JP4171124B2 - Magnetic field generator and permanent magnet manufacturing apparatus - Google Patents

Magnetic field generator and permanent magnet manufacturing apparatus Download PDF

Info

Publication number
JP4171124B2
JP4171124B2 JP35724698A JP35724698A JP4171124B2 JP 4171124 B2 JP4171124 B2 JP 4171124B2 JP 35724698 A JP35724698 A JP 35724698A JP 35724698 A JP35724698 A JP 35724698A JP 4171124 B2 JP4171124 B2 JP 4171124B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
permanent magnet
field generator
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35724698A
Other languages
Japanese (ja)
Other versions
JP2000182822A (en
Inventor
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35724698A priority Critical patent/JP4171124B2/en
Publication of JP2000182822A publication Critical patent/JP2000182822A/en
Application granted granted Critical
Publication of JP4171124B2 publication Critical patent/JP4171124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラジアル方向の磁界を実現する磁場発生装置および該磁場発生装置を組み込んでなる永久磁石製造装置に関するもので、粉末焼結法で作製する異方性焼結永久磁石の製造に最適である。
【0002】
【従来の技術】
粉末成形法による磁性材料、とりわけ永久磁石の製造工程では、磁石粉末を磁場中で配向させ、磁場を印加したままプレス成形つまり磁場中配向プレスが行われ、異方性磁石を製造している。
磁場の発生は、一対の空芯または鉄心付き電磁石を対向させて空隙を挟んで行われるが、通常、この空隙にダイプレスの金型を配置し、空隙中に一方向の磁場を発生させ、磁場発生方向に磁石粉末を配向させた状態でプレス成形を行って異方性磁石成形体とし、さらに、焼結熱処理を施して焼結異方性永久磁石を製造している。
【0003】
磁場中配向プレスでの印加磁場の大きさは、成形する磁性粉の種類によって異なるが、フェライト磁石粉で2〜5kOe、希土類磁石粉で10〜15kOeが一応の目安である。製造された異方性永久磁石は、等方性永久磁石の約4倍のエネルギー積を得ることができる。
【0004】
モータ用の焼結異方性永久磁石では、特に、リング状磁石の径方向(ラジアル方向)に磁化容易軸が配向した異方性磁石すなわちラジアル配向磁石が求められることが多い。
ラジアル配向磁石はモータのロータ磁石として用いられ、極数やスキューを着磁により任意に変えられるので、表面磁石型のモータに用いて最適である。このため、大きさや長さの多様な要求に対応でき、高特性で配向度の良好なラジアル配向のリング状磁石の需要が高まっている。
【0005】
ラジアル配向磁石の配向方法は、従来、図2に示すように、一対の空芯もしくは鉄心付きコイル1a、1bを同極で対向して配置し、ラジアル方向に発生した磁束3の空間領域にダイプレス用金型(図示を省略)を配置して、磁性粉をラジアル配向しプレス成形していた。
しかし、この方法でラジアル方向に発生する磁束3の空間領域は、とりわけ軸方向に狭いため、高さの低いリング状磁石しか製作できないという欠点がある。また、磁束3がラジアル方向(水平方向)に向いていても、垂直方向の磁束成分をも有しているので、完全なラジアル磁場の場合と比較して、磁石粉末の配向の程度が劣る。さらに、ラジアル方向の磁場強度は外周部に近いほど急激に低下するので、成形するリング状磁石の大きさによっては配向磁場強度が不足する。プレス成形によりラジアル配向の永久磁石を製作するには、上記した種々の問題点があり、製造できる磁石の径や長さに大きな制限があった。
【0006】
これらの問題点を改善するため、いろいろな改良が試みられている。例えば、比較的大きな磁石の場合は、金型のコア部に対向する一対のコイルを組み込むことで、配向磁場強度を増し、ラジアル磁束の垂直成分を減少させることができる。しかし、実際にコイルを組み込むには磁石の形状によって制約があり、また形状が異なるとその都度コイル部を作り替えねばならず、煩雑であった。
【0007】
別の方法として、磁場を発生させるリング状磁石金型のコア部を鉄材などの強磁性コアで形成し、対向するコイルの磁束をコア部に呼び込んでからラジアル方向に発散させる方法がある。これにより金型キャビティ部の磁場強度を増し、ラジアル磁束の垂直成分を減少させることができる。しかし、この方法は、対向するコイルが発生する磁束量に対して、コア部の径が十分大きくなく、磁気的に飽和するため、期待するほどコア部に磁束を呼び込むことができない。また、強磁性コアは印加磁場がゼロとなっても、残留磁化の分だけ金型内に磁場が存在するため、金型のキャビティ内に磁石粉を充填する場合の妨げとなる。さらに、キャビティ内の磁場均一度も悪くなり、磁場配向時に磁粉がコア部の方に偏り易く、磁粉成形体にクラックなどを生じる原因となっていた。
【0008】
【発明が解決しようとする課題】
上記したように、ラジアル配向磁石は、従来の成形装置でも製作可能ではあるが、磁石の配向特性や形状任意性については満足できる状態ではなかった。
本発明は、これらの問題を解決し、垂直成分が少なく水平ラジアル方向に磁力線が向かうようなラジアル磁場を、広い空間領域に発生することのできる磁場発生装置を提供し、さらに、この磁場発生装置を磁場中配向プレス成形装置に組み込み、良好なラジアル配向永久磁石を製造できる永久磁石製造装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記問題点を解決するため鋭意研究した結果、解決したものであり、すなわち、本発明の磁場発生装置は、一対の空芯または鉄心付きコイルを空隙を挟んで対向させた磁場発生装置において、該空隙を挟んで、Al、Cu、Ag、Auもしくはこれらの合金から選ばれたライナーを各コイルに接して対称に配置し、両コイルに逆向きのパルス電流を印加して同極同士が対向するように構成したことを特徴としている。前記ライナーが、円筒形状であることが好ましい。円筒形状としては、直筒形状のものや上端と下端で径の異なる切頭円錐台形状が挙げられる。
【0010】
要するに、本発明の磁場発生装置は、一対の円筒形状を有するライナーを、空隙を挟んで対向する磁場発生装置の各コイルに接して対称に配置し、両コイルに逆向きのパルス電流を印加して磁場を発生させ、高い導電性を有するライナーにより生じる渦電流により、発生した磁束をライナーの円筒内に集束させ、磁束は両ライナー間のスリット状空隙を通って水平方向に放射状に発散され、広い空間領域に垂直磁束成分の少ないラジアル磁場を発生することができる。
上記磁場発生装置をダイプレス機に組み込むことにより、ラジアル配向特性に優れた永久磁石を製造することのできる永久磁石製造装置が得られる。磁場方向に配向しプレス成形を行う磁性材料は、永久磁石粉末全てに適用できるが、特には、希土類永久磁石粉末が得られる磁石の特性上好ましい。
【0011】
【発明の実施の形態】
本発明の磁場発生装置についてさらに詳細に説明する。
図1は、本発明の磁場発生装置の電磁石部分を示す断面概略図である。図において、一対の空芯または鉄心付きコイル1a、1bが空隙を挟んで対向して配置され、さらに、コイル1a、1bに接して一対の円筒形状を有するライナー2a、2bがそれぞれ空隙を挟んで対称に配置されている。コイル1a、1bに逆向きのパルス電流を印加して同極同士が対向する磁場を構成する。コイル1a、1bにより発生した磁束3は、ライナー2a、2bの渦電流により円筒内に集束され、かつ円筒内に規制され、ライナー2a、2b間のスリット状空隙を通って、広い空間領域に放射状に発散され、垂直磁束成分の少ないラジアル磁場を発生する。
【0012】
本発明の磁場発生装置の第1の特徴は、定電流ではなくパルス電流を対向するコイルに印加して、磁極を同極同士で対向させることにある。
磁粉は、粉体間の摩擦を考えなければマイクロ秒(μs )のオーダーで配向するので、磁粉を配向させるにはミリ秒(ms)オーダーのパルス幅のパルス磁場で十分である。また、パルス電流の通電時間は極めて短いため、定電流に比較して高いピーク磁場を印加しても、コイルの発熱は小さい。従って、相対的に高いピーク磁場で磁粉を配向させることができる。
【0013】
パルス電流の発生装置としては、コンデンサーを並べ、サイリスタースイッチにより同時に放電するパルス電源が使用できる。パルス電流もしくはパルス磁場の時定数は、コンデンサー容量、コイルのインダクタンス、パルス電源のインダクタンスやインピーダンスにより決まる。パルス磁場は超硬合金よりなる金型には浸透する必要があるが、ライナーには浸透しないのが望ましい。従って、時定数は短いほどよいのではなく、好ましい範囲がある。半周期のパルス幅としては、上記制約から0.1 〜 100msの範囲が適当である。パルス幅が0.1 msより短いと金型に浸透しなくなり、 100msより長くなるとライナーに浸透するようになるので好ましくない。
【0014】
本発明の第2の特徴は、対向して配設された一対のコイルの空隙を挟んで、円筒形状を有する一対のライナーを各コイルに接して対称に配置することにある。両ライナー間には空隙が介在し、例えば、図1のような配置となる。
逆に巻かれた一対のコイル1a、1bにパルス通電すると、発生したパルス磁束3は、コイル1a、1b間で同極同士で衝突する。衝突した磁束は、図2のように広がり反対側に廻って磁束を閉じようとするが、図1に示すように、高電導性のライナー2a、2bに生じる渦電流の作用により、ライナーで規制され径外に漏れ出すことができなくなり、ライナー2a、2bの径内を通って磁束は進む。ライナー2a、2b間の空隙はスリットとなっており、渦電流の影響がないので、この空隙を通って磁束3は水平方向に放射状に発散し、広い空間領域に亙ってラジアル方向に分布する磁場が短時間に実現される。
【0015】
本発明によれば、電磁石すなわちコイル1a、1bから出た磁束3をライナー2a、2bにより必要な空間領域まで導いた後、発散させられるので、発散磁束の垂直成分の少ないラジアル分布磁場が得られる。ライナーに種々の形状を採用することにより、パルス磁束を絞ったり、拡大することも可能で、ラジアル磁場の発生する空間領域を自在に設定できる。また、ライナー間の空隙間隔を増減することにより、軸方向のラジアル磁束発生空間領域をも自在に設定することができる。従って、発生させる磁場領域に合わせてその都度コイルを替えることなく、ライナーの形状を適宜選択することで、様々な磁場領域に対して一つのコイルで広く対応させることができる。また、ライナー間の空隙間隔を構造的に可変としておけば、このライナー間の空隙に金型キャビティが位置する様に配置し、金型キャビティ内に磁粉を充填して磁場を発生させ、配向して成形後、ライナー間隔を広げて、再度金型キャビティに磁粉充填、磁場配向、成形を繰り返して、より長尺の成形体を製作することもできる。
【0016】
ライナーの素材としては電気伝導度の高いものが好ましく、例えばAl、Cu、Ag、Auなどや、その合金などが挙げられる。ライナー部を低温に冷却することが可能であれば、ライナーに超伝導体を使用することにより、マイスナー効果の完全反磁性を利用することができ、静磁場でもより効果的に磁束を必要とする空間に誘導できる。このように磁場発生装置に高電導性を有するライナーを取り付け、コイルにパルス電流を流してパルス磁場を発生させることにより、渦電流の作用を利用して磁束を必要とする空間に導いて放射状に発散させることが可能となった。
【0017】
また、本発明の磁場発生装置を、粉末成形が可能なダイプレスに組み込んで、永久磁石製造装置とすることができる。
具体的には、磁場発生装置に取り付けた上下ライナー間のスリット部(空隙)にダイ金型を組み込んで、ラジアル磁場配向プレス成形装置となし、ラジアル磁場を発生させ、磁粉を磁場方向に配向させる。すなわち、ダイ金型のキャビティ内に磁粉を充填し、上パンチをダイ面位置まで下降して蓋をした状態で、上下コイルにパルス通電を行い、パルス磁場を発生させてラジアル磁場方向に磁粉を配向し、その後プレス成形を行えばよい。
【0018】
本発明のパルス磁場による磁粉の配向が、通常の定電流による磁場中配向プレスと大きく異なる点は、プレス成形中、磁場を印加する必要がなく、永久磁石製造装置としての構造をより簡素化することができる。
本発明の磁束のラジアル配向方向は、プレス成形の加圧方向と直交しており、横磁場成形の一種であるので、成形時に磁場を印加していなくても、磁粉に配向の乱れは殆ど生じない。
【0019】
本発明の永久磁石製造装置は、全ての磁性粉に採用できるが、とりわけフェライト磁石粉や希土類磁石粉に適用して、ラジアル配向の磁石を製作するのに適している。
特に、希土類磁石では、コンパクトでかつ高トルクを発生することができ、電流とトルクとの間に比例関係のある表面磁石型のACサーボモータやDCブラシレスモータへの利用が進んでいる。
高特性の磁石を使用する場合、コギングトルクを低減する必要から、スキュー着磁の可能なラジアル配向磁石が求められている。従って、本発明の永久磁石製造装置は、希土類磁石の製造に好適に利用される。
【0020】
【実施例】
次に、本発明の実施例を挙げる。
(実施例1、比較例1)
銅線角線(5mm×2mm)を巻いて作製した内径200 mmの一対の空芯コイルを200 mmの空隙を挟んで対向して配置し、この空隙に、コイル側内径200 mm、空隙側内径100 mm、高さ50mm、厚さ3mmの一様に絞り込まれた切頭円錐形状を有する一対のCu製ライナーを挿入した。
両ライナー間には100 mmの隙間が開いている。両コイルは相互に逆向きに巻かれており、その両端にパルス電源を直列に接続した。なお、パルス電源は、トータルで4000V 、5000μF のコンデンサーで構成され、コンデンサーに蓄えられた電荷はサイリスタースイッチにより瞬時に放電される。この結果、逆向きに巻かれた両コイル間で、同極の磁束同士が衝突し、コイルの空芯から出た磁束は反対側に廻って磁束を閉じようとするが、Cu製ライナーに生じる渦電流の作用でライナー外に漏れ出すことができず、50mmライナー内を進んだ時点で、ライナー間の空隙から水平方向に放射状に磁束が発散する。
このような構成からなるラジアル磁場発生装置を用いて、ライナー間の軸方向中心位置から半径70mmの位置での水平方向のパルス磁場強度を測定すると、11kOeの値が得られた。なお、このパルス磁場のパルス幅は、1.5 msであった。
比較例1として、上記一対のCu製ライナーを取り去って、同じコイルを用いて同じ位置で水平方向のパルス磁場強度を測定したところ、5.2 kOeの値しか得られなかった。
【0021】
(実施例2、比較例2)
実施例1のラジアル磁場発生装置を、加圧力 30tonの油圧プレスに組み込んだ。さらに、両ライナー間に内径60mm、外径 100mmのWC製金型を配置し、NdFeB 系永久磁石粉末を金型のキャビティに充填した。パルス電源から4000V 、5000μF でパルス放電を行い、この磁粉をラジアル方向に配向させた後、30ton の圧力でプレス成形を行った。磁粉成形体を焼結熱処理して焼結磁石となし、得られた焼結磁石の磁気特性を測定したところ、Brは12.8kG 、 iHcは16.5kOeであった。比較例2として、実施例1のラジアル磁場発生装置からCu製ライナーを取り去り、実施例2と同じ金型を使用して、NdFeB 系永久磁石粉末を同じ条件でパルス磁場配向し、プレス成形後、焼結熱処理を行って焼結体の磁気特性を測定したところ、Brは11.4kG 、 iHcは17.0kOeであった。比較例2の iHcの方が少し高いのは磁粉の配向度が悪いためである。
このように、本発明の磁場発生装置を永久磁石製造装置に組み込むことにより、大幅にラジアル配向磁石の磁気特性を向上させることができた。
【0022】
(比較例3)
比較例1において、パルス電源の代わりに定電流を接続した以外は比較例1と同様に行ったところ、Brは9kG 、 iHcは11kOeであった。
【0023】
【発明の効果】
本発明の磁場発生装置は、対向するコイルに取り付けられた高電導性を有するライナーの渦電流の作用を利用して、コイルにパルス電流を流して発生したパルス磁束を必要とする空間に導いてラジアル方向に発散させることができ、ライナーに種々の形状を採用することにより、パルス磁束を絞ったり、拡大することも可能で、ラジアル磁場の発生する空間領域を自在に設定できる。また、ライナー間の空隙距離を増減することにより、軸方向のラジアル磁束発生空間領域をも自在に設定することができる。このため、発生させる磁場領域に合わせてその都度コイルを替えることなく、ライナーの形状を適宜選択することで、様々な磁場領域に対して一つのコイルで広く対応させることができる。
また、定電流ではなくパルス電流をコイルに印加して、磁極を同極同士で対向させることにより、高いピーク磁場を印加しても、コイルの発熱は小さく、相対的に高いピーク磁場で磁粉を配向させることができる。
上記磁場発生装置をダイプレス機に組み込むことにより、ラジアル配向特性に優れ、所望の形状を有する永久磁石を製造することのできる永久磁石製造装置が得られ、プレス成形中、磁場を印加する必要がないため、従来の装置に比べ構造が簡単である。
【図面の簡単な説明】
【図1】 本発明のラジアル磁場発生装置の電磁石部分を示す断面概略図である。
【図2】 従来のラジアル磁場発生装置の電磁石部分を示す断面概略図である。
【符号の説明】
1a、1b‥‥‥‥コイル(電磁石)
2a、2b‥‥‥‥ライナー
3‥‥‥‥‥‥‥‥磁束
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field generator that realizes a magnetic field in a radial direction and a permanent magnet manufacturing apparatus that incorporates the magnetic field generator, and is optimal for manufacturing an anisotropic sintered permanent magnet manufactured by a powder sintering method. is there.
[0002]
[Prior art]
In the manufacturing process of a magnetic material by powder molding, especially a permanent magnet, magnet powder is oriented in a magnetic field, and press molding, that is, orientation pressing in the magnetic field, is performed while the magnetic field is applied to produce an anisotropic magnet.
The generation of the magnetic field is performed with a pair of air cores or electromagnets with an iron core facing each other and sandwiching a gap. Usually, a die press mold is disposed in the gap to generate a unidirectional magnetic field in the gap, and the magnetic field is generated. In the state in which the magnet powder is oriented in the generation direction, press molding is performed to form an anisotropic magnet molded body, and further, sintering heat treatment is performed to manufacture a sintered anisotropic permanent magnet.
[0003]
The magnitude of the magnetic field applied in the magnetic field orientation press varies depending on the type of magnetic powder to be molded, but 2 to 5 kOe for ferrite magnet powder and 10 to 15 kOe for rare earth magnet powder are only a rough guide. The manufactured anisotropic permanent magnet can obtain an energy product about four times that of an isotropic permanent magnet.
[0004]
In sintered anisotropic permanent magnets for motors, in particular, anisotropic magnets having a magnetization easy axis oriented in the radial direction (radial direction) of a ring-shaped magnet, that is, radial oriented magnets are often required.
A radial orientation magnet is used as a rotor magnet of a motor, and the number of poles and skew can be arbitrarily changed by magnetization. Therefore, it is most suitable for a surface magnet type motor. For this reason, there is an increasing demand for a radially oriented ring-shaped magnet that can meet various demands for size and length and has high characteristics and good orientation.
[0005]
Conventionally, as shown in FIG. 2, a radially oriented magnet is oriented by placing a pair of air cores or coils 1a and 1b with iron cores facing each other in the same pole, and die presses in the space region of the magnetic flux 3 generated in the radial direction. A metal mold (not shown) was placed, and the magnetic powder was radially oriented and press-molded.
However, since the spatial region of the magnetic flux 3 generated in the radial direction by this method is particularly narrow in the axial direction, there is a disadvantage that only a ring-shaped magnet having a low height can be manufactured. Even if the magnetic flux 3 is oriented in the radial direction (horizontal direction), it also has a magnetic flux component in the vertical direction, so that the degree of orientation of the magnet powder is inferior to that in the case of a complete radial magnetic field. Furthermore, since the magnetic field strength in the radial direction decreases more rapidly as it approaches the outer periphery, the orientation magnetic field strength is insufficient depending on the size of the ring-shaped magnet to be formed. In order to produce a radially oriented permanent magnet by press molding, there are various problems as described above, and there is a great limitation on the diameter and length of the magnet that can be produced.
[0006]
Various improvements have been attempted to improve these problems. For example, in the case of a relatively large magnet, by incorporating a pair of coils facing the core portion of the mold, the orientation magnetic field strength can be increased and the vertical component of the radial magnetic flux can be reduced. However, the actual incorporation of the coil is restricted by the shape of the magnet, and if the shape is different, the coil portion must be redesigned each time, which is complicated.
[0007]
As another method, there is a method in which a core part of a ring-shaped magnet mold for generating a magnetic field is formed of a ferromagnetic core such as iron, and the magnetic flux of an opposing coil is drawn into the core part and then radiated in the radial direction. As a result, the magnetic field strength of the mold cavity can be increased and the vertical component of the radial magnetic flux can be reduced. However, in this method, the diameter of the core portion is not sufficiently large and magnetically saturated with respect to the amount of magnetic flux generated by the opposing coil, and therefore magnetic flux cannot be drawn into the core portion as expected. In addition, even if the applied magnetic field becomes zero, the ferromagnetic core has a magnetic field in the mold corresponding to the residual magnetization, which hinders filling of the mold powder with magnet powder. Further, the uniformity of the magnetic field in the cavity is also deteriorated, and the magnetic powder tends to be biased toward the core during magnetic field orientation, causing cracks in the magnetic powder molded body.
[0008]
[Problems to be solved by the invention]
As described above, the radial orientation magnet can be manufactured even with a conventional molding apparatus, but the orientation properties and shape arbitraryness of the magnet are not satisfactory.
The present invention solves these problems, and provides a magnetic field generator capable of generating a radial magnetic field having a small vertical component and having a magnetic line of force directed in the horizontal radial direction in a wide spatial region. It is an object of the present invention to provide a permanent magnet manufacturing apparatus capable of manufacturing a good radial-oriented permanent magnet by incorporating in a magnetic field oriented press molding apparatus.
[0009]
[Means for Solving the Problems]
The present inventor has solved as a result of diligent research to solve the above problems, that is, the magnetic field generator of the present invention has a magnetic field in which a pair of air cores or coils with iron cores are opposed to each other with a gap interposed therebetween. In the generator, a liner selected from Al, Cu, Ag, Au, or an alloy thereof is arranged symmetrically in contact with each coil across the gap, and a pulse current in the opposite direction is applied to both coils. it is characterized by being configured as electrode face each other. The liner is preferably cylindrical. The circular cylinder shape, and a straight cylindrical shape of objects or different diameters at the upper and lower truncated circular cone trapezoidal shape.
[0010]
In short, in the magnetic field generator of the present invention, a pair of cylindrical liners are arranged symmetrically in contact with each coil of the magnetic field generator facing each other across the gap, and a reverse pulse current is applied to both coils. The magnetic flux is generated by the eddy current generated by the highly conductive liner, and the generated magnetic flux is focused in the cylinder of the liner, and the magnetic flux is radiated radially through the slit-like gap between both liners, A radial magnetic field with little vertical magnetic flux component can be generated in a wide space region.
By incorporating the magnetic field generator into a die press machine, a permanent magnet manufacturing apparatus capable of manufacturing a permanent magnet having excellent radial orientation characteristics can be obtained. The magnetic material that is oriented in the magnetic field direction and press-molded can be applied to all permanent magnet powders, but is particularly preferable in terms of the characteristics of the magnet from which rare earth permanent magnet powders can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic field generator of the present invention will be described in further detail.
FIG. 1 is a schematic cross-sectional view showing an electromagnet portion of the magnetic field generator of the present invention. In the figure, a pair of coils 1a and 1b with air cores or iron cores are arranged to face each other with a gap, and a pair of cylindrical liners 2a and 2b in contact with the coils 1a and 1b have a gap. They are arranged symmetrically. A pulse current in the opposite direction is applied to the coils 1a and 1b to form a magnetic field in which the same poles face each other. The magnetic flux 3 generated by the coils 1a and 1b is focused in the cylinder by the eddy currents of the liners 2a and 2b, is regulated in the cylinder, and radiates in a wide space region through the slit-like gap between the liners 2a and 2b. To generate a radial magnetic field with a small vertical magnetic flux component.
[0012]
The first feature of the magnetic field generator of the present invention resides in that a pulse current is applied to opposing coils instead of a constant current so that the magnetic poles face each other.
Since the magnetic powder is oriented in the order of microseconds (μs) unless the friction between the powders is taken into consideration, a pulse magnetic field having a pulse width of the order of milliseconds (ms) is sufficient for orienting the magnetic powder. Further, since the energization time of the pulse current is extremely short, even when a high peak magnetic field is applied compared to the constant current, the heat generation of the coil is small. Therefore, the magnetic powder can be oriented with a relatively high peak magnetic field.
[0013]
As a pulse current generator, a pulse power source in which capacitors are arranged and discharged simultaneously by a thyristor switch can be used. The time constant of the pulse current or pulse magnetic field is determined by the capacitance of the capacitor, the inductance of the coil, the inductance and impedance of the pulse power supply. The pulse magnetic field needs to penetrate into the mold made of cemented carbide, but it is desirable not to penetrate into the liner. Therefore, the shorter the time constant, the better. As the half-cycle pulse width, a range of 0.1 to 100 ms is appropriate due to the above-mentioned restrictions. If the pulse width is shorter than 0.1 ms, it will not penetrate into the mold, and if it exceeds 100 ms, it will penetrate into the liner.
[0014]
A second feature of the present invention resides in that a pair of cylindrical liners are disposed symmetrically in contact with each coil across a gap between a pair of coils disposed opposite to each other. A gap is interposed between both liners, for example, as shown in FIG.
When a pair of coils 1a and 1b wound in reverse are energized with pulses, the generated pulse magnetic flux 3 collides with the same polarity between the coils 1a and 1b. The colliding magnetic flux spreads as shown in FIG. 2 and tries to close the magnetic flux around the opposite side, but as shown in FIG. 1, it is regulated by the liner due to the action of eddy currents generated in the highly conductive liners 2a and 2b. Thus, it is impossible to leak out of the diameter, and the magnetic flux advances through the diameter of the liners 2a and 2b. Since the gap between the liners 2a and 2b is a slit and is not affected by eddy currents, the magnetic flux 3 radiates radially through the gap and is distributed in the radial direction over a wide space area. A magnetic field is realized in a short time.
[0015]
According to the onset bright, then led electromagnet i.e. coils 1a, the magnetic flux 3 exiting from 1b to the spatial area required by liners 2a, 2b, obtained since it is caused to diverge, less radial distribution field of the vertical component of the divergence flux It is done. By adopting various shapes for the liner, the pulse magnetic flux can be narrowed or expanded, and a spatial region in which a radial magnetic field is generated can be freely set. Further, the radial magnetic flux generation space region in the axial direction can be freely set by increasing or decreasing the gap interval between the liners. Therefore, by appropriately selecting the shape of the liner without changing the coil each time according to the magnetic field region to be generated, it is possible to widely correspond to various magnetic field regions with one coil. Also, if the gap between the liners is structurally variable, the mold cavity is placed in the gap between the liners, filled with magnetic powder in the mold cavity to generate a magnetic field, and oriented. After molding, the liner spacing is increased, and the mold cavity can be filled again with magnetic powder, magnetic field orientation, and molding again to produce a longer molded body.
[0016]
As the material of the liner, a material having high electrical conductivity is preferable, and examples thereof include Al, Cu, Ag, Au, and alloys thereof. If it is possible to cool the liner part to a low temperature, the use of a superconductor for the liner enables the use of the complete diamagnetism of the Meissner effect, which requires a magnetic flux more effectively even in a static magnetic field. It can be guided to space. In this way, by attaching a highly conductive liner to the magnetic field generator and generating a pulsed magnetic field by flowing a pulse current through the coil, it is guided radially to the space where the magnetic flux is required using the action of the eddy current. It became possible to diverge.
[0017]
Further, the magnetic field generator of the present invention can be incorporated into a die press capable of powder molding to form a permanent magnet manufacturing apparatus.
Specifically, a die mold is incorporated into the slit (gap) between the upper and lower liners attached to the magnetic field generator to form a radial magnetic field orientation press molding device, generating a radial magnetic field and orienting the magnetic powder in the magnetic field direction. . That is, in the state where the die mold cavity is filled with magnetic powder, the upper punch is lowered to the die surface position and the lid is closed, the upper and lower coils are pulsed to generate a pulse magnetic field and the magnetic powder is directed in the radial magnetic field direction. It may be oriented and then press-molded.
[0018]
The magnetic powder orientation by the pulsed magnetic field of the present invention is significantly different from the normal constant current magnetic field orientation press, which eliminates the need for applying a magnetic field during press molding and further simplifies the structure as a permanent magnet manufacturing apparatus. be able to.
Since the radial orientation direction of the magnetic flux of the present invention is orthogonal to the pressing direction of press molding and is a kind of transverse magnetic field molding, even if no magnetic field is applied during molding, disorder of orientation hardly occurs in the magnetic powder. Absent.
[0019]
The permanent magnet manufacturing apparatus of the present invention can be employed for all magnetic powders, but is particularly suitable for manufacturing a radially oriented magnet by applying it to ferrite magnet powder or rare earth magnet powder.
In particular, rare earth magnets are compact and can generate high torque, and are increasingly used in surface magnet type AC servo motors and DC brushless motors in which a proportional relationship exists between current and torque.
In the case of using a high-performance magnet, a radial oriented magnet capable of skew magnetization is required because of the need to reduce the cogging torque. Therefore, the permanent magnet manufacturing apparatus of the present invention is suitably used for manufacturing rare earth magnets.
[0020]
【Example】
Next, examples of the present invention will be given.
(Example 1, Comparative Example 1)
A pair of air core coils with an inner diameter of 200 mm produced by winding copper wire square wires (5 mm x 2 mm) are placed facing each other across a 200 mm gap, and the coil side inner diameter is 200 mm and the gap side inner diameter is placed in this gap. A pair of Cu liners having a uniformly narrowed truncated conical shape of 100 mm, height 50 mm, and thickness 3 mm were inserted.
There is a 100 mm gap between both liners. Both coils were wound in opposite directions, and a pulse power source was connected in series at both ends. The pulse power supply is composed of a total of 4000 V and 5000 μF capacitors, and the electric charge stored in the capacitors is instantaneously discharged by a thyristor switch. As a result, magnetic fluxes of the same polarity collide between the coils wound in the opposite directions, and the magnetic flux coming out of the air core of the coil tries to close the magnetic flux around the opposite side, but occurs in the Cu liner. It cannot leak out of the liner due to the action of eddy current, and when it moves through the 50 mm liner, magnetic flux radiates radially from the gap between the liners.
Using the radial magnetic field generator configured as described above, the horizontal pulse magnetic field intensity at a position 70 mm in radius from the axial center position between the liners was measured, and a value of 11 kOe was obtained. The pulse width of this pulse magnetic field was 1.5 ms.
As Comparative Example 1, when the pair of Cu liners were removed and the horizontal pulse magnetic field strength was measured at the same position using the same coil, only a value of 5.2 kOe was obtained.
[0021]
(Example 2, comparative example 2)
The radial magnetic field generator of Example 1 was incorporated into a hydraulic press with a pressurizing force of 30 tons. Further, a WC mold having an inner diameter of 60 mm and an outer diameter of 100 mm was disposed between both liners, and NdFeB permanent magnet powder was filled in the mold cavity. Pulse discharge was performed at 4000 V and 5000 μF from a pulse power source, and the magnetic powder was oriented in the radial direction, and then press-molded at a pressure of 30 tons. The magnetic powder compact was sintered to form a sintered magnet, and the magnetic properties of the obtained sintered magnet were measured. As a result, Br was 12.8 kG and iHc was 16.5 kOe. As Comparative Example 2, the Cu liner was removed from the radial magnetic field generator of Example 1, and the NdFeB-based permanent magnet powder was subjected to pulsed magnetic field orientation under the same conditions using the same mold as in Example 2, and after press molding, When the sintered heat treatment was performed and the magnetic properties of the sintered body were measured, Br was 11.4 kG and iHc was 17.0 kOe. The reason why iHc of Comparative Example 2 is slightly higher is that the degree of orientation of the magnetic powder is poor.
Thus, by incorporating the magnetic field generator of the present invention into a permanent magnet manufacturing apparatus, the magnetic properties of the radially oriented magnet could be greatly improved.
[0022]
(Comparative Example 3)
In Comparative Example 1, the same procedure as in Comparative Example 1 was conducted except that a constant current was connected instead of the pulse power source. As a result, Br was 9 kG and iHc was 11 kOe.
[0023]
【The invention's effect】
The magnetic field generator of the present invention uses the action of the eddy current of the highly conductive liner attached to the opposing coil to guide the pulse magnetic flux generated by passing the pulse current through the coil to the required space. It is possible to diverge in the radial direction, and by adopting various shapes for the liner, the pulse magnetic flux can be narrowed or expanded, and the space region where the radial magnetic field is generated can be freely set. Further, the radial magnetic flux generation space region in the axial direction can be freely set by increasing or decreasing the gap distance between the liners. Therefore, by appropriately selecting the shape of the liner without changing the coil each time according to the magnetic field region to be generated, it is possible to widely correspond to various magnetic field regions with one coil.
In addition, by applying a pulse current instead of a constant current to the coil and making the magnetic poles face each other, the coil generates little heat even when a high peak magnetic field is applied, and magnetic powder is generated with a relatively high peak magnetic field. Can be oriented.
By incorporating the above magnetic field generator into a die press machine, a permanent magnet manufacturing apparatus that can produce a permanent magnet having excellent radial orientation characteristics and a desired shape is obtained, and there is no need to apply a magnetic field during press molding. Therefore, the structure is simple compared with the conventional apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an electromagnet portion of a radial magnetic field generator of the present invention.
FIG. 2 is a schematic cross-sectional view showing an electromagnet portion of a conventional radial magnetic field generator.
[Explanation of symbols]
1a, 1b ... Coil (electromagnet)
2a, 2b ... Liner 3 ... Magnetic flux

Claims (4)

一対の空芯または鉄心付きコイルを空隙を挟んで対向させた磁場発生装置において、該空隙を挟んで、Al、Cu、Ag、Auもしくはこれらの合金から選ばれたライナーを各コイルに接して対称に配置し、両コイルに逆向きのパルス電流を印加して同極同士が対向するように構成したことを特徴とする磁場発生装置。In the magnetic field generating apparatus made to face each other across a gap of a pair of air core or iron core with a coil, across the void, in contact Al, Cu, Ag, Au or La Inner selected from these alloys in the coil A magnetic field generator characterized in that the magnetic poles are arranged symmetrically and configured to apply opposite pulse currents to both coils so that the same poles face each other. 前記ライナーが、円筒形状である請求項1に記載の磁場発生装置。It said liner, a magnetic field generator according to Motomeko 1 is a cylindrical shape. 請求項1または2に記載の磁場発生装置をダイプレス機に組み込んでなる永久磁石製造装置。A permanent magnet manufacturing apparatus comprising the magnetic field generator according to claim 1 or 2 incorporated in a die press machine. 磁場方向に配向し、プレス成形を行う磁性材料が、希土類永久磁石粉末である請求項3に記載の永久磁石製造装置。4. The permanent magnet manufacturing apparatus according to claim 3, wherein the magnetic material oriented in the magnetic field direction and subjected to press molding is rare earth permanent magnet powder.
JP35724698A 1998-12-16 1998-12-16 Magnetic field generator and permanent magnet manufacturing apparatus Expired - Fee Related JP4171124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35724698A JP4171124B2 (en) 1998-12-16 1998-12-16 Magnetic field generator and permanent magnet manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35724698A JP4171124B2 (en) 1998-12-16 1998-12-16 Magnetic field generator and permanent magnet manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2000182822A JP2000182822A (en) 2000-06-30
JP4171124B2 true JP4171124B2 (en) 2008-10-22

Family

ID=18453140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35724698A Expired - Fee Related JP4171124B2 (en) 1998-12-16 1998-12-16 Magnetic field generator and permanent magnet manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4171124B2 (en)

Also Published As

Publication number Publication date
JP2000182822A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
KR890002536B1 (en) Method of producing cylindrical permanent magnet
US7740714B2 (en) Method for preparing radially anisotropic magnet
EP1308970B1 (en) Radial anisotropic sintered magnet production method
US20070171017A1 (en) Radially anisotropic ring magnets and method of manufacture
JP2756471B2 (en) Method for manufacturing radially oriented magnet and radially oriented magnet
US4990306A (en) Method of producing polar anisotropic rare earth magnet
US11948732B2 (en) Compression-molding method and device for permanent magnet
KR20040015032A (en) Permanent magnet manufacturing method and press apparatus
JPWO2018088393A1 (en) Rare earth magnet manufacturing method
JP4171124B2 (en) Magnetic field generator and permanent magnet manufacturing apparatus
JP2005277180A (en) Magnet-manufacturing method, magnetic powder forming method and dry forming equipment
EP0265016A2 (en) Process of making a permanent magnet
JP3639584B1 (en) Magnetic field orientation molding device and orientation magnetic field generator
JPH06330103A (en) Die for compacting magnetic powder
JPS62224916A (en) Manufacture of rare-earth magnet
JP4926834B2 (en) Radial anisotropic ring magnet manufacturing equipment
JP2000323341A (en) Radial anisotropic magnet molding device
JP2916879B2 (en) Manufacturing method of radially oriented magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPH07283057A (en) Method and machine for compression molding permanent magnet alloy powder
Ślusarek et al. Multi-pole magnetization of magnets of high density magnetic energy
JPH1083926A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JPH0997730A (en) Manufacture of sintered permanent magnet
JP3079348B2 (en) Manufacturing method of radially oriented magnet
JPS61272915A (en) Manufacture of amorphous permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees