:
Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
Peptides were chemically synthesized by a method (solid phase synthesis method) in which amino acids were bound to the amino acid derivatives fixed on the resin one by one from the carboxyl terminal side. The amino acid used in each cycle was a special amino acid derivative in which the reactive group of the α-amino group and the residue part was blocked with a protecting group. Here, amino acids in which each α-amino group was blocked with Fmoc (9-fluorenyl methyloxycarbonyl) were used (Fmoc method). In addition, peptide synthesis was performed by sequentially repeating the reaction of deprotecting the Fmoc of the α-amino group of the amino acid bonded to the resin and then binding the amino acid derivative activated with the carboxyl group.

実験に用いる各ペプチドは、マルチペプチドシンセサイザー SYMPHONY (Protein Technologies, Inc.)を用い上記の Fmoc 固相合成法にて同装置のプロトコールに従って合成した。すなわち、合成するペプチドのC末端残基に相当するアミノ酸(Ser)が導入されている Fmoc-Ser(tBu)-Wang-樹脂(0.52mmol/g) の25μmol 相当を上記ペプチド合成装置の反応容器にセットし、デプロテクション溶液(20% piperidine / Dimethyl formamide (DMF)) 1.25mlを5分間2回反応させ、樹脂に結合しているアミノ酸の Fmoc 基を除いた。DMF 液1.25mlで30秒間6回洗浄後、C末側から2番目のアミノ酸に相当する200mMの Fmoc-Ala/DMF 溶液1.25mlと200mMのアクチベータ溶液(200mM O-Benzotriazole-N,N,',N',-Tetramethyl-Uronium-Hexafluoro phosphate /400mM N-methylmorpholine/DMF )1.25mlを加え(それぞれ理論等量の10倍:250μmol 相当)、20分間室温で反応させた。ここで生成した Fmoc-Ala-Ser(tBu)-Wang-樹脂をDMF 1.25mlにて30秒間6回洗浄後、再び Fmoc 基のデプロテクションを用い、DMF 1.25mlにて30秒間6回洗浄後、Fmoc-Pro 溶液とアクチベーター溶液を加え反応させた。同様の操作を繰り返すことにより、目的とするペプチド (Fmoc-Lys(Boc)-Val-Asp(OtBu)-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Wang- 樹脂) を合成した。   Each peptide used in the experiment was synthesized by the above Fmoc solid phase synthesis method using a multi-peptide synthesizer SYMPHONY (Protein Technologies, Inc.) according to the protocol of the apparatus. That is, 25 μmol equivalent of Fmoc-Ser (tBu) -Wang-resin (0.52 mmol / g) into which the amino acid (Ser) corresponding to the C-terminal residue of the peptide to be synthesized is introduced into the reaction vessel of the peptide synthesizer. Then, 1.25 ml of a deprotection solution (20% piperidine / dimethylformamide (DMF)) was reacted twice for 5 minutes to remove the Fmoc group of the amino acid bound to the resin. After washing 6 times with 1.25 ml of DMF solution for 30 seconds, 1.25 ml of 200 mM Fmoc-Ala / DMF solution corresponding to the second amino acid from the C-terminal side and 200 mM activator solution (200 mM O-Benzotriazole-N, N, ', 1.25 ml of N ′,-Tetramethyl-Uronium-Hexafluorophosphate / 400 mM N-methylmorpholine / DMF) was added (each 10 times the theoretical equivalent: equivalent to 250 μmol) and reacted at room temperature for 20 minutes. The Fmoc-Ala-Ser (tBu) -Wang-resin produced here was washed 6 times for 30 seconds with 1.25 ml of DMF, and then again washed 6 times for 30 seconds with 1.25 ml of DMF using Fmoc group deprotection. Fmoc-Pro solution and activator solution were added and reacted. By repeating the same procedure, the target peptide (Fmoc-Lys (Boc) -Val-Asp (OtBu) -Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt ) -Pro-Ala-Ser (tBu) -Wang-resin).

ここで合成に使用したアミノ酸は以下のとおりである(日清紡(株)製)。( ) 内は残基部分の反応基を保護する保護基を表す。
Fmoc-Ala, Fmoc-Pro,
Fmoc-Asn(Trt), Fmoc-Gln(Trt), Fmoc-Tyr(tBu),
Fmoc-Ile, Fmoc-Gly, Fmoc-Asp(OtBu),
Fmoc-Val, Fmoc-Lys(Boc),
ペプチド合成装置 SYMPHONY を用い、装置内でクリべージ反応を行った。
The amino acids used in the synthesis are as follows (manufactured by Nisshinbo Co., Ltd.). The inside of () represents the protecting group which protects the reactive group of a residue part.
Fmoc-Ala, Fmoc-Pro,
Fmoc-Asn (Trt), Fmoc-Gln (Trt), Fmoc-Tyr (tBu),
Fmoc-Ile, Fmoc-Gly, Fmoc-Asp (OtBu),
Fmoc-Val, Fmoc-Lys (Boc),
A cleave reaction was performed in the apparatus using a peptide synthesizer SYMPHONY.

まず、上記ように合成し得られた保護ペプチド樹脂(Fmoc-Lys(Boc)-Val-Asp(OtBu)-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Wang- 樹脂)に、デプロテクション液1.25mlを5分間2回反応させてN末端Fmoc基を脱保護した。次に1.25mlのDMF にて30秒間6回洗浄後、CH2Cl2にて同様に洗浄し、 N2を吹き付け10分間乾燥後、クリべージ溶液(Trifluoroacetic acid:Phenol:水:Tioanisole:Ethanedithiol =82.5:5:5:5:2.5) を2.5ml加え室温で2時間反応させ(D.S.King, Int.J.Peptide Protein Reg., 36, 255(1990))、樹脂からのペプチドの切断およびアミノ酸側鎖保護基の除去を行い、ペプチド(Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser)を得た。 First, the protected peptide resin synthesized as described above (Fmoc-Lys (Boc) -Val-Asp (OtBu) -Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn ( Trt) -Pro-Ala-Ser (tBu) -Wang-resin) was reacted with 1.25 ml of deprotection solution twice for 5 minutes to deprotect the N-terminal Fmoc group. Then after DMF at 30 seconds 6 washes 1.25 ml, washed as in CH 2 Cl 2, dried for 10 minutes blowing N 2, Kuribe chromatography di solution (Trifluoroacetic acid: Phenol: Water: Tioanisole: Ethanedithiol = 82.5: 5: 5: 5: 2.5) was added and reacted at room temperature for 2 hours (DSKing, Int. J. Peptide Protein Reg., 36, 255 (1990)). The side chain protecting group was removed to obtain a peptide (Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser).

反応終了後、このペプチド溶液をフィルターを用いて濾過し、樹脂と濾液に分けた。さらに樹脂を洗浄した液2.5mlと合わせ遠心管に回収した。回収したペプチド溶液を装置から取り出し、5mlの冷エーテルを加え、ペプチドを沈澱させた。しばらく冷却後これを遠心して(3000rpm 10分間)沈澱物を集め、再び冷エーテルを加えて分散させては回収することを5〜6回繰り返してペプチドを洗浄した。   After completion of the reaction, the peptide solution was filtered using a filter and separated into a resin and a filtrate. Further, 2.5 ml of the washed resin was combined and collected in a centrifuge tube. The collected peptide solution was removed from the apparatus and 5 ml of cold ether was added to precipitate the peptide. After cooling for a while, this was centrifuged (3000 rpm for 10 minutes), the precipitate was collected, and cold ether was added again to disperse and recover, and the peptide was washed 5 to 6 times repeatedly.

得られたペプチドを乾燥させ、粗ペプチドを得た(50.5mg)。粗ペプチドは0.1% TFAを含む10%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-12OT, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む21%アセトニトリルにて展開し(流速9ml/分、検出波長 220nm) 、31〜35分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(15.9mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The obtained peptide was dried to obtain a crude peptide (50.5 mg). The crude peptide was dissolved in 10% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-12OT, 21.5 mm x 30 cm: manufactured by Tosoh Corporation), and developed with 21% acetonitrile containing 0.1% TFA. (The flow rate was 9 ml / min, the detection wavelength was 220 nm). The fraction eluted at 31 to 35 minutes was collected, concentrated, and lyophilized to obtain the desired peptide (15.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例2
ペプチド2:
Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
実施例1と同様の操作でペプチド(Fmoc-Val-Asp(OtBu)-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Wang-樹脂)を合成し、クリべージ反応を行いペプチド(Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser)を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た(55.5mg)。
Example 2
Peptide 2:
Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
In the same manner as in Example 1, the peptide (Fmoc-Val-Asp (OtBu) -Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt) -Pro-Ala-Ser ( tBu) -Wang-resin) and cleaved to obtain a peptide (Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser) The peptide solution was collected in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide (55.5 mg).

粗ペプチドは0.1% TFAを含む10%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-120T, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む22%アセトニトリルにて展開し(流速9ml/分、検出波長 220nm) 、26〜29分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(7.1mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The crude peptide was dissolved in 10% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-120T, 21.5 mm x 30 cm: manufactured by Tosoh Corporation), and developed with 22% acetonitrile containing 0.1% TFA. The fraction eluted at 26 to 29 minutes was collected, concentrated and freeze-dried to obtain the desired peptide (7.1 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例3
ペプチド3:
Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
実施例1と同様の操作でペプチド(Fmoc-Asp(OtBu)-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Wang-樹脂)を合成し、クリべージ反応を行いペプチド(Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser)を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た(47.9mg)。
Example 3
Peptide 3:
Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
In the same manner as in Example 1, the peptide (Fmoc-Asp (OtBu) -Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt) -Pro-Ala-Ser (tBu) -Wang-resin) and cleaved to obtain a peptide (Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser). Collected in a tube. Thereafter, the peptide was precipitated to obtain a crude peptide (47.9 mg).

粗ペプチドは0.1% TFAを含む10%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-120T, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む21%アセトニトリルにて展開し(流速9ml/分、検出波長 220nm) 、25〜28分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(13.8mg) 。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The crude peptide was dissolved in 10% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-120T, 21.5 mm x 30 cm: manufactured by Tosoh Corporation) and developed with 21% acetonitrile containing 0.1% TFA. (Flow rate 9 ml / min, detection wavelength 220 nm) The fraction eluted at 25 to 28 minutes was collected, concentrated, and lyophilized to obtain the desired peptide (13.8 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例4
ペプチド4:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly
実施例1と同様の操作でペプチド(Fmoc-Trp-Leu-Gln-(Trt)-Phe-Ala-Lys(Boe)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Met-Gly-Wang- 樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Gly-Wang- 樹脂(0.50mol べージ/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Met, Fmoc-Leu, Fmoc-Thr(tBu),
Fmoc-Phe, Fmoc-Gly, Fmoc-Lys(Boc),
Fmoc-Ala, Fmoc-Gln(Trt), Fmoc-Trp,
Example 4
Peptide 4:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly
The peptide (Fmoc-Trp-Leu-Gln- (Trt) -Phe-Ala-Lys (Boe) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Met) was prepared in the same manner as in Example 1. -Gly-Wang-resin). However, Fmoc-Gly-Wang-resin (0.50 mol page / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Met, Fmoc-Leu, Fmoc-Thr (tBu),
Fmoc-Phe, Fmoc-Gly, Fmoc-Lys (Boc),
Fmoc-Ala, Fmoc-Gln (Trt), Fmoc-Trp,

実施例1と同様の操作でクリべージ反応を行いペプチド(Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly )を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た(63.3mg)。   A peptide (Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly) was obtained by carrying out a cleave reaction in the same manner as in Example 1. The solution was collected in a centrifuge tube, and then the peptide was precipitated to obtain a crude peptide (63.3 mg).

粗ペプチドは0.1% TFAを含む20%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-120T, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む38%アセトニトリルにて展開し(流速9ml/分、検出波長 220nm) 、25〜31分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(2.0mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The crude peptide is dissolved in 20% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-120T, 21.5 mm x 30 cm: manufactured by Tosoh Corporation) and developed with 38% acetonitrile containing 0.1% TFA. (Flow rate: 9 ml / min, detection wavelength: 220 nm) The fraction eluted at 25-31 min was collected, concentrated, and lyophilized to obtain the desired peptide (2.0 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例5
ペプチド5:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
実施例1と同様の操作でペプチド(Fmoc-Trp-Leu-Gln-(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Met-Wang- 樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Met-Wang- 樹脂(0.75mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例4と同じである。実施例1と同様の操作でクリべージ反応を行いペプチド(Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met- )を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た(29mg)。
Example 5
Peptide 5:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
The peptide (Fmoc-Trp-Leu-Gln- (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Met) was prepared in the same manner as in Example 1. -Wang-resin) was synthesized. However, Fmoc-Met-Wang-resin (0.75 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 4. A peptide (Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-) was obtained by carrying out a cleave reaction in the same manner as in Example 1, and this peptide solution Was collected in a centrifuge tube, and then the peptide was precipitated to obtain a crude peptide (29 mg).

粗ペプチドは0.1% TFAを含む20%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-120T, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む36%アセトニトリルにて展開し(流速9ml/分、検出波長 220nm) 、32〜34分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.1mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The crude peptide was dissolved in 20% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-120T, 21.5 mm x 30 cm: manufactured by Tosoh Corporation), and developed with 36% acetonitrile containing 0.1% TFA. (The flow rate was 9 ml / min, the detection wavelength was 220 nm), and the fraction eluted at 32 to 34 minutes was concentrated and then lyophilized to obtain the desired peptide (1.1 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例6
ペプチド6:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
実施例1と同様の操作でペプチド(Fmoc-Trp-Leu-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Leu-Wang- 樹脂(0.69mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例4と同じである。
Example 6
Peptide 6:
Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
In the same manner as in Example 1, the peptide (Fmoc-Trp-Leu-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Wang- Resin) was synthesized. However, Fmoc-Leu-Wang-resin (0.69 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 4.

実施例1と同様の操作でクリべージ反応を行いペプチド(Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu )を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た(35.6mg)。粗ペプチドは0.1% TFAを含む20%アセトニトリル水溶液に溶解後、ODS カラム(TSKgel ODS-120T, 21.5mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む38%アセトニトリルにて展開し、26〜30分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(6.3mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   A peptide (Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu) was obtained by carrying out a cleave reaction in the same manner as in Example 1, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide (35.6 mg). The crude peptide is dissolved in 20% acetonitrile aqueous solution containing 0.1% TFA, then supplied to an ODS column (TSKgel ODS-120T, 21.5 mm x 30 cm: manufactured by Tosoh Corporation) and developed with 38% acetonitrile containing 0.1% TFA. The fraction eluted at 26-30 minutes was concentrated and lyophilized to obtain the desired peptide (6.3 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例7
ペプチド7:
His-Phe-Thr-Phe-Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln
実施例1記載の Fmoc 法により、Milligen / Biosearch社製 9050 ペプチド合成機を用い、粗ペプチド400mgを得た。粗ペプチドは0.1% TFA水溶液に溶解後、μBONDASPHERE 5μ C18C120 Aカラム(19×150mm)に供与し、0.1% TFAを含む90%アセトニトリル溶液にて展開し(流速5ml/分、検出波長214nm)、28〜29分に溶出された画分をエバポレート後、凍結乾燥を行い目的とするペプチドを得た(36mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。
Example 7
Peptide 7:
His-Phe-Thr-Phe-Lys-Val-Asp-Gly-Ile-Ile-Ala-Ala-Tyr-Gln
By the Fmoc method described in Example 1, using a 9050 peptide synthesizer manufactured by Milligen / Biosearch, 400 mg of crude peptide was obtained. The crude peptide was dissolved in a 0.1% TFA aqueous solution, then applied to a μBONDASPHERE 5μ C18C120 A column (19 × 150 mm), developed with a 90% acetonitrile solution containing 0.1% TFA (flow rate 5 ml / min, detection wavelength 214 nm), 28 The fraction eluted at ˜29 minutes was evaporated and then lyophilized to obtain the desired peptide (36 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例8
ペプチド8:
Arg-Ala-Glu-Val-Ser-Tyr-Val-His-Val-Asn-Gly-Ala-Lys-Phe
実施例1記載の Fmoc 法により、Milligen / Biosearch社製 9050 ペプチド合成機を用い、粗ペプチド550mgを得た。粗ペプチドは0.1% TFA水溶液に溶解後、μBONDASPHERE 5μ C18C120 Aカラム(19×150mm)に供与し、0.1% TFAを含む90%アセトニトリル溶液にて展開し(流速5ml/分、検出波長214nm)、26〜27分に溶出された画分をエバポレート後、凍結乾燥を行い目的とするペプチドを得た(60mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。
Example 8
Peptide 8:
Arg-Ala-Glu-Val-Ser-Tyr-Val-His-Val-Asn-Gly-Ala-Lys-Phe
Using the 9050 peptide synthesizer manufactured by Milligen / Biosearch, 550 mg of crude peptide was obtained by the Fmoc method described in Example 1. The crude peptide was dissolved in a 0.1% TFA aqueous solution, then applied to a μBONDASPHERE 5μ C18C120 A column (19 × 150 mm), developed with a 90% acetonitrile solution containing 0.1% TFA (flow rate 5 ml / min, detection wavelength 214 nm), 26 The fraction eluted at ˜27 minutes was evaporated and lyophilized to obtain the desired peptide (60 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例9
ペプチド9:
Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
樹脂に固定したアミノ酸誘導体に1個ずつアミノ酸をカルボキシル末端側から結合させていく方法(固相合成法)でペプチドを化学合成した。各サイクルで使用するアミノ酸はαアミノ基及び残基部分の反応基が保護基でブロックされた特殊なアミノ酸誘導体を用いた。ここで、それぞれのαアミノ基が Fmoc (9-fluorenyl methyloxycarbonyl) によりブロックされているアミノ酸を用いた(Fmoc法)。また、ペプチド合成は樹脂に結合したアミノ酸のαアミノ基の Fmoc を脱保護し、次にカルボキシル基が活性化したアミノ酸誘導体を結合させるという反応を順次繰り返して行った。
Example 9
Peptide 9:
Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser
Peptides were chemically synthesized by a method (solid phase synthesis method) in which amino acids were bound to the amino acid derivatives fixed on the resin one by one from the carboxyl terminal side. The amino acid used in each cycle was a special amino acid derivative in which the reactive group of the α-amino group and the residue part was blocked with a protecting group. Here, amino acids in which each α-amino group was blocked with Fmoc (9-fluorenyl methyloxycarbonyl) were used (Fmoc method). In addition, peptide synthesis was performed by sequentially repeating the reaction of deprotecting the Fmoc of the α-amino group of the amino acid bonded to the resin and then binding the amino acid derivative activated with the carboxyl group.

実験に用いる各ペプチドは、マルチペプチドシンセサイザー SYMPHONY (Protein Technologies, Inc.)を用い上記の Fmoc 固相合成法にて同装置のプロトコールに従って合成した。すなわち、合成するペプチドのC末端残基に相当するアミノ酸(Ser)が導入されている Fmoc-Ser(tBu)-Wang-樹脂(0.52mmol/g) の25μmol 相当を上記ペプチド合成装置の反応容器にセットし、デプロテクション溶液(20% piperidine / Dimethyl formamide (DMF)) 1.25mlを5分間2回反応させ、樹脂に結合しているアミノ酸の Fmoc 基を除いた。DMF 液1.25mlで30秒間6回洗浄後、C末側から2番目のアミノ酸に相当する200mMの Fmoc-Ala/DMF 溶液1.25mlと200mMのアクチベータ溶液(200mM O-Benzotriazole-N,N,',N',-Tetramethyl-Uronium-Hexafluoro phosphate /400mM N-methylmorpholine/DMF )1.25mlを加え(それぞれ理論等量の10倍:250μmol 相当)、20分間室温で反応させた。ここで生成した Fmoc-Ala-Ser(tBu)-Wang-樹脂をDMF 1.25mlにて30秒間6回洗浄後、再び Fmoc 基のデプロテクションを用い、DMF 1.25mlにて30秒間6回洗浄後、Fmoc-Pro 溶液とアクチベーター溶液を加え反応させた。同様の操作を繰り返すことにより、目的とするペプチド (Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Wang-樹脂) を合成した。   Each peptide used in the experiment was synthesized by the above Fmoc solid phase synthesis method using a multi-peptide synthesizer SYMPHONY (Protein Technologies, Inc.) according to the protocol of the apparatus. That is, 25 μmol equivalent of Fmoc-Ser (tBu) -Wang-resin (0.52 mmol / g) into which the amino acid (Ser) corresponding to the C-terminal residue of the peptide to be synthesized is introduced into the reaction vessel of the peptide synthesizer. Then, 1.25 ml of a deprotection solution (20% piperidine / dimethylformamide (DMF)) was reacted twice for 5 minutes to remove the Fmoc group of the amino acid bound to the resin. After washing 6 times with 1.25 ml of DMF solution for 30 seconds, 1.25 ml of 200 mM Fmoc-Ala / DMF solution corresponding to the second amino acid from the C-terminal side and 200 mM activator solution (200 mM O-Benzotriazole-N, N, ', 1.25 ml of N ′,-Tetramethyl-Uronium-Hexafluorophosphate / 400 mM N-methylmorpholine / DMF) was added (each 10 times the theoretical equivalent: equivalent to 250 μmol) and reacted at room temperature for 20 minutes. The Fmoc-Ala-Ser (tBu) -Wang-resin produced here was washed 6 times for 30 seconds with 1.25 ml of DMF, and then again washed 6 times for 30 seconds with 1.25 ml of DMF using Fmoc group deprotection. Fmoc-Pro solution and activator solution were added and reacted. By repeating the same procedure, the target peptide (Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt) -Pro-Ala-Ser (tBu) -Wang -Resin) was synthesized.

ここで合成に使用したアミノ酸は以下のとおりである(日清紡(株)製)。( ) 内は残基部分の反応基を保護する保護基を表す。
Fmoc-Ala, Fmoc-Pro,
Fmoc-Asn(Trt), Fmoc-Gln(Trt), Fmoc-Tyr(tBu),
Fmoc-Ile, Fmoc-Gly,
ペプチド合成装置 SYMPHONY を用い、装置内でクリべージ反応を行った。
The amino acids used in the synthesis are as follows (manufactured by Nisshinbo Co., Ltd.). The inside of () represents the protecting group which protects the reactive group of a residue part.
Fmoc-Ala, Fmoc-Pro,
Fmoc-Asn (Trt), Fmoc-Gln (Trt), Fmoc-Tyr (tBu),
Fmoc-Ile, Fmoc-Gly,
A cleave reaction was performed in the apparatus using a peptide synthesizer SYMPHONY.

まず、上記ように合成し得られた保護ペプチド樹脂(Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)- Wang- 樹脂)に、デプロテクション液1.25mlを5分間2回反応させてN末端Fmoc基を脱保護した。次に1.25mlのDMF にて30秒間6回洗浄後、CH2Cl2にて同様に洗浄し、 N2を吹き付け10分間乾燥後、クリべージ溶液(Trifluoroacetic acid:Phenol:水:Tioanisole:Ethanedithiol =82.5:5:5:5:2.5) を2.5ml加え室温で2時間反応させ(D.S.King, Int.J.Peptide Protein Reg., 36, 255(1990))、樹脂からのペプチドの切断およびアミノ酸側鎖保護基の除去を行い、ペプチド(Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser)を得た。 First, the protected peptide resin (Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt) -Pro-Ala-Ser (tBu)- Wang-resin) was reacted with 1.25 ml of deprotection solution twice for 5 minutes to deprotect the N-terminal Fmoc group. Then after DMF at 30 seconds 6 washes 1.25 ml, washed as in CH 2 Cl 2, dried for 10 minutes blowing N 2, Kuribe chromatography di solution (Trifluoroacetic acid: Phenol: Water: Tioanisole: Ethanedithiol = 82.5: 5: 5: 5: 2.5) was added and reacted at room temperature for 2 hours (DSKing, Int. J. Peptide Protein Reg., 36, 255 (1990)). The side chain protecting group was removed to obtain a peptide (Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser).

反応終了後、このペプチド溶液をフィルターを用いて濾過し、樹脂と濾液に分けた。さらに樹脂を洗浄した液2.5mlと合わせ遠心管に回収した。回収したペプチド溶液を装置から取り出し、5mlの冷エーテルを加え、ペプチドを沈澱させた。しばらく冷却後これを遠心して(3000rpm 10分間)沈澱物を集め、再び冷エーテルを加えて分散させては回収することを5〜6回繰り返してペプチドを洗浄した。   After completion of the reaction, the peptide solution was filtered using a filter and separated into a resin and a filtrate. Further, 2.5 ml of the washed resin was combined and collected in a centrifuge tube. The collected peptide solution was removed from the apparatus and 5 ml of cold ether was added to precipitate the peptide. After cooling for a while, this was centrifuged (3000 rpm for 10 minutes), the precipitate was collected, and cold ether was added again to disperse and recover, and the peptide was washed 5 to 6 times repeatedly.

得られたペプチドを乾燥させ、粗ペプチドを得た。得られた粗ペプチドのうち11mgを2mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-12OT, 7.8mm×30cm:東ソー(株)製)に供与し、0.1% TFAを含む21%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、9.2〜11分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(5mg )。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   The obtained peptide was dried to obtain a crude peptide. 11 mg of the obtained crude peptide was dissolved in 10% acetonitrile aqueous solution containing 2 ml of 0.1% TFA, and then divided into three times and supplied to an ODS column (TSKgel ODS-12OT, 7.8 mm × 30 cm: manufactured by Tosoh Corporation) Development with 21% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 9.2-11 min were collected, concentrated, and lyophilized for the purpose Was obtained (5 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例10
ペプチド10:
Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser-Trp
実施例9と同様の操作でペプチド(Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr(tBu)-Gln(Trt)-Asn(Trt)-Pro-Ala-Ser(tBu)-Trp-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Trp-Wang- 樹脂(0.66mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Ala, Fmoc-Pro, Fmoc-Asn(Trt),
Fmoc-Gln(Trt), Fmoc-Tyr(tBu), Fmoc-Ile,
Fmoc-Gly, Fmoc-Ser(tBu)
Example 10
Peptide 10:
Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser-Trp
In the same manner as in Example 9, the peptide (Fmoc-Gly-Ile-Ile-Ala-Ala-Tyr (tBu) -Gln (Trt) -Asn (Trt) -Pro-Ala-Ser (tBu) -Trp-Wang- Resin) was synthesized. However, 25 μmol of Fmoc-Trp-Wang-resin (0.66 mmol / g) was used as the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Ala, Fmoc-Pro, Fmoc-Asn (Trt),
Fmoc-Gln (Trt), Fmoc-Tyr (tBu), Fmoc-Ile,
Fmoc-Gly, Fmoc-Ser (tBu)

実施例9と同様の操作でクリべージ反応を行いペプチド(Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser-Trp)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   A peptide (Gly-Ile-Ile-Ala-Ala-Tyr-Gln-Asn-Pro-Ala-Ser-Trp) was obtained by the same procedure as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち9mgを4mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む23%アセトニトリルにて展開し、32〜38分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(2.5mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   9 mg of the obtained crude peptide was dissolved in 10% aqueous acetonitrile containing 4 ml of 0.1% TFA, and then divided into two portions and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Then, the resultant was developed with 23% acetonitrile containing 0.1% TFA, and the fraction eluted at 32 to 38 minutes was concentrated and freeze-dried to obtain the desired peptide (2.5 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例11
ペプチド11:
Ile-Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
実施例9と同様の操作でペプチド(Fmoc-Ile-Trp-Leu-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Leu-Wang- 樹脂(0.69mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu),
Fmoc-Phe, Fmoc-Gly, Fmoc-Lys(Boc),
Fmoc-Ala, Fmoc-Gln(Trt), Fmoc-Trp,
Fmoc-Ile,
Example 11
Peptide 11:
Ile-Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
In the same manner as in Example 9, the peptide (Fmoc-Ile-Trp-Leu-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu- Wang-resin) was synthesized. However, Fmoc-Leu-Wang-resin (0.69 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu),
Fmoc-Phe, Fmoc-Gly, Fmoc-Lys (Boc),
Fmoc-Ala, Fmoc-Gln (Trt), Fmoc-Trp,
Fmoc-Ile,

実施例9と同様の操作でクリべージ反応を行いペプチド(Ile-Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   The peptide (Ile-Trp-Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu) was obtained by carrying out a cleave reaction in the same manner as in Example 9. After collecting in a centrifuge tube, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち7mgを4mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む37%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、17〜20分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た ( 0.7mg) 。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   7 mg of the obtained crude peptide was dissolved in 4 ml of 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into three times and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Development with 37% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 17-20 min are collected, concentrated, and lyophilized for the purpose. The peptide was obtained (0.7 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例12
ペプチド12:
Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
実施例9と同様の操作でペプチド(Fmoc-Leu-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Wang- 樹脂)を合成し、クリべージ反応を行いペプチド(Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu)を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu), Fmoc-Phe,
Fmoc-Gly, Fmoc-Lys(Boc), Fmoc-Ala,
Fmoc-Gln(Trt),
Example 12
Peptide 12:
Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
Peptide (Fmoc-Leu-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Wang-resin) in the same manner as in Example 9 And a cleave reaction was performed to obtain a peptide (Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu), and this peptide solution was collected in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu), Fmoc-Phe,
Fmoc-Gly, Fmoc-Lys (Boc), Fmoc-Ala,
Fmoc-Gln (Trt),

得られた粗ペプチドのうち 9.6mgを2mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む32%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、11〜16分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(6.4mg) 。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   Of the obtained crude peptide, 9.6 mg was dissolved in 2 ml of 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two times and applied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Developed with 32% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 11-16 min were collected, concentrated and freeze-dried Peptide (6.4 mg) was obtained. When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例13
ペプチド13
Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
実施例9と同様の操作でペプチド(Fmoc-Leu-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Met-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Met-Wang- 樹脂(0.75mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例12と同じである。実施例9と同様の操作でクリべージ反応を行いペプチド(Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。
Example 13
Peptide 13
Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
In the same manner as in Example 9, the peptide (Fmoc-Leu-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Met-Wang- Resin) was synthesized. However, Fmoc-Met-Wang-resin (0.75 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 12. A peptide (Leu-Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち8mgを2mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む30%アセトニトリルにて展開し、25〜32分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.1mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   8 mg of the obtained crude peptide was dissolved in 2 ml of 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two portions and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Then, the resultant was developed with 30% acetonitrile containing 0.1% TFA, and the fraction eluted at 25 to 32 minutes was concentrated and then lyophilized to obtain the desired peptide (1.1 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例14
ペプチド14:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
実施例9と同様の操作でペプチド(Fmoc-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Leu-Wang- 樹脂(0.69mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例12と同じである。実施例9と同様の操作でクリべージ反応を行いペプチド(Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。
Example 14
Peptide 14:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu
Peptide (Fmoc-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Wang-resin) was synthesized in the same manner as in Example 9. did. However, Fmoc-Leu-Wang-resin (0.69 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 12. The peptide (Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was recovered in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち 2.5mgを1mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む30%アセトニトリルにて展開し、10〜12分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(0.6mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   2.5 mg of the obtained crude peptide was dissolved in 1 ml of a 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two portions on an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). The resulting peptide was developed with 30% acetonitrile containing 0.1% TFA, and the fraction eluted at 10 to 12 minutes was concentrated and then lyophilized to obtain the desired peptide (0.6 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例15
ペプチド15:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
実施例9と同様の操作でペプチド(Fmoc-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Met-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Met-Wang- 樹脂(0.75mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例12と同じである。実施例9と同様の操作でクリべージ反応を行いペプチド(Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。
Example 15
Peptide 15:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met
Peptide (Fmoc-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Met-Wang-resin) in the same manner as in Example 9 Was synthesized. However, Fmoc-Met-Wang-resin (0.75 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 12. The peptide (Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met) was obtained by the same procedure as in Example 9, and this peptide solution was collected in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち7mgを4mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む30%アセトニトリルにて展開し、15〜20分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.9mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   7 mg of the obtained crude peptide was dissolved in 4 ml of 0.1% TFA in 20% acetonitrile aqueous solution and then divided into two portions and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm x 30 cm: manufactured by Tosoh Corporation). Then, it was developed with 30% acetonitrile containing 0.1% TFA, and the fraction eluted at 15 to 20 minutes was concentrated and then lyophilized to obtain the desired peptide (1.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例16
ペプチド16:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly
実施例9と同様の操作でペプチド(Fmoc-Gln(Trt)-Phe-Ala-Lys(Boc)-Leu-Thr(tBu)-Gly-Phe-Thr(tBu)-Leu-Met-Gly-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Gly-Wang- 樹脂(0.50mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu), Fmoc-Phe,
Fmoc-Gly, Fmoc-Lys(Boc), Fmoc-Ala,
Fmoc-Gln(Trt), Fmoc-Met
Example 16
Peptide 16:
Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly
In the same manner as in Example 9, the peptide (Fmoc-Gln (Trt) -Phe-Ala-Lys (Boc) -Leu-Thr (tBu) -Gly-Phe-Thr (tBu) -Leu-Met-Gly-Wang- Resin) was synthesized. However, Fmoc-Gly-Wang-resin (0.50 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu), Fmoc-Phe,
Fmoc-Gly, Fmoc-Lys (Boc), Fmoc-Ala,
Fmoc-Gln (Trt), Fmoc-Met

実施例9と同様の操作でクリべージ反応を行いペプチド(Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   The peptide (Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu-Met-Gly) was obtained by the same procedure as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち13mgを6mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む29%アセトニトリルにて展開し、17〜20分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(0.9mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   13 mg of the obtained crude peptide was dissolved in 6 ml of 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into three times and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Then, the resultant was developed with 29% acetonitrile containing 0.1% TFA, and the fraction eluted at 17 to 20 minutes was concentrated and then lyophilized to obtain the desired peptide (0.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例17
ペプチド17:
Ile-Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn
実施例9と同様の操作でペプチド(Fmoc-Ile-Phe-Ala-Ser(tBu)-Lys(Boc)-Asn(Trt)-Phe-His(Trt)-Leu-Gln(Trt)-Lys(Boc)-Asn(Trt)-Wang- 樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Asn(Trt)-Wang-樹脂(0.60mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Asn(Trt), Fmoc-Ile,
Fmoc-Phe, Fmoc-Lys(Boc), Fmoc-His(Trt),
Fmoc-Ala, Fmoc-Gln(Trt), Fmoc-Ser(tBu),
Example 17
Peptide 17:
Ile-Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn
In the same manner as in Example 9, the peptide (Fmoc-Ile-Phe-Ala-Ser (tBu) -Lys (Boc) -Asn (Trt) -Phe-His (Trt) -Leu-Gln (Trt) -Lys (Boc ) -Asn (Trt) -Wang-resin). However, 25 μmol of Fmoc-Asn (Trt) -Wang-resin (0.60 mmol / g) was used as the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Asn (Trt), Fmoc-Ile,
Fmoc-Phe, Fmoc-Lys (Boc), Fmoc-His (Trt),
Fmoc-Ala, Fmoc-Gln (Trt), Fmoc-Ser (tBu),

実施例9と同様の操作でクリべージ反応を行いペプチド(Ile-Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   A cleave reaction was carried out in the same manner as in Example 9 to obtain a peptide (Ile-Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn), and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち 3.8mgを4mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む18%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、12〜15分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.9mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   3.8 mg of the obtained crude peptide was dissolved in 10 ml of 10% acetonitrile solution containing 4 ml of 0.1% TFA, and then divided into two times on an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). The sample was developed with 18% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), the fraction eluted at 12 to 15 minutes was collected, concentrated, and lyophilized for the purpose. Was obtained (1.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例18
ペプチド18:
Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn-Thr
実施例9と同様の操作でペプチド(Fmoc-Phe-Ala-Ser(tBu)-Lys(Boc)-Asn(Trt)-Phe-His(Trt)-Leu-Gln(Trt)-Lys(Boc)-Asn(Trt)-Thr(tBu)-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Thr(tBu)-Wang-樹脂(0.50mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Asn(Trt), Fmoc-Phe,
Fmoc-Lys(Boc), Fmoc-His(Trt), Fmoc-Ala,
Fmoc-Gln(Trt), Fmoc-Ser(tBu),
Example 18
Peptide 18:
Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn-Thr
In the same manner as in Example 9, the peptide (Fmoc-Phe-Ala-Ser (tBu) -Lys (Boc) -Asn (Trt) -Phe-His (Trt) -Leu-Gln (Trt) -Lys (Boc)- Asn (Trt) -Thr (tBu) -Wang-resin) was synthesized. However, Fmoc-Thr (tBu) -Wang-resin (0.50 mmol / g) was used in an amount corresponding to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Asn (Trt), Fmoc-Phe,
Fmoc-Lys (Boc), Fmoc-His (Trt), Fmoc-Ala,
Fmoc-Gln (Trt), Fmoc-Ser (tBu),

実施例9と同様の操作でクリべージ反応を行いペプチド(Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn-Thr)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   A peptide (Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn-Thr) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち5mgを4mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む15%アセトニトリルにて展開し、22〜30分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(3.5mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   5 mg of the obtained crude peptide was dissolved in 4 ml of 10% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two portions and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Then, the resultant was developed with 15% acetonitrile containing 0.1% TFA, and the fraction eluted at 22 to 30 minutes was concentrated and freeze-dried to obtain the desired peptide (3.5 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例19
ペプチド19:
Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn
実施例9と同様の操作でペプチド(Fmoc-Phe-Ala-Ser(tBu)-Lys(Boc)-Asn(Trt)-Phe-His(Trt)-Leu-Gln(Trt)-Lys(Boc)-Asn(Trt)-Wang- 樹脂)を合成し、クリべージ反応を行いペプチド(Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn)を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た。合成に使用したアミノ酸は実施例18と同じである。
Example 19
Peptide 19:
Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn
In the same manner as in Example 9, the peptide (Fmoc-Phe-Ala-Ser (tBu) -Lys (Boc) -Asn (Trt) -Phe-His (Trt) -Leu-Gln (Trt) -Lys (Boc)- Asn (Trt) -Wang-resin) and cleaved to obtain a peptide (Phe-Ala-Ser-Lys-Asn-Phe-His-Leu-Gln-Lys-Asn) Was collected in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide. The amino acids used in the synthesis are the same as in Example 18.

得られた粗ペプチドのうち6mgを4mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む15%アセトニトリルにて展開し、20〜28分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(3.8mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   6 mg of the obtained crude peptide was dissolved in 10% aqueous acetonitrile containing 4 ml of 0.1% TFA, and then divided into two portions and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). The mixture was developed with 15% acetonitrile containing 0.1% TFA, and the fraction eluted at 20 to 28 minutes was concentrated and freeze-dried to obtain the desired peptide (3.8 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例20
ペプチド20:
Leu-Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu
実施例9と同様の操作でペプチド(Fmoc-Leu-Lys(Boc)-Leu-Thr(tBu)-Ser(tBu)-Gly-Lys(Boc)-Ile-Ala-Ser(tBu)-Cys(Trt)-Leu-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Leu-Wang- 樹脂(0.69mmol/g)を25μmol相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu), Fmoc-Asn(Trt),
Fmoc-Gly, Fmoc-Lys(Boc), Fmoc-Cys(Trt),
Fmoc-Ala, Fmoc-Ser(tBu), Fmoc-Ile
Example 20
Peptide 20:
Leu-Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu
In the same manner as in Example 9, the peptide (Fmoc-Leu-Lys (Boc) -Leu-Thr (tBu) -Ser (tBu) -Gly-Lys (Boc) -Ile-Ala-Ser (tBu) -Cys (Trt) ) -Leu-Wang-resin). However, Fmoc-Leu-Wang-resin (0.69 mmol / g) was used in an amount equivalent to 25 μmol for the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu), Fmoc-Asn (Trt),
Fmoc-Gly, Fmoc-Lys (Boc), Fmoc-Cys (Trt),
Fmoc-Ala, Fmoc-Ser (tBu), Fmoc-Ile

実施例9と同様の操作でクリべージ反応を行いペプチド(Leu-Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   The peptide (Leu-Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち 10mg を4mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む23%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、18〜22分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(0.9mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   10 mg of the resulting crude peptide was dissolved in 10% acetonitrile aqueous solution containing 4 ml of 0.1% TFA, and then divided into three times and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm x 30 cm: manufactured by Tosoh Corporation) Development with 23% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 18-22 min are collected, concentrated and freeze-dried for the purpose The peptide was obtained (0.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例21
ペプチド21:
Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu
実施例9と同様の操作でペプチド(Fmoc-Lys(Boc)-Leu-Thr(tBu)-Ser(tBu)-Gly-Lys(Boc)-Ile-Ala-Ser(tBu)-Cys(Trt)-Leu-Wang- 樹脂)を合成し、クリべージ反応を行いペプチド(Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu )を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た。合成に使用したアミノ酸は実施例20と同じである。
Example 21
Peptide 21:
Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu
In the same manner as in Example 9, the peptide (Fmoc-Lys (Boc) -Leu-Thr (tBu) -Ser (tBu) -Gly-Lys (Boc) -Ile-Ala-Ser (tBu) -Cys (Trt)- Leu-Wang-resin) and cleaved to obtain a peptide (Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu). Recovered. Thereafter, the peptide was precipitated to obtain a crude peptide. The amino acids used in the synthesis are the same as in Example 20.

得られた粗ペプチドのうち 6.6mgを2mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む19%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、17〜22分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.5mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   Of the obtained crude peptide, 6.6 mg was dissolved in 2 ml of 10% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two times and applied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). Developed with 19% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 17-22 min were collected, concentrated and freeze-dried Was obtained (1.5 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例22
ペプチド22:
Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn
実施例1と同様の操作でペプチド(Fmoc-Lys(Boc)-Leu-Thr(tBu)-Ser(tBu)-Gly-Lys(Boc)-Ile-Ala-Ser(tBu)-Cys(Trt)-Leu-Asn(Trt)-Wang- 樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Asn(Trt)-Wang-樹脂(0.60mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は実施例20と同じである。実施例9と同様の操作でクリべージ反応を行いペプチド(Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。
Example 22
Peptide 22:
Lys-Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn
In the same manner as in Example 1, the peptide (Fmoc-Lys (Boc) -Leu-Thr (tBu) -Ser (tBu) -Gly-Lys (Boc) -Ile-Ala-Ser (tBu) -Cys (Trt)- Leu-Asn (Trt) -Wang-resin) was synthesized. However, 25 μmol of Fmoc-Asn (Trt) -Wang-resin (0.60 mmol / g) was used as the C-terminal amino acid resin. The amino acids used in the synthesis are the same as in Example 20. The peptide (Gln-Phe-Ala-Lys-Leu-Thr-Gly-Phe-Thr-Leu) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was recovered in a centrifuge tube. Thereafter, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち 6.9mgを1mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、2回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む22%アセトニトリルにて展開し、9〜12分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(1.6mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   Of the obtained crude peptide, 6.9 mg was dissolved in 1 ml of 10% acetonitrile aqueous solution containing 0.1% TFA, and then divided into two portions and placed on an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). The resulting peptide was developed with 22% acetonitrile containing 0.1% TFA, and the fraction eluted at 9 to 12 minutes was concentrated and then lyophilized to obtain the desired peptide (1.6 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例23
ペプチド23:
Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn
実施例9と同様の操作でペプチド(Fmoc-Leu-Thr(tBu)-Ser(tBu)-Gly-Lys(Boc)-Ile-Ala-Ser(tBu)-Cys(Trt)-Leu-Asn(Trt)-Wang-樹脂)を合成し、クリべージ反応を行いペプチド(Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn )を得、このペプチド溶液を遠心管に回収した。その後、ペプチドを沈澱させ、粗ペプチドを得た。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu), Fmoc-Gly,
Fmoc-Cys(Trt), Fmoc-Ala, Fmoc-Ser(tBu),
Fmoc-Ile
Example 23
Peptide 23:
Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn
The peptide (Fmoc-Leu-Thr (tBu) -Ser (tBu) -Gly-Lys (Boc) -Ile-Ala-Ser (tBu) -Cys (Trt) -Leu-Asn (Trt) was prepared in the same manner as in Example 9. ) -Wang-resin) and a cleave reaction to obtain a peptide (Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn). Recovered. Thereafter, the peptide was precipitated to obtain a crude peptide. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu), Fmoc-Gly,
Fmoc-Cys (Trt), Fmoc-Ala, Fmoc-Ser (tBu),
Fmoc-Ile

得られた粗ペプチドのうち6mgを1mlの0.1% TFAを含む20%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む19%アセトニトリルにて展開し(流速2ml/分、検出波長 220nm) 、15〜17分に溶出された画分を分取し、濃縮後、凍結乾燥を行い目的とするペプチドを得た(0.9 mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   6 mg of the resulting crude peptide was dissolved in 1 ml of 20% acetonitrile aqueous solution containing 0.1% TFA, and then divided into three times and supplied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). And developed with 19% acetonitrile containing 0.1% TFA (flow rate 2 ml / min, detection wavelength 220 nm), fractions eluted at 15-17 min are collected, concentrated and freeze-dried for the purpose. The peptide was obtained (0.9 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

実施例24
ペプチド24:
Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn-Asp
実施例9と同様の操作でペプチド(Fmoc-Leu-Thr(tBu)-Ser(tBu)-Gly-Lys(Boc)-Ile-Ala-Ser(tBu)-Cys(Trt)-Leu-Asn(Trt)-Asp(OtBu)-Wang-樹脂)を合成した。ただし、C末端アミノ酸樹脂には Fmoc-Asp(OtBu)-Wang- 樹脂(0.42mmol/g)を25μmol 相当用いた。合成に使用したアミノ酸は以下のとおりである。
Fmoc-Leu, Fmoc-Thr(tBu), Fmoc-Gly,
Fmoc-Cys(Trt), Fmoc-Ala, Fmoc-Ser(tBu),
Fmoc-Ile Fmoc-Asn(Trt)
Example 24
Peptide 24:
Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn-Asp
The peptide (Fmoc-Leu-Thr (tBu) -Ser (tBu) -Gly-Lys (Boc) -Ile-Ala-Ser (tBu) -Cys (Trt) -Leu-Asn (Trt) was prepared in the same manner as in Example 9. ) -Asp (OtBu) -Wang-resin). However, 25 μmol of Fmoc-Asp (OtBu) -Wang-resin (0.42 mmol / g) was used as the C-terminal amino acid resin. The amino acids used in the synthesis are as follows.
Fmoc-Leu, Fmoc-Thr (tBu), Fmoc-Gly,
Fmoc-Cys (Trt), Fmoc-Ala, Fmoc-Ser (tBu),
Fmoc-Ile Fmoc-Asn (Trt)

実施例9と同様の操作でクリべージ反応を行いペプチド(Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn-Asp)を得、このペプチド溶液を遠心管に回収し、その後、ペプチドを沈澱させ、粗ペプチドを得た。   A peptide (Leu-Thr-Ser-Gly-Lys-Ile-Ala-Ser-Cys-Leu-Asn-Asp) was obtained by carrying out a cleave reaction in the same manner as in Example 9, and this peptide solution was centrifuged. After that, the peptide was precipitated to obtain a crude peptide.

得られた粗ペプチドのうち 7.5mgを1mlの0.1% TFAを含む10%アセトニトリル水溶液に溶解後、3回に分けてODS カラム(TSKgel ODS-120T, 7.8mm ×30cm:東ソー(株)製)に供与し、0.1% TFAを含む18%アセトニトリルにて展開し、17〜19分に溶出された画分を濃縮後、凍結乾燥を行い目的とするペプチドを得た(0.6mg)。この合成したペプチド 50 pmolについて、アミノ酸配列分析装置 PPSQ-10型(島津製作所(株) 製) を用いてアミノ酸配列分析を行ったところ、上記に示されるアミノ酸配列が確認された。   7.5 mg of the resulting crude peptide was dissolved in 10% acetonitrile aqueous solution containing 1 ml of 0.1% TFA, and then divided into three times and applied to an ODS column (TSKgel ODS-120T, 7.8 mm × 30 cm: manufactured by Tosoh Corporation). The resulting peptide was developed with 18% acetonitrile containing 0.1% TFA, and the fraction eluted at 17 to 19 minutes was concentrated and then lyophilized to obtain the desired peptide (0.6 mg). When 50 pmol of the synthesized peptide was subjected to amino acid sequence analysis using an amino acid sequence analyzer PPSQ-10 type (manufactured by Shimadzu Corporation), the amino acid sequence shown above was confirmed.

製剤例1.
液剤
実施例1乃至24記載の方法により得た24種類のペプチドのいずれかを最終濃度0.1g/mlになるように安定剤として1%(w/v) 精製ゼラチンを含む蒸留水に溶解し、常法により滅菌濾過して24種類の液剤を得た。
Formulation Example 1
Solution One of the 24 peptides obtained by the method described in Examples 1 to 24 was dissolved in distilled water containing 1% (w / v) purified gelatin as a stabilizer to a final concentration of 0.1 g / ml, By sterilizing filtration by a conventional method, 24 types of solutions were obtained.

本発明のペプチドに対する感受性は個体毎に変わるのが通例であるから、本品は個々の個体に最も適した組成になるよう、24種類の液剤を適宜配合して使用する。本品は安定性に優れているので、スギ花粉症を治療・予防するための点眼剤、点鼻剤、口腔内噴霧剤用の液剤として有用である。   Since susceptibility to the peptide of the present invention usually varies from individual to individual, this product is used by appropriately blending 24 types of liquid preparations so that the composition is most suitable for each individual. Since this product is excellent in stability, it is useful as a solution for eye drops, nasal drops, and oral sprays for treating and preventing cedar pollinosis.

製剤例2.
注射剤
安定剤として1%(w/v) ヒト血清アルブミンを含む生理食塩水に実施例1乃至24記載の方法により得た24種類のペプチドをそれぞれ最終濃度0.01、0.1又は1mg/ml になるように溶解し、滅菌濾過した後、滅菌バイアル瓶に2mlずつ分注し、凍結乾燥し、密栓した。
Formulation Example 2
24 kinds of peptides obtained by the method described in Examples 1 to 24 in physiological saline containing 1% (w / v) human serum albumin as an injection stabilizer to a final concentration of 0.01, 0.1 or 1 mg / ml, respectively. After dissolution in sterilization and sterile filtration, 2 ml each was dispensed into sterile vials, lyophilized and sealed.

本品は投与に先立ち、まず、バイアル瓶内に注射用蒸留水等を1ml加え、次いで、内容物を均一に溶解して使用する。安定性に優れ、有効成分として本発明による24種類のポリペプチドを含んでなる本品は、スギ花粉症を治療・予防するための乾燥製剤として有用である。   Prior to administration, first add 1 ml of distilled water for injection into a vial, and then dissolve the contents uniformly before use. The product having excellent stability and comprising 24 kinds of polypeptides according to the present invention as an active ingredient is useful as a dry preparation for treating and preventing cedar pollinosis.

製剤例3.
錠剤
平均分子量約20,000ダルトンの精製プルラン2g を蒸留水100mlに均一に溶解し、溶液に塩化シアヌルの1.7%(w/v) アセトン溶液を2ml加え、5%(w/v)炭酸ナトリウム水溶液でpHを7付近に保ちつつ、攪拌下、5℃で2時間反応させた。その後、同様にして反応物のpHを7付近に保ちながら、4℃の冷水に対して一晩透析し、活性化プルランを含む水溶液20mlを得た。
Formulation Example 3
Tablets average molecular weight of about 20,000 daltons purified pullulan 2g uniformly dissolved in distilled water 100 ml, 1.7% solution in cyanuric chloride (w / v) acetone was added 2 ml, 5% (w / v) aqueous solution of sodium carbonate The mixture was reacted at 5 ° C. for 2 hours with stirring while maintaining the pH at around 7. Subsequently, the reaction product was dialyzed overnight against 4 ° C. cold water while maintaining the pH of the reaction at around 7 to obtain 20 ml of an aqueous solution containing activated pullulan.

実施例1乃至24記載の方法により得たペプチドをそれぞれ0.2mg加え、溶液のpHを7付近に保ちつつ、穏やかに攪拌しながら、37℃で12時間反応させた。反応後、反応物にグリシンを4g を加え、穏やかに攪拌しながら、37℃で5時間インキュベートし、未反応の活性基をブロックした。反応物を濃縮し、あらかじめ0.1M リン酸緩衝液(pH 7.0) で平衡化させておいたセファデックス G-50 カラムに供与し、カラムに新鮮な同一緩衝液を通液して、この発明のペプチドとプルランの複合体を含む画分を採取した。収量は、原料ペプチド固形分当たり、約30%であった。   0.2 mg of each peptide obtained by the method described in Examples 1 to 24 was added, and the mixture was allowed to react at 37 ° C. for 12 hours with gentle stirring while keeping the pH of the solution at around 7. After the reaction, 4 g of glycine was added to the reaction product, and incubated at 37 ° C. for 5 hours with gentle stirring to block unreacted active groups. The reaction was concentrated and applied to a Sephadex G-50 column that had been equilibrated with 0.1 M phosphate buffer (pH 7.0), and the same buffer was passed through the column. Fractions containing the peptide and pullulan complex were collected. The yield was about 30% per raw peptide solid content.

常法に従って、この画分を滅菌濾過し、濃縮し、凍結乾燥し、粉砕後、マンニトールを均一に混合し、混合物を打錠して製品1錠(200mg)当たり複合体を2、10又は50mg含む錠剤を得た。摂取性、安定性に優れた本品は、スギ花粉症を治療・予防するための舌下剤として有用である。   This fraction is sterile filtered, concentrated, lyophilized, pulverized and mixed uniformly with mannitol, and the mixture is compressed to give 2, 10, or 50 mg of complex per tablet (200 mg) according to conventional methods. A tablet containing was obtained. This product with excellent ingestion and stability is useful as a sublingual agent for treating and preventing cedar pollinosis.

製剤例4.
シロップ剤
大腸菌由来の精製リボ多糖1g を10mMリン酸カルシウム溶液100mlに溶解し、溶液に100mM過ヨウ素酸ナトリウムを6ml加え、室温下で20分間反応させてリボ多糖を活性化した。反応物を4℃の1M グリシン−塩酸緩衝液(pH 4.4) に対して一晩透析して未反応の過ヨウ素酸を除去した後、0.1M 炭酸水素ナトリウム緩衝液によりpH 9.5付近に調整する一方、別途、実施例1乃至24記載の方法により得た24種類のペプチドを0.1M リン酸緩衝液(pH 7.0) 100mlにそれぞれ10mgずつ溶解し、活性化リボ多糖を含む上記反応物に加え、室温下で12時間静置して反応させた。
Formulation Example 4
1 g of purified ribopolysaccharide derived from syrup E. coli was dissolved in 100 ml of 10 mM calcium phosphate solution, 6 ml of 100 mM sodium periodate was added to the solution, and the mixture was reacted at room temperature for 20 minutes to activate the ribopolysaccharide. The reaction product was dialyzed overnight against 1 M glycine-hydrochloric acid buffer (pH 4.4) at 4 ° C to remove unreacted periodic acid, and then adjusted to about pH 9.5 with 0.1 M sodium bicarbonate buffer. Separately, 24 types of peptides obtained by the methods described in Examples 1 to 24 were dissolved in 10 mg each in 100 ml of 0.1 M phosphate buffer (pH 7.0), added to the reaction product containing activated ribopolysaccharide, The reaction was allowed to stand for 12 hours underneath.

その後、新たに得られた反応物を製剤例3の方法により精製し、得られた本発明のペプチドとリボ多糖の複合体を含む画分を濃縮し、凍結乾燥し、粉砕して固状物とした。収量は、原料ペプチド固形分当たり、約30%であった。この固形物を蔗糖をそれぞれ最終濃度が0.1若しくは1mg/ml 又は50%(w/w) になるように安定剤として精製ゼラチンを1%(w/w) 含む蒸留水に溶解し、溶液を常法により滅菌濾過してシロップ状物を得た。このシロップ状物を2mlずつ滅菌バイアル瓶に分注し、密栓して製品とした。   Thereafter, the newly obtained reaction product is purified by the method of Formulation Example 3, and the resulting fraction containing the complex of the peptide of the present invention and ribopolysaccharide is concentrated, lyophilized, pulverized and solidified. It was. The yield was about 30% per raw peptide solid content. This solid is dissolved in distilled water containing 1% (w / w) purified gelatin as a stabilizer so that the final concentration of sucrose is 0.1 or 1 mg / ml or 50% (w / w), respectively. The solution was sterilized by filtration to obtain a syrup. Each 2 ml of this syrup was dispensed into sterile vials and sealed to give a product.

安定性に優れ、有効成分としてこの発明のペプチドとリボ多糖の複合体を含む本品は、スギ花粉症を治療・予防するためのシロップ剤として有用である。   The product having excellent stability and containing the complex of the peptide of the present invention and ribopolysaccharide as an active ingredient is useful as a syrup for treating and preventing cedar pollinosis.

配列番号1−人工配列の説明:合成ペプチド
配列番号2−人工配列の説明:合成ペプチド
配列番号3−人工配列の説明:合成ペプチド
配列番号4−人工配列の説明:合成ペプチド
配列番号5−人工配列の説明:合成ペプチド
配列番号6−人工配列の説明:合成ペプチド
配列番号7−人工配列の説明:合成ペプチド
配列番号8−人工配列の説明:合成ペプチド
配列番号9−人工配列の説明:合成ペプチド
配列番号10−人工配列の説明:合成ペプチド
配列番号11−人工配列の説明:合成ペプチド
配列番号12−人工配列の説明:合成ペプチド
配列番号13−人工配列の説明:合成ペプチド
配列番号14−人工配列の説明:合成ペプチド
配列番号15−人工配列の説明:合成ペプチド
配列番号16−人工配列の説明:合成ペプチド
配列番号17−人工配列の説明:合成ペプチド
配列番号18−人工配列の説明:合成ペプチド
配列番号19−人工配列の説明:合成ペプチド
配列番号20−人工配列の説明:合成ペプチド
配列番号21−人工配列の説明:合成ペプチド
配列番号22−人工配列の説明:合成ペプチド
配列番号23−人工配列の説明:合成ペプチド
配列番号24−人工配列の説明:合成ペプチド
SEQ ID NO: 1-description of artificial sequence: synthetic peptide SEQ ID NO: 2-description of artificial sequence: synthetic peptide SEQ ID NO: 3-description of artificial sequence: synthetic peptide SEQ ID NO: 4-description of artificial sequence: synthetic peptide SEQ ID NO: 5-artificial sequence Description: Synthetic Peptide Sequence No. 6-Description of Artificial Sequence: Synthetic Peptide Sequence Number 7-Description of Artificial Sequence: Synthetic Peptide Sequence Number 8-Description of Artificial Sequence: Synthetic Peptide Sequence Number 9-Description of Artificial Sequence: Synthetic Peptide Sequence No. 10-description of artificial sequence: synthetic peptide SEQ ID NO: 11-description of artificial sequence: synthetic peptide SEQ ID NO: 12-description of artificial sequence: synthetic peptide SEQ ID NO: 13-description of artificial sequence: synthetic peptide SEQ ID NO: 14-of artificial sequence Description: Synthetic peptide SEQ ID NO: 15-description of artificial sequence: Synthetic peptide SEQ ID NO: 16-description of artificial sequence: synthetic peptide SEQ ID NO: 17 Description of Artificial Sequence: Synthetic Peptide SEQ ID NO: 18-Description of Artificial Sequence: Synthetic Peptide SEQ ID NO: 19-Description of Artificial Sequence: Synthetic Peptide SEQ ID NO: 20-Description of Artificial Sequence: Synthetic Peptide SEQ ID NO: 21-Description of Artificial Sequence: Synthesis Peptide SEQ ID NO: 22-description of artificial sequence: synthetic peptide SEQ ID NO: 23-description of artificial sequence: synthetic peptide SEQ ID NO: 24-description of artificial sequence: synthetic peptide

Claims (28)

配列番号2のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 2. 配列番号3のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 3. 配列番号9のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 9. 配列番号10のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 10. 配列番号17のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 17. 配列番号18のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 18. 配列番号19のアミノ酸配列から成るペプチド。   A peptide consisting of the amino acid sequence of SEQ ID NO: 19. 配列番号2のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 2 as an active ingredient. 配列番号3のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 3 as an active ingredient. 配列番号4のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 4 as an active ingredient. 配列番号5のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 5 as an active ingredient. 配列番号6のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 6 as an active ingredient. 配列番号9のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 9 as an active ingredient. 配列番号10のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 10 as an active ingredient. 配列番号11のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 11 as an active ingredient. 配列番号12のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 12 as an active ingredient. 配列番号13のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 13 as an active ingredient. 配列番号14のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 14 as an active ingredient. 配列番号15のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   An anti-cedar pollinosis agent comprising a peptide comprising the amino acid sequence of SEQ ID NO: 15 as an active ingredient. 配列番号16のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 16 as an active ingredient. 配列番号17のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 17 as an active ingredient. 配列番号18のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 18 as an active ingredient. 配列番号19のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 19 as an active ingredient. 配列番号20のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 20 as an active ingredient. 配列番号21のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 21 as an active ingredient. 配列番号22のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 22 as an active ingredient. 配列番号23のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 23 as an active ingredient. 配列番号24のアミノ酸配列から成るペプチドを有効成分とする抗スギ花粉症剤。   The anti-cedar pollinosis agent which uses the peptide which consists of an amino acid sequence of sequence number 24 as an active ingredient.
JP2005213988A 1995-04-07 2005-07-25 Peptides and their uses Expired - Lifetime JP4171794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213988A JP4171794B2 (en) 1995-04-07 2005-07-25 Peptides and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8251995 1995-04-07
JP2005213988A JP4171794B2 (en) 1995-04-07 2005-07-25 Peptides and their uses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18143895A Division JP3734855B2 (en) 1995-04-07 1995-07-18 Peptides and their uses

Publications (2)

Publication Number Publication Date
JP2006008698A JP2006008698A (en) 2006-01-12
JP4171794B2 true JP4171794B2 (en) 2008-10-29

Family

ID=35776311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213988A Expired - Lifetime JP4171794B2 (en) 1995-04-07 2005-07-25 Peptides and their uses

Country Status (1)

Country Link
JP (1) JP4171794B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000033A (en) * 2018-06-26 2020-01-09 国立大学法人広島大学 Oral immune tolerance inducing agent, food and medicament containing the same, and process for producing processed food

Also Published As

Publication number Publication date
JP2006008698A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US5827666A (en) Synthetic multiple tandem repeat mucin and mucin-like peptides, and uses thereof
KR20070026450A (en) Identification of self and non-self antigens implicated in autoimmune diseases
US20070161545A1 (en) Triple polypeptide complexes
CN113891723A (en) Peptides
US7122193B1 (en) Retro peptides, antibodies thereto and their uses for vaccination and in vitro diagnosis
KR101673889B1 (en) - -derived peptides
JPH10212300A (en) Peptide vaccine
JP3734855B2 (en) Peptides and their uses
JP4171794B2 (en) Peptides and their uses
JP3939401B2 (en) Peptides and their uses
JPH10259198A (en) Connected t-cell epitope and its use
AU2002339227A1 (en) Triple polypeptide complexes
JP3987562B2 (en) Peptides and their uses
JP3987563B2 (en) Peptides and their uses
JP2003507011A (en) IL-16 antagonist
KR100395446B1 (en) Peptides and Their Uses
JP4160505B2 (en) Use of peptides containing post-translational type modifications in the concept of treatment of autoimmune diseases
JP3588166B2 (en) Peptides and their uses
JPH10506877A (en) T cell epitope of ryegrass pollen allergen
EP1760090A1 (en) Regulatory/unfolding peptides of ezrin
JP3588165B2 (en) Peptides and their uses
JP3980016B2 (en) Peptides and their uses
JP2003002897A (en) Peptide and its use
JP2003128697A (en) Peptide and its application
EP0650976A1 (en) Allergenic peptide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term