JP4171446B2 - Superconducting high-frequency bandpass filter - Google Patents

Superconducting high-frequency bandpass filter Download PDF

Info

Publication number
JP4171446B2
JP4171446B2 JP2004156295A JP2004156295A JP4171446B2 JP 4171446 B2 JP4171446 B2 JP 4171446B2 JP 2004156295 A JP2004156295 A JP 2004156295A JP 2004156295 A JP2004156295 A JP 2004156295A JP 4171446 B2 JP4171446 B2 JP 4171446B2
Authority
JP
Japan
Prior art keywords
bandpass filter
thin film
superconducting high
superconductor thin
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004156295A
Other languages
Japanese (ja)
Other versions
JP2005341140A (en
Inventor
寿志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004156295A priority Critical patent/JP4171446B2/en
Publication of JP2005341140A publication Critical patent/JP2005341140A/en
Application granted granted Critical
Publication of JP4171446B2 publication Critical patent/JP4171446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Description

本発明は、超伝導体を用いた超伝導高周波バンドパスフィルタに関するものである。   The present invention relates to a superconducting high-frequency bandpass filter using a superconductor.

超伝導体を用いた高周波バンドパスフィルタ回路は、損失が低いことを利点として、実用化が進んでいる(例えば、非特許文献1参照)。ところが、超伝導体は、非超伝導金属に比べて複素伝導度の非線形性が著しく大きい。そのために、超伝導体部分を通過する交流電力が大きい場合、その超伝導体部分での複素伝導度の非線形効果が回路特性の劣化を招く。この非線形効果には、超伝導体部分の表面抵抗の増大と、超伝導体部分からの高調波および相互変調波の発生が含まれる(例えば、非特許文献2参照)。特に、この非線形性のために発生する相互変調波の強度は、バンドパスフィルタの通過帯域内の挿入損失が低い周波数において特に大きくなる。そのために、共振器の無負荷Q値が高く、通過帯域内での挿入損失が低い超伝導高周波バンドパスフィルタは、通過帯域内での挿入損失が高い同種フィルタに較べて、入力可能な交流電力の上限値が著しく小さくなるという問題があった。   A high-frequency bandpass filter circuit using a superconductor has been put into practical use with an advantage of low loss (for example, see Non-Patent Document 1). However, superconductors have significantly higher nonlinearity of complex conductivity than non-superconductor metals. Therefore, when the AC power passing through the superconductor portion is large, the nonlinear effect of the complex conductivity in the superconductor portion causes the circuit characteristics to deteriorate. This nonlinear effect includes an increase in the surface resistance of the superconductor portion and generation of harmonics and intermodulation waves from the superconductor portion (see, for example, Non-Patent Document 2). In particular, the intensity of the intermodulation wave generated due to this non-linearity is particularly large at frequencies where the insertion loss in the passband of the bandpass filter is low. Therefore, a superconducting high-frequency bandpass filter having a high unloaded Q value of the resonator and a low insertion loss in the passband is capable of inputting AC power that can be input compared to a similar filter having a high insertion loss in the passband. There was a problem that the upper limit of the value was significantly reduced.

このような従来の超伝導高周波バンドパスフィルタは、それぞれQ21,Q22,・・・・,Q2nという無負荷Q値をもつn個の共振器から構成される。このとき、Q21,Q22,・・・・,Q2nのうち最小値がQ20であるとすると、バンドパスフィルタの通過帯域内での挿入損失IL2は、IL2<A/Q20、またはIL2=A/Q20となる(例えば、非特許文献3、非特許文献4参照)。ここで、Aはフィルタの構造から決まる定数である。この超伝導高周波フィルタでは挿入損失がA/Q20より小さいか又は等しいために、相互変調波の強度が大きすぎて実際の応用に適さない。   Such a conventional superconducting high-frequency bandpass filter is composed of n resonators having unloaded Q values Q21, Q22,..., Q2n, respectively. At this time, if the minimum value of Q21, Q22,..., Q2n is Q20, the insertion loss IL2 within the passband of the bandpass filter is IL2 <A / Q20 or IL2 = A / Q20. (For example, see Non-Patent Document 3 and Non-Patent Document 4). Here, A is a constant determined from the structure of the filter. In this superconducting high frequency filter, since the insertion loss is smaller than or equal to A / Q20, the intensity of the intermodulation wave is too large to be suitable for actual application.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
B.A.ウイレムセン(B.A.Willemsen ),「HTSフィルタサブシステムズフォアワイヤレステレコミュニケーションズ(HTS Filter Subsystems for Wireless Telecommunications )」,アイイーイーイートランザクションズオンアプライドスーパーコンダクティビティ(IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY),2001年3月,第11巻,第1号,p.60−67 D.E.オーテス(D.E.Oates ),「ノンリニアビヘイビアオブスーパーコンダクティングデバイスズ(NONLINEAR BEHAVIOR OF SUPERCONDUCTING DEVICES )」,マイクロウエーブスーパーコンダクティビティ(Microwave Superconductivity ),クルワーアカデミックパブリシャーズ(Kluwer Academic Publishers),2001年,p.117−148 真田他,「ハイテンパラチュアスーパーコンダクティングCPWバンドパスフィルターズユージングミンダーラインパラレルサーキットレゾネーターズ(High-Temperature Superconducting CPW Bandpass Filtrs Using Meander-Line Parallel-Circuited Resonators)」,IEICE TRANS.ELECTRON,2003年8月,Vol.E86−C,NO.8 ジョージ.L.マタエイ(GEORGE L.MATTHAEI)他,「マイクロウエーブフィルターズ,インピーダンスマッチングネットワークス,アンドカップリングストラクチャーズ(MICROWAVE FILTRS,IMPEDANCE-MATCHING NETWORKS,AND COUPLING STRUCTURES)」,マクグローヒル(McGraw-Hill),1964年
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
B. A. Willemsen, “HTS Filter Subsystems for Wireless Telecommunications”, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, March 2001, Vol. 11, No. 1, p. 60-67 D. E. DEOates, “NONLINEAR BEHAVIOR OF SUPERCONDUCTING DEVICES”, Microwave Superconductivity, Kluwer Academic Publishers, 2001, p. 117-148 Sanada et al., “High-Temperature Superconducting CPW Bandpass Filtrs Using Meander-Line Parallel-Circuited Resonators”, IEICE TRANS.ELECTRON, 2003 8 Month, Vol. E86-C, NO. 8 George. L. GEORGE L.MATTHAEI et al., “Microwave Filters, Impedance Matching Networks, and Coupling Structures”, McGraw-Hill, 1964

以上のように、従来の超伝導高周波バンドパスフィルタでは、入力交流電力に対する非線形効果が大きく、この非線形効果のために発生する相互変調波の強度が大きいので、入力可能な交流電力の上限値が小さくなり、実際の応用に適していないという問題点があった。
本発明の目的は、入力交流電力に対する非線形効果が小さい超伝導高周波バンドパスフィルタを提供することにある。
As described above, in the conventional superconducting high-frequency bandpass filter, the nonlinear effect on the input AC power is large, and the intensity of the intermodulation wave generated due to this nonlinear effect is large. There was a problem that it became smaller and not suitable for actual application.
An object of the present invention is to provide a superconducting high-frequency bandpass filter with a small nonlinear effect on input AC power.

本発明は、誘電体基板の表面に形成されたマイクロストリップ線路の線路導体と前記誘電体基板の裏面に形成されたマイクロストリップ線路の接地導体とから構成されるマイクロストリップ共振器を複数結合してなる超伝導高周波バンドパスフィルタにおいて、前記線路導体が、第1の超伝導体薄膜と、この第1の超伝導体薄膜と少なくとも一部が接するように配置された、前記第1の超伝導体薄膜よりも表面抵抗の高い第2の超伝導体薄膜とから構成されるものである。
また、本発明の超伝導高周波バンドパスフィルタの1構成例において、前記第2の超伝導体薄膜は、前記第1の超伝導体薄膜の上に積層されるものである。
また、本発明の超伝導高周波バンドパスフィルタは、前記接地導体が、前記線路導体を構成する第1の超伝導体薄膜よりも表面抵抗の高い第2の超伝導体薄膜から構成されるものである。
また、本発明の超伝導高周波バンドパスフィルタは、前記誘電体基板が、不純物を加えて誘電正接を大きくした誘電体から構成されるものである。
The present invention combines a plurality of microstrip resonators composed of a microstrip line conductor formed on the surface of a dielectric substrate and a microstrip line ground conductor formed on the back surface of the dielectric substrate. In the superconducting high-frequency bandpass filter, the first conductor is arranged such that the line conductor is in contact with at least a part of the first superconductor thin film and the first superconductor thin film. it is those composed of a high surface resistivity second superconductor thin film than films.
Additionally, in an example of a superconducting radio-frequency bandpass filter of the present invention, the second superconductor thin film is to be laminated on the first superconductor film.
Further, the superconducting radio-frequency bandpass filter of the present invention, the ground conductor, the first second superconductor thin film that consists of a high surface resistance than superconductor thin film constituting the line conductors Is.
In the superconducting high-frequency bandpass filter according to the present invention, the dielectric substrate is made of a dielectric material having a dielectric loss tangent increased by adding impurities.

本発明によれば、従来の超伝導高周波バンドパスフィルタを構成する共振器よりも無負荷Q値の低い共振器を用いることにより、入力交流電力に対する非線形効果が小さい超伝導高周波バンドパスフィルタを実現することができ、より大きな交流電力を扱う用途への超伝導高周波バンドパスフィルタの利用を可能にすることができる。これにより、種々の高周波装置の損失の低減が期待できる。一例としては、近年急速に普及が拡大している携帯電話機や無線LANなどに代表される種々の無線通信システムの送信部の部品としての利用が可能になることが予想される。   According to the present invention, a superconducting high-frequency bandpass filter with less nonlinear effect on input AC power is realized by using a resonator having a lower unloaded Q value than a resonator constituting a conventional superconducting high-frequency bandpass filter. It is possible to use the superconducting high-frequency bandpass filter for applications that handle larger AC power. Thereby, reduction of the loss of various high frequency devices can be expected. As an example, it is expected that it can be used as a part of a transmission unit of various wireless communication systems represented by mobile phones and wireless LANs that have been rapidly spreading in recent years.

本発明は、超伝導高周波バンドパスフィルタを、無負荷Q値の低い共振器で構成することを最も主要な特徴とする。本発明の超伝導高周波バンドパスフィルタがそれぞれQ11,Q12,・・・・,Q1nの無負荷Q値をもつn個の共振器から構成され、これらの無負荷Q値のうち最大値がQ10であるとし、一方、従来の超伝導高周波バンドパスフィルタを構成するn個の共振器の各無負荷Q値のうち最小値がQ20であるとすると、Q10<Q20が成り立つ。   The most important feature of the present invention is that the superconducting high-frequency bandpass filter is composed of a resonator having a low unloaded Q value. The superconducting high-frequency bandpass filter of the present invention is composed of n resonators having unloaded Q values of Q11, Q12,..., Q1n, and the maximum value of these unloaded Q values is Q10. On the other hand, if the minimum value of the unloaded Q values of the n resonators constituting the conventional superconducting high-frequency bandpass filter is Q20, then Q10 <Q20 holds.

このとき、本発明の超伝導高周波バンドパスフィルタの通過帯域内での挿入損失IL1は、IL1>A/Q10>A/Q20、又はIL1=A/Q10>A/Q20となる(非特許文献3、非特許文献4参照)。ここで、Aはフィルタの構造から決まる定数である。本発明の超伝導高周波バンドパスフィルタの挿入損失IL1はA/Q20よりは大きい。したがって、本発明の超伝導高周波バンドパスフィルタの挿入損失IL1は、従来の超伝導高周波バンドパスフィルタの挿入損失IL2よりも大きい。故に相互変調波の強度が従来よりも小さく、実際の応用に適する。   At this time, the insertion loss IL1 within the pass band of the superconducting high-frequency bandpass filter of the present invention is IL1> A / Q10> A / Q20 or IL1 = A / Q10> A / Q20 (Non-patent Document 3). Non-Patent Document 4). Here, A is a constant determined from the structure of the filter. The insertion loss IL1 of the superconducting high-frequency bandpass filter of the present invention is larger than A / Q20. Therefore, the insertion loss IL1 of the superconducting high-frequency bandpass filter of the present invention is larger than the insertion loss IL2 of the conventional superconducting high-frequency bandpass filter. Therefore, the intensity of the intermodulation wave is smaller than the conventional one, which is suitable for actual application.

本発明は、無負荷Q値の大きな共振器を用いない点が従来の技術とは異なる。その結果、従来の超伝導高周波バンドパスフィルタの通過帯域内の最小挿入損失よりも、本発明の超伝導高周波バンドパスフィルタの通過帯域内の最小挿入損失が大きくなる。これにより、従来の超伝導高周波バンドパスフィルタで入力可能な交流電力の上限値よりも、本発明の超伝導高周波バンドパスフィルタで入力可能な交流電力の上限値が大きくなる。したがって、本発明によれば、従来よりも入力可能な交流電力の上限値が大きい超伝導高周波バンドパスフィルタを実現できる。   The present invention is different from the prior art in that a resonator having a large unloaded Q value is not used. As a result, the minimum insertion loss in the pass band of the superconducting high-frequency bandpass filter of the present invention is larger than the minimum insertion loss in the passband of the conventional superconducting high-frequency bandpass filter. As a result, the upper limit value of AC power that can be input with the superconducting high-frequency bandpass filter of the present invention is larger than the upper limit value of AC power that can be input with the conventional superconducting high-frequency bandpass filter. Therefore, according to the present invention, it is possible to realize a superconducting high-frequency bandpass filter having a higher upper limit value of AC power that can be input than before.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の第1の実施の形態となる超伝導高周波バンドパスフィルタの構成を示す平面図である。
図1に示す超伝導高周波バンドパスフィルタは、マイクロストリップ線路で形成されている。マイクロストリップ線路は、誘電体基板1と、誘電体基板1の表面に選択的に形成された超伝導体薄膜(または超伝導体薄膜と非超伝導金属薄膜)からなる線路導体2と、誘電体基板1の裏面全体に形成された超伝導体薄膜からなる接地導体(不図示)とから構成されている。線路導体2を平面視コの字型に形成することにより、共振器が構成されている。図1の例では、共振器を9個容量結合することで、超伝導高周波バンドパスフィルタを構成している。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing the configuration of a superconducting high-frequency bandpass filter according to a first embodiment of the present invention.
The superconducting high-frequency bandpass filter shown in FIG. 1 is formed of a microstrip line. The microstrip line includes a dielectric substrate 1, a line conductor 2 made of a superconductor thin film (or a superconductor thin film and a non-superconductive metal thin film) selectively formed on the surface of the dielectric substrate 1, and a dielectric. It is composed of a ground conductor (not shown) made of a superconductor thin film formed on the entire back surface of the substrate 1. A resonator is configured by forming the line conductor 2 in a U shape in plan view. In the example of FIG. 1, a superconducting high-frequency bandpass filter is configured by capacitively coupling nine resonators.

9個の共振器のうち一端(図1では左端)の共振器には、給電線路の線路導体4が容量結合され、他端(図1では右端)の共振器には、給電線路の線路導体5が容量結合されている。一方の線路導体4(または5)から入力された高周波信号のうち、超伝導高周波バンドパスフィルタの通過帯域内の周波数成分だけがバンドパスフィルタを通過して、他方の線路導体5(または4)から出力される。通過帯域外の周波数成分は、入力側の線路導体4(または5)に反射される。   The line conductor 4 of the feed line is capacitively coupled to the resonator at one end (left end in FIG. 1) of the nine resonators, and the line conductor of the feed line is connected to the resonator at the other end (right end in FIG. 1). 5 is capacitively coupled. Of the high-frequency signal input from one line conductor 4 (or 5), only the frequency component within the pass band of the superconducting high-frequency bandpass filter passes through the bandpass filter, and the other line conductor 5 (or 4). Is output from. The frequency component outside the pass band is reflected by the line conductor 4 (or 5) on the input side.

図2は図1の超伝導高周波バンドパスフィルタの共振器の構成を示す断面図であり、図1と同一の構成には同一の符号を付してある。図2において、3は超伝導体薄膜からなる接地導体である。本実施の形態の線路導体2は、誘電体基板1上に形成された第1の超伝導体薄膜11と、同じく誘電体基板1上に形成された、超伝導体薄膜11よりも表面抵抗の高い第2の超伝導体薄膜又は非超伝導金属薄膜12とからなる。第1の超伝導体薄膜11の表面抵抗は20μΩ程度である。また、第1の超伝導体薄膜11と接地導体3とは同材料である。
図3は従来の超伝導高周波バンドパスフィルタの共振器の構成を示す断面図であり、図2と同一の構成には同一の符号を付してある。従来の共振器の線路導体2aは、超伝導体薄膜11のみから構成される。
FIG. 2 is a cross-sectional view showing the configuration of the resonator of the superconducting high-frequency bandpass filter shown in FIG. 1, and the same components as those in FIG. In FIG. 2, 3 is a ground conductor made of a superconductor thin film. The line conductor 2 of this embodiment has a surface resistance higher than that of the first superconductor thin film 11 formed on the dielectric substrate 1 and the superconductor thin film 11 also formed on the dielectric substrate 1. It consists of a high second superconductor thin film or non-superconductive metal thin film 12. The surface resistance of the first superconductor thin film 11 is about 20 μΩ. The first superconductor thin film 11 and the ground conductor 3 are made of the same material.
FIG. 3 is a cross-sectional view showing the configuration of a resonator of a conventional superconducting high-frequency bandpass filter. The same components as those in FIG. The line resonator 2a of the conventional resonator is composed only of the superconductor thin film 11.

本実施の形態の特徴を表わしている図2の構造において、第2の超伝導体薄膜又は非超伝導金属薄膜12は、第1の超伝導体薄膜11と少なくとも一部が接するように配置される。本実施の形態では、第2の超伝導体薄膜又は非超伝導金属薄膜12において高周波電力の損失が生じるため、図2に示すマイクロストリップ線路から構成した共振器の無負荷Q値は、図3に示すマイクロストリップ線路から構成した共振器の無負荷Q値よりも小さくなる。したがって、本実施の形態の超伝導高周波バンドパスフィルタの挿入損失は、従来の超伝導高周波バンドパスフィルタの挿入損失よりも大きい。故に交流電流が線路導体2を通過することによって発生する相互変調波の強度を従来よりも小さくすることができるので、実際の応用に適した超伝導高周波バンドパスフィルタを実現することができる。   In the structure of FIG. 2 representing the features of the present embodiment, the second superconductor thin film or the non-superconductive metal thin film 12 is disposed so as to be at least partially in contact with the first superconductor thin film 11. The In this embodiment, high-frequency power loss occurs in the second superconductor thin film or the non-superconducting metal thin film 12, and therefore the no-load Q value of the resonator constituted by the microstrip line shown in FIG. It becomes smaller than the no-load Q value of the resonator comprised from the microstrip line shown in FIG. Therefore, the insertion loss of the superconducting high-frequency bandpass filter of the present embodiment is larger than the insertion loss of the conventional superconducting high-frequency bandpass filter. Therefore, since the intensity of the intermodulation wave generated when the alternating current passes through the line conductor 2 can be made smaller than before, a superconducting high-frequency bandpass filter suitable for actual application can be realized.

[第2の実施の形態]
図4は本発明の第2の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図であり、図2、図3と同一の構成には同一の符号を付してある。本実施の形態の超伝導高周波バンドパスフィルタは、図4に示す断面構造をもつマイクロストリップ線路から構成される共振器を、図1に示した平面配置図に従って配置したものである。
[Second Embodiment]
FIG. 4 is a cross-sectional view showing a configuration of a resonator of a superconducting high-frequency bandpass filter according to a second embodiment of the present invention. The same reference numerals are given to the same configurations as those in FIGS. is there. The superconducting high-frequency bandpass filter according to the present embodiment is configured by arranging resonators composed of microstrip lines having the cross-sectional structure shown in FIG. 4 according to the plan layout shown in FIG.

本実施の形態では、第1の実施の形態と同様に、マイクロストリップ線路の線路導体2bを第1の超伝導体薄膜11と第2の超伝導体薄膜又は非超伝導金属薄膜12とから構成しているが、第1の超伝導体薄膜11の上に第2の超伝導体薄膜又は非超伝導金属薄膜12を積層している。このような構成により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。   In the present embodiment, the line conductor 2b of the microstrip line is composed of the first superconductor thin film 11 and the second superconductor thin film or the non-superconductive metal thin film 12 as in the first embodiment. However, a second superconductor thin film or a non-superconductive metal thin film 12 is laminated on the first superconductor thin film 11. With this configuration, the same effect as that of the first embodiment can be obtained in this embodiment.

[第3の実施の形態]
図5は本発明の第3の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図であり、図2、図3と同一の構成には同一の符号を付してある。本実施の形態の超伝導高周波バンドパスフィルタは、図5に示す断面構造をもつマイクロストリップ線路から構成される共振器を、図1に示した平面配置図に従って配置したものである。
[Third Embodiment]
FIG. 5 is a cross-sectional view showing a configuration of a resonator of a superconducting high-frequency bandpass filter according to a third embodiment of the present invention. The same components as those in FIGS. 2 and 3 are denoted by the same reference numerals. is there. The superconducting high-frequency bandpass filter according to the present embodiment is obtained by arranging resonators composed of microstrip lines having the cross-sectional structure shown in FIG. 5 according to the plan layout shown in FIG.

本実施の形態では、マイクロストリップ線路の線路導体2cを第1の超伝導体薄膜11のみから構成し、接地導体3の代わりに、超伝導体薄膜11(接地導体3)よりも表面抵抗の高い第2の超伝導体薄膜又は非超伝導金属薄膜からなる接地導体3cを用いている。
接地導体3cで生じる高周波電力の損失が接地導体3で生じる高周波電力の損失よりも大きいために、図5に示すマイクロストリップ線路から構成した共振器の無負荷Q値は、図3に示すマイクロストリップ線路から構成した共振器の無負荷Q値よりも小さくなる。したがって、本実施の形態の超伝導高周波バンドパスフィルタの挿入損失は、従来の超伝導高周波バンドパスフィルタの挿入損失よりも大きい。故に交流電流が線路導体2cを通過することによって発生する相互変調波の強度を従来よりも小さくすることができるので、実際の応用に適した超伝導高周波バンドパスフィルタを実現することができる。
In the present embodiment, the line conductor 2c of the microstrip line is composed of only the first superconductor thin film 11 and has a surface resistance higher than that of the superconductor thin film 11 (ground conductor 3) instead of the ground conductor 3. The ground conductor 3c made of the second superconductor thin film or the non-superconductive metal thin film is used.
Since the loss of the high-frequency power generated in the ground conductor 3c is larger than the loss of the high-frequency power generated in the ground conductor 3, the no-load Q value of the resonator constituted by the microstrip line shown in FIG. It becomes smaller than the unloaded Q value of the resonator composed of the line. Therefore, the insertion loss of the superconducting high-frequency bandpass filter of the present embodiment is larger than the insertion loss of the conventional superconducting high-frequency bandpass filter. Therefore, since the intensity of the intermodulation wave generated when the alternating current passes through the line conductor 2c can be made smaller than before, a superconducting high frequency bandpass filter suitable for actual application can be realized.

[第4の実施の形態]
図6は本発明の第4の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図であり、図2、図3と同一の構成には同一の符号を付してある。本実施の形態の超伝導高周波バンドパスフィルタは、図6に示す断面構造をもつマイクロストリップ線路から構成される共振器を、図1に示した平面配置図に従って配置したものである。
[Fourth Embodiment]
FIG. 6 is a cross-sectional view showing a configuration of a resonator of a superconducting high-frequency bandpass filter according to a fourth embodiment of the present invention. The same reference numerals are given to the same configurations as those in FIGS. is there. The superconducting high-frequency bandpass filter according to the present embodiment is obtained by arranging resonators composed of microstrip lines having the cross-sectional structure shown in FIG. 6 according to the plan layout shown in FIG.

本実施の形態では、マイクロストリップ線路の線路導体2dを第1の超伝導体薄膜11のみから構成し、誘電体基板1dを誘電体基板1を構成する誘電体よりも大きな誘電正接を有する誘電体から構成している。誘電正接を大きくするには、誘電体に不純物を印加すればよい。誘電体基板1の誘電正接は10-6程度である。 In the present embodiment, the line conductor 2d of the microstrip line is composed only of the first superconductor thin film 11, and the dielectric substrate 1d is a dielectric having a larger dielectric loss tangent than the dielectric constituting the dielectric substrate 1. Consists of. In order to increase the dielectric loss tangent, an impurity may be applied to the dielectric. The dielectric loss tangent of the dielectric substrate 1 is about 10 −6 .

誘電体基板1dで生じる高周波電力の損失が誘電体基板1で生じる高周波電力の損失よりも大きいために、図6に示すマイクロストリップ線路から構成した共振器の無負荷Q値は、図3に示すマイクロストリップ線路から構成した共振器の無負荷Q値よりも小さくなる。したがって、本実施の形態の超伝導高周波バンドパスフィルタの挿入損失は、従来の超伝導高周波バンドパスフィルタの挿入損失よりも大きい。故に交流電流が線路導体2dを通過することによって発生する相互変調波の強度を従来よりも小さくすることができるので、実際の応用に適した超伝導高周波バンドパスフィルタを実現することができる。   Since the loss of the high frequency power generated in the dielectric substrate 1d is larger than the loss of the high frequency power generated in the dielectric substrate 1, the no-load Q value of the resonator constituted by the microstrip line shown in FIG. 6 is shown in FIG. It becomes smaller than the unloaded Q value of the resonator composed of the microstrip line. Therefore, the insertion loss of the superconducting high-frequency bandpass filter of the present embodiment is larger than the insertion loss of the conventional superconducting high-frequency bandpass filter. Therefore, since the intensity of the intermodulation wave generated when the alternating current passes through the line conductor 2d can be made smaller than before, a superconducting high-frequency bandpass filter suitable for actual application can be realized.

本発明は、比較的大きな交流電力を扱う用途に利用できる。一例としては、近年急速に普及が拡大している携帯電話や無線LANなどに代表される種々の無線通信システムの送信部の部品としての利用が可能になる。   The present invention can be used for applications that handle relatively large AC power. As an example, it can be used as a part of a transmission section of various wireless communication systems represented by mobile phones and wireless LANs that have been rapidly spreading in recent years.

本発明の第1の実施の形態となる超伝導高周波バンドパスフィルタの構成を示す平面図である。It is a top view which shows the structure of the superconducting high frequency band pass filter used as the 1st Embodiment of this invention. 本発明の第1の実施の形態の超伝導高周波バンドパスフィルタにおける共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the resonator in the superconducting high frequency band pass filter of the 1st Embodiment of this invention. 従来の超伝導高周波バンドパスフィルタにおける共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the resonator in the conventional superconducting high frequency band pass filter. 本発明の第2の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the resonator of the superconducting high frequency band pass filter used as the 2nd Embodiment of this invention. 本発明の第3の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the resonator of the superconducting high frequency band pass filter used as the 3rd Embodiment of this invention. 本発明の第4の実施の形態となる超伝導高周波バンドパスフィルタの共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the resonator of the superconducting high frequency band pass filter used as the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1、1d…誘電体基板、2、2b、2c、2d…マイクロストリップ線路の線路導体、3、3c…接地導体、4、5…給電線路の線路導体、11…第1の超伝導体薄膜、12…第2の超伝導体薄膜又は非超伝導金属薄膜。
DESCRIPTION OF SYMBOLS 1, 1d ... Dielectric substrate, 2, 2b, 2c, 2d ... Line conductor of microstrip line, 3, 3c ... Ground conductor, 4, 5 ... Line conductor of feed line, 11 ... First superconductor thin film, 12: Second superconductor thin film or non-superconductive metal thin film.

Claims (4)

誘電体基板の表面に形成されたマイクロストリップ線路の線路導体と前記誘電体基板の裏面に形成されたマイクロストリップ線路の接地導体とから構成されるマイクロストリップ共振器を複数結合してなる超伝導高周波バンドパスフィルタにおいて、
前記線路導体が、第1の超伝導体薄膜と、この第1の超伝導体薄膜と少なくとも一部が接するように配置された、前記第1の超伝導体薄膜よりも表面抵抗の高い第2の超伝導体薄膜とから構成されることを特徴とする超伝導高周波バンドパスフィルタ。
Superconducting high-frequency wave formed by coupling a plurality of microstrip resonators composed of a microstrip line conductor formed on the surface of a dielectric substrate and a microstrip line ground conductor formed on the back surface of the dielectric substrate. In bandpass filter,
The line conductor has a first superconductor thin film and a second superconductor thin film disposed at least partially in contact with the first superconductor thin film and having a surface resistance higher than that of the first superconductor thin film. superconducting high frequency band pass filter, characterized in that it is constituted from the superconductor thin film.
請求項1記載の超伝導高周波バンドパスフィルタにおいて、
前記第2の超伝導体薄膜は、前記第1の超伝導体薄膜の上に積層されることを特徴とする超伝導高周波バンドパスフィルタ。
The superconducting high-frequency bandpass filter according to claim 1,
The second superconductor thin film superconducting RF bandpass filter, characterized in that it is laminated on the first superconductor film.
誘電体基板の表面に形成されたマイクロストリップ線路の線路導体と前記誘電体基板の裏面に形成されたマイクロストリップ線路の接地導体とから構成されるマイクロストリップ共振器を複数結合してなる超伝導高周波バンドパスフィルタにおいて、
前記接地導体が、前記線路導体を構成する第1の超伝導体薄膜よりも表面抵抗の高い第2の超伝導体薄膜から構成されることを特徴とする超伝導高周波バンドパスフィルタ。
Superconducting high-frequency wave formed by coupling a plurality of microstrip resonators composed of a microstrip line conductor formed on the surface of a dielectric substrate and a microstrip line ground conductor formed on the back surface of the dielectric substrate. In bandpass filter,
It said ground conductor, first superconductive high-frequency band-pass filter characterized in that it is either found configured high surface resistance second superconductor thin film than superconductor thin film constituting the line conductor.
誘電体基板の表面に形成されたマイクロストリップ線路の線路導体と前記誘電体基板の裏面に形成されたマイクロストリップ線路の接地導体とから構成されるマイクロストリップ共振器を複数結合してなる超伝導高周波バンドパスフィルタにおいて、
前記誘電体基板が、不純物を加えて誘電正接を大きくした誘電体から構成されることを特徴とする超伝導高周波バンドパスフィルタ。
Superconducting high-frequency wave formed by coupling a plurality of microstrip resonators composed of a microstrip line conductor formed on the surface of a dielectric substrate and a microstrip line ground conductor formed on the back surface of the dielectric substrate. In bandpass filter,
A superconducting high-frequency band-pass filter, wherein the dielectric substrate is made of a dielectric having an increased dielectric loss tangent by adding impurities.
JP2004156295A 2004-05-26 2004-05-26 Superconducting high-frequency bandpass filter Expired - Fee Related JP4171446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156295A JP4171446B2 (en) 2004-05-26 2004-05-26 Superconducting high-frequency bandpass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156295A JP4171446B2 (en) 2004-05-26 2004-05-26 Superconducting high-frequency bandpass filter

Publications (2)

Publication Number Publication Date
JP2005341140A JP2005341140A (en) 2005-12-08
JP4171446B2 true JP4171446B2 (en) 2008-10-22

Family

ID=35494204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156295A Expired - Fee Related JP4171446B2 (en) 2004-05-26 2004-05-26 Superconducting high-frequency bandpass filter

Country Status (1)

Country Link
JP (1) JP4171446B2 (en)

Also Published As

Publication number Publication date
JP2005341140A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US9985329B2 (en) Narrow-band filter having first and second resonators of different orders with resonant frequencies equal to a center frequency
US6026311A (en) High temperature superconducting structures and methods for high Q, reduced intermodulation resonators and filters
US7245196B1 (en) Fractal and space-filling transmission lines, resonators, filters and passive network elements
US7397330B2 (en) Filter and radio communication device using the same
KR100618422B1 (en) Coplanar waveguide filter and method of forming same
US20050206481A1 (en) Filter
US6700459B2 (en) Dual-mode bandpass filter with direct capacitive couplings and far-field suppression structures
US6823201B2 (en) Superconducting microstrip filter having current density reduction parts
Yoshida et al. Superconducting slot antenna with broadband impedance matching circuit
US20100073107A1 (en) Micro-miniature monolithic electromagnetic resonators
JP4171446B2 (en) Superconducting high-frequency bandpass filter
JPH07202507A (en) Micro strip line filter
WO2010019285A1 (en) Micro-miniature monolithic electromagnetic resonators
JPWO2003075392A1 (en) Resonator and filter device
JP4167187B2 (en) filter
Zhou et al. HTS coplanar meander-line resonator filters with a suppressed slot-line mode
JP2006101187A (en) Superconducting device
EP1513219A1 (en) Coplanar waveguide resonator
Chung et al. HTS microstrip filters using H-type resonators
JP2005295428A (en) Superconducting bandpass filter circuit
JP2005229304A (en) High frequency circuit
JP2010068266A (en) Filter circuit and radio communication device
JP2005340453A (en) Method of manufacturing oxide high-temperature superconductor high-frequency element
CN102255129A (en) Planar superconductive microstrip line resonator
JPH0722810A (en) Micro strip line filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4171446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees