JP4170119B2 - High pressure water supply apparatus and high pressure water supply method - Google Patents

High pressure water supply apparatus and high pressure water supply method Download PDF

Info

Publication number
JP4170119B2
JP4170119B2 JP2003073332A JP2003073332A JP4170119B2 JP 4170119 B2 JP4170119 B2 JP 4170119B2 JP 2003073332 A JP2003073332 A JP 2003073332A JP 2003073332 A JP2003073332 A JP 2003073332A JP 4170119 B2 JP4170119 B2 JP 4170119B2
Authority
JP
Japan
Prior art keywords
pressure
water
air
converter
pressure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003073332A
Other languages
Japanese (ja)
Other versions
JP2004278207A (en
Inventor
雅博 中田
博通 城間
哲男 伊藤
健二 大嶋
寛之 田名瀬
健二郎 浅井
茂雄 松原
武文 仲子
勇 山口
研一 篠田
敏晴 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
Nippon Steel Nisshin Pipe Co Ltd
Original Assignee
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
Nisshin Steel Co Ltd
Nisshin Kokan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Nippon Expressway Co Ltd, Central Nippon Expressway Co Ltd, Nisshin Steel Co Ltd, Nisshin Kokan Co Ltd filed Critical West Nippon Expressway Co Ltd
Priority to JP2003073332A priority Critical patent/JP4170119B2/en
Publication of JP2004278207A publication Critical patent/JP2004278207A/en
Application granted granted Critical
Publication of JP4170119B2 publication Critical patent/JP4170119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、岩盤に設けた孔内に挿入した鋼管膨張型ロックボルトに膨張用の高圧水を供給する等、所定の容器に高圧水を供給するための装置に関する。
【0002】
【従来の技術】
近年、崩落し易い岩盤や地盤を固結させるために、従来の棒状ロックボルトに代わって管状の鋼管膨張型ロックボルトが使用されるようになった。
長手方向に膨張用凹部を有し、先端部が閉じられ、後端部に高圧水圧入用スリーブが被せられた鋼管製のロックボルトを岩盤に設けた孔内に挿入し、スリーブの側面に穿った高圧水圧入孔から高圧水を圧入し、鋼管を加圧・膨張させて孔壁と密着させることによって岩盤や地盤を鋼管で固結しようとするものである。
そして、鋼管膨張型ロックボルトを膨張させるための装置に関しても種々のものが使用されている。
本発明者等も、特願2002−173318で、ロックボルトに被せられた高圧水圧入用スリーブを容易に保持でき、該スリーブからロックボルト内に膨張用の高圧水を供給できるロックボルト加圧・膨張用シールヘッドを提案した。さらに、特願2002−189200で、ロックボルト内に膨張用の高圧水を供給するための装置および高圧水供給方法を提案した。
【0003】
特願2002−189200で紹介した技術は、圧力−流量特性の異なる複数のエアーコンバーターを組み合わせ、供給しようとする容器内の圧力が低い段階では低圧大流量用エアーコンバーターを作動させて低い圧力の高圧水を大量に供給し、所定圧以上になった時点で高圧小流量用エアーコンバーターを作動させて少量ながらも高い圧力の高圧水を供給させて、ロックボルト等の容器内に所定圧の高圧水を短時間に供給しようとするものである。
【0004】
【発明が解決しようとする課題】
上記発明で用いる装置には電気で駆動される機構は組み込まれておらず、小型軽量に構成できるので、トンネル等の作業現場に搬入しやすいという利点も有している。
したがって、地盤支保用鋼管膨張型ロックボルト内に高圧水を供給して鋼管膨張型ロックボルトを加圧・膨張させる際に、上記発明の技術を採用すると、岩盤補強作業が従来と比較して極めて効率的に行えるようになった。
しかしながら、不安定な切羽では、一刻も早くロックボルトを打設して地山安定化を図ることが作業安全面からも重要であり、ロックボルトを加圧・膨張させるための時間の短縮が要求されている。しかも、作業効率向上のための作業時間のさらなる短縮化も要求されている。
【0005】
本発明は、このような問題を解消すべく案出されたものであり、エアーコンバーターを使用して容器内に所定圧の高圧水を供給する際、より短時間に供給できる装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の高圧水供給装置は、その目的を達成するため、エアーコンバーターに接続された作動用エアー供給管と高圧水送水管との間に水圧モニター管路を設けるとともに、水圧モニター管路の一端を作動用エアー供給管に設けた水圧シーケンス弁に連結させたことを特徴とする。
水圧シーケンス弁は、圧力調整機能が付与されたものが好ましい。
高圧水を供給する際には、使用するエアーコンバーターの能力に応じて決まってくる供給水圧と作動用エアー圧の関係において、作動用エアーとして必要水圧よりも高い水圧が得られる圧力のエアーを採用し、高圧水供給側の水圧が所定値になった時点で水圧シーケンス弁を作動させ、その後エアーコンバーターを作動させる作動用エアーとして減圧したエアーを使用してエアーコンバーターの作動を停止させ、高圧水の供給を終えるものである。
【0007】
【作用】
本発明者等は、エアーコンバーターを使用して高圧水を短時間に送給する方法について検討を重ねてきた。
エアーコンバーターの加圧能力は一次側空圧アクチュエーターと二次側水圧アクチュエーターの断面積比に依存して決まり、供給エアー圧が高いほど高圧の水を吐出できる。一方、高圧水の吐出流量は、一次側空圧アクチュエーターに供給されるエアー圧力と流量および吐出先である容器内の水圧レベルに関係する。一次側空圧アクチュエーターに供給されるエアー圧力と流量が一定のもとでは、容器内の水圧レベルは以下のように整理される。
【0008】
すなわち、容器内の水圧レベルが低い場合には、ピストンの摺動抵抗が小さいため容器への水吐出に必要な作動用エアー圧力が低くて済む。その結果、必然的にエアー流量が多くなることからピストンの摺動速度が大きく(往復動作回数が多く)なり、容器への水吐出量は多くなる。
二次側高圧水が供給され続けることで容器内の水圧レベルが次第に高くなると、ピストンの摺動抵抗が高まり、容器への水吐出に必要な作動用エアー圧が高くなる。その結果、エアー流量が減少するためピストンの摺動速度が小さく(往復動作回数が少なく)なり、容器への水吐出量は減少する。
したがって、容器内をより短時間で所定水圧に昇圧するためには、その水圧レベルに係わらず、一次側空圧アクチュエーターに供給するエアー圧力と流量を可能な限り大きくすることが有効である。
【0009】
しかし、エアーコンバーターにおいては、従来二次側高圧水の設定最高圧力は、一次側空圧アクチュエーターの作動用エアー圧を減圧弁によって設定する以外に手段はなかった。本来ならば、所定圧力に到達するまでは極力高い作動用エアー圧を供給することで非常に効率の良い昇圧動作が得られるのであるが、減圧弁での所定圧力設定方法では、エアーコンバーターの能力が十分に発揮されず、また高圧の水を大容量で吐出できない。すなわち、減圧弁を例えば0.3〜0.5MPaの圧力に低圧に設定した場合、低エアー圧力での使用になるためエアーコンバーターの能力が十分に発揮されない。逆に、減圧弁の設定圧力を、例えばエアー源から供給される圧縮空気の圧力0.75MPaに近い0.6MPaと高く設定した場合、減圧弁設定エアー圧である0.6MPaにエアーコンバーターの作動に必要なエアー圧が近づくと、ピストンの摺動速度が極端に小さくなって容器への高圧水供給量は急激に少なくなるとともに、摺動停止の判断が困難になる。
減圧弁の設定をどのように行っても、容器への水供給量の減少は避けられず、所定圧までの到達に長時間を要している。
【0010】
そこで、容器内水圧をエアー供給管路切換えに利用する方式の案出に到った。すなわち、高圧水供給送水管より、水圧モニター管路を水圧シーケンス弁に導き、所定水圧に達した時点で水圧シーケンス弁の作動を介してエアー供給管路を切換え減圧弁に導くことで、エアーコンバーターの作動をほぼ瞬時に終わらせることが可能になった。
従来は、減圧弁を到達圧力設定とピストン摺動停止設定の両方の目的に使用していたが、本発明方法では、到達圧力設定は水圧シーケンス弁に、ピストン摺動停止設定は減圧弁に、それぞれ機能を分離させている。これにより駆動源であるコンプレッサーの最高発生エアー圧力を利用した昇圧動作が所定圧力に到達するまで可能となり、短い時間で高圧水を所定水圧まで高めることができるようになったものである。
【0011】
【実施の態様】
本発明高圧水供給装置の基本的構造の概念を図1に示す。
エアーコンバーター(C)は、エアー方向切換弁(5)で分岐した作動用エアー供給管(2)が左右一対に接続された一次側空圧アクチュエーター(6),低圧の水タンク(9)につながる左右一対の給水管(10−1),(10−2)と容器(13)につながる送水管(11),(11−1),(11−2)とが接続された二次側水圧アクチュエーター(7)およびそれら2つのアクチュエーターを連結し摺動可能なピストンロッド(8)から構成されている。
【0012】
低圧の水タンクから二次側水圧アクチュエーター(7)へ水を供給する給水管(10−1),(10−2)には、水が戻らないように逆止弁が取り付けられている。さらに、二次側水圧アクチュエーター(7)から容器(13)につながる高圧水送水管(11)の分岐送水管(11−1),(11−2)には、二次側水圧アクチュエーター(7)に高圧水が戻らないように逆止弁が取り付けられている。
エアーコンバーター(C)に接続された高圧水送水管(11)と作動用エアー供給管(2)との間に水圧モニター管路(15)を設けるとともに、水圧モニター管路の一端を作動用エアー供給管(2)に設けた水圧シーケンス弁(4)に接続させている。圧力調整機能が付けられた水圧シーケンス弁(4)の切換え前の逆止弁(20)を介するのみで上記エアー方向切換弁(5)に連通する作動用エアー供給管(2−1)に繋がっており、切換え後の排出口は、逆止弁と圧力計付き減圧弁(16)を介して上記エアー方向切換弁(5)に連通する作動用エアー供給管(2−2)に繋がっている。
【0013】
この装置を次のように作動させる。
例えば、エアーコンバーターとして、エアー圧と水圧の比が1:60のものを使用し、圧力計(3)により0.6〜0.8MPaに圧力調整された圧縮空気が作動用エアーとして供給され、シールヘッド(13)を介して容器(図示せず)に水圧30MPaの高圧水を供給する態様について説明する。なお、圧力計付き減圧弁(16)は0.5MPaに設定される。
【0014】
水圧シーケンス弁(4)の設定圧力を30MPaに調整しておくと、圧縮空気供給口(1)から供給され、0.6〜0.8MPaに調整された作動用エアーは、作動用エアー供給管(2−1)を通り、エアー方向切換弁(5)の作動により一次側空圧アクチュエーター(6)のピストンを往復摺動させ、連動するピストンロッド(8)により二次側水圧アクチュエーター(7)のピストンが往復摺動して高圧水をシールヘッド(13)を介して容器に供給する。
シールヘッド(13)につながる送水管(11)の管路管路内の水圧が水圧シーケンス弁(4)の設定圧力値である30MPaの圧力になった時点で作動用エアー供給管(2)に設けた水圧シーケンス弁(4)を作動させ、作動用エアーの供給を圧力計が付いた減圧弁(16)を有する管路(2−2)に切換える。この時、管路(2−2)内の圧力は瞬時に0.5MPaを上回ることになるが、減圧弁(16)の作用によって管路(2−2)内の圧力は設定圧力0.5MPaに保たれるため、供給高圧水の圧力30MPaと対応して、実質的にエアーコンバーターのピストン摺動は停止する。すなわち、高圧水の供給は終わる。
なお、図中(3)は作動用エアー供給管路内の圧力を測定する圧力計であり、(14)は高圧水用三方弁である。
【0015】
上記したようにエアーコンバーターの作動用エアー圧と得られる給水側の水圧とは一定の関係がある。したがって、エアーコンバーターの能力に対応させて、必要とする給水側の水圧以上の圧力が出せるエアー圧(0.6〜0.8MPa)を採用して上記高圧水供給作業を行うと、作業開始時には高圧水の供給流量は多く、比較的短時間で所定水圧にまで到達する。高圧水供給管路内の圧力を水圧計で測定するとともに、管路内の圧力値を作動用エアー供給管(2)に設けた水圧シーケンス弁(4)の調整に連動させているので、圧力値が所定値になった時点で作動用エアーの供給を、減圧弁を有するエアー供給管に切換えられる。減圧弁の設定圧力0.5MPaに応じた作動用エアーがエアーコンバーターに供給される。このエアー圧は高圧水の圧力と対応しているため、エアーコンバーターの作動が止まり、高圧水の供給は停止する。
この操作により、高圧水供給時間は大幅に短縮される。
【0016】
次に、本発明の水圧モニター管路を低圧大流量用エアーコンバーターと高圧小流量用エアーコンバーターを併用した装置に適用した態様を、図2に基づいて説明する。
低圧大流量用エアーコンバーター(C1)と高圧小流量用エアーコンバーター(C2)を高圧水送水管(11)に対して並列に接続する。圧力調整機能が付けられた第1の水圧シーケンス弁(4−1)の切換え前の排出口は、逆止弁(20)を介して低圧大流量用エアーコンバーター(C1)のエアー方向切換弁(5)に連通する作動用エアー供給管(2−1)に繋がっており、切換え後の排出口は、逆止弁(20)を介して第2の水圧シーケンス弁(4−2)に繋がる作動用エアー供給管(2−2)に繋がっている。圧力調整機能が付けられた第2の水圧シーケンス弁(4−2)の切換え前の排出口は、逆止弁(20)を介して高圧小流量用エアーコンバーター(C2)のエアー方向切換弁(5)に連通する作動用エアー供給管(2−3)に繋がっており、切換え後の排出口は、逆止弁(20)と圧力計付き減圧弁(16)を介して高圧小流量用エアーコンバーター(C2)のエアー方向切換弁(5)に連通する作動用エアー供給管(2−4)に繋がっている。
【0017】
この装置の作動の態様を、上記例に従って、次のように作動させる。
例えば、エアーコンバーターとして、エアー圧と水圧の比が1:60の低圧大流量用エアーコンバーター(C1)とエアー圧と水圧の比が1:150の高圧小流量用エアーコンバーター(C2)を使用し、圧力計(3)により0.6MPaに圧力調整された圧縮空気が作動用エアーとして供給され、シールヘッド(13)を介して容器に水圧60MPaの高圧水を供給する態様について説明する。
なお、圧力計付き減圧弁(16)は高圧小流量用エアーコンバーター(C2)のエアー圧と水圧の比である1:150に対応させるために0.4MPaに設定される。
【0018】
例えば、第1の水圧シーケンス弁(4−1)の設定圧力を20MPaに、第2の水圧シーケンス弁(4−2)の設定圧力を60MPaに調整しておくと、圧縮空気供給口(1)から供給され、0.6MPaに調整された作動用エアーは、作動用エアー供給管(2−1)を通り、低圧大流量用エアーコンバーター(C1)のエアー方向切換弁(5)の作動により低圧大流量用エアーコンバーター(C1)の一次側空圧アクチュエーター(6)のピストンを往復摺動させ、連動するピストンロッド(8)により低圧大流量用エアーコンバーターの二次側水圧アクチュエーター(7)のピストンが往復摺動して高圧水をシールヘッド(13)に供給する。
【0019】
シールヘッド(13)につながる高圧水送水管(11)の管路管路内の水圧が所定値である20MPaの圧力になった時点で作動用エアー供給管(2)に設けた第1の水圧シーケンス弁(4−1)を作動させ、作動用エアーの供給を、圧力調整機能が付けられた第2の水圧シーケンス弁(4−2)繋がる作動用エアー供給管(2−2)に切換わる。作動用エアーは、作動用エアー供給管(2−3)を通り、高圧小流量用エアーコンバーター(C2)のエアー方向切換弁(5)の作動により高圧小流量用エアーコンバーター(C2)の一次側空圧アクチュエーター(6)のピストンを往復摺動させ、連動するピストンロッド(8)により高圧小流量用エアーコンバーター(C2)の二次側水圧アクチュエーター(7)のピストンが往復摺動してより高圧の高圧水をシールヘッド(13)に供給する。
【0020】
第2の水圧シーケンス弁(4−2)の設定圧力は60MPaに調整されているので、シールヘッド(13)につながる高圧水送水管(11)の管路管路内の水圧が所定値である60MPaの圧力になった時点で作動用エアー供給管(2)に設けた第2の水圧シーケンス弁(4−2)が作動し、作動用エアーの供給を圧力計が付いた減圧弁(16)を有し、高圧小流量用エアーコンバーター(C2)のエアー方向切換弁(5)に繋がる管路(2−4)に切換える。減圧弁は0.4MPaに設定されているので、0.4MPaに減圧された作動用エアー圧と管路内の水圧60MPaが高圧小流量用エアーコンバーター(C2)の対応圧力となり、ピストンの往復摺動が停止し、高圧水の供給を終える。
【0021】
このように、高圧小流量用エアーコンバーター(C2)を低圧大流量用エアーコンバーター(C1)に並列接続して使用すると、容器により高圧の水を充填しようとする際に効率的に供給できる。
例えば、エアー:水=1:60の低圧大流量用エアーコンバーターを0.8MPaの作動用エアーで運転して容器に高圧水を供給しようとすると、最大昇圧能力(60×0.8MPa=48MPa)までしか昇圧できず、これ以上の昇圧はできない。また、例えば48MPaを超える高圧水を1台の高圧小流量用エアーコンバーターで供給しようとすると、流量が小さいので供給効率は悪い。低圧の段階を低圧大流量用エアーコンバーターで行い、高圧になった時点で高圧小流量用エアーコンバーターに切換えて高圧水の供給を行うと、全体の高圧水供給作業が極めて効率的に行えるようになる。
【0022】
脆弱な岩盤等の補強作業を手際よく行うためには、岩盤内に挿入し鋼管膨張型ロックボルトの内部に膨張用高圧水を短時間に供給することが要求される。鋼管膨張型ロックボルトを加圧・膨張させる際に、本発明の高圧水供給装置を使用し、作動用エアーとして比較的高圧なエアーを採用して高圧水を供給すれば、エアーコンバーターの能力を最大限に発揮させることが可能になるので、岩盤等の補強作業をさらに効率良く行うことができる。
本発明の高圧水供給装置および高圧水供給方法は、鋼管膨張型ロックボルトの加圧・膨張の他に、鋼管や高圧容器の耐圧試験等にも適用できる。
【0023】
本発明高圧水供給装置を使用して、鋼管膨張型ロックボルトを加圧・膨張させる具体例をもって説明する。
図3に示すように、ロックボルト(21)に被着されたスリーブ(22)を嵌着・保持する複数のロックボルト加圧・膨張用シールヘッド(23)の、個々のシールヘッドハウジングに取り付けられた高圧水注入用口金に高圧水供給管を別々に接続する。それぞれがロックボルト加圧・膨張用シールヘッドの高圧水注入口に接続された複数の高圧水供給管をジョイントブロック(24)の排出口に接続する。高圧水供給管には、ジョイントブロック(24)近傍およびロックボルト加圧・膨張用シールヘッドとの接続金具近傍に送水バルブ(25)が取り付けられ、適宜使い分け可能にされている。このジョイントブロック(24)が本発明高圧水供給装置(26)からの高圧水送水管(11)に高圧水用三方弁(14)を介して接続される。なお、本態様では、高圧水用三方弁(14)をジョイントブロック(24)に取り付けているが、ロックボルト加圧・膨張用シールヘッド(23)に附設してもよい。
【0024】
特願2002−189200の明細書中では、その実施例として、400N/mm2級の素材で製造された、異形管の相当外径36mm,板厚3mmのロックボルトを加圧・膨張させる際、エアー圧と水圧の比が1:40の低圧大流量用エアーコンバーターと、エアー圧と水圧の比が1:75の高圧小流量用エアーコンバーターを併用する例が示されている。この例では、容器内に供給される高圧水の水圧が20MPaまでは低圧大流量用エアーコンバーターを使用し、水圧が20MPaになった時点で高圧小流量用エアーコンバーターを使用するように切り換え、容器内の水圧が30MPaに達するまで高圧小流量用エアーコンバーターを作動させ、結果的に45秒で30MPaの水圧を得ることが示されている。なお、この例では、高圧小流量用エアーコンバーターの作動用エアー圧は0.4MPaであった。
【0025】
ところで、本発明方法においては上記したように、エアー圧と水圧の比が1:60のエアーコンバーター(C)のみを用いた場合、同一の素材及びサイズのロックボルトを加圧・膨張させる際、供給側の得ようとする水圧を先の例と同じ30MPaとすると、最終的に減圧した作動用エアー圧は0.5MPaになるが、その前の段階で高い圧力(例えば、0.8MPa)の圧縮空気を用いることが可能になり、エアーコンバーターへの作動用エアー流量が多くなることからピストンの摺動速度が大きくなって、容器への水吐出量は多く、すなわち供給側の所定圧力である30MPaまで、30秒で到達することができた。この段階で、水圧シーケンス弁(4)が作動し、減圧弁(16)を有する管路(2−2)に作動用エアーが供給されるが、作動用エアー圧0.5MPaと送水管路内の水圧30MPaがエアーコンバーターのエアー圧と水圧の比に対応しているので、エアーコンバーターはまもなく停止した。
容器内に所定圧の高圧水を供給する際、特願2002−189200の明細書中で紹介した高圧水供給装置と比べると、極めて短時間に所定圧に到達できることがわかる。
【0026】
トンネル内等、ロックボルトの加圧・膨張による岩盤補強作業は、通常、削孔、削孔中へのロックボルトの挿入、ロックボルトに取り付けたスリーブへのシールヘッドの嵌合、高圧水の供給・注入、シールヘッドの取り外し等の手順で行われる。個々のロックボルトへのシールヘッドの嵌合作業を予め複数のロックボルトに対して行っておき、比較的高圧な作動用エアーを使用して、大量の高圧水を短時間で供給することが可能な本発明高圧水供給装置を適用して複数のロックボルトを同時に加圧・膨張させると、例えば岩盤の部分的な軟弱部の補強作業を、先願の特願2002−189200の先願発明と比べて極めて短時間で効率良く実施することができる。
【0027】
【発明の効果】
以上に説明したように、本発明の高圧水供給装置では、エアーコンバーターに接続された作動用エアー供給管と高圧水送水管との間に水圧モニター管路を設けるとともに、水圧モニター管路の一端を作動用エアー供給管に設けた水圧シーケンス弁に連結させ、高圧水送水管路内の圧力によりシーケンス弁を制御しているので、作動用エアーとして比較的高圧の圧縮空気を使用することができる。このため高圧水を大量に供給できるので容器内の圧力を短時間で昇圧することができる。所定圧に達した時点で、水圧モニター管路の活用によりエアーコンバーターの作動を停止させれば、容器内に所定の圧力水を短時間に供給することが可能になった。また、この装置には電気で駆動される機構は組み込まれておらず、小型軽量に構成できるので、トンネル等の作業現場に搬入しやすいという利点も有している。
したがって、地盤支保用鋼管膨張型ロックボルト内に高圧水を供給して、当該鋼管膨張型ロックボルトを加圧・膨張させる際に、高圧水供給装置を用いた高圧水供給方法を採ると、岩盤補強作業が極めて短時間に効率的に行える。
【図面の簡単な説明】
【図1】 本発明高圧水供給装置の基本的構造の概念を示す図
【図2】 本発明高圧水供給装置の基本的構造の概念を、低圧大流量用エアーコンバーターと高圧小流量用エアーコンバーターを併用した装置に組み込んだ態様を説明する図
【図3】 複数のロックボルトを同時に加圧・膨張させる態様を説明する図
【符号の説明】
C,C1,C2:エアーコンバーター
1:圧縮空気供給口 2,2−1,2−2:作動用エアー供給管 3:圧力計 4:水圧シーケンス弁 5:エアー方向切換弁 6:一次側空圧アクチュエーター 7:二次側水圧アクチュエーター 8:ピストンロッド 9:低圧水供給口 10−1,10−2:給水管 11,11−1,11−2:高圧水送水管 12:水圧計 13:シールヘッド 14:高圧水用三方弁 15:水圧モニター管路 16:減圧弁 17:フィルター 18:圧力調整弁 19:ルブリケーター 20:逆止弁 21:ロックボルト 22:スリーブ 23:ロックボルト加圧・膨張用シールヘッド 24:ジョイントブロック25:送水弁 26:高圧水供給装置
[0001]
[Industrial application fields]
The present invention relates to an apparatus for supplying high-pressure water to a predetermined container, such as supplying high-pressure water for expansion to a steel pipe expansion-type rock bolt inserted into a hole provided in a rock.
[0002]
[Prior art]
In recent years, tubular steel pipe expansion type lock bolts have come to be used in place of conventional bar-shaped lock bolts in order to consolidate rocks and ground that tend to collapse.
Insert a steel tube lock bolt with an expansion recess in the longitudinal direction, closed at the tip, and covered with a high-pressure water injection sleeve at the rear end into the hole provided in the rock, and drill it on the side of the sleeve. In addition, high pressure water is injected from the high pressure water injection hole, and the steel pipe is pressurized and expanded to adhere to the hole wall so as to consolidate the rock and ground with the steel pipe.
Various devices for expanding the steel pipe expansion type lock bolt are also used.
The inventors of the present invention have also been able to easily hold a high pressure water press-fitting sleeve placed on a lock bolt and supply high pressure water for expansion from the sleeve into the lock bolt in Japanese Patent Application No. 2002-173318. An expansion seal head was proposed. Furthermore, in Japanese Patent Application No. 2002-189200, an apparatus and a high-pressure water supply method for supplying high-pressure water for expansion into a lock bolt were proposed.
[0003]
In the technology introduced in Japanese Patent Application No. 2002-189200, a plurality of air converters having different pressure-flow characteristics are combined, and at a stage where the pressure in the container to be supplied is low, the low-pressure and high-flow air converter is operated to increase the low pressure and high pressure. When a large amount of water is supplied and the pressure exceeds the predetermined pressure, the high-pressure and small-flow air converter is operated to supply a small amount of high-pressure water at a high pressure. Is intended to be supplied in a short time.
[0004]
[Problems to be solved by the invention]
The device used in the above invention does not incorporate an electrically driven mechanism and can be configured to be small and light, and thus has an advantage of being easily carried into a work site such as a tunnel.
Therefore, when the technology of the above invention is adopted when high pressure water is supplied into the ground support steel pipe expansion type lock bolt to pressurize and expand the steel pipe expansion type lock bolt, the rock reinforcement work is much more difficult than the conventional one. It became possible to do it efficiently.
However, for unstable faces, it is important from the standpoint of work safety to place rock bolts as soon as possible to stabilize the ground, and it is necessary to reduce the time required to pressurize and expand the lock bolts. Has been. In addition, there is a demand for further shortening of work time for improving work efficiency.
[0005]
The present invention has been devised to solve such a problem, and provides an apparatus that can supply water in a shorter time when supplying high-pressure water of a predetermined pressure into a container using an air converter. With the goal.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the high-pressure water supply apparatus of the present invention is provided with a water pressure monitor pipe line between the operating air supply pipe connected to the air converter and the high-pressure water feed pipe, and one end of the water pressure monitor pipe line. Is connected to a water pressure sequence valve provided in the air supply pipe for operation.
The water pressure sequence valve is preferably provided with a pressure adjustment function.
When supplying high-pressure water, air with a pressure higher than the required water pressure is used as the operating air in the relationship between the supply water pressure and the operating air pressure determined according to the capacity of the air converter used. When the water pressure on the high-pressure water supply side reaches a predetermined value, the water pressure sequence valve is operated, and then the air converter is stopped using the decompressed air as the operating air for operating the air converter. Will end the supply.
[0007]
[Action]
The inventors of the present invention have repeatedly studied a method for supplying high-pressure water in a short time using an air converter.
The pressurization capacity of the air converter is determined depending on the cross-sectional area ratio of the primary side pneumatic actuator and the secondary side hydraulic actuator, and the higher the supply air pressure, the higher the pressure water can be discharged. On the other hand, the discharge flow rate of the high-pressure water is related to the air pressure and flow rate supplied to the primary side pneumatic actuator and the water pressure level in the container as the discharge destination. Under a constant air pressure and flow rate supplied to the primary side pneumatic actuator, the water pressure level in the container is arranged as follows.
[0008]
That is, when the water pressure level in the container is low, since the sliding resistance of the piston is small, the operating air pressure required for discharging water into the container can be low. As a result, since the air flow rate inevitably increases, the sliding speed of the piston increases (the number of reciprocating operations increases), and the amount of water discharged to the container increases.
As the secondary high-pressure water continues to be supplied and the water pressure level in the container gradually increases, the sliding resistance of the piston increases, and the operating air pressure necessary for water discharge to the container increases. As a result, since the air flow rate is reduced, the sliding speed of the piston is reduced (the number of reciprocating operations is reduced), and the amount of water discharged into the container is reduced.
Therefore, in order to increase the pressure in the container to a predetermined water pressure in a shorter time, it is effective to increase the air pressure and flow rate supplied to the primary side pneumatic actuator as much as possible regardless of the water pressure level.
[0009]
However, in the air converter, conventionally, there is no means other than setting the operating air pressure of the primary side pneumatic actuator by the pressure reducing valve to set the maximum secondary pressure of the secondary side high pressure water. Originally, it is possible to obtain a highly efficient pressure boosting operation by supplying the highest working air pressure until a predetermined pressure is reached. Cannot be fully utilized, and high-pressure water cannot be discharged in a large volume. That is, when the pressure reducing valve is set to a low pressure of, for example, 0.3 to 0.5 MPa, the air converter ability is not sufficiently exhibited because it is used at a low air pressure. On the contrary, when the pressure setting of the pressure reducing valve is set as high as 0.6 MPa, which is close to the pressure of compressed air supplied from the air source, for example, 0.6 MPa, the air converter is operated to 0.6 MPa which is the pressure reducing valve setting air pressure. As the air pressure required for the pressure approaches, the sliding speed of the piston becomes extremely small, the amount of high-pressure water supplied to the container decreases rapidly, and it becomes difficult to determine whether to stop sliding.
Regardless of how the pressure reducing valve is set, a reduction in the amount of water supplied to the container is inevitable, and it takes a long time to reach a predetermined pressure.
[0010]
Therefore, the inventors came up with the idea of utilizing the water pressure in the container for switching the air supply line. That is, from the high-pressure water supply water supply pipe, the water pressure monitoring pipe is led to the water pressure sequence valve, and when the predetermined water pressure is reached, the air supply pipe is switched to the pressure reducing valve via the operation of the water pressure sequence valve, and the air converter It has become possible to end the operation of almost immediately.
Conventionally, the pressure reducing valve has been used for both the ultimate pressure setting and the piston sliding stop setting, but in the method of the present invention, the ultimate pressure setting is the hydraulic sequence valve, the piston sliding stop setting is the pressure reducing valve, Each function is separated. As a result, the pressure increasing operation using the maximum generated air pressure of the compressor as the driving source is possible until the predetermined pressure is reached, and the high pressure water can be increased to the predetermined water pressure in a short time.
[0011]
Embodiment
The concept of the basic structure of the high-pressure water supply apparatus of the present invention is shown in FIG.
The air converter (C) is connected to a primary pneumatic actuator (6) in which a working air supply pipe (2) branched by an air direction switching valve (5) is connected to a pair of left and right, and a low-pressure water tank (9). A secondary hydraulic actuator in which a pair of left and right water supply pipes (10-1), (10-2) and water supply pipes (11), (11-1), (11-2) connected to the container (13) are connected. (7) and a piston rod (8) that can connect and slide these two actuators.
[0012]
A check valve is attached to the water supply pipes (10-1) and (10-2) for supplying water from the low-pressure water tank to the secondary water pressure actuator (7) so that the water does not return. Further, the secondary water pressure actuator (7) is connected to the branch water supply pipes (11-1) and (11-2) of the high pressure water water supply pipe (11) connected from the secondary water pressure actuator (7) to the container (13). A check valve is attached to prevent high pressure water from returning.
A water pressure monitoring pipe (15) is provided between the high pressure water supply pipe (11) connected to the air converter (C) and the operating air supply pipe (2), and one end of the water pressure monitoring pipe is connected to the working air. It is connected to a water pressure sequence valve (4) provided in the supply pipe (2). Connected to the operating air supply pipe (2-1) communicating with the air direction switching valve (5) only through the check valve (20) before the switching of the water pressure sequence valve (4) with the pressure adjusting function. The switching outlet is connected to an operating air supply pipe (2-2) communicating with the air direction switching valve (5) through a check valve and a pressure reducing valve (16) with a pressure gauge. .
[0013]
The device is operated as follows.
For example, as an air converter, one having a ratio of air pressure to water pressure of 1:60 is used, and compressed air whose pressure is adjusted to 0.6 to 0.8 MPa by a pressure gauge (3) is supplied as working air. A mode in which high-pressure water having a water pressure of 30 MPa is supplied to a container (not shown) via the seal head (13) will be described. The pressure reducing valve (16) with a pressure gauge is set to 0.5 MPa.
[0014]
When the set pressure of the water pressure sequence valve (4) is adjusted to 30 MPa, the working air supplied from the compressed air supply port (1) and adjusted to 0.6 to 0.8 MPa is the working air supply pipe. (2-1), the piston of the primary side pneumatic actuator (6) is slid back and forth by the operation of the air direction switching valve (5), and the secondary side hydraulic actuator (7) is moved by the interlocking piston rod (8). The piston reciprocally slides to supply high-pressure water to the container via the seal head (13).
When the water pressure in the pipe line of the water supply pipe (11) connected to the seal head (13) reaches a pressure of 30 MPa which is the set pressure value of the water pressure sequence valve (4), the air supply pipe (2) for operation is connected. The provided water pressure sequence valve (4) is operated, and the supply of operating air is switched to the pipe line (2-2) having a pressure reducing valve (16) with a pressure gauge. At this time, the pressure in the pipe line (2-2) instantaneously exceeds 0.5 MPa, but the pressure in the pipe line (2-2) is set to 0.5 MPa by the action of the pressure reducing valve (16). Therefore, the piston slide of the air converter substantially stops corresponding to the pressure of 30 MPa of the supplied high-pressure water. That is, the supply of high-pressure water ends.
In the figure, (3) is a pressure gauge for measuring the pressure in the working air supply pipe, and (14) is a high-pressure water three-way valve.
[0015]
As described above, there is a certain relationship between the air pressure for operating the air converter and the water pressure on the water supply side obtained. Therefore, when the above high-pressure water supply operation is performed by adopting an air pressure (0.6 to 0.8 MPa) that can generate a pressure higher than the required water pressure on the water supply side in accordance with the capacity of the air converter, The supply flow rate of high-pressure water is large and reaches a predetermined water pressure in a relatively short time. The pressure in the high-pressure water supply pipe is measured with a water pressure gauge, and the pressure value in the pipe is linked to the adjustment of the water pressure sequence valve (4) provided in the operating air supply pipe (2). When the value reaches a predetermined value, the supply of the working air is switched to an air supply pipe having a pressure reducing valve. Air for operation corresponding to the set pressure of 0.5 MPa of the pressure reducing valve is supplied to the air converter. Since this air pressure corresponds to the pressure of high pressure water, the operation of the air converter stops and the supply of high pressure water stops.
By this operation, the high-pressure water supply time is greatly shortened.
[0016]
Next, an embodiment in which the water pressure monitoring pipe of the present invention is applied to an apparatus using both a low pressure and high flow rate air converter and a high pressure and low flow rate air converter will be described with reference to FIG.
A low pressure and large flow rate air converter (C 1 ) and a high pressure and small flow rate air converter (C 2 ) are connected in parallel to the high pressure water feed pipe (11). The discharge port before the switching of the first water pressure sequence valve (4-1) to which the pressure adjusting function is attached is an air direction switching valve of the low pressure and large flow rate air converter (C 1 ) via the check valve (20). (5) is connected to the working air supply pipe (2-1), and the outlet after switching is connected to the second hydraulic pressure sequence valve (4-2) via the check valve (20). It is connected to the operating air supply pipe (2-2). The discharge port before the switching of the second hydraulic pressure sequence valve (4-2) to which the pressure adjustment function is attached is an air direction switching valve of the high pressure / low flow rate air converter (C 2 ) via the check valve (20). Connected to the air supply pipe for operation (2-3) communicating with (5), the outlet after switching is for high pressure and small flow rate via a check valve (20) and a pressure reducing valve with pressure gauge (16). is connected to the actuating air supply pipe communicating (2-4) in the air directional control valve of the air converter (C 2) (5).
[0017]
The operation mode of this apparatus is operated as follows according to the above example.
For example, as an air converter, a low pressure high flow for air converters ratio of air pressure and water pressure 1:60 (C 1) the ratio of the air pressure and water pressure 1: 150 of the high pressure small flow rate air Converter (C 2) A mode will be described in which compressed air whose pressure is adjusted to 0.6 MPa by the pressure gauge (3) is supplied as working air and high-pressure water having a water pressure of 60 MPa is supplied to the container via the seal head (13).
In addition, the pressure reducing valve (16) with a pressure gauge is set to 0.4 MPa in order to correspond to 1: 150 which is the ratio of the air pressure and the water pressure of the high pressure and small flow rate air converter (C 2 ).
[0018]
For example, when the set pressure of the first water pressure sequence valve (4-1) is adjusted to 20 MPa and the set pressure of the second water pressure sequence valve (4-2) is adjusted to 60 MPa, the compressed air supply port (1) The working air supplied from the air and adjusted to 0.6 MPa passes through the working air supply pipe (2-1), and is operated by the operation of the air direction switching valve (5) of the low pressure and large flow rate air converter (C 1 ). The piston of the primary side pneumatic actuator (6) of the low pressure and large flow rate air converter (C 1 ) is slid back and forth, and the secondary side hydraulic actuator (7) of the air converter for low pressure and large flow rate by the interlocking piston rod (8). The piston of this type reciprocates and supplies high pressure water to the seal head (13).
[0019]
The first water pressure provided in the operating air supply pipe (2) when the water pressure in the pipe line of the high-pressure water pipe (11) connected to the seal head (13) reaches a predetermined value of 20 MPa. The sequence valve (4-1) is operated, and the supply of the operating air is switched to the operating air supply pipe (2-2) connected to the second water pressure sequence valve (4-2) with a pressure adjusting function. . Actuating air passes through the actuating air supply pipe (2-3), high pressure small flow rate air converter by the operation of the air directional control valve (5) of the high pressure small flow rate air converter (C 2) of the (C 2) The piston of the primary side pneumatic actuator (6) is reciprocally slid, and the piston of the secondary side hydraulic actuator (7) of the high pressure, low flow rate air converter (C 2 ) is reciprocated and slid by the interlocking piston rod (8). Then, higher pressure water is supplied to the seal head (13).
[0020]
Since the set pressure of the second water pressure sequence valve (4-2) is adjusted to 60 MPa, the water pressure in the pipe line of the high pressure water supply pipe (11) connected to the seal head (13) is a predetermined value. When the pressure reaches 60 MPa, the second hydraulic pressure sequence valve (4-2) provided in the operating air supply pipe (2) is operated, and the pressure reducing valve (16) with a pressure gauge is supplied to supply the operating air. And switching to the pipe line (2-4) connected to the air direction switching valve (5) of the air converter (C 2 ) for high pressure and small flow rate. Since the pressure reducing valve is set to 0.4 MPa, the operating air pressure reduced to 0.4 MPa and the water pressure 60 MPa in the pipe line become the corresponding pressure of the high pressure and small flow rate air converter (C 2 ), and the piston reciprocates. Sliding stops and the supply of high-pressure water ends.
[0021]
As described above, when the high pressure and low flow rate air converter (C 2 ) is connected in parallel to the low pressure and high flow rate air converter (C 1 ), it can be efficiently supplied when filling the container with high pressure water. .
For example, when an air converter for air: water = 1: 60 is operated with 0.8 MPa working air and high pressure water is supplied to the container, the maximum pressure increasing capacity (60 × 0.8 MPa = 48 MPa). The voltage can be boosted only up to this, and no further boosting is possible. For example, if high pressure water exceeding 48 MPa is supplied by one high pressure / low flow rate air converter, the supply efficiency is poor because the flow rate is small. If the low pressure stage is performed with a low pressure and high flow rate air converter, and when high pressure is reached, switching to the high pressure and low flow rate air converter will supply high pressure water so that the entire high pressure water supply operation can be performed very efficiently. Become.
[0022]
In order to reinforce fragile rock mass and the like, it is required to insert the high pressure water for expansion in a short time into the inside of the rock expansion rock bolt inserted into the rock mass. When pressurizing and expanding the steel pipe expansion type lock bolt, if the high-pressure water supply device of the present invention is used and high-pressure water is supplied by using relatively high-pressure air as the working air, the capacity of the air converter can be increased. Since it is possible to maximize the performance, it is possible to more efficiently reinforce the bedrock.
The high-pressure water supply apparatus and high-pressure water supply method of the present invention can be applied to a pressure test of a steel pipe or a high-pressure vessel, in addition to pressurization / expansion of a steel pipe expansion type rock bolt.
[0023]
A specific example of pressurizing and expanding a steel pipe expansion type lock bolt using the high pressure water supply apparatus of the present invention will be described.
As shown in FIG. 3, a plurality of lock bolt pressurizing / expanding seal heads (23) for fitting / holding sleeves (22) attached to the lock bolts (21) are attached to individual seal head housings. A high pressure water supply pipe is separately connected to the high pressure water injection cap. A plurality of high-pressure water supply pipes, each connected to the high-pressure water inlet of the lock bolt pressurizing / expanding seal head, are connected to the outlet of the joint block (24). A water supply valve (25) is attached to the high-pressure water supply pipe in the vicinity of the joint block (24) and in the vicinity of the fitting for connection with the lock bolt pressurizing / expanding seal head so that they can be properly used. The joint block (24) is connected to the high-pressure water supply pipe (11) from the high-pressure water supply device (26) of the present invention via a high-pressure water three-way valve (14). In this embodiment, the high-pressure water three-way valve (14) is attached to the joint block (24), but it may be attached to a lock bolt pressurizing / expanding seal head (23).
[0024]
In the specification of Japanese Patent Application No. 2002-189200, as an example, when pressurizing and expanding a lock bolt having an outer diameter of 36 mm and a plate thickness of 3 mm, a deformed pipe made of a 400 N / mm 2 grade material, An example is shown in which a low pressure and large flow rate air converter with a ratio of air pressure to water pressure of 1:40 and a high pressure and small flow rate air converter with a ratio of air pressure to water pressure of 1:75 are used together. In this example, the low pressure and large flow rate air converter is used until the water pressure of the high pressure water supplied into the container reaches 20 MPa, and the high pressure and low flow rate air converter is switched to when the water pressure reaches 20 MPa. It has been shown that the high pressure and low flow rate air converter is operated until the water pressure reaches 30 MPa, resulting in a water pressure of 30 MPa in 45 seconds. In this example, the operating air pressure of the high-pressure, low-flow-rate air converter was 0.4 MPa.
[0025]
By the way, in the method of the present invention, as described above, when only the air converter (C) having a ratio of air pressure to water pressure of 1:60 is used, when pressurizing and expanding a lock bolt of the same material and size, If the water pressure to be obtained on the supply side is set to 30 MPa, the same as the previous example, the operating air pressure finally reduced is 0.5 MPa, but at the previous stage, a high pressure (for example, 0.8 MPa) Compressed air can be used, and the operating air flow rate to the air converter increases, so the sliding speed of the piston increases, and the amount of water discharged into the container is large, that is, a predetermined pressure on the supply side It was possible to reach 30 MPa in 30 seconds. At this stage, the water pressure sequence valve (4) is activated and the working air is supplied to the pipe line (2-2) having the pressure reducing valve (16). Since the water pressure of 30 MPa corresponds to the ratio of air pressure to water pressure of the air converter, the air converter stopped soon.
When supplying high-pressure water of a predetermined pressure into the container, it can be seen that the predetermined pressure can be reached in a very short time as compared with the high-pressure water supply apparatus introduced in the specification of Japanese Patent Application No. 2002-189200.
[0026]
Rock rock reinforcement work such as in tunnels by pressurizing / expanding rock bolts is usually done by drilling holes, inserting lock bolts into the drill holes, fitting the seal head to sleeves attached to the lock bolts, and supplying high-pressure water.・ It is performed by procedures such as injection and removal of the seal head. It is possible to supply a large amount of high-pressure water in a short time by using a relatively high-pressure operating air by previously engaging a plurality of lock bolts with the seal head fitted to individual lock bolts. When a plurality of rock bolts are simultaneously pressurized and expanded by applying the high pressure water supply device of the present invention, for example, the reinforcement work of a partial soft part of a rock mass is performed with the prior application of Japanese Patent Application No. 2002-189200. Compared with this, it can be carried out efficiently in a very short time.
[0027]
【The invention's effect】
As described above, in the high-pressure water supply device of the present invention, a water pressure monitor pipe is provided between the operating air supply pipe connected to the air converter and the high-pressure water feed pipe, and one end of the water pressure monitor pipe is provided. Is connected to a water pressure sequence valve provided in the air supply pipe for operation, and the sequence valve is controlled by the pressure in the high pressure water supply pipe, so that relatively high pressure compressed air can be used as the operation air. . For this reason, since a large amount of high-pressure water can be supplied, the pressure in the container can be increased in a short time. If the operation of the air converter is stopped by using the water pressure monitor line when the predetermined pressure is reached, it becomes possible to supply the predetermined pressure water into the container in a short time. In addition, this device does not incorporate a mechanism driven by electricity, and can be configured to be small and light, so that it has an advantage that it can be easily carried into a work site such as a tunnel.
Therefore, when a high pressure water supply method using a high pressure water supply device is adopted when high pressure water is supplied into the ground support steel pipe expansion type lock bolt and the steel pipe expansion type lock bolt is pressurized and expanded, Reinforcing work can be performed efficiently in a very short time.
[Brief description of the drawings]
FIG. 1 is a diagram showing the concept of the basic structure of a high-pressure water supply apparatus according to the present invention. FIG. 2 is a conceptual diagram of the basic structure of a high-pressure water supply apparatus according to the present invention. Fig. 3 illustrates an embodiment incorporated in a device using the same. Fig. 3 illustrates an embodiment in which a plurality of lock bolts are simultaneously pressurized and expanded.
C, C 1, C 2: Air Converters 1: compressed air supply port 2,2-1,2-2: actuating the air supply pipe 3: manometer 4: pressure sequence valve 5: Air directional control valve 6: primary side Pneumatic actuator 7: Secondary hydraulic actuator 8: Piston rod 9: Low pressure water supply port 10-1, 10-2: Water supply pipe 11, 11-1, 11-2: High pressure water supply pipe 12: Water pressure gauge 13: Seal head 14: Three-way valve for high pressure water 15: Water pressure monitor line 16: Pressure reducing valve 17: Filter 18: Pressure adjusting valve 19: Lubricator 20: Check valve 21: Lock bolt 22: Sleeve 23: Lock bolt pressurization Expansion seal head 24: Joint block 25: Water supply valve 26: High pressure water supply device

Claims (3)

エアーコンバーターに接続された作動用エアー供給管と高圧水送水管との間に水圧モニター管路を設けるとともに、水圧モニター管路の一端を作動用エアー供給管に設けた水圧シーケンス弁に連結させたことを特徴とする高圧水供給装置。A water pressure monitor pipe is provided between the air supply pipe for operation connected to the air converter and the high pressure water supply pipe, and one end of the water pressure monitor pipe is connected to a water pressure sequence valve provided in the air supply pipe for operation. A high-pressure water supply device characterized by that. 水圧シーケンス弁は、圧力調整機能が付与されたものである請求項1に記載の高圧水供給装置。The high pressure water supply apparatus according to claim 1, wherein the water pressure sequence valve is provided with a pressure adjusting function. 請求項1または2に記載の高圧水供給装置を用い、エアーコンバーターを作動させる作動用エアーとして、必要水圧よりも高い水圧が得られる圧力のエアーを採用し、高圧水供給側の水圧が所定値になった時点で水圧シーケンス弁を作動させ、その後エアーコンバーターを作動させる作動用エアーとして減圧したエアーを使用してエアーコンバーターの作動を停止させ、高圧水の供給を終えることを特徴とする高圧水供給方法。Using the high-pressure water supply device according to claim 1 or 2, as the working air for operating the air converter, air having a pressure higher than the required water pressure is adopted, and the water pressure on the high-pressure water supply side is a predetermined value. The high-pressure water is characterized in that the water pressure sequence valve is actuated at the point of time, the decompressed air is then used as the working air to actuate the air converter, the air converter is deactivated, and the supply of high-pressure water is terminated. Supply method.
JP2003073332A 2003-03-18 2003-03-18 High pressure water supply apparatus and high pressure water supply method Expired - Fee Related JP4170119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073332A JP4170119B2 (en) 2003-03-18 2003-03-18 High pressure water supply apparatus and high pressure water supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073332A JP4170119B2 (en) 2003-03-18 2003-03-18 High pressure water supply apparatus and high pressure water supply method

Publications (2)

Publication Number Publication Date
JP2004278207A JP2004278207A (en) 2004-10-07
JP4170119B2 true JP4170119B2 (en) 2008-10-22

Family

ID=33289251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073332A Expired - Fee Related JP4170119B2 (en) 2003-03-18 2003-03-18 High pressure water supply apparatus and high pressure water supply method

Country Status (1)

Country Link
JP (1) JP4170119B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850160B2 (en) * 2007-09-28 2012-01-11 中国電力株式会社 Clinker hopper ash gate opening and closing device
WO2010066069A1 (en) * 2008-12-12 2010-06-17 Yu Chun Kwan A fluid power device
KR101686595B1 (en) * 2012-03-23 2016-12-14 스미도모쥬기가이고교 가부시키가이샤 Device for raising/reducing fluid pressure and work machine
CN103062139B (en) * 2013-01-09 2016-04-13 中国电子工程设计院 A kind of vapor-liquid pressure exchange system

Also Published As

Publication number Publication date
JP2004278207A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US8336445B2 (en) Fluid operated pump
JPS58502013A (en) pump system
CN108779767B (en) Method for conveying or transporting fluid or semi-fluid material by means of double-piston pump and double-piston pump thereof
JP4170119B2 (en) High pressure water supply apparatus and high pressure water supply method
CN103459094B (en) Hydraulic pressure valveless beater mechanism, relief valve, rock drill, rock drilling machine and method
JPH023041B2 (en)
GB2175352A (en) Hydraulic pulseless supply means
KR100769706B1 (en) A water pressure controll method for a rock split with no-vibration condition
CN1926333B (en) Hydraulic motor arrangement and method of operating a hydraulic motor
CN112483060A (en) Coal seam water jet alternating walking type slotting device and walking type coal seam drilling and slotting pressure relief method
JP2004028044A (en) High-pressure water supply device and method
KR101662781B1 (en) A hydraulic cylinder can self boosting
KR100851457B1 (en) Gas filling device for accumulator and discharging apparatus with gas filling device
KR100846217B1 (en) Integrated test apparatus for tube ring
KR20050045086A (en) Pressure intensifying cylinder
US6322294B1 (en) Method and device for ejecting a ground improving grout into a ground
JP3550122B2 (en) Packer actuator
JP3713636B2 (en) Method and apparatus for controlling operation of viscous fluid pump
JP3709535B2 (en) Operation control device for viscous fluid pump
JP5701678B2 (en) PRESSURE DEVICE AND PRESSURE DEVICE CONTROL METHOD
JP4058727B2 (en) Hydraulic supply device to hydraulic cylinder for correction of buried pipe propulsion direction correction device
GB2063381A (en) Regeneration system for a hydraulic intensifier unit
JPH07127601A (en) Intensifying circuit for oil pressure
JP3530030B2 (en) Sediment pumping equipment for pipe propulsion machines
AU2003249754B2 (en) Fluid operated pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees