JP4169904B2 - Inclination angle measuring device - Google Patents

Inclination angle measuring device Download PDF

Info

Publication number
JP4169904B2
JP4169904B2 JP2000139291A JP2000139291A JP4169904B2 JP 4169904 B2 JP4169904 B2 JP 4169904B2 JP 2000139291 A JP2000139291 A JP 2000139291A JP 2000139291 A JP2000139291 A JP 2000139291A JP 4169904 B2 JP4169904 B2 JP 4169904B2
Authority
JP
Japan
Prior art keywords
angle measuring
measuring device
inclination angle
bubble tube
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000139291A
Other languages
Japanese (ja)
Other versions
JP2001050745A (en
Inventor
崇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2000139291A priority Critical patent/JP4169904B2/en
Publication of JP2001050745A publication Critical patent/JP2001050745A/en
Application granted granted Critical
Publication of JP4169904B2 publication Critical patent/JP4169904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス容器に液体と気泡を封入し、該ガラス容器の傾斜角に応じて前記気泡を移動させる様にした気泡管等の傾斜角測定装置に関する。
【0002】
【従来の技術】
機器の傾斜を検出するものとして気泡管があり、該気泡管はガラス容器に液体と気泡が封入されている。測量機等水平が要求される機器を設置する場合、前記気泡管を備えた傾斜角測定装置が用いられる。前記気泡管中の気泡の動きを光電的に検出する光電式気泡管があり、該光電式気泡管を具備する従来の傾斜角測定装置について図8により説明する。
【0003】
光電式気泡管1は光源2及び受光素子3,4と気泡管5とが組合わせて構成され、前記光電式気泡管1からの信号に基づき傾斜角が検出される。
【0004】
前記光源2は前記気泡管5の下方に配置され、前記光源2の光軸は前記気泡管5の軸心と直交している。一対の前記受光素子3,4は前記気泡管5を挟み、前記光源2と対向し、且つ前記光源2の光軸に関して対称な位置に所要距離離隔して配設されている。前記受光素子3,4としては光電変換素子が用いられる。
【0005】
前記光源2より発せられた検出光7は前記気泡管5を透過して前記受光素子3,4に到達し、該受光素子3,4により受光した光量に応じた受光電流が出力される。
【0006】
前記光源2より発せられた前記検出光7は、前記気泡管5の液体11のみの部分は透過するが、気泡12がある部分では気泡12と液体11との境界面で反射される為、前記両受光素子3,4への入射が遮断される。従って、前記気泡12の位置により前記両受光素子3,4に入射する前記検出光7の光量が変化する。前記気泡12の位置は傾斜により移動するので、前記受光素子3と前記受光素子4との受光量の差を検出することにより傾斜角が検出される。
【0007】
前記傾斜角測定装置の気泡管に封入される液体には、アルコール系、エーテル系炭化水素或はこれらの混合溶液が従来から広く用いられていた。例えば、エタノールとジエチルエーテルの混合溶液や、n(ノルマル)−ヘキサンとn(ノルマル)−ヘプタンの混合溶液が挙げられる。
【0008】
従来の炭化水素系(この場合、n−へキサンとn−ヘプタン)の混合液を封入した気泡管5の検出精度を表わす実験結果は図9に示す通りである。図9は温度を25℃→−20℃→50℃→25℃と順次変化させた時の、±4′の範囲での傾斜角度とセンサー出力との関係を実測した結果の一例である。
【0009】
この例では、25℃に於ける±4′の範囲での再現性が最大10″、−20℃〜50℃に於けるゼロ点(原点)の温度シフトが約0.12″/℃、±3′の範囲での感度の温度ドリフトが約12%であり、±3′の範囲でリニアリティ(動作範囲)が得られている。
【0010】
【発明が解決しようとする課題】
然し乍ら、従来の炭化水素系混合液(n−へキサンとn−ヘプタン)を封入した気泡管5の前記再現性、前記ゼロ点の温度シフト、温度ドリフト及び前記リニアリティはいずれも十分な性能とは言えず、その原因は気泡管の封入液に問題があり、具体的原因は以下の通りである。
【0011】
即ち、前記封入液として用いられる前記混合溶液は熱膨張係数が大きい為、封入された気泡の大きさが環境温度により変化してしまう。
【0012】
又、前記混合溶液を封入した容器はガラス製でできているが、前記混合液のガラスに対する濡れ性が悪い為、気泡がスムーズに移動しない。
【0013】
更に、前記混合溶液は熱伝導率が小さく且つ比熱が大きい為、環境温度に対して追従性が悪く、結果的に気泡管の性能に悪影響する虞があった。
【0014】
本発明は斯かる実情に鑑み、熱膨張係数が従来の液体よりも約1/100以下と小さく、ガラスに対する濡れ性が極めてよく、又熱伝導率が大きい混合液を気泡と共にガラス容器に封入した傾斜角測定装置を提供するものである。
【0015】
【課題を解決するための手段】
本発明は、ガラス容器に溶液及び気泡を封入し、該気泡の移動量を検出することにより傾斜角を測定する傾斜角測定装置に於いて、前記溶液中にN−メチルホルムアミド及び溶剤を含有する傾斜角測定装置に係り、又前記溶剤がアセトニトリル等の窒素化合物、メタノール、エタノール等のアルコール類、フェノール類、エーテル類、アセタール類、ケトン類、エステル類、脂肪酸、酸無水物、硫黄化合物、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、ジエチレングリコール、トリエチレングリコール、乳酸、乳酸エステル、サリチル酸メチル、アセト酢酸メチル、アセト酢酸エチルの2つ以上の官能基をもつ化合物、無機溶剤のうちの少なくともいずれか一つの溶剤である傾斜角測定装置に係り、更に又前記N−メチルホルムアミドと前記溶剤の混合比が体積比で3:7の割合である傾斜角測定装置に係るものである。
【0016】
前記N−メチルホルムアミドは、熱膨張係数が従来用いられていたメタノール、エタノール、n−へキサン及びn−ヘプタン等の炭化水素系液体の約1/100以下と小さく、熱伝導率が大きく、更にガラスに対する濡れ性が極めてよい。
【0017】
希釈剤としてアセトニトリル等の窒素化合物、メタノール、エタノール等のアルコール類、フェノール類、エーテル類、アセタール類、ケトン類、エステル類、脂肪酸、酸無水物、硫黄化合物、2つ以上の官能基をもつ化合物、無機溶剤のうちの少なくともいずれか一つの溶剤が混合されることによりN−メチルホルムアミドは粘性が低下する。
【0018】
前記混合の割合は、N−メチルホルムアミドと前記溶剤が各々3:7である時、気泡長温度変化(%)は極めて少なく、気泡の移動容易性も良好となる。
【0019】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態を説明する。
【0020】
光電式気泡管を具備する傾斜角測定装置について図1により説明する。尚、本実施の形態に於いては気泡管中の液体の構成が前述の従来例と異なるが、その他は前述の従来例と同様の構成であり、図1に於いて図8中と同等のものには同符号を付してある。
【0021】
光電式気泡管1は光源2及び受光素子3,4と気泡管5′とを組合わせて構成され、前記光電式気泡管1からの信号に基づき傾斜角度が検出される。
【0022】
前記光源2は前記気泡管5′の下方に配置され、前記光源2の光軸は前記気泡管5′の軸心と直交している。一対の前記受光素子3,4は前記気泡管5′を挟み、前記光源2と対向し、且つ前記光源2の光軸に関して対称な位置に所要距離離隔して配設されている。前記受光素子3,4は光電変換素子が用いられる。
【0023】
前記光源2は光源駆動部6により駆動され、前記光源2より発せられた検出光7は前記気泡管5′を透過して前記受光素子3,4に到達し、該受光素子3,4により受光した光量に応じた受光電流が傾斜角検出制御部8に出力される。該傾斜角検出制御部8は差動増幅器9、制御演算部10を有し、前記差動増幅器9では前記両受光素子3,4からの出力信号の電流差が増幅されると共に電流電圧変換されて前記制御演算部10に出力される。該制御演算部10では差動増幅器9からの信号が処理されて傾斜角が演算される。
【0024】
前記光源2より発せられた前記検出光7は、前記気泡管5′の液体11′のみの部分は透過するが、気泡12がある部分では気泡12と液体11′との境界面で反射される為、前記両受光素子3,4への入射が遮断される。従って、前記気泡12の位置により前記両受光素子3,4に入射する前記検出光7の光量が変化する。前記気泡12の位置は傾斜により移動するので、前記受光素子3と前記受光素子4との受光量の差を検出することにより傾斜角度が検出される。
【0025】
斯かる傾斜角測定装置は各種測量機、例えばレーザ測量機に搭載されている。以下傾斜角測定装置が搭載されているレーザ測量機の概要を図2及び図3に於いて説明する。
【0026】
該レーザ測量機は指向性のあるレーザ光線を水平方向に回転照射して照射面を形成し、回転照射面上に位置する受光装置(図示せず)がレーザ光線を受光検知し照射位置を決定することで基準線、基準面が得られる。
【0027】
レーザ光線射出部14は全方向に傾動可能に支持され、且つ頭部には該レーザ光線射出部14の光軸を中心に回転可能な回動部15を有している。前記レーザ光線射出部14には前述した水平方向に直交する光電式気泡管16,17が設けられ、更に垂直方向の傾斜センサ18が設けられ、該傾斜センサ18、前記光電式気泡管16,17及び傾斜検出制御部19により傾斜検出装置が構成されている。
【0028】
前記回動部15は垂直方向に射出されたレーザ光線21を水平方向に偏向すると共に走査モータ22により回転され、レーザ光線21を回転照射する。
【0029】
前記レーザ光線射出部14からは直交する水平2方向にアーム23,24(アーム24に関しては図示していない)が延出され、該アーム23,24の先端は傾斜機構に係合している。
【0030】
該傾斜機構は前記アーム23,24それぞれに関して設けられた2組の傾斜駆動部25,26(傾斜駆動部26は図示せず)、及び該傾斜駆動部25,26を制御する傾斜制御部(図示せず)を具備し、前記傾斜駆動部25,26は前記レーザ光線射出部14の光軸方向に延びるスクリュー27と、該スクリュー27に螺合し前記アーム23,24の先端に当接するナット28、及び前記スクリュー27をギア30,31を介して回転する傾斜調整モータ32等から成っている。又、図中29で示されるものは焦点調整装置であり、レーザ光線射出部14の光路中に配設された集光レンズ33を光軸方向に移動させることでレーザ光線21の焦点合わせを行う。
【0031】
図2に示す様に、前記傾斜検出制御部19は前記受光素子3,4からの受光信号が入力される差動増幅器9、該差動増幅器9からの信号に基づき制御信号を発する制御演算部10を有し、該制御演算部10からの制御信号に基づき駆動回路35が前記傾斜調整モータ32を駆動し、前記レーザ光線射出部14の光軸が鉛直、又は所要の角度に調整される。
【0032】
前記回動部15からレーザ光線21が水平方向に照射され、前記走査モータ22により回動部15を回転することで照射面が形成され、又レーザ光線の走査位置を受光装置で所定の位置に設定することで基準面が得られる。
【0033】
基準面を得ることにより広範囲の作業位置を容易に決定することが可能となる。例えば、建築工事の内装作業に於ける窓位置の設定、或は土木作業の整地等である。
【0034】
前記光電式気泡管1,16,17の前記気泡管5′は透明ガラス容器であり、該ガラス容器に透明な液体であるN−メチルホルムアミド及び溶剤を含有する溶液が封入されている。
【0035】
前記N−メチルホルムアミドは、熱膨張係数が0.08×10-3/℃であり、従来のメタノール(1.19×10-3/℃)、エタノール(1.08×10-3/℃)、n−へキサン(1.35×10-3/℃)及びn−ヘプタン(1.22×10-3/℃)等の炭化水素系液体の熱膨張係数の約100分の1以下と小さく、熱伝導率が大きく、更にガラスに対する濡れ性が極めてよい(図4参照)。
【0036】
然し乍ら、前記N−メチルホルムアミドは粘性が大きい為、溶剤としてアセトニトリルが混合されている。混合の割合は、図4に示す様に、N−メチルホルムアミドとアセトニトリルが各々3:7(体積比)である時、気泡長温度変化(%)は極めて少なく、移動容易性も気泡の動きは良好との実験結果が得られた。
【0037】
溶剤としてはアセトニトリルの他に、メタノール、エタノール、1−プロパノール、2−プロパノール、イソブチルアルコール、イソペンチルアルコール、ベンジルアルコール、シクロヘキサノール等のアルコール類であってもよい。
【0038】
又、トルエン、キシレン、エチルベンゼン、ナフタレン、テトラリン、ブチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、シクロヘキサン等の炭化水素類、フェノール、クレゾール、キシレノール類等のフェノール類、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル等のエーテル類、アセタール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酸無水物溶液、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、脂肪酸、ニトロメタン、ニトロエタン、ニトロベンゼン、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、ベンゾニトリル等の窒素化合物、二硫化炭素、硫化ジメチル、硫化ジエチル等の硫黄化合物、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、ジエチレングリコール、トリエチレングリコール、乳酸、乳酸エステル、サリチル酸メチル、アセト酢酸メチル、アセト酢酸エチル等の2つ以上の官能基をもつ化合物、水、炭酸プロピレン等の無機溶剤等を用いることもできる。
【0039】
これらの溶剤がN−メチルホルムアミドに添加されることにより、動粘度0.3〜0.8cps(25℃)、沸点60〜130℃、凝固点−30℃以下、熱膨張率が小さく、熱伝導率は大きく、ガラスに対する濡れ性も良好となる。
【0040】
この様に、N−メチルホルムアミドとメタノール、エタノール等との混合溶液にすると、膨張係数が小さくなり熱伝導率が大きくなり更にガラスに対する濡れ性がよくなるのは、N−メチルホルムアミドが極性溶媒である為、メタノールやエタノール等の炭化水素系分子の極性がN−メチルホルムアミドの極性と引き合い、錯体を形成し、配位結合するからである。
【0041】
本発明に係る混合液を封入した気泡管5′の検出精度を表わす実験結果を図5に示す。
【0042】
図5は、環境温度を25℃→−20℃→50℃→25℃と順次変化させた時の、±4′の範囲での傾斜角度とセンサー出力との関係を実測した結果の一例を示している。この例では、25℃に於ける±4′の範囲での再現性が6″以下、−20℃〜50℃に於けるゼロ点(原点)の温度シフトが約0.07″/℃、±3′の範囲での感度の温度ドリフトが約6%であり、±4′の範囲で良好なリニアリティ(動作範囲)が得られている。
【0043】
前述した従来の炭化水素系混合溶液の場合は前記図9に示す様に、再現性が最大10″、ゼロ点(原点)の温度シフトが最大0.12″/℃、感度の温度ドリフトが最大12%であり、動作範囲は±3′以上であるので、本発明により検出精度が大幅に改善されている。
【0044】
更に、本発明に係る混合液を封入した気泡管を用いて、温度変化テスト(ヒートショック)及び経時変化テスト等の耐久テストを行った。その結果を図6及び図7に示す。
【0045】
図6は、55℃から25℃へ30℃の急激な温度変化を与えた時に、ゼロ点シフト量が時間と共にどの様に変化するのか実測した結果を示す。ゼロ点シフトがなくなるには1時間以上掛かるが、10分で15″以下、20分で6″以上に戻っており、実用上問題がない。
【0046】
図7は、温度サイクル(25℃→−30℃→60℃→25℃、8時間)を30回実施中の、25℃に於ける傾斜角度とセンサー出力との関係の変化を実測した結果の一例を示す。シフト幅で約7″のシフトが全体に亘ってみられるが、感度は変化しておらず問題がない。試験した3台の結果では、シフト量が最大10″、感度変化はみられなかった。
【0047】
以上により、本発明に係る傾斜角測定装置(気泡管)内に封入された溶液は、膨張係数、熱伝導率、ガラスに対する濡れ性、環境温度変化に対する感度、環境温度耐久性に於いて、従来のアルコール系、エーテル系等より優れていることが分かる。
【0048】
尚、本発明の傾斜角測定装置は、上述の実施の形態に於ける溶媒に限定されるものではなく、2種類以上の溶媒を組合わせて使用してもよいことは勿論である。
【0049】
【発明の効果】
以上述べた如く本発明によれば、傾斜角測定装置の気泡管内にN−メチルホルムアミド及び溶剤を含有する溶液が封入されているので、該溶液の膨張係数は従来のアルコール系、エーテル系炭化水素系溶液等の約100分の1以下と小さくなり、気泡の大きさが環境温度により殆ど変化しない。又ガラスに対する濡れ性が極めてよいので、気泡の移動がスムーズであり、更に熱伝導率が小さく比熱が大きい為、環境温度に対して追従性がよく、気泡管の性能が高められ、傾斜角測定装置の検出精度が向上する等種々の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施の形態の概略を示すブロック図である。
【図2】レーザ測量機に搭載されている傾斜角測定装置の概要を示すブロック図である。
【図3】傾斜角測定装置を搭載したレーザ測量機の概略断面図である。
【図4】本発明の実施の形態に於ける気泡管の封入液の性能と、従来の封入液の性能を比較した表図である。
【図5】本発明の実施の形態の作用を示す線図である。
【図6】前記実施の形態の作用を示す線図である。
【図7】前記実施の形態の作用を示す線図である。
【図8】従来例の概略を示すブロック図である。
【図9】従来例の作用を示す線図である。
【符号の説明】
1 光電式気泡管
2 光源
3 受光素子
4 受光素子
5′ 気泡管
6 光源駆動部
7 検出光
8 傾斜角検出制御部
9 差動増幅器
10 制御演算部
11′ 液体
12 気泡
19 傾斜検出制御部
35 駆動回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tilt angle measuring device such as a bubble tube in which liquid and bubbles are sealed in a glass container and the bubbles are moved according to the tilt angle of the glass container.
[0002]
[Prior art]
There is a bubble tube as a device for detecting the inclination of the device, and the bubble tube is filled with liquid and bubbles in a glass container. When a device such as a surveying instrument that requires leveling is installed, an inclination angle measuring device provided with the bubble tube is used. There is a photoelectric bubble tube that photoelectrically detects the movement of bubbles in the bubble tube, and a conventional tilt angle measuring apparatus including the photoelectric bubble tube will be described with reference to FIG.
[0003]
The photoelectric bubble tube 1 is configured by combining a light source 2 and light receiving elements 3, 4 and a bubble tube 5, and an inclination angle is detected based on a signal from the photoelectric bubble tube 1.
[0004]
The light source 2 is disposed below the bubble tube 5, and the optical axis of the light source 2 is orthogonal to the axis of the bubble tube 5. A pair of the light receiving elements 3 and 4 are disposed with a required distance therebetween at positions symmetrical to the optical axis of the light source 2 while facing the light source 2 with the bubble tube 5 interposed therebetween. As the light receiving elements 3 and 4, photoelectric conversion elements are used.
[0005]
The detection light 7 emitted from the light source 2 passes through the bubble tube 5 and reaches the light receiving elements 3 and 4, and a light receiving current corresponding to the amount of light received by the light receiving elements 3 and 4 is output.
[0006]
The detection light 7 emitted from the light source 2 is transmitted through only the liquid 11 portion of the bubble tube 5, but is reflected at the boundary surface between the bubble 12 and the liquid 11 when the bubble 12 is present. Incidence to both light receiving elements 3 and 4 is blocked. Accordingly, the amount of the detection light 7 incident on the light receiving elements 3 and 4 varies depending on the position of the bubble 12. Since the position of the bubble 12 moves with inclination, the inclination angle is detected by detecting the difference in the amount of light received between the light receiving element 3 and the light receiving element 4.
[0007]
Alcohol-based, ether-based hydrocarbons, or a mixed solution thereof has been widely used as the liquid sealed in the bubble tube of the tilt angle measuring device. For example, a mixed solution of ethanol and diethyl ether and a mixed solution of n (normal) -hexane and n (normal) -heptane can be given.
[0008]
FIG. 9 shows the experimental results showing the detection accuracy of the bubble tube 5 in which a conventional hydrocarbon-based (in this case, n-hexane and n-heptane) mixed liquid is enclosed. FIG. 9 shows an example of the result of actual measurement of the relationship between the tilt angle and the sensor output in the range of ± 4 ′ when the temperature is sequentially changed from 25 ° C. → −20 ° C. → 50 ° C. → 25 ° C.
[0009]
In this example, the reproducibility in the range of ± 4 ′ at 25 ° C. is 10 ″ at the maximum, and the temperature shift at the zero point (origin) from −20 ° C. to 50 ° C. is about 0.12 ″ / ° C., ± The temperature drift of the sensitivity in the range of 3 ′ is about 12%, and the linearity (operation range) is obtained in the range of ± 3 ′.
[0010]
[Problems to be solved by the invention]
However, the reproducibility, the temperature shift of the zero point, the temperature drift, and the linearity of the bubble tube 5 filled with a conventional hydrocarbon-based mixed liquid (n-hexane and n-heptane) are all satisfactory performances. The cause is that there is a problem with the liquid sealed in the bubble tube, and the specific cause is as follows.
[0011]
That is, since the mixed solution used as the encapsulating liquid has a large coefficient of thermal expansion, the size of encapsulated bubbles changes depending on the environmental temperature.
[0012]
Moreover, although the container which enclosed the said mixed solution is made from glass, since the wettability with respect to the glass of the said mixed solution is bad, a bubble does not move smoothly.
[0013]
Furthermore, since the mixed solution has a low thermal conductivity and a large specific heat, the followability with respect to the environmental temperature is poor, and as a result, the performance of the bubble tube may be adversely affected.
[0014]
In view of such circumstances, the present invention has a thermal expansion coefficient smaller than about 1/100 or less than that of a conventional liquid, has extremely good wettability with respect to glass, and encloses a mixed liquid with high thermal conductivity in a glass container together with bubbles. An inclination angle measuring device is provided.
[0015]
[Means for Solving the Problems]
The present invention provides an inclination angle measuring apparatus for measuring an inclination angle by enclosing a solution and bubbles in a glass container and detecting the amount of movement of the bubbles, and the solution contains N-methylformamide and a solvent. The present invention relates to a tilt angle measuring apparatus, and the solvent is a nitrogen compound such as acetonitrile, alcohols such as methanol and ethanol, phenols, ethers, acetals, ketones, esters, fatty acids, acid anhydrides, sulfur compounds, 2 -Two or more functionalities of methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, diethylene glycol, triethylene glycol, lactic acid, lactate ester, methyl salicylate, methyl acetoacetate, ethyl acetoacetate At least one of a group-containing compound and an inorganic solvent The present invention relates to a tilt angle measuring apparatus that is one solvent, and further relates to a tilt angle measuring apparatus in which the mixing ratio of the N-methylformamide and the solvent is a ratio of 3: 7 by volume.
[0016]
The N-methylformamide has a thermal expansion coefficient as small as about 1/100 or less of that of hydrocarbon liquids such as methanol, ethanol, n-hexane and n-heptane, which are conventionally used, and has a high thermal conductivity. Very good wettability to glass.
[0017]
Nitrogen compounds such as acetonitrile, alcohols such as methanol and ethanol, phenols, ethers, acetals, ketones, esters, fatty acids, acid anhydrides, sulfur compounds, compounds having two or more functional groups as diluents The viscosity of N-methylformamide is reduced by mixing at least one of the inorganic solvents.
[0018]
As for the mixing ratio, when N-methylformamide and the solvent are respectively 3: 7, the bubble length temperature change (%) is extremely small, and the ease of movement of the bubbles is improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
An inclination angle measuring apparatus having a photoelectric bubble tube will be described with reference to FIG. In this embodiment, the configuration of the liquid in the bubble tube is different from the above-described conventional example, but the other configuration is the same as that of the above-described conventional example, and is the same as that in FIG. 8 in FIG. The same sign is attached to the thing.
[0021]
The photoelectric bubble tube 1 is configured by combining a light source 2 and light receiving elements 3 and 4 and a bubble tube 5 ′, and an inclination angle is detected based on a signal from the photoelectric bubble tube 1.
[0022]
The light source 2 is disposed below the bubble tube 5 ', and the optical axis of the light source 2 is orthogonal to the axis of the bubble tube 5'. A pair of the light receiving elements 3 and 4 are disposed with a required distance therebetween at positions symmetrical to the optical axis of the light source 2 while facing the light source 2 with the bubble tube 5 ′ interposed therebetween. As the light receiving elements 3 and 4, photoelectric conversion elements are used.
[0023]
The light source 2 is driven by a light source driving unit 6, and detection light 7 emitted from the light source 2 passes through the bubble tube 5 ′ and reaches the light receiving elements 3 and 4, and is received by the light receiving elements 3 and 4. The received light current corresponding to the received light amount is output to the tilt angle detection control unit 8. The inclination angle detection control unit 8 includes a differential amplifier 9 and a control calculation unit 10. The differential amplifier 9 amplifies a current difference between output signals from the light receiving elements 3 and 4 and converts the current voltage into current. And output to the control calculation unit 10. The control calculation unit 10 processes the signal from the differential amplifier 9 and calculates the tilt angle.
[0024]
The detection light 7 emitted from the light source 2 passes through only the liquid 11 ′ portion of the bubble tube 5 ′, but is reflected at the boundary surface between the bubble 12 and the liquid 11 ′ where the bubble 12 is present. Therefore, the incident on both the light receiving elements 3 and 4 is blocked. Accordingly, the amount of the detection light 7 incident on the light receiving elements 3 and 4 varies depending on the position of the bubble 12. Since the position of the bubble 12 moves with inclination, the inclination angle is detected by detecting the difference in the amount of light received between the light receiving element 3 and the light receiving element 4.
[0025]
Such an inclination angle measuring apparatus is mounted on various surveying instruments, for example, laser surveying instruments. The outline of a laser surveying instrument equipped with an inclination angle measuring device will be described below with reference to FIGS.
[0026]
The laser surveying instrument rotates and irradiates a directional laser beam in the horizontal direction to form an irradiation surface, and a light receiving device (not shown) located on the rotation irradiation surface detects and detects the laser beam. By doing so, a reference line and a reference plane can be obtained.
[0027]
The laser beam emitting portion 14 is supported so as to be tiltable in all directions, and has a rotating portion 15 that can rotate around the optical axis of the laser beam emitting portion 14 at the head. The laser beam emitting section 14 is provided with the photoelectric bubble tubes 16 and 17 orthogonal to the horizontal direction described above, and further provided with a vertical inclination sensor 18, the inclination sensor 18, and the photoelectric bubble tubes 16 and 17. And the inclination detection control part 19 comprises the inclination detection apparatus.
[0028]
The rotating unit 15 deflects the laser beam 21 emitted in the vertical direction in the horizontal direction and is rotated by the scanning motor 22 to rotate and irradiate the laser beam 21.
[0029]
Arms 23 and 24 (not shown for arm 24) are extended from the laser beam emitting portion 14 in two orthogonal horizontal directions, and the tips of the arms 23 and 24 are engaged with an inclination mechanism.
[0030]
The tilt mechanism includes two sets of tilt drive units 25 and 26 (the tilt drive unit 26 is not shown) provided for each of the arms 23 and 24, and a tilt control unit (see FIG. 5) that controls the tilt drive units 25 and 26. The tilt drive units 25 and 26 are provided with a screw 27 extending in the optical axis direction of the laser beam emitting unit 14, and a nut 28 that is screwed into the screw 27 and abuts against the tips of the arms 23 and 24. And an inclination adjusting motor 32 for rotating the screw 27 through gears 30 and 31. Also, what is indicated by 29 in the figure is a focus adjusting device, and the laser beam 21 is focused by moving the condensing lens 33 disposed in the optical path of the laser beam emitting section 14 in the optical axis direction. .
[0031]
As shown in FIG. 2, the tilt detection control unit 19 includes a differential amplifier 9 to which a light reception signal from the light receiving elements 3 and 4 is input, and a control calculation unit that generates a control signal based on the signal from the differential amplifier 9. 10, the drive circuit 35 drives the tilt adjusting motor 32 based on the control signal from the control calculation unit 10, and the optical axis of the laser beam emitting unit 14 is adjusted to a vertical or required angle.
[0032]
A laser beam 21 is irradiated from the rotating unit 15 in the horizontal direction, and an irradiation surface is formed by rotating the rotating unit 15 by the scanning motor 22, and the scanning position of the laser beam is set to a predetermined position by a light receiving device. A reference plane can be obtained by setting.
[0033]
By obtaining the reference plane, it is possible to easily determine a wide range of work positions. For example, setting of a window position in interior work of building work or leveling of civil engineering work.
[0034]
The bubble tube 5 ′ of the photoelectric bubble tubes 1, 16, and 17 is a transparent glass container, and a solution containing N-methylformamide that is a transparent liquid and a solvent is sealed in the glass container.
[0035]
The N-methylformamide has a thermal expansion coefficient of 0.08 × 10 −3 / ° C., conventional methanol (1.19 × 10 −3 / ° C.), ethanol (1.08 × 10 −3 / ° C.). , N-hexane (1.35 × 10 −3 / ° C.) and n-heptane (1.22 × 10 −3 / ° C.), etc. The thermal conductivity is large, and the wettability to glass is very good (see FIG. 4).
[0036]
However, since the N-methylformamide has a high viscosity, acetonitrile is mixed as a solvent. As shown in FIG. 4, when N-methylformamide and acetonitrile are in a ratio of 3: 7 (volume ratio) as shown in FIG. 4, the bubble length temperature change (%) is very small, and the movement of the bubbles is also easy to move. Experimental results with good results were obtained.
[0037]
As the solvent, in addition to acetonitrile, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, isobutyl alcohol, isopentyl alcohol, benzyl alcohol, and cyclohexanol may be used.
[0038]
Also, hydrocarbons such as toluene, xylene, ethylbenzene, naphthalene, tetralin, butylbenzene, diethylbenzene, pentylbenzene, cyclohexane, phenols such as phenol, cresol, xylenols, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether Such as ethers, acetals, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acid anhydride solutions, methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc. Esters, fatty acids, nitromethane, nitroethane, nitrobenzene, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, valeronitrile, benzo Nitrogen compounds such as tolyl, sulfur compounds such as carbon disulfide, dimethyl sulfide, diethyl sulfide, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, diethylene glycol, triethylene glycol, A compound having two or more functional groups such as lactic acid, lactic acid ester, methyl salicylate, methyl acetoacetate and ethyl acetoacetate, water, an inorganic solvent such as propylene carbonate, and the like can also be used.
[0039]
By adding these solvents to N-methylformamide, the kinematic viscosity is 0.3 to 0.8 cps (25 ° C.), the boiling point is 60 to 130 ° C., the freezing point is −30 ° C. or less, the thermal expansion coefficient is small, and the thermal conductivity. Is large and wettability to glass is also good.
[0040]
Thus, when a mixed solution of N-methylformamide and methanol, ethanol or the like is used, the expansion coefficient is decreased, the thermal conductivity is increased, and the wettability to glass is improved. N-methylformamide is a polar solvent. For this reason, the polarity of hydrocarbon-based molecules such as methanol and ethanol attracts the polarity of N-methylformamide to form a complex and coordinate bond.
[0041]
FIG. 5 shows an experimental result representing the detection accuracy of the bubble tube 5 ′ in which the mixed liquid according to the present invention is sealed.
[0042]
FIG. 5 shows an example of the result of actual measurement of the relationship between the tilt angle and the sensor output in the range of ± 4 ′ when the environmental temperature is changed in the order of 25 ° C.−20 ° C. → 50 ° C. → 25 ° C. ing. In this example, the reproducibility in the range of ± 4 ′ at 25 ° C. is 6 ″ or less, the temperature shift of the zero point (origin) at −20 ° C. to 50 ° C. is about 0.07 ″ / ° C., ± The temperature drift of the sensitivity in the 3 ′ range is about 6%, and a good linearity (operating range) is obtained in the ± 4 ′ range.
[0043]
In the case of the above-mentioned conventional hydrocarbon-based mixed solution, as shown in FIG. 9, the reproducibility is 10 ″ at maximum, the temperature shift at the zero point (origin) is 0.12 ″ / ° C., and the temperature drift of sensitivity is maximum. Since it is 12% and the operation range is ± 3 ′ or more, the detection accuracy is greatly improved by the present invention.
[0044]
Furthermore, durability tests, such as a temperature change test (heat shock) and a time-dependent change test, were performed using the bubble tube which enclosed the liquid mixture which concerns on this invention. The results are shown in FIGS.
[0045]
FIG. 6 shows the result of actual measurement of how the zero point shift amount changes with time when a sudden temperature change of 30 ° C. from 55 ° C. to 30 ° C. is given. It takes 1 hour or more to eliminate the zero point shift, but it returns to 15 ″ or less in 10 minutes and 6 ″ or more in 20 minutes, and there is no practical problem.
[0046]
FIG. 7 shows the result of measuring the change in the relationship between the inclination angle and the sensor output at 25 ° C. during 30 cycles of the temperature cycle (25 ° C.−30 ° C. → 60 ° C. → 25 ° C., 8 hours). An example is shown. A shift of about 7 ″ in the shift width is seen over the whole, but the sensitivity is not changed and there is no problem. In the results of the three units tested, the shift amount is 10 ″ at the maximum and no change in sensitivity was observed. .
[0047]
As described above, the solution sealed in the tilt angle measuring device (bubble tube) according to the present invention has been conventionally used in terms of expansion coefficient, thermal conductivity, wettability to glass, sensitivity to environmental temperature changes, and environmental temperature durability. It can be seen that this is superior to alcohol-based and ether-based materials.
[0048]
The tilt angle measuring device of the present invention is not limited to the solvent in the above-described embodiment, and it is needless to say that two or more kinds of solvents may be used in combination.
[0049]
【The invention's effect】
As described above, according to the present invention, since a solution containing N-methylformamide and a solvent is sealed in the bubble tube of the tilt angle measuring device, the expansion coefficient of the solution is the conventional alcohol-based or ether-based hydrocarbon. The system solution is reduced to about 1/100 or less, and the size of the bubbles hardly changes depending on the environmental temperature. In addition, since the wettability to glass is very good, the movement of bubbles is smooth, and since the thermal conductivity is small and the specific heat is large, the followability to the environmental temperature is good, the performance of the bubble tube is improved, and the inclination angle is measured. Various excellent effects such as improved detection accuracy of the apparatus are exhibited.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention.
FIG. 2 is a block diagram showing an outline of an inclination angle measuring device mounted on a laser surveying instrument.
FIG. 3 is a schematic sectional view of a laser surveying instrument equipped with an inclination angle measuring device.
FIG. 4 is a table comparing the performance of the sealing liquid in the bubble tube and the performance of a conventional sealing liquid in the embodiment of the present invention.
FIG. 5 is a diagram showing the operation of the embodiment of the present invention.
FIG. 6 is a diagram showing the operation of the embodiment.
FIG. 7 is a diagram showing the operation of the embodiment.
FIG. 8 is a block diagram showing an outline of a conventional example.
FIG. 9 is a diagram showing the operation of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Photoelectric bubble tube 2 Light source 3 Light receiving element 4 Light receiving element 5 'Bubble tube 6 Light source drive part 7 Detection light 8 Inclination angle detection control part 9 Differential amplifier 10 Control calculating part 11' Liquid 12 Bubble 19 Inclination detection control part 35 Drive circuit

Claims (3)

ガラス容器に溶液及び気泡を封入し、該気泡の移動量を検出することにより傾斜角を測定する傾斜角測定装置に於いて、前記溶液中にN−メチルホルムアミド及び溶剤を含有することを特徴とする傾斜角測定装置。  An inclination angle measuring apparatus for measuring an inclination angle by enclosing a solution and bubbles in a glass container and detecting a movement amount of the bubbles, characterized in that the solution contains N-methylformamide and a solvent. Tilt angle measuring device. 溶剤がアセトニトリル等の窒素化合物、メタノール、エタノール等のアルコール類、フェノール類、エーテル類、アセタール類、ケトン類、エステル類、脂肪酸、酸無水物、硫黄化合物、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、ジエチレングリコール、トリエチレングリコール、乳酸、乳酸エステル、サリチル酸メチル、アセト酢酸メチル、アセト酢酸エチルの2つ以上の官能基をもつ化合物、無機溶剤のうちの少なくともいずれか一つの溶剤である請求項1の傾斜角測定装置。Solvents are nitrogen compounds such as acetonitrile, alcohols such as methanol and ethanol, phenols, ethers, acetals, ketones, esters, fatty acids, acid anhydrides, sulfur compounds, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, diethylene glycol, triethylene glycol, lactic acid, lactic acid ester, methyl salicylate, methyl acetoacetate, ethyl acetoacetate compound, inorganic solvent The tilt angle measuring device according to claim 1, which is at least one of the solvents. N−メチルホルムアミドと溶剤の混合比が体積比で3:7の割合である請求項1又は請求項2の傾斜角測定装置。  The tilt angle measuring device according to claim 1 or 2, wherein the mixing ratio of N-methylformamide and the solvent is a volume ratio of 3: 7.
JP2000139291A 1999-05-31 2000-05-12 Inclination angle measuring device Expired - Fee Related JP4169904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000139291A JP4169904B2 (en) 1999-05-31 2000-05-12 Inclination angle measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15237099 1999-05-31
JP11-152370 1999-05-31
JP2000139291A JP4169904B2 (en) 1999-05-31 2000-05-12 Inclination angle measuring device

Publications (2)

Publication Number Publication Date
JP2001050745A JP2001050745A (en) 2001-02-23
JP4169904B2 true JP4169904B2 (en) 2008-10-22

Family

ID=26481313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000139291A Expired - Fee Related JP4169904B2 (en) 1999-05-31 2000-05-12 Inclination angle measuring device

Country Status (1)

Country Link
JP (1) JP4169904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178273A (en) * 2013-03-15 2014-09-25 Topcon Corp Inclination angle detector

Also Published As

Publication number Publication date
JP2001050745A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
US6343422B1 (en) Tilt angel measuring device
CN1092793C (en) Object reflector detection system
US6248989B1 (en) Tilt detecting device
US9303987B2 (en) Tilt angle detecting device
JP4169904B2 (en) Inclination angle measuring device
CN106772410A (en) A kind of laser range finder
JP3937268B2 (en) Laser equipment
CN112414965A (en) Automatic adjusting device and method for sample position of terahertz three-dimensional tomography system
JP3978737B2 (en) Laser level device
JP2005300286A (en) Ultrasonic probe and ultrasonic measuring device
CN109725170A (en) A kind of doppler shift effect simulator
JP2000266545A (en) Inclination setting rotary laser
JP2001183134A (en) Inclination controller and inclination controlling method
CN113847873B (en) Discrete single-point displacement dynamic monitoring device and method based on laser ranging
CN219776623U (en) Laser detection device
CN218629417U (en) Double-optical-path visibility measurement and control device
CN114739292B (en) PSD calibration device and parameter calibration method based on same
SU703759A1 (en) Method of determining the curvature of the interface of media
JPS6315112A (en) Clinometer
SU1753273A1 (en) Device for determining coordinates of object
JP5433118B2 (en) Non-planar sample birefringence measurement device
CN116892915A (en) Measuring device
JP3227336B2 (en) Gas concentration measurement device
JP2724239B2 (en) Displacement detector
CN115420712A (en) Self-aligning atmospheric transmission instrument using collimated laser as calibration light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees