JP4168511B2 - Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same - Google Patents

Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same Download PDF

Info

Publication number
JP4168511B2
JP4168511B2 JP03804799A JP3804799A JP4168511B2 JP 4168511 B2 JP4168511 B2 JP 4168511B2 JP 03804799 A JP03804799 A JP 03804799A JP 3804799 A JP3804799 A JP 3804799A JP 4168511 B2 JP4168511 B2 JP 4168511B2
Authority
JP
Japan
Prior art keywords
cell
reduced
carbon monoxide
concentration
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03804799A
Other languages
Japanese (ja)
Other versions
JP2000233905A (en
Inventor
憲朗 光田
秀雄 前田
久敏 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03804799A priority Critical patent/JP4168511B2/en
Publication of JP2000233905A publication Critical patent/JP2000233905A/en
Application granted granted Critical
Publication of JP4168511B2 publication Critical patent/JP4168511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学的な反応を利用して発電や水素ガスの精製等を行う、例えば電気自動車等で使用される燃料電池や電気化学的水素精製装置に関するものである。さらに詳しくは、例えば燃料電池において、メタノールや天然ガスを水蒸気改質や部分酸化改質によって水素を主成分とする改質燃料ガスに変換した際に含まれる一酸化炭素の濃度を低減する装置に関する。
【0002】
【従来の技術】
電気化学デバイスの典型例として燃料電池は周知のように、電解質を介して一対の電極を接触させ、この一方の電極に燃料を、他方の電極に酸化剤を供給し、燃料の酸化を電池内で電気化学的に反応させることにより化学エネルギーを直接電気エネルギーに変換する装置である。燃料電池には電解質によりいくつかの型があるが、近年高出力の得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。燃料極に水素ガスを、酸化剤極に酸素ガスを供給し、外部回路より電流を取り出すとき、下記のような反応が生じる。
燃料極反応:H2→2H++2e- (1)
酸化剤極反応:2H++2e-+1/2O2→H2O (2)
【0003】
このとき電極上の白金等の触媒が有効に作用すれば、式1の反応ではほとんど過電圧を生じず、スムーズに反応が進行する。
一方、燃料として取り扱いが容易なメタノール等の炭化水素を用いる場合には、改質器により、式3のような反応により水素に改質してから供給することになる。
改質反応:CH3OH+H2O→3H2+CO2 (3)
しかし、次のシフト反応により、微量の一酸化炭素(CO)が燃料中に混入する。
シフト反応:CO2+H2→CO+H2O (4)
特に動作温度が低い固体高分子型燃料電池のような電気化学デバイスでは、数十ppmのCOの混入により、触媒が被毒して、アノード反応の過電圧が増大して特性が低下することが問題となっている。
【0004】
そこで、改質燃料ガス中のCO濃度を低減するために、従来より数々の工夫がなされてきた。
図5は、従来例1による燃料電池において一般的なCO濃度低減装置(CO選択酸化器)の構成を模式的に示す図である。図において、29は第1のCO選択酸化器、30は第2のCO選択酸化器、31は改質燃料ガス入口、32は連結配管、33はCO処理済み改質燃料ガス出口、34は第1のCO選択酸化器用空気入口、35は第1のCO選択酸化器用空気入口である。
【0005】
各CO選択酸化器29、30には、白金微粒子触媒が充填されている。COは白金微粒子触媒の表面に強く吸着するので、添加する空気によって水素よりも優先して酸化され、二酸化炭素(CO2)に変換される。しかし、余分の空気は、水素を酸化して水に変換してしまう。従って、第1のCO選択酸化器29と第2のCO選択酸化器30に分け、少量の空気を2回に分けて添加する方法が用いられている。しかしながら、CO濃度が変化する場合には、空気の添加量の制御が難しく、水素の消費量が多いという問題点があった。これは、改質燃料ガスを無駄に消費することを意味しており、固体高分子型燃料電池発電システムの効率を低下させることになる。また、空気には酸素の4倍もの窒素が含まれており、CO濃度低減後の改質燃料ガス中にそのまま残るので、水素濃度を希釈し、固体高分子型燃料電池の性能を低下させるという問題点があった。
【0006】
被処理ガスに空気を添加して水素を消費してしまったり、窒素で水素を希釈してしまうという弊害を改善するための画期的な方法として、パルス状の電圧を印加する手法が発明された。本発明と同一出願人による特開平10ー216461号公報には、『一酸化炭素を含む水素ガスから一酸化炭素を除去する方法、その電気化学デバイス、その運転方法、燃料電池の運転方法および燃料電池発電システム』と題して、電気化学セルで一酸化炭素と水を反応させて対極に水素を発生させる方法が開示されている。図6は、上記公報に記載された従来例2によるCO濃度低減装置の構成を模式的に示す図である。図において、41はCO低減セル、44はパルス電圧印加電源、7は被処理ガス入口、10は連結部、11はCO処理済みガス出口、12は固体高分子電解質膜である。CO低減セル41はイオン導電性の電解質膜の両面に一対のガス拡散電極がそれぞれ白金等の触媒層を介して配設されて構成され、その両側にはそれぞれガス流路が形成されている。
【0007】
このように構成されたものにおいて、被処理ガス入口7からCOを含む水素ガスとして改質燃料ガスを供給し、パルス電圧印加電源44によってCO低減セル41の両電極間に被処理ガス入口7側の電極が正となるようにパルス状の電圧を連続的に印加すると、アノードではCOが水分と反応してCO2、プロトンおよび電子に変換され、カソードではプロトンと電子から水素が発生する。このようにして被処理ガス中のCOが酸化分解されて除去され、CO濃度が低減される。
【0008】
この手法では、電解のための電気エネルギーを消費することになるが、空気を添加する必要がないので、被処理ガスが窒素によって希釈されない。また、水素を無駄に消費して水に変換してしまうこともない。しかしながら、白金触媒に充分にCOが吸着していない状態でパルス状の電圧をかけると、水素が酸化されてプロトンと電子になり、対極で水素になってしまう。この現象は、1個の水素が消費されて1個の水素が生成するので、水素を無駄に消費する恐れはないが、その分、余分な電流を流す必要があるので、消費電力が多くなるという問題点があった。
【0009】
また、余分な電力を消費するのを防止するために、特開平10ー216461号公報には、複数個のCO低減セルを直列に連結し、かつ下流側のCO低減セルのパルス幅を上流側のCO低減セルのそれよりも小さくする方法も記載されている。しかしながら、例えば燃料電池発電システムにおいて改質量が変化するような場合には、改質燃料ガスに含まれるCO濃度が、改質器の温度などによって大きく変化するために、この方法では対応できず、COを十分に低減できなかったり、余分な電力を消費してしまうことがあるという問題点があった。
【0010】
【発明が解決しようとする課題】
従来のCO濃度低減装置は以上のように構成されており、従来例1では、CO濃度が変化する場合に、空気の添加量の制御が難しく、水素の消費量が多いという問題点があった。また、従来例2にも、CO濃度が大きく変化する場合にはCOを十分に低減できなかったり、余分な電力を消費してしまうことがあるという問題点があった。
【0011】
本発明は、上記のような従来のものの問題点を解消するためになされたもので、COを選択的に電解によって酸化し、CO濃度が大きく変化するような場合にも、水素や電力を無駄に消費することなく、効率よくしかも確実にCO濃度を低減することができる一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置およびそれを用いた燃料電池発電システムを提供することを目的としている。
【0012】
【課題を解決するための手段】
第1の発明に係る一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置は、一対のガス拡散電極がイオン伝導性の電解質膜の両面にそれぞれ触媒層を介して配設されてなるCO低減第1セルおよびCO低減第2セル、CO低減第1セルおよびCO低減第2セルにそれぞれ独立にパルス状電圧を加える電圧印加第1電源および電圧印加第2電源、一酸化炭素を含む水素ガスをCO低減第1セルのアノードに供給した後、CO低減第2セルのアノード、CO低減第2セルのカソード、CO低減第1セルのカソードの順に流す手段、並びにCO低減第2セルのアノード出口のCO濃度をモニタするCO濃度モニタ手段を備え、CO低減第1セルに対して電圧印加第1電源を用いて連続的にパルス状電圧を印加し、CO低減第2セルには上記CO濃度モニタ手段の信号をもとに電圧印加第2電源を用いてパルス状電圧を断続的に印加し、CO低減第1セルおよびCO低減第2セルのアノードで一酸化炭素を水分と反応させて二酸化炭素、プロトンおよび電子に変換し、CO低減第1セルおよびCO低減第2セルのカソードでプロトンと電子から水素を発生させるものである。
【0013】
第2の発明に係る一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置は、前記第1の発明において、CO低減第2セルにパルス状電圧を印加する間隔が所定の範囲に収まるように、CO低減第1セルのパルス状電圧の周期を制御するものである。
【0014】
第3の発明に係る燃料電池発電システムは、改質器で改質された改質燃料ガスを燃料電池の燃料極に供給し、酸化剤ガスを燃料電池の酸化剤極に供給して発電を行う燃料電池発電システムにおいて、上記改質器と上記燃料極との改質燃料ガスの経路中に、上記第1または2の発明による一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置を配置し、上記改質燃料ガス中に含まれる一酸化炭素濃度を低減して上記燃料極に供給するようにしたものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて従来と同一または相当部分には同一符号を付して説明する。
実施の形態1.
図1は、本発明の実施の形態1による一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置すなわちCO濃度低減装置の構成を模式的に示す図である。図において、1はCO低減第1セル、2はCO低減第2セル、3はCOモニタセルであり、これらのセルはいずれも一対のガス拡散電極をイオン伝導性の電解質膜すなわち固体高分子電解質膜12の両面にそれぞれ触媒層を介して配設して構成される。4はパルス電圧印加第1電源、5はパルス電圧印加第2電源、6は電流計、7は被処理ガス入口、8はガス配管、9は直流電源、10はCO処理済みガス配管、11はCO処理済みガス出口、12は固体高分子電解質膜である。一例として、CO低減第1セル1およびCO低減第2セル2の電極有効面積は225cm2、COモニタセル3の有効面積は1cm2である。なお、COモニタセル3については、温度を一定にしてCO濃度の絶対値を知るために80℃に加温されている。
なお、COモニタセル3の代りにCO処理済みガス配管10にサンプリングポートを設けて、赤外線式のCOガスセンサーでCO濃度がモニタできるようにしてもよい。
【0016】
CO低減第1セル1には、パルス電圧印加第1電源4によって、パルス状の電圧が印加され、被処理ガスに含まれていて、陽極(アノード)の触媒に吸着していた一酸化炭素は酸化されて二酸化炭素となる。すなわち、式5の反応により、一酸化炭素と水から二酸化炭素とプロトンと電子が生じる。一方、陰極(カソード)では、プロトンと電子から水素が発生する。
CO+H2O → CO2+2H++2e- (5)
2H++2e- → H2 (6)
【0017】
これらの反応により、CO低減第1セル1において被処理ガスに含まれていた一酸化炭素の大部分は二酸化炭素に変換される。処理されなかった一酸化炭素は徐々にCO低減第2セル2のアノードの触媒に吸着して蓄積していく。一方、COモニタセル3では、直流電源9によって常に0.5Vの印加電圧がかけられている。有効面積が小さいので、0.5アンペアのわずかな電流が流れ、CO被毒を受けると、流れる電流が低下するので、電流計6によって簡単に検知できる。一酸化炭素がCO低減第2セル2のアノードの触媒に吸着しきれなくなって、COモニタセル3の方にスリップしてくると、電流計6によって検知され、パルス電圧印加第2電源5が起動されて、CO低減第2セル2にパルス電圧が印加され、上記式5と式6の反応により、CO低減第2セル2においてCO低減第1セル1では除去できなかった一酸化炭素が二酸化炭素に変換される。
【0018】
CO処理済みガス出口11のCO濃度は、CO低減第1セル1の連続的なCO酸化処理と、CO低減第2セル2の断続的なCO酸化処理によって、効果的に低減される。もし、触媒に一酸化炭素が充分吸着していない時に、電圧が印加されると、アノードとカソードではそれぞれ式7と式8の反応が起こり、電力が無駄に消費されることになるが、本実施の形態では、COモニタセル3で、CO低減第2セル2での一酸化炭素の吸着を確認してから電圧を印加するので、無駄に消費される水素の比率が小さくなる。
2 → 2H++2e- (7)
2H++2e- → H2 (8)
【0019】
図2は、本実施の形態によるCO濃度低減第1セルの構成を示す断面図である。図において、13はアノード流路板、14はカソード流路板、15はアノード、16はカソード、17はアノードガス流路、18はカソードガス流路である。アノード15およびカソード16は、触媒層として白金微粒子を担持したカーボンを、溶媒と液化した固体高分子電解質を混ぜてペースト化した後、外形15cm×15cm、厚さ0.2mmのカーボンペーパーの片面に20μmの厚さに塗布して乾燥することによりそれぞれ製作した。次に固体高分子電解質膜12の両面にアノード15とカソード16をそれぞれ触媒層を介して重ね合わせ、ホットプレスして電極・膜接合体を作製した。このようにして作製された電極・膜接合体の両側にアノードガス流路17が形成されたアノード流路板13とカソードガス流路18が形成されたカソードガス流路板14が配置されてCO濃度低減第1セル1が形成されている。なお、液化した固体高分子電解質としてアルドリッチ社製のナフィオン溶液を用い、固体高分子電解質膜12としてデュポン社製のナフィオン112を用いた。
【0020】
アノード流路板13とカソード流路板14はカーボンの板を用い、アノードガス流路17およびカソードガス流路18としてサーペンタイン型の流路を用いた。これらは、PEFC(固体高分子型燃料電池)の225cm2級の単セルハウジングと似た構造のものであるが、多くの流量を流すために流路の深さを通常(1.5mm)の3倍にした。金メッキを施した銅板2枚でCO濃度低減第1セル1を挟み、銅板にパルス電圧印加第1電源4へのリード線を取り付けた。CO濃度低減第2セル2についても同様の構成とし、パルス電圧印加第1電源4およびパルス電圧印加第2電源5にはそれぞれ、ポテンショスタット(北斗電工社製)とファンクションジェネレーター(北斗電工社製)を組み合わせたものを用いた。
【0021】
COモニタセル3については、棒状電気ヒータを備えたPEFCの25cm2級の単セルハウジングを用いて構成したが、多くの流量を流すために、流路の深さを通常(1.5mm)の5倍にした。白金−ルテニウム合金をカーボンに担持した触媒を用いたアノードを5cm×5cm(25cm2)の大きさに、白金を担持したカーボンを用いたカソードを1cm×1cm(1cm2)の大きさにそれぞれ形成し、両電極の間にナフィオン112(デュポン社製)を挟んで触媒層を介して重ね合わせ、ホットプレスして有効面積1cm2級の電極・膜接合体を作製した。COモニタセル3は、直流電源9と電流計6に接続し、電流計6のシグナル(電圧出力)をパルス電圧印加第2電源5のファンクションジェネレータの起動用トリガーとして用いた。
【0022】
図3は、本実施の形態によるCO濃度低減装置の作用を説明するグラフである。図中、23は被処理ガス入口におけるCO濃度を示す破線、24はCO低減第2セルアノードの出口におけるCO濃度を示す実線である。改質燃料ガスを模擬したガスとして、一酸化炭素400ppm、二酸化炭素25%、水素75%の混合ガスを用い、80℃に保温した外部加湿器で加湿して図1に示した本実施の形態によるCO濃度低減装置に供給した。通過させるガスの量は、500mA/cm2、水素利用率70%の水素に換算して225cm2×40セル分とした。
【0023】
図3に示すように、CO低減第1セル1では、連続的なパルス電位印加によってCO濃度が激減するが、処理されなかった一酸化炭素が少しずつCO低減第2セル2にも蓄積し、さらにCO低減第2セル2に吸着しきれなかった一酸化炭素が徐々に増えて、一分を経過した頃にはCO低減第2セル2出口の一酸化炭素濃度が100ppmを超えるレベルにまで増加している。これに対応して、COモニタセル3の電流値が増大し、パルス電圧印加第2電源5のファンクションジェネレータに起動トリガ2ーがかかってCO低減第2セルにパルス電圧が印加され、吸着していた一酸化炭素が一掃される。この繰り返しがおよそ1分間隔で安定に続き、この間、第2セルアノード出口のCO濃度は、一時的に100ppmを超えてはいるものの、平均値では40ppm程度と被処理ガス入口での400ppmに比べ10分の1にまで低減できた。
【0024】
この装置を用いて、1%の一酸化炭素を含む改質燃料ガスを処理した所、400ppmにまでCO濃度を低減できた。そこで、CO低減第1セル1とCO低減第2セル2の間にさらにもう1セル追加し、追加したCO低減セルに対しても連続的にパルス電圧を印加した所、1%のCO濃度が平均40ppm、最大100ppmのCO濃度にまで低減できた。
【0025】
このように、CO低減第1セル1およびCO低減第2セル2は少なくとも一方が複数のセルで構成されていてもよく、数セルを積層したスタックであっても同様の効果が得られる。さらに、CO低減第1セル1およびCO低減第2セル2の少なくとも一方が複数のセルの直列接続体で構成されていてもよい。
要するに、CO低減セルを定常的にパルス電圧を印加するセルと、非定常的にパルス電圧を印加するセルとに分けることで、無駄に消費される電力の量を少なくすることを意図しており、この発明の趣旨の範囲内でさまざまな構成の応用が考えられる。
【0026】
なお、図3では供給される被処理ガス中のCO濃度が一定である場合について説明したが、CO濃度が大きく変動する場合にも、モニタセル3の信号に応じてCO低減第2セル2に電圧を印加するので電解量を常に必要最小限にとどめ、電力を無駄に消費することなくしかも確実にCO濃度を低減することができる。
【0027】
ここで、改質器で改質された改質ガスを燃料電池の燃料極に供給し、酸化剤ガスを燃料電池の酸化剤極に供給して発電を行う燃料電池発電システムにこのCO濃度低減装置を適用した場合について述べる。
図4は、本実施の形態によるCO濃度低減装置を含む固体高分子型燃料電池発電システムの構成図である。図において、19は燃料改質器、20は本実施の形態によるCO濃度低減装置、21は固体高分子型燃料電池、22は燃料入口である。CO濃度低減装置20は、被処理ガス入口7を改質器19と連結し、出口11を燃料極のガス供給口と連結するように該燃料電池発電システムに接続される。そして、改質器19で改質された改質ガスは、CO濃度低減装置20に供給され、CO濃度低減装置20を通過する際に改質燃料ガス中に含まれるCOが上述のようにして除去され、燃料極に導入される。1%のCO濃度は改質器19直後の一酸化炭素濃度であり、平均40ppm、最大100ppmのCO濃度は、PEFC21で許容されるCO濃度である。
【0028】
このように、改質器19とPEFC21の間に、本実施の形態によるCO濃度低減装置20を配置すれば、従来のようなCO選択酸化装置を用いなくても燃料電池における触媒の被毒が抑えられ、安定して発電することができる。また、改質燃料ガスに空気を添加することがないので、水素が空気中の酸素によって無駄に消費されることもなく、添加した空気中の窒素で水素濃度が希釈されることもない。これにより、トータルの発電効率が2%程度も上昇する大きな効果が得られる。さらに、モニタセル3の信号に応じてCO低減第2セル2に電圧を印加するので、CO濃度が大きく変動するような場合にも電解量を常に必要最小限にとどめ、電力を無駄に消費することなくしかも確実にCO濃度を低減できる。したがって、高特性・高出力の燃料電池発電システムが得られる。
【0029】
実施の形態2.
次に、本発明の実施の形態2によるCO濃度低減装置について説明する。本実施の形態によるCO濃度低減装置の基本的な構成は、図1と同様としたが、CO低減第2セル2にパルス状電圧を印加する間隔が所定の範囲例えば10秒から60秒の範囲に収まるように、CO低減第1セル1のパルス状電圧の周期を制御する回路を組み込んだ。この回路としては、ポテンショ・ガルバノスタットとファンクションジェネレーター組み合わせたものを用いたが、直流のパルス電圧発生器を用いてもよい。
すなわち、CO低減第2セル2にパルス状電圧を印加する間隔が例えば10秒より小さくなった場合は、CO低減第1セル1のパルス状電圧の印加周期を例えば2倍にして、パルス状電圧がCO低減第1セル1にかかる時間を2倍に増やし、CO低減第2セル2にパルス状電圧を印加する間隔が例えば60秒を超えた場合には、CO低減第1セル1のパルス状電圧の印加周期を例えば半分にして、パルス状電圧がCO低減第1セル1にかかる時間を半分に減らすように構成した。
【0030】
このように構成されたものにおいて、供給するCO濃度1%の被処理ガスの量を、500mA/cm2、水素利用率70%の水素に換算して225cm2×10セル分から225cm2×40セル分の間で変化させることを繰り返したところ、10セル分まで減らした場合に、CO低減第1セル1のパルス状電圧の周期が半分になり、40セル分まで増やした場合には、CO低減第1セルのパルス状電圧の周期が2倍になったが、平均40ppm、最大100ppmのCO濃度が保たれた。これに対して、実施の形態1のままで、同様の試験を行った場合には、40セル分まで増やした場合に、CO低減第2セル2の電解が頻繁になり、一酸化炭素濃度が200ppmを超える状況が出現した。
【0031】
【発明の効果】
以上のように、第1の発明によれば、一対のガス拡散電極がイオン伝導性の電解質膜の両面にそれぞれ触媒層を介して配設されてなるCO低減第1セルおよびCO低減第2セル、CO低減第1セルおよびCO低減第2セルにそれぞれ独立にパルス状電圧を加える電圧印加第1電源および電圧印加第2電源、一酸化炭素を含む水素ガスをCO低減第1セルのアノードに供給した後、CO低減第2セルのアノード、CO低減第2セルのカソード、CO低減第1セルのカソードの順に流す手段、並びにCO低減第2セルのアノード出口のCO濃度をモニタするCO濃度モニタ手段を備え、CO低減第1セルに対して電圧印加第1電源を用いて連続的にパルス状電圧を印加し、CO低減第2セルには上記CO濃度モニタ手段の信号をもとに電圧印加第2電源を用いてパルス状電圧を断続的に印加し、CO低減第1セルおよびCO低減第2セルのアノードで一酸化炭素を水分と反応させて二酸化炭素、プロトンおよび電子に変換し、CO低減第1セルおよびCO低減第2セルのカソードでプロトンと電子から水素を発生させるので、COを選択的に電解によって酸化し、CO濃度が大きく変化するような場合にも、水素や電力を無駄に消費することなく、効率よくしかも確実にCO濃度を低減することができる。
【0032】
第2の発明によれば、第1の発明において、CO低減第2セルにパルス状電圧を印加する間隔が所定の範囲に収まるように、CO低減第1セルのパルス状電圧の周期を制御するので、より安定してCO濃度を低減することができる。
【0033】
第3の発明によれば、改質器で改質された改質燃料ガスを燃料電池の燃料極に供給し、酸化剤ガスを燃料電池の酸化剤極に供給して発電を行う燃料電池発電システムにおいて、上記改質器と上記燃料極との改質燃料ガスの経路中に、上記第1または2の発明による一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置を配置し、上記改質燃料ガス中に含まれる一酸化炭素濃度を低減して上記燃料極に供給するようにしたので、改質燃料ガス中のCO濃度を低減し、燃料極側の触媒のCO被毒を抑え、特性の高い発電を起こすことができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1によるCO濃度低減装置の構成を模式的に示す図である。
【図2】 実施の形態1に係るCO濃度低減第1セルの構成を示す断面図である。
【図3】 実施の形態1によるCO濃度低減装置の作用を説明するグラフである。
【図4】 実施の形態1によるCO濃度低減装置を含む燃料電池発電システムの構成を示す図である。
【図5】 従来例1によるCO濃度低減装置の構成を模式的に示す図である。
【図6】 従来例2によるCO濃度低減装置の構成を模式的に示す図である。
【符号の説明】
1 CO低減第1セル、2 CO低減第2セル、3 COモニタセル、4 パルス電圧印加第1電源、5 パルス電圧印加第2電源、6 電流計、7 被処理ガス入口、8 ガス配管、9 直流電源、10 CO処理済みガス連結部、11CO処理済みガス出口、12 固体高分子電解質膜、13 アノード流路板、14 カソード流路板、15 アノード、16 カソード、17 アノードガス流路、18 カソードガス流路、19 燃料改質器、20 実施の形態1によるCO濃度低減装置、21 固体高分子型燃料電池、22 燃料入口、29 第1のCO選択酸化器、30 第2のCO選択酸化器、31 被処理ガス入口、32連結配管、33 CO処理済みガス出口、34 第1のCO選択酸化器用空気入口、35 第2のCO選択酸化器用空気入口、41 CO低減セル、44 パルス電圧印加電源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell or an electrochemical hydrogen purification apparatus used in, for example, an electric vehicle or the like that performs an electric power generation or a purification of hydrogen gas using an electrochemical reaction. More specifically, for example, in a fuel cell, the present invention relates to an apparatus for reducing the concentration of carbon monoxide contained when methanol or natural gas is converted into reformed fuel gas containing hydrogen as a main component by steam reforming or partial oxidation reforming. .
[0002]
[Prior art]
As is well known, a fuel cell is a typical example of an electrochemical device. A pair of electrodes are brought into contact with each other through an electrolyte, fuel is supplied to one electrode, and an oxidant is supplied to the other electrode. It is a device that converts chemical energy directly into electrical energy through electrochemical reaction. There are several types of fuel cells depending on the electrolyte. Recently, a solid polymer fuel cell using a solid polymer electrolyte membrane as an electrolyte has attracted attention as a fuel cell capable of obtaining high output. When hydrogen gas is supplied to the fuel electrode, oxygen gas is supplied to the oxidant electrode, and current is taken out from the external circuit, the following reaction occurs.
Fuel electrode reaction: H 2 → 2H + + 2e - (1)
Oxidant electrode reaction: 2H + + 2e - + 1 / 2O 2 → H 2 O (2)
[0003]
At this time, if a catalyst such as platinum on the electrode acts effectively, the reaction of Formula 1 hardly causes an overvoltage and proceeds smoothly.
On the other hand, when a hydrocarbon such as methanol that is easy to handle is used as the fuel, it is supplied after being reformed into hydrogen by a reaction as shown in Formula 3 by a reformer.
Reforming reaction: CH Three OH + H 2 O → 3H 2 + CO 2 (3)
However, a trace amount of carbon monoxide (CO) is mixed in the fuel by the next shift reaction.
Shift reaction: CO 2 + H 2 → CO + H 2 O (4)
Especially in electrochemical devices such as polymer electrolyte fuel cells with low operating temperatures, the problem is that the catalyst is poisoned by the incorporation of tens of ppm of CO, resulting in an increase in overvoltage of the anode reaction and a decrease in characteristics. It has become.
[0004]
Therefore, many attempts have been made in the past to reduce the CO concentration in the reformed fuel gas.
FIG. 5 is a diagram schematically showing a configuration of a general CO concentration reduction device (CO selective oxidizer) in the fuel cell according to Conventional Example 1. In the figure, 29 is a first CO selective oxidizer, 30 is a second CO selective oxidizer, 31 is a reformed fuel gas inlet, 32 is a connecting pipe, 33 is a CO-treated reformed fuel gas outlet, and 34 is a first. One CO selective oxidizer air inlet 35 is a first CO selective oxidizer air inlet 35.
[0005]
Each of the CO selective oxidizers 29 and 30 is filled with a platinum fine particle catalyst. Since CO is strongly adsorbed on the surface of the platinum fine particle catalyst, it is oxidized in preference to hydrogen by the added air, and carbon dioxide (CO 2 ). However, excess air oxidizes hydrogen and converts it to water. Therefore, a method of dividing the first CO selective oxidizer 29 and the second CO selective oxidizer 30 and adding a small amount of air in two portions is used. However, when the CO concentration changes, there is a problem that it is difficult to control the amount of air added and the amount of hydrogen consumed is large. This means that the reformed fuel gas is consumed unnecessarily, and the efficiency of the polymer electrolyte fuel cell power generation system is reduced. In addition, the air contains nitrogen four times as much as oxygen and remains in the reformed fuel gas after the CO concentration is reduced, so that the hydrogen concentration is diluted and the performance of the polymer electrolyte fuel cell is reduced. There was a problem.
[0006]
As a revolutionary method for improving the negative effects of adding air to the gas to be treated and consuming hydrogen or diluting hydrogen with nitrogen, a method of applying a pulsed voltage was invented. It was. Japanese Patent Application Laid-Open No. 10-216461 by the same applicant as the present invention states that “a method of removing carbon monoxide from hydrogen gas containing carbon monoxide, an electrochemical device thereof, an operation method thereof, a fuel cell operation method, and a fuel A method of generating hydrogen at a counter electrode by reacting carbon monoxide and water in an electrochemical cell is disclosed under the title of “battery power generation system”. FIG. 6 is a diagram schematically showing a configuration of a CO concentration reducing apparatus according to Conventional Example 2 described in the above publication. In the figure, 41 is a CO reduction cell, 44 is a pulse voltage application power source, 7 is a gas inlet to be processed, 10 is a connecting portion, 11 is a CO-treated gas outlet, and 12 is a solid polymer electrolyte membrane. The CO reduction cell 41 includes a pair of gas diffusion electrodes disposed on both surfaces of an ion conductive electrolyte membrane via a catalyst layer such as platinum, and gas flow paths are formed on both sides thereof.
[0007]
In such a configuration, the reformed fuel gas is supplied as hydrogen gas containing CO from the gas inlet 7 to be processed, and the gas inlet 7 side between the two electrodes of the CO reduction cell 41 is supplied by the pulse voltage application power source 44. When a pulsed voltage is continuously applied so that the electrode of the anode becomes positive, CO reacts with moisture at the anode, and CO 2 Are converted into protons and electrons, and hydrogen is generated from the protons and electrons at the cathode. In this way, CO in the gas to be treated is oxidized and removed and the CO concentration is reduced.
[0008]
Although this method consumes electric energy for electrolysis, since it is not necessary to add air, the gas to be treated is not diluted with nitrogen. Further, hydrogen is not wasted and converted to water. However, if a pulse voltage is applied in a state where CO is not sufficiently adsorbed on the platinum catalyst, hydrogen is oxidized to become protons and electrons, and becomes hydrogen at the counter electrode. In this phenomenon, since one hydrogen is consumed and one hydrogen is generated, there is no fear of consuming hydrogen unnecessarily. However, it is necessary to pass an extra current, so that power consumption increases. There was a problem.
[0009]
In order to prevent excessive power consumption, Japanese Patent Laid-Open No. 10-216461 discloses that a plurality of CO reduction cells are connected in series, and the pulse width of the downstream CO reduction cell is set to the upstream side. A method of making it smaller than that of the CO reduction cell is also described. However, for example, when the reforming amount changes in a fuel cell power generation system, the CO concentration contained in the reformed fuel gas changes greatly depending on the temperature of the reformer, etc., so this method cannot be used. There is a problem that CO cannot be sufficiently reduced or excessive power is consumed.
[0010]
[Problems to be solved by the invention]
The conventional CO concentration reducing apparatus is configured as described above. In the conventional example 1, when the CO concentration changes, there is a problem that it is difficult to control the amount of air added and the amount of hydrogen consumed is large. . Further, the conventional example 2 also has a problem in that when the CO concentration greatly changes, the CO cannot be sufficiently reduced or excessive power may be consumed.
[0011]
The present invention has been made to solve the above-described problems of the prior art, and even when CO is selectively oxidized by electrolysis and the CO concentration changes greatly, hydrogen and power are wasted. To provide a device for reducing the carbon monoxide concentration in hydrogen gas containing carbon monoxide that can efficiently and reliably reduce the CO concentration without consuming excessively, and a fuel cell power generation system using the device It is aimed.
[0012]
[Means for Solving the Problems]
The apparatus for reducing the concentration of carbon monoxide in hydrogen gas containing carbon monoxide according to the first invention is such that a pair of gas diffusion electrodes are disposed on both surfaces of an ion conductive electrolyte membrane via catalyst layers, respectively. The first and second CO-reduced power cells, the first and second CO-reduced cells, respectively, and a voltage-applied first power source and a voltage-applied second power source, each of which includes carbon monoxide. After supplying hydrogen gas to the anode of the CO-reduced first cell, means for flowing the anode of the CO-reduced second cell, the cathode of the CO-reduced second cell, the cathode of the CO-reduced first cell, and the CO-reducing second cell CO concentration monitoring means for monitoring the CO concentration at the anode outlet is provided, and a pulsed voltage is continuously applied to the CO-reduced first cell using the voltage application first power source. A pulsed voltage is intermittently applied using a voltage application second power source based on the signal of the O concentration monitoring means, and carbon monoxide is reacted with moisture at the anodes of the CO reduced first cell and the CO reduced second cell. The carbon is converted into carbon dioxide, protons and electrons, and hydrogen is generated from the protons and electrons at the cathodes of the CO-reducing first cell and the CO-reducing second cell.
[0013]
The apparatus for reducing the carbon monoxide concentration in the hydrogen gas containing carbon monoxide according to the second invention is the apparatus according to the first invention, wherein the interval at which the pulse voltage is applied to the CO-reduced second cell is within a predetermined range. The period of the pulsed voltage of the CO-reduced first cell is controlled so as to be settled.
[0014]
A fuel cell power generation system according to a third aspect of the present invention supplies a reformed fuel gas reformed by a reformer to a fuel electrode of a fuel cell, and supplies an oxidant gas to an oxidant electrode of the fuel cell to generate power. In the fuel cell power generation system to be performed, the concentration of carbon monoxide in the hydrogen gas containing carbon monoxide according to the first or second invention is reduced in the reformed fuel gas path between the reformer and the fuel electrode. An apparatus is arranged so that the concentration of carbon monoxide contained in the reformed fuel gas is reduced and supplied to the fuel electrode.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the drawings with the same reference numerals assigned to the same or corresponding parts as in the prior art.
Embodiment 1 FIG.
FIG. 1 is a diagram schematically showing a configuration of an apparatus for reducing the carbon monoxide concentration in hydrogen gas containing carbon monoxide, that is, a CO concentration reducing apparatus, according to Embodiment 1 of the present invention. In the figure, reference numeral 1 is a CO-reduced first cell, 2 is a CO-reduced second cell, and 3 is a CO monitor cell. These cells all have a pair of gas diffusion electrodes as an ion-conductive electrolyte membrane, that is, a solid polymer electrolyte membrane. 12 are arranged on both sides via a catalyst layer. 4 is a first power source for applying pulse voltage, 5 is a second power source for applying pulse voltage, 6 is an ammeter, 7 is a gas inlet, 8 is a gas pipe, 9 is a DC power source, 10 is a CO-treated gas pipe, 11 is A CO-treated gas outlet 12 is a solid polymer electrolyte membrane. As an example, the electrode effective area of the CO reduced first cell 1 and the CO reduced second cell 2 is 225 cm. 2 The effective area of the CO monitor cell 3 is 1 cm 2 It is. Note that the CO monitor cell 3 is heated to 80 ° C. in order to know the absolute value of the CO concentration while keeping the temperature constant.
Note that a sampling port may be provided in the CO-treated gas pipe 10 instead of the CO monitor cell 3 so that the CO concentration can be monitored with an infrared CO gas sensor.
[0016]
The CO-reduced first cell 1 is applied with a pulsed voltage by the pulse voltage application first power source 4 and is contained in the gas to be processed, and the carbon monoxide adsorbed on the anode (anode) catalyst is Oxidized to carbon dioxide. That is, the reaction of Formula 5 generates carbon dioxide, protons, and electrons from carbon monoxide and water. On the other hand, hydrogen is generated from protons and electrons at the cathode (cathode).
CO + H 2 O → CO 2 + 2H + + 2e - (5)
2H + + 2e - → H 2 (6)
[0017]
By these reactions, most of the carbon monoxide contained in the gas to be treated in the first CO-reducing cell 1 is converted to carbon dioxide. The untreated carbon monoxide gradually adsorbs and accumulates on the catalyst of the anode of the second CO-reduced second cell 2. On the other hand, in the CO monitor cell 3, an applied voltage of 0.5 V is always applied by the DC power supply 9. Since the effective area is small, a slight current of 0.5 amperes flows, and if it is subjected to CO poisoning, the flowing current decreases, so that it can be easily detected by the ammeter 6. When carbon monoxide cannot be completely adsorbed by the catalyst of the anode of the second CO 2 reduction cell 2 and slips toward the CO monitor cell 3, it is detected by the ammeter 6 and the pulse voltage application second power source 5 is activated. Thus, a pulse voltage is applied to the CO-reduced second cell 2, and carbon monoxide that could not be removed in the CO-reduced second cell 2 by the CO-reduced first cell 1 is converted into carbon dioxide by the reaction of the above-described equations 5 and 6. Converted.
[0018]
The CO concentration at the CO-treated gas outlet 11 is effectively reduced by the continuous CO oxidation treatment of the CO reduced first cell 1 and the intermittent CO oxidation treatment of the CO reduced second cell 2. If a voltage is applied when carbon monoxide is not sufficiently adsorbed on the catalyst, the reactions of equations 7 and 8 occur at the anode and the cathode, respectively, and power is wasted. In the embodiment, since the voltage is applied after confirming the adsorption of carbon monoxide in the CO-reducing second cell 2 in the CO monitor cell 3, the ratio of hydrogen that is wasted is reduced.
H 2 → 2H + + 2e - (7)
2H + + 2e - → H 2 (8)
[0019]
FIG. 2 is a cross-sectional view showing the configuration of the first cell with reduced CO concentration according to the present embodiment. In the figure, 13 is an anode channel plate, 14 is a cathode channel plate, 15 is an anode, 16 is a cathode, 17 is an anode gas channel, and 18 is a cathode gas channel. The anode 15 and the cathode 16 are obtained by mixing carbon carrying platinum fine particles as a catalyst layer with a solvent and a liquefied solid polymer electrolyte, followed by pasting on one side of carbon paper having an outer shape of 15 cm × 15 cm and a thickness of 0.2 mm. Each was produced by applying to a thickness of 20 μm and drying. Next, the anode 15 and the cathode 16 were superposed on both surfaces of the solid polymer electrolyte membrane 12 via catalyst layers, respectively, and hot pressed to produce an electrode / membrane assembly. The anode channel plate 13 with the anode gas channel 17 formed on the both sides of the electrode / membrane assembly thus prepared and the cathode gas channel plate 14 with the cathode gas channel 18 formed thereon are disposed in the CO. A concentration-reduced first cell 1 is formed. A Nafion solution manufactured by Aldrich was used as the liquefied solid polymer electrolyte, and Nafion 112 manufactured by DuPont was used as the solid polymer electrolyte membrane 12.
[0020]
The anode channel plate 13 and the cathode channel plate 14 are carbon plates, and serpentine type channels are used as the anode gas channel 17 and the cathode gas channel 18. These are PEFC (solid polymer fuel cell) 225cm 2 Although the structure is similar to that of a class single cell housing, the depth of the flow path is set to three times the normal (1.5 mm) in order to allow a large flow rate to flow. The CO concentration-reduced first cell 1 was sandwiched between two gold-plated copper plates, and a lead wire to the pulse voltage application first power source 4 was attached to the copper plate. The second cell 2 with reduced CO concentration has the same structure, and the potentiostat (manufactured by Hokuto Denko) and the function generator (manufactured by Hokuto Denko) are used for the pulse voltage application first power supply 4 and the pulse voltage application second power supply 5, respectively. A combination of these was used.
[0021]
For CO monitor cell 3, PEFC with a rod-shaped electric heater 25cm 2 However, in order to allow a large flow rate to flow, the depth of the flow path was set to 5 times the normal (1.5 mm). An anode using a catalyst in which a platinum-ruthenium alloy is supported on carbon is 5 cm × 5 cm (25 cm). 2 ) With a 1 cm × 1 cm (1 cm) cathode made of carbon carrying platinum. 2 ), With Nafion 112 (manufactured by DuPont) sandwiched between both electrodes, overlaid with a catalyst layer, and hot-pressed for an effective area of 1 cm 2 Class electrode / membrane assembly was prepared. The CO monitor cell 3 was connected to a DC power supply 9 and an ammeter 6, and the signal (voltage output) of the ammeter 6 was used as a trigger for starting the function generator of the pulse voltage application second power supply 5.
[0022]
FIG. 3 is a graph for explaining the operation of the CO concentration reducing apparatus according to this embodiment. In the figure, 23 is a broken line indicating the CO concentration at the gas inlet, and 24 is a solid line indicating the CO concentration at the outlet of the CO-reduced second cell anode. As a gas simulating the reformed fuel gas, a mixed gas of carbon monoxide 400 ppm, carbon dioxide 25% and hydrogen 75% is used and humidified with an external humidifier kept at 80 ° C. and shown in FIG. Was supplied to a CO concentration reduction apparatus. The amount of gas passed is 500 mA / cm 2 225cm in terms of 70% hydrogen utilization 2 X 40 cells.
[0023]
As shown in FIG. 3, in the CO-reduced first cell 1, the CO concentration is drastically reduced by continuous pulse potential application, but untreated carbon monoxide gradually accumulates in the CO-reduced second cell 2, Furthermore, the amount of carbon monoxide that could not be adsorbed in the second CO-reduced cell 2 gradually increased, and when one minute passed, the concentration of carbon monoxide at the outlet of the second CO-reduced cell 2 increased to a level exceeding 100 ppm. is doing. Correspondingly, the current value of the CO monitor cell 3 increases, the activation trigger 2 is applied to the function generator of the pulse voltage application second power source 5, and the pulse voltage is applied to the CO reduction second cell and is adsorbed. Carbon monoxide is wiped out. This repetition continues stably at an interval of about 1 minute. During this time, the CO concentration at the second cell anode outlet temporarily exceeds 100 ppm, but on average it is about 40 ppm, compared with 400 ppm at the treated gas inlet. It was reduced to 1/10.
[0024]
When this apparatus was used to process a reformed fuel gas containing 1% carbon monoxide, the CO concentration could be reduced to 400 ppm. Therefore, when another cell was added between the CO-reduced first cell 1 and the CO-reduced second cell 2, and the pulse voltage was continuously applied to the added CO-reduced cell, the CO concentration of 1% was obtained. The average CO concentration was 40 ppm, and the maximum CO concentration was 100 ppm.
[0025]
Thus, at least one of the CO-reduced first cell 1 and the CO-reduced second cell 2 may be composed of a plurality of cells, and the same effect can be obtained even in a stack in which several cells are stacked. Furthermore, at least one of the CO-reduced first cell 1 and the CO-reduced second cell 2 may be composed of a series connection body of a plurality of cells.
In short, it is intended to reduce the amount of wasted power by dividing the CO reduction cell into a cell that applies a pulse voltage steadily and a cell that applies a pulse voltage non-steadily. Various applications can be considered within the scope of the present invention.
[0026]
Note that FIG. 3 illustrates the case where the CO concentration in the supplied gas to be treated is constant. However, even when the CO concentration varies greatly, the voltage applied to the CO-reduced second cell 2 in accordance with the signal of the monitor cell 3 Therefore, the amount of electrolysis can always be kept to the minimum necessary, and the CO concentration can be reliably reduced without wasting power.
[0027]
Here, this CO concentration is reduced in a fuel cell power generation system that generates power by supplying the reformed gas reformed by the reformer to the fuel electrode of the fuel cell and supplying the oxidant gas to the oxidant electrode of the fuel cell. A case where the apparatus is applied will be described.
FIG. 4 is a configuration diagram of a polymer electrolyte fuel cell power generation system including a CO concentration reducing device according to the present embodiment. In the figure, 19 is a fuel reformer, 20 is a CO concentration reducing device according to this embodiment, 21 is a polymer electrolyte fuel cell, and 22 is a fuel inlet. The CO concentration reducing device 20 is connected to the fuel cell power generation system so that the gas inlet 7 to be processed is connected to the reformer 19 and the outlet 11 is connected to the gas supply port of the fuel electrode. Then, the reformed gas reformed by the reformer 19 is supplied to the CO concentration reducing device 20, and the CO contained in the reformed fuel gas when passing through the CO concentration reducing device 20 is as described above. It is removed and introduced into the fuel electrode. The CO concentration of 1% is the carbon monoxide concentration immediately after the reformer 19, and the average CO concentration of 40 ppm and the maximum of 100 ppm is the CO concentration allowed by the PEFC 21.
[0028]
As described above, if the CO concentration reduction device 20 according to the present embodiment is arranged between the reformer 19 and the PEFC 21, the poisoning of the catalyst in the fuel cell can be achieved without using the conventional CO selective oxidation device. Suppressed and stable power generation. Further, since air is not added to the reformed fuel gas, hydrogen is not wasted due to oxygen in the air, and the hydrogen concentration is not diluted with nitrogen in the added air. Thereby, the big effect that total power generation efficiency raises about 2% is acquired. Furthermore, since a voltage is applied to the CO-reduced second cell 2 in accordance with the signal from the monitor cell 3, the amount of electrolysis can always be kept to the minimum necessary even when the CO concentration fluctuates greatly, and power is wasted. In addition, the CO concentration can be reliably reduced. Therefore, a fuel cell power generation system with high characteristics and high output can be obtained.
[0029]
Embodiment 2. FIG.
Next, a CO concentration reduction apparatus according to Embodiment 2 of the present invention will be described. The basic configuration of the CO concentration reducing apparatus according to the present embodiment is the same as that shown in FIG. 1, but the interval at which the pulse voltage is applied to the CO reducing second cell 2 is within a predetermined range, for example, 10 seconds to 60 seconds. A circuit for controlling the period of the pulsed voltage of the CO-reducing first cell 1 was incorporated so as to be within the range. As this circuit, a combination of a potentio galvanostat and a function generator is used, but a DC pulse voltage generator may be used.
That is, when the interval of applying the pulsed voltage to the CO-reduced second cell 2 becomes smaller than, for example, 10 seconds, the pulse-like voltage application cycle of the CO-reducing first cell 1 is doubled, for example. Increases the time required for the CO-reduced first cell 1 twice, and when the interval of applying the pulsed voltage to the CO-reduced second cell 2 exceeds 60 seconds, for example, the pulse-like form of the CO-reduced first cell 1 For example, the voltage application period is halved, and the time required for the pulsed voltage to be applied to the CO-reducing first cell 1 is halved.
[0030]
In such a configuration, the amount of gas to be treated having a CO concentration of 1% to be supplied is set to 500 mA / cm. 2 225cm in terms of 70% hydrogen utilization 2 × 225cm from 10 cells 2 When the change was repeated for × 40 cells, when the cell voltage was reduced to 10 cells, the period of the pulsed voltage of the CO-reduced first cell 1 was halved and increased to 40 cells. The period of the pulse voltage of the first CO reduction cell doubled, but the average CO concentration of 40 ppm was maintained. On the other hand, when the same test is performed with the first embodiment maintained, when the number of cells is increased to 40 cells, the electrolysis of the CO-reduced second cell 2 becomes frequent, and the carbon monoxide concentration is increased. A situation exceeding 200 ppm appeared.
[0031]
【The invention's effect】
As described above, according to the first invention, the CO-reduced first cell and the CO-reduced second cell in which the pair of gas diffusion electrodes are disposed on both surfaces of the ion-conductive electrolyte membrane via the catalyst layers, respectively. , A voltage-applied first power source and a voltage-applied second power source for independently applying a pulsed voltage to the CO-reducing first cell and the CO-reducing second cell, and supplying hydrogen gas containing carbon monoxide to the anode of the CO-reducing first cell After that, the means for flowing the anode of the CO-reduced second cell, the cathode of the CO-reduced second cell, the cathode of the CO-reduced first cell, and the CO concentration monitoring means for monitoring the CO concentration at the anode outlet of the CO-reduced second cell The pulsed voltage is continuously applied to the first CO-reduced cell using the voltage application first power source, and the second CO-reduced cell is subjected to voltage application based on the signal from the CO concentration monitoring means. A pulsed voltage is intermittently applied using a power source, and carbon monoxide is reacted with moisture at the anodes of the first CO reduction cell and the second CO reduction cell to convert it into carbon dioxide, protons, and electrons. Since hydrogen is generated from protons and electrons at the cathode of one cell and the second CO-reduced cell, even when CO is selectively oxidized by electrolysis and the CO concentration changes greatly, hydrogen and power are consumed wastefully. Therefore, the CO concentration can be reduced efficiently and reliably.
[0032]
According to the second invention, in the first invention, the period of the pulsed voltage of the CO-reduced first cell is controlled so that the interval of applying the pulsed voltage to the CO-reduced second cell is within a predetermined range. Therefore, the CO concentration can be reduced more stably.
[0033]
According to the third aspect of the invention, fuel cell power generation is performed in which the reformed fuel gas reformed by the reformer is supplied to the fuel electrode of the fuel cell and the oxidant gas is supplied to the oxidant electrode of the fuel cell to generate power. In the system, an apparatus for reducing the carbon monoxide concentration in the hydrogen gas containing carbon monoxide according to the first or second invention is disposed in the reformed fuel gas path between the reformer and the fuel electrode. Since the carbon monoxide concentration contained in the reformed fuel gas is reduced and supplied to the fuel electrode, the CO concentration in the reformed fuel gas is reduced, and the CO poisoning of the catalyst on the fuel electrode side is reduced. And can generate power with high characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of a CO concentration reducing apparatus according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a first CO concentration reduction cell according to the first embodiment.
FIG. 3 is a graph for explaining the operation of the CO concentration reducing apparatus according to the first embodiment.
4 is a diagram showing a configuration of a fuel cell power generation system including a CO concentration reducing apparatus according to Embodiment 1. FIG.
FIG. 5 is a diagram schematically showing a configuration of a CO concentration reducing device according to Conventional Example 1.
6 is a diagram schematically showing a configuration of a CO concentration reducing apparatus according to Conventional Example 2. FIG.
[Explanation of symbols]
1 CO reduction 1st cell, 2 CO reduction 2nd cell, 3 CO monitor cell, 4 pulse voltage application 1st power supply, 5 pulse voltage application 2nd power supply, 6 ammeter, 7 gas inlet, 8 gas piping, 9 DC Power supply, 10 CO-treated gas connection, 11 CO-treated gas outlet, 12 solid polymer electrolyte membrane, 13 anode channel plate, 14 cathode channel plate, 15 anode, 16 cathode, 17 anode gas channel, 18 cathode gas Channel, 19 Fuel reformer, 20 CO concentration reducing device according to Embodiment 1, 21 Polymer electrolyte fuel cell, 22 Fuel inlet, 29 First CO selective oxidizer, 30 Second CO selective oxidizer, 31 Gas to be treated inlet, 32 connecting pipe, 33 CO treated gas outlet, 34 first CO selective oxidizer air inlet, 35 second CO selective oxidizer air inlet, 41 CO reduction cell 44 Power supply for applying pulse voltage.

Claims (3)

一対のガス拡散電極がイオン伝導性の電解質膜の両面にそれぞれ触媒層を介して配設されてなるCO低減第1セルおよびCO低減第2セル、CO低減第1セルおよびCO低減第2セルにそれぞれ独立にパルス状電圧を加える電圧印加第1電源および電圧印加第2電源、一酸化炭素を含む水素ガスをCO低減第1セルのアノードに供給した後、CO低減第2セルのアノード、CO低減第2セルのカソード、CO低減第1セルのカソードの順に流す手段、並びにCO低減第2セルのアノード出口のCO濃度をモニタするCO濃度モニタ手段を備え、CO低減第1セルに対して電圧印加第1電源を用いて連続的にパルス状電圧を印加し、CO低減第2セルには上記CO濃度モニタ手段の信号をもとに電圧印加第2電源を用いてパルス状電圧を断続的に印加し、CO低減第1セルおよびCO低減第2セルのアノードで一酸化炭素を水分と反応させて二酸化炭素、プロトンおよび電子に変換し、CO低減第1セルおよびCO低減第2セルのカソードでプロトンと電子から水素を発生させることを特徴とする一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置。A CO reduced first cell, a CO reduced second cell, a CO reduced first cell, and a CO reduced second cell in which a pair of gas diffusion electrodes are respectively disposed on both surfaces of an ion conductive electrolyte membrane via a catalyst layer. A voltage-applied first power source and a voltage-applied second power source for independently applying a pulsed voltage, and supplying hydrogen gas containing carbon monoxide to the anode of the CO-reducing first cell, then the anode of the CO-reducing second cell, CO reducing A means for flowing the cathode of the second cell, the cathode of the CO-reduced first cell in that order, and a CO concentration monitoring means for monitoring the CO concentration at the anode outlet of the CO-reduced second cell, and applying a voltage to the CO-reduced first cell A pulsed voltage is continuously applied using the first power source, and the pulsed voltage is intermittently applied to the CO-reduced second cell using the voltage applied second power source based on the signal from the CO concentration monitoring means. And carbon monoxide reacts with moisture at the anodes of the CO-reduced first cell and the CO-reduced second cell to convert them into carbon dioxide, protons and electrons, and at the cathodes of the CO-reduced first cell and the CO-reduced second cell. An apparatus for reducing the concentration of carbon monoxide in hydrogen gas containing carbon monoxide, wherein hydrogen is generated from protons and electrons. CO低減第2セルにパルス状電圧を印加する間隔が所定の範囲に収まるように、CO低減第1セルのパルス状電圧の周期を制御することを特徴とする請求項1に記載の一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置。2. The carbon monoxide according to claim 1, wherein the period of the pulsed voltage of the CO-reduced first cell is controlled so that the interval at which the pulsed voltage is applied to the second CO-reduced cell falls within a predetermined range. For reducing the carbon monoxide concentration in hydrogen gas containing hydrogen. 改質器で改質された改質燃料ガスを燃料電池の燃料極に供給し、酸化剤ガスを燃料電池の酸化剤極に供給して発電を行う燃料電池発電システムにおいて、上記改質器と上記燃料極との改質燃料ガスの経路中に、上記請求項1または2に記載された一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置を配置し、上記改質燃料ガス中に含まれる一酸化炭素濃度を低減して上記燃料極に供給するようにしたことを特徴とする燃料電池発電システム。In a fuel cell power generation system for generating power by supplying the reformed fuel gas reformed by the reformer to the fuel electrode of the fuel cell and supplying the oxidant gas to the oxidant electrode of the fuel cell, the reformer and An apparatus for reducing the concentration of carbon monoxide in the hydrogen gas containing carbon monoxide according to claim 1 or 2 is disposed in the path of the reformed fuel gas with the fuel electrode, and the reformed fuel gas A fuel cell power generation system characterized in that the concentration of carbon monoxide contained therein is reduced and supplied to the fuel electrode.
JP03804799A 1999-02-17 1999-02-17 Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same Expired - Fee Related JP4168511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03804799A JP4168511B2 (en) 1999-02-17 1999-02-17 Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03804799A JP4168511B2 (en) 1999-02-17 1999-02-17 Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same

Publications (2)

Publication Number Publication Date
JP2000233905A JP2000233905A (en) 2000-08-29
JP4168511B2 true JP4168511B2 (en) 2008-10-22

Family

ID=12514622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03804799A Expired - Fee Related JP4168511B2 (en) 1999-02-17 1999-02-17 Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same

Country Status (1)

Country Link
JP (1) JP4168511B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080340A1 (en) * 2000-04-14 2001-10-25 Vodafone Ag Circuit for generating voltage pulses and impressing voltage pulses upon a fuel cell and fuel cell system
JP4617648B2 (en) * 2003-02-27 2011-01-26 トヨタ自動車株式会社 Hydrogen extraction device
RU2330353C1 (en) * 2007-02-13 2008-07-27 Анатолий Иванович Мамаев Ai mamaev's method of converting chemical energy to electrical energy and device for implementing method
JP5449758B2 (en) * 2008-12-16 2014-03-19 東芝燃料電池システム株式会社 CO reduction device and fuel cell system using the same
JP5400425B2 (en) * 2009-03-03 2014-01-29 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
US11846034B1 (en) 2022-11-23 2023-12-19 Dioxycle Carbon monoxide electrolyzers used with reverse water gas shift reactors for the conversion of carbon dioxide into added-value products

Also Published As

Publication number Publication date
JP2000233905A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
AU740302B2 (en) Electrocatalytic method and device for removing carbon monoxide from hydrogen-rich gas
KR101126206B1 (en) Fuel cell system
JP4589925B2 (en) Fuel cell-ion pump assembly, method of using the same, and basic facility using the same
US7276305B2 (en) Method of operating fuel cell
US6896792B2 (en) Method and device for improved catalytic activity in the purification of fluids
JP2005243642A (en) Reformer of fuel cell system, and fuel cell system provided with the same
JP2000113896A (en) Solid polymer fuel cell and its system
JP4168511B2 (en) Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same
JP3360485B2 (en) Fuel cell
JP2009289681A (en) Method of cleaning fuel cell
US6517963B2 (en) Carbon monoxide filter
US7223488B2 (en) Integrated fuel cell system
KR20090119069A (en) Method for accelerating activation of fuel cell
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
JPH10208757A (en) Fuel cell generating set
JP4351641B2 (en) Fuel cell system
JP2006004702A (en) Separator for solid polymer fuel cell
JP4947338B2 (en) Stand-alone hydrogen production system
JPH09120830A (en) Starting method for fuel cell power-generating device
JPH08273690A (en) Fuel cell systm
JP3905595B2 (en) Carbon monoxide removal equipment
JP4544392B2 (en) Fuel cell system
KR100560495B1 (en) Reformer for fuel cell system and fuel cell system having thereof
JP2005268091A (en) Operation method of fuel cell, and fuel cell system
JP2008166157A (en) Fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees