JP4169862B2 - Star polymer manufacturing method - Google Patents

Star polymer manufacturing method Download PDF

Info

Publication number
JP4169862B2
JP4169862B2 JP09763799A JP9763799A JP4169862B2 JP 4169862 B2 JP4169862 B2 JP 4169862B2 JP 09763799 A JP09763799 A JP 09763799A JP 9763799 A JP9763799 A JP 9763799A JP 4169862 B2 JP4169862 B2 JP 4169862B2
Authority
JP
Japan
Prior art keywords
macromonomer
star polymer
polyfunctional monomer
weight
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09763799A
Other languages
Japanese (ja)
Other versions
JP2000290326A (en
Inventor
元一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP09763799A priority Critical patent/JP4169862B2/en
Publication of JP2000290326A publication Critical patent/JP2000290326A/en
Application granted granted Critical
Publication of JP4169862B2 publication Critical patent/JP4169862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は塗料、潤滑油等に有用なスターポリマー(星状重合体)の製法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
スターポリマーは多官能開始剤からリビング重合する方法、リビングポリマーを多官能停止剤と結合させる方法等で合成される。また単官能モノマーのリビング重合の後、多官能モノマーを共重合させる方法もある。これらの方法は酸素や水分等の不純物を除去した条件で厳密に行う必要があり、工業的に有利ではない。また、リビング重合が行えるモノマーに制限があるため、官能基を有するスターポリマーの合成は困難であった。
【0003】
本発明の課題は工業的に容易に、また構造の自由度の大きいスターポリマーの製法を提供することである。
【0004】
【課題を解決するための手段】
本発明は、マクロモノマーと、分子中にラジカル重合性基を2個以上有するモノマー(以下多官能モノマーという)とを共重合するスターポリマーの製法を提供する。
【0005】
スターポリマーは一般に「3本以上のポリマー鎖が一つの分岐点で連結したもの」と定義され、分岐点は炭素、ケイ素、窒素等の多原子価原子、あるいはデンドリマー、あるいは多官能モノマーの架橋体である。本発明のスターポリマーは分岐点として多官能モノマーの架橋体を有するものである。
【0006】
【発明の実施の形態】
(マクロモノマー)
マクロモノマーは1分子内に、ポリマー部分と、その片末端位にラジカル重合性基を有するものである。ポリマー部分として、シリコーン部分、ポリエチレングリコール部分又はポリスチレン部分が例示され、ラジカル重合性基として、スチリル基や(メタ)アクリロイロキシ基が例示される。
【0007】
ポリマー部分が、シリコーン部分であり、ラジカル重合性基がメタクリロイロキシ基であるものとしてFM-0721 (チッソ(株)製)があり、ポリマー部分がポリスチレン部分であり、ラジカル重合性基がメタクリロイロキシ基であるものとしてAS-6(東亜合成(株)製)があり、ポリマー部分がポリエチレングリコール部分であり、ラジカル重合性基がメタクリロイロキシ基であるものとして、NKエステルM230G (新中村化学工業(株)製)が例示される。
【0008】
マクロモノマーの重量平均分子量は、スターポリマーを得る際、ゲル化を起こさないこと及びマクロモノマーの反応率が良好なことより、1,000 〜20,000が好ましく、 2,000〜10,000が更に好ましい。
【0009】
(多官能モノマー)
多官能モノマーは分子中にラジカル重合性基を2個以上有するもので、例えばジビニルベンゼン、(ポリ)エチレングリコールジ(メタ)アクリレート及びトリメチロールプロパントリ(メタ)アクリレートからなる群より選択される1種以上が挙げられる。
【0010】
(スターポリマーの合成)
マクロモノマーと多官能モノマーを共重合させるときの重量比(〔マクロモノマー〕/〔多官能モノマー〕)は、マクロモノマーの良好な転化率及びポリマー合成時にゲル化しにくいことの観点より、好ましくは 100/1〜1/1、更に好ましくは50/1〜4/1である。
【0011】
また全モノマーの50重量%以下の範囲で単官能モノマーを共重合させることができる。単官能モノマーはマクロモノマーおよび多官能モノマーとラジカル共重合し得るものであればよく、例えば、(メタ)アクリル酸、ジメチルアミノエチル(メタ)アクリレート等のイオン性基含有モノマーを共重合させることにより分散能を付与することができる。単官能モノマーを共重合させることにより、反応率を上げることができるが、多すぎるとスターポリマーの特性が失われたり、ゲル化したりする。
【0012】
重合反応は無溶媒または良溶媒中で行うことができる。溶媒はマクロモノマーを完全に溶解するものが好ましく、例えば、マクロモノマーが前記のFM-0721 の場合、ヘキサン、シクロヘキサン、トルエン、環状シロキサン等であり、前記のAS-6の場合、シクロヘキサン、トルエン、メチルエチルケトン等であり、前記のNKエステルM230G の場合、水、エタノール、テトラヒドロフラン及びそれらの混合物等である。
【0013】
ポリマー合成に際し、溶媒を使用する場合、反応率が良好なこと、及びポリマー合成時ゲル化しにくいことの観点より、反応系中モノマー総量は好ましくは10〜80重量%、より好ましくは20〜50重量%である。
【0014】
重合に当たっては、アゾ系やパーオキシド系のラジカル重合開始剤を用いることができ、レドックス重合、光重合を行ってもよい。
組成分布を少なくし、マクロモノマーの転化率を上げる目的で、多官能モノマーを連続的に反応系中に添加することができる。
【0015】
重合温度、重合時間は使用するマクロモノマーの種類、多官能モノマーの種類、開始剤の種類、溶媒の種類等に依存するが、重合温度は開始剤の半減期が0.5 〜10時間の範囲になるように調整することが好ましい。
【0016】
得られたスターポリマーは必要に応じて精製することができる。精製の具体例として、再沈澱、溶剤抽出、限外ろ過等が挙げられる。
【0017】
【実施例】
実施例1
フラスコを窒素置換した後、シリコーンマクロモノマー(チッソ(株)、FM0721、重量平均分子量5,000 ) 45g、ジビニルベンゼン(新日鉄化学(株)、DVB-810 )5g、シクロヘキサン50gを仕込んだ。75℃に加温した後、重合開始剤として2,2'−アゾビス(2−メチルブチロニトリル)(和光純薬(株)、V-59) 0.5gを投入し、75℃で12時間反応させた。反応液を 300mLのヘキサン/エタノール(2/1)混合溶媒で希釈し、充分攪拌した後、静置し、上層をデカンテーションにより除いた。同様な混合溶媒による洗浄を2回行った後、減圧下に溶媒を留去し無色粘稠液体25g(収率50%)を得た。
【0018】
このものはGPC分析(クロロホルム系、混合カラム、ポリスチレン換算)の結果、重量平均分子量 421,000のポリマーであることがわかった。アーム部分子量と全体分子量の比より、このものは1分子あたり平均84本のアームを有するマルチアームスターポリマーであることがわかった。
【0019】
比較例1
ジビニルベンゼンを加えなかったことを除き、実施例1と同様の操作を行い、マクロモノマー重合体を得た。しかしながら、生成物は重量平均分子量32,000(平均アーム数6本)で、収率は22%と低かった。
【0020】
実施例2
フラスコを窒素置換した後、メトキシポリエチレングリコールメタクリレート(片末端メトキシポリエチレングリコールとメタクリル酸をp−トルエンスルホン酸触媒にて脱水エステル化して合成、重量平均分子量 5,000、純度97%)45g、エチレングリコールジメタクリレート(新中村化学(株)、NKエステル1G)5g、溶媒として水/エタノール(1/1)を 150g加え、60℃に加温した後、重合開始剤としてアゾビスアミジノプロパン塩酸塩(和光純薬(株)、V-50)0.5gを少量の水に溶解させたものを加え、60℃で12時間反応させた。反応後、溶媒を減圧留去し、残滓に50℃に加温したトルエン/ヘキサン(2/1)混合溶媒 300mLを加え、充分攪拌した後、静置し、上層をデカンテーションにより除いた。同様な混合溶媒による洗浄を2回行った後、減圧下に溶媒を留去し白色固体23g(収率46%)を得た。
このものはGPC分析の結果、重量平均分子量85,000(アーム数が1分子あたり約17本)のスターポリマーであることがわかった。
【0021】
実施例3
マクロモノマーとしてポリスチレン系のもの(東亜合成(株)、AS-6、重量平均分子量5,000 )を用い、溶剤としてトルエン 150mLを用いること以外は、実施例1と同様の操作でスターポリマーを合成した。反応液をそのまま乾固させ、粗生成物(白色固体)を得た。生成物のGPC分析より、反応率30%で重量平均分子量83万(アーム数約160 )のスターポリマーが生成したことがわかった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a star polymer (star polymer) useful for paints, lubricating oils and the like.
[0002]
[Prior art and problems to be solved by the invention]
The star polymer is synthesized by a method of living polymerization from a polyfunctional initiator, a method of combining a living polymer with a polyfunctional stopper, or the like. There is also a method of copolymerizing a polyfunctional monomer after living polymerization of the monofunctional monomer. These methods need to be carried out strictly under conditions where impurities such as oxygen and moisture are removed, and are not industrially advantageous. Moreover, since there are limitations on the monomers that can be used for living polymerization, it has been difficult to synthesize star polymers having functional groups.
[0003]
An object of the present invention is to provide a process for producing a star polymer which is industrially easy and has a high degree of structural freedom.
[0004]
[Means for Solving the Problems]
The present invention provides a method for producing a star polymer in which a macromonomer and a monomer having two or more radical polymerizable groups in the molecule (hereinafter referred to as polyfunctional monomer) are copolymerized.
[0005]
A star polymer is generally defined as “three or more polymer chains linked at one branch point”, where the branch point is a polyvalent atom such as carbon, silicon or nitrogen, a dendrimer, or a cross-linked product of a polyfunctional monomer. It is. The star polymer of the present invention has a crosslinked product of a polyfunctional monomer as a branch point.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
(Macromonomer)
The macromonomer has a polymer part and a radically polymerizable group at one terminal position in one molecule. Examples of the polymer portion include a silicone portion, a polyethylene glycol portion, and a polystyrene portion, and examples of the radical polymerizable group include a styryl group and a (meth) acryloyloxy group.
[0007]
There is FM-0721 (manufactured by Chisso Corporation) as the polymer part is a silicone part and the radical polymerizable group is a methacryloyloxy group, the polymer part is a polystyrene part, and the radical polymerizable group is a methacryloyl group. AS-6 (manufactured by Toa Gosei Co., Ltd.) is a loxy group, the polymer part is a polyethylene glycol part, and the radical polymerizable group is a methacryloyloxy group. NK ester M230G (Shin Nakamura Chemical) Kogyo Co., Ltd.) is exemplified.
[0008]
The weight average molecular weight of the macromonomer is preferably from 1,000 to 20,000, more preferably from 2,000 to 10,000, because gelation is not caused when the star polymer is obtained and the reaction rate of the macromonomer is good.
[0009]
(Polyfunctional monomer)
The polyfunctional monomer has two or more radical polymerizable groups in the molecule, and is selected from the group consisting of, for example, divinylbenzene, (poly) ethylene glycol di (meth) acrylate, and trimethylolpropane tri (meth) acrylate. More than species.
[0010]
(Synthesis of star polymer)
The weight ratio ([macromonomer] / [polyfunctional monomer]) when the macromonomer and polyfunctional monomer are copolymerized is preferably 100 from the viewpoint of good conversion of the macromonomer and difficulty in gelation during polymer synthesis. / 1-1 / 1, more preferably 50/1 to 4/1.
[0011]
Moreover, a monofunctional monomer can be copolymerized within a range of 50% by weight or less of the total monomers. The monofunctional monomer only needs to be capable of radical copolymerization with a macromonomer and a polyfunctional monomer. For example, by copolymerizing an ionic group-containing monomer such as (meth) acrylic acid or dimethylaminoethyl (meth) acrylate. Dispersibility can be imparted. By copolymerizing the monofunctional monomer, the reaction rate can be increased. However, if the amount is too large, the properties of the star polymer are lost or gelled.
[0012]
The polymerization reaction can be performed without solvent or in a good solvent. The solvent preferably dissolves the macromonomer completely.For example, when the macromonomer is FM-0721, the solvent is hexane, cyclohexane, toluene, cyclic siloxane, etc., and when AS-6 is cyclohexane, toluene, Examples of the NK ester M230G include water, ethanol, tetrahydrofuran, and a mixture thereof.
[0013]
In the case of using a solvent for polymer synthesis, the total amount of monomers in the reaction system is preferably 10 to 80% by weight, more preferably 20 to 50% by weight from the viewpoint of good reaction rate and difficulty in gelation during polymer synthesis. %.
[0014]
In the polymerization, an azo-based or peroxide-based radical polymerization initiator can be used, and redox polymerization or photopolymerization may be performed.
For the purpose of reducing the composition distribution and increasing the conversion rate of the macromonomer, the polyfunctional monomer can be continuously added to the reaction system.
[0015]
The polymerization temperature and polymerization time depend on the type of macromonomer used, the type of polyfunctional monomer, the type of initiator, the type of solvent, etc., but the polymerization temperature is in the range of 0.5 to 10 hours for the initiator half-life. It is preferable to adjust so that.
[0016]
The obtained star polymer can be purified as necessary. Specific examples of purification include reprecipitation, solvent extraction, and ultrafiltration.
[0017]
【Example】
Example 1
After the flask was purged with nitrogen, 45 g of a silicone macromonomer (Chisso Corporation, FM0721, weight average molecular weight 5,000), 5 g of divinylbenzene (Nippon Steel Chemical Co., Ltd., DVB-810) and 50 g of cyclohexane were charged. After heating to 75 ° C., 0.5 g of 2,2′-azobis (2-methylbutyronitrile) (Wako Pure Chemical Industries, Ltd., V-59) was added as a polymerization initiator and reacted at 75 ° C. for 12 hours. I let you. The reaction solution was diluted with 300 mL of a hexane / ethanol (2/1) mixed solvent, sufficiently stirred, allowed to stand, and the upper layer was removed by decantation. After washing with the same mixed solvent twice, the solvent was distilled off under reduced pressure to obtain 25 g of colorless viscous liquid (yield 50%).
[0018]
This was found to be a polymer having a weight average molecular weight of 421,000 as a result of GPC analysis (chloroform, mixed column, polystyrene conversion). From the ratio of the molecular weight of the arm part to the total molecular weight, it was found that this was a multi-arm star polymer having an average of 84 arms per molecule.
[0019]
Comparative Example 1
Except that divinylbenzene was not added, the same operation as in Example 1 was performed to obtain a macromonomer polymer. However, the product had a weight average molecular weight of 32,000 (average number of arms 6), and the yield was as low as 22%.
[0020]
Example 2
After replacing the flask with nitrogen, 45 g of methoxypolyethylene glycol methacrylate (synthesized by dehydrating esterified methoxypolyethylene glycol and methacrylic acid at one end with p-toluenesulfonic acid catalyst, weight average molecular weight 5,000, purity 97%), ethylene glycol dimethacrylate (Shin Nakamura Chemical Co., Ltd., NK Ester 1G) 5 g, 150 g of water / ethanol (1/1) as a solvent was added and heated to 60 ° C., then azobisamidinopropane hydrochloride (Wako Pure Chemical Industries) (Co., V-50) 0.5 g dissolved in a small amount of water was added and reacted at 60 ° C. for 12 hours. After the reaction, the solvent was distilled off under reduced pressure, and 300 mL of a toluene / hexane (2/1) mixed solvent heated to 50 ° C. was added to the residue. After sufficiently stirring, the mixture was allowed to stand, and the upper layer was removed by decantation. After washing with the same mixed solvent twice, the solvent was distilled off under reduced pressure to obtain 23 g (yield 46%) of a white solid.
As a result of GPC analysis, this was found to be a star polymer having a weight average molecular weight of 85,000 (number of arms is about 17 per molecule).
[0021]
Example 3
A star polymer was synthesized in the same manner as in Example 1 except that a polystyrene monomer (Toa Gosei Co., Ltd., AS-6, weight average molecular weight 5,000) was used as the macromonomer, and 150 mL of toluene was used as the solvent. The reaction solution was dried as it was to obtain a crude product (white solid). From the GPC analysis of the product, it was found that a star polymer having a reaction rate of 30% and a weight average molecular weight of 830,000 (number of arms of about 160) was produced.

Claims (2)

シリコーン部分、ポリエチレングリコール部分又はポリスチレン部分を有し、その片末端位にラジカル重合性基を有する、重量平均分子量が2,000〜10,000のマクロモノマーと、分子中にラジカル重合性基を2個以上有するモノマー(以下多官能モノマーという)とを、マクロモノマー/多官能モノマー(重量比)が50/1〜4/1の割合で、マクロモノマーを完全に溶解する溶媒を用いて反応系中のモノマー総量が20〜50重量%となる条件で共重合するスターポリマーの製法。  A macromonomer having a silicone part, a polyethylene glycol part or a polystyrene part, having a radical polymerizable group at one terminal position and having a weight average molecular weight of 2,000 to 10,000, and a monomer having two or more radical polymerizable groups in the molecule (Hereinafter referred to as polyfunctional monomer) is a ratio of macromonomer / polyfunctional monomer (weight ratio) of 50/1 to 4/1, and the total amount of monomers in the reaction system is determined using a solvent that completely dissolves the macromonomer. A method for producing a star polymer which is copolymerized under a condition of 20 to 50% by weight. 多官能モノマーがジビニルベンゼン、(ポリ)エチレングリコールジ(メタ)アクリレート及びトリメチロールプロパントリ(メタ)アクリレートからなる群より選択される1種以上である請求項1記載のスターポリマーの製法。  The method for producing a star polymer according to claim 1, wherein the polyfunctional monomer is at least one selected from the group consisting of divinylbenzene, (poly) ethylene glycol di (meth) acrylate and trimethylolpropane tri (meth) acrylate.
JP09763799A 1999-04-05 1999-04-05 Star polymer manufacturing method Expired - Fee Related JP4169862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09763799A JP4169862B2 (en) 1999-04-05 1999-04-05 Star polymer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09763799A JP4169862B2 (en) 1999-04-05 1999-04-05 Star polymer manufacturing method

Publications (2)

Publication Number Publication Date
JP2000290326A JP2000290326A (en) 2000-10-17
JP4169862B2 true JP4169862B2 (en) 2008-10-22

Family

ID=14197663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09763799A Expired - Fee Related JP4169862B2 (en) 1999-04-05 1999-04-05 Star polymer manufacturing method

Country Status (1)

Country Link
JP (1) JP4169862B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248089A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Light diffusive resin composition and light diffusive resin plate
US9822207B2 (en) 2012-07-27 2017-11-21 Nissan Chemical Industries, Ltd. Silicon-containing highly branched polymer and curable composition containing the same

Also Published As

Publication number Publication date
JP2000290326A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
EP2102259B1 (en) Polymers
EP0408429B1 (en) Triblock copolymers containing at least one acrylic block, a process for their preparation and their application in the manufacture of elastomer products
KR101446926B1 (en) Polymerizable silicone copolyol macromers and polymers made therefrom
US20110301298A1 (en) Acid functionalized gradient block copolymers
CN101691417B (en) Preparation method of star poly-(methyl)acrylate long-chain ester polymer
Mespouille et al. Amphiphilic poly (N, N-dimethylamino-2-ethyl methacrylate)-g-poly (ε-caprolactone) graft copolymers: synthesis and characterisation
EP0953009A1 (en) A process for preparing polymeric microgels
CN1896112A (en) Random and copolymer cation macromolecular emulsion and its preparation
JPH0826160B2 (en) Surface modifier for polymer materials
JP7144064B2 (en) branched polymer
Zhang et al. Graft, block− graft and star-shaped copolymers by an in situ coupling reaction
JP4169862B2 (en) Star polymer manufacturing method
KR100298515B1 (en) Manufacturing method of crosslinked polymer containing carboxyl group
TWI397538B (en) Acrylic copolymers with high heat-resistance and preparation thereof
Yamanaka et al. Synthesis of water-soluble poly [oligo (ethylene glycol) methacrylate] s by living anionic polymerization of oligo (ethylene glycol) vinyl ether methacrylates
David et al. End-capping of living poly (2-methyl-2-oxazoline) with maleic acid
EP0351859A2 (en) Preparation process of block copolymers and resulting block copolymers
US6323360B1 (en) Breakable crosslinkers an use for preparation of polymers using same
KR20190136103A (en) polymer
Yuan et al. Synthesis of star-shaped PCL-b-PMMA/PSt from cyclotriphosphazene initiator by ring-opening polymerization and atom transfer radical polymerization
JP2658152B2 (en) Polysiloxane group-containing polymer
Zhang et al. Polyallene-based graft copolymer via 6-methyl-1, 2-heptadien-4-ol and methyl methacrylate
JPH02113008A (en) Conjugated diene-based macromonomer having unsubstituted or substituted vinyl group at one terminal, production thereof and composition containing the same
RU2348655C1 (en) Method of obtaining polymethylmethacrylate
Kikuchi et al. Preparation of styryl-ended rod-like poly (n-hexyl isocyanate) macromonomers and their radical co-polymerization behavior with styrene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees