JP4168485B2 - High and low pressure turbine bypass valve control method for boiler equipment - Google Patents

High and low pressure turbine bypass valve control method for boiler equipment Download PDF

Info

Publication number
JP4168485B2
JP4168485B2 JP23419698A JP23419698A JP4168485B2 JP 4168485 B2 JP4168485 B2 JP 4168485B2 JP 23419698 A JP23419698 A JP 23419698A JP 23419698 A JP23419698 A JP 23419698A JP 4168485 B2 JP4168485 B2 JP 4168485B2
Authority
JP
Japan
Prior art keywords
pressure turbine
turbine bypass
bypass valve
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23419698A
Other languages
Japanese (ja)
Other versions
JP2000064810A (en
Inventor
寿範 温見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23419698A priority Critical patent/JP4168485B2/en
Publication of JP2000064810A publication Critical patent/JP2000064810A/en
Application granted granted Critical
Publication of JP4168485B2 publication Critical patent/JP4168485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラ設備の高低圧タービンバイパス弁制御方法に関するものである。
【0002】
【従来の技術】
一般に、ボイラ設備には、図7に示される如く、高圧タービン1と低圧タービン2とが設けられており、ボイラの過熱器(図示せず)で過熱された主蒸気を主蒸気ライン3を介して高圧タービン1へ導入し、該高圧タービン1を駆動して発電を行うと共に、前記高圧タービン1を駆動した後の蒸気を再熱ライン4を介してボイラの再熱器5へ導き、該再熱器5で再熱してから低圧タービン2へ導入し、該低圧タービン2を駆動して発電を行い、前記低圧タービン2を駆動した後の蒸気を復水ライン6を介して復水器7へ導き、該復水器7で前記蒸気をボイラ給水に戻し、循環させるようになっている。
【0003】
又、前記ボイラ設備においては、従来、主蒸気ライン3途中から分岐して低圧タービン2と復水器7との間の復水ライン6途中に接続されるタービンバイパスライン8が設けられ、該タービンバイパスライン8途中にはタービンバイパス弁9が設けられており、ボイラ設備の起動時における高圧タービン1並びに低圧タービン2への通気前には、該高圧タービン1並びに低圧タービン2入口の図示していないガバナ弁が閉じられており、タービンバイパス弁9が開かれ、ボイラの過熱器から送られてくる充分に昇温・昇圧していない主蒸気がタービンバイパスライン8を流れ、高圧タービン1と再熱器5と低圧タービン2を迂回し、低圧タービン2と復水器7との間の復水ライン6途中に導かれて循環され、前記主蒸気が充分に昇温・昇圧した後、高圧タービン1の入口における主蒸気圧力をタービンバイパス弁9の開度調整により設定値に保持した状態で、前記高圧タービン1並びに低圧タービン2入口のガバナ弁が開かれ、通気が行われて通常運転に移行する一方、通常運転時には、負荷指令に応じたタービンバイパス弁9の開度調整により、高圧タービン1の入口部での主蒸気の圧力制御が行われるようになっており、更に、ボイラ設備における機器の故障等により負荷を急激に下げたいような場合には、前記タービンバイパス弁9を全開として主蒸気をタービンバイパスライン8へ逃がし、高圧タービン1へ導入される主蒸気圧力を低下させることも行われるようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述の如く、ボイラ設備の起動時における高圧タービン1並びに低圧タービン2への通気前に、タービンバイパス弁9を開き、主蒸気をタービンバイパスライン8へ導いて高圧タービン1と再熱器5と低圧タービン2を迂回させるのでは、高圧タービン1入口のガバナ弁が開かれて通気が行われるまでは再熱器5へ蒸気が全く導入されないため、ボイラが暖まるまでに時間がかかり、起動時間が長くなるという欠点を有していた。
【0005】
このため、高圧タービン1を迂回する高圧タービンバイパスラインと、低圧タービン2を迂回する低圧タービンバイパスラインとを別個に設け、前記高圧タービンバイパスライン途中に高圧タービンバイパス弁を設けると共に、前記低圧タービンバイパスライン途中に低圧タービンバイパス弁を設けることにより、ボイラ設備の起動時における高圧タービン1並びに低圧タービン2への通気前にも、再熱器5へ蒸気が導入されるようにし、ボイラの起動時間を短縮することも提案されているが、前記高圧タービンバイパス弁と低圧タービンバイパス弁の具体的な制御方法については確立されていないのが現状であった。
【0006】
本発明は、斯かる実情に鑑み、ボイラの起動時間を短縮し得、且つ通常運転時においては高圧タービン入口部での主蒸気圧力並びに低圧タービン入口部での再熱蒸気圧力を確実に制御し得、更に緊急時における急激な負荷下げにも対応し得るボイラ設備の高低圧タービンバイパス弁制御方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明は、主蒸気ライン途中から分岐して高圧タービンと再熱器との間の再熱ライン途中に接続され且つ途中に高圧タービンバイパス弁が設けられた高圧タービンバイパスラインと、再熱器と低圧タービンとの間の再熱ライン途中から分岐して低圧タービンと復水器との間の復水ライン途中に接続され且つ途中に低圧タービンバイパス弁が設けられた低圧タービンバイパスラインとを備えてなるボイラ設備の高低圧タービンバイパス弁制御方法であって、
主蒸気圧力と負荷指令に基づく主蒸気圧力設定値との主蒸気圧力偏差をなくすための高圧タービンバイパス弁開度指令により、高圧タービンバイパス弁の開度を、負荷指令に基づく高圧タービンバイパス弁開度上限設定値を越えない範囲で調整すると共に、
再熱蒸気圧力と負荷指令に基づく再熱蒸気圧力設定値との再熱蒸気圧力偏差をなくすための低圧タービンバイパス弁開度指令により、低圧タービンバイパス弁の開度を、前記高圧タービンバイパスラインへ流されるバイパス流量を確保するための低圧タービンバイパス弁開度下限設定値未満とならず且つ負荷指令に基づく低圧タービンバイパス弁開度上限設定値を越えない範囲で調整することを特徴とするボイラ設備の高低圧タービンバイパス弁制御方法にかかるものである。
【0008】
上記手段によれば、以下のような作用が得られる。
【0009】
主蒸気圧力と負荷指令に基づく主蒸気圧力設定値との主蒸気圧力偏差をなくすための高圧タービンバイパス弁開度指令により、高圧タービンバイパス弁の開度が、負荷指令に基づく高圧タービンバイパス弁開度上限設定値を越えない範囲で調整されると共に、再熱蒸気圧力と負荷指令に基づく再熱蒸気圧力設定値との再熱蒸気圧力偏差をなくすための低圧タービンバイパス弁開度指令により、低圧タービンバイパス弁の開度が、前記高圧タービンバイパスラインへ流されるバイパス流量を確保するための低圧タービンバイパス弁開度下限設定値未満とならず且つ負荷指令に基づく低圧タービンバイパス弁開度上限設定値を越えない範囲で調整される。
【0010】
ここで、ボイラ設備の起動時における高圧タービン並びに低圧タービンへの通気前に、高圧タービン並びに低圧タービン入口のガバナ弁が閉じた状態で、高圧タービンバイパス弁が開かれたとしても、主蒸気は再熱器へ導入されるため、ボイラが暖まるまでに時間があまりかからなくなり、起動時間が短縮される。
【0011】
又、前記高圧タービンバイパス弁の開度調整と前記低圧タービンバイパス弁の開度調整により、基本的に高圧タービン入口部での主蒸気圧力並びに低圧タービン入口部での再熱蒸気圧力の制御が行われるが、高圧タービンバイパス弁の開度は、負荷指令に基づく高圧タービンバイパス弁開度上限設定値を越えない範囲で調整されると共に、低圧タービンバイパス弁の開度は、負荷指令に基づく低圧タービンバイパス弁開度上限設定値を越えない範囲で調整されるため、復水器の受入許容容量以上の蒸気が復水器へ導入されることは防止される。
【0012】
更に又、前記低圧タービンバイパス弁の開度は、前記高圧タービンバイパスラインへ流されるバイパス流量を確保するための低圧タービンバイパス弁開度下限設定値未満とならないように調整されるため、少なくとも高圧タービンバイパスラインへ流される主蒸気のバイパス流量と同量の再熱蒸気が、低圧タービンバイパスラインへ流される形となり、これにより、ボイラ設備における機器の故障等により負荷を急激に下げたいような場合に、高圧タービンバイパスラインへ逃がした主蒸気は、同量の再熱蒸気として低圧タービンバイパスラインへ逃がされ、バイパス機能が確保されることとなり、高圧タービンをバイパスさせた主蒸気の一部が再熱蒸気として低圧タービンへ供給されてしまうことはなく、急激な負荷下げにも対応可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0014】
図1は本発明を実施する形態の一例であって、図中、図7と同一の符号を付した部分は同一物を表わしており、主蒸気ライン3途中から分岐して高圧タービン1と再熱器5との間の再熱ライン4途中に接続される高圧タービンバイパスライン10を設け、該高圧タービンバイパスライン10途中に高圧タービンバイパス弁11を設けると共に、再熱器5と低圧タービン2との間の再熱ライン4途中から分岐して低圧タービン2と復水器7との間の復水ライン6途中に接続される低圧タービンバイパスライン12を設け、該低圧タービンバイパスライン12途中に低圧タービンバイパス弁13を設ける。
【0015】
更に、高圧タービン1へ導入される主蒸気圧力14を検出する主蒸気圧力検出器15と、低圧タービン2へ導入される再熱蒸気圧力16を検出する再熱蒸気圧力検出器17とを設けると共に、前記主蒸気圧力検出器15で検出された主蒸気圧力14と、前記再熱蒸気圧力検出器17で検出された再熱蒸気圧力16とに基づき、高圧タービンバイパス弁開度指令18と低圧タービンバイパス弁開度指令19とを出力する制御装置20を設ける。
【0016】
前記制御装置20は、図1に示す如く、
負荷指令21に基づき主蒸気圧力設定値22を求めて出力する第一関数発生器23と、
前記主蒸気圧力検出器15で検出された主蒸気圧力14と前記第一関数発生器23から出力される主蒸気圧力設定値22との差を求め、主蒸気圧力偏差24を出力する減算器25と、
該減算器25から出力される主蒸気圧力偏差24を比例積分処理し、該主蒸気圧力偏差24をなくすための高圧タービンバイパス弁開度指令26を出力する比例積分調節器27と、
負荷指令21に基づき高圧タービンバイパス弁開度上限設定値28を求めて出力する第二関数発生器29と、
該第二関数発生器29から出力される高圧タービンバイパス弁開度上限設定値28と前記比例積分調節器27から出力される高圧タービンバイパス弁開度指令26のうち低い方を選択し高圧タービンバイパス弁開度指令18として高圧タービンバイパス弁11へ出力する低選択器30と、
負荷指令21に基づき再熱蒸気圧力設定値31を求めて出力する第三関数発生器32と、
前記再熱蒸気圧力検出器17で検出された再熱蒸気圧力16と前記第三関数発生器32から出力される再熱蒸気圧力設定値31との差を求め、再熱蒸気圧力偏差33を出力する減算器34と、
該減算器34から出力される再熱蒸気圧力偏差33を比例積分処理し、該再熱蒸気圧力偏差33をなくすための低圧タービンバイパス弁開度指令35を出力する比例積分調節器36と、
前記主蒸気圧力検出器15で検出された主蒸気圧力14に対し前記高圧タービンバイパス弁11へ出力される高圧タービンバイパス弁開度指令18を掛け高圧タービンバイパスライン10へ流される主蒸気のバイパス流量37を求めて出力する乗算器38と、
前記第三関数発生器32から出力される再熱蒸気圧力設定値31に基づき低圧タービンバイパス弁流量特性値39を求めて出力する第四関数発生器40と、
前記乗算器38から出力されるバイパス流量37を前記第四関数発生器40から出力される低圧タービンバイパス弁流量特性値39で割り、低圧タービンバイパス弁開度下限設定値41を求めて出力する除算器42と、
該除算器42から出力される低圧タービンバイパス弁開度下限設定値41と前記比例積分調節器36から出力される低圧タービンバイパス弁開度指令35のうち高い方を選択し低圧タービンバイパス弁開度指令43として出力する高選択器44と、
負荷指令21に基づき低圧タービンバイパス弁開度上限設定値45を求めて出力する第五関数発生器46と、
該第五関数発生器46から出力される低圧タービンバイパス弁開度上限設定値45と前記高選択器44から出力される低圧タービンバイパス弁開度指令43のうち低い方を選択し低圧タービンバイパス弁開度指令19として低圧タービンバイパス弁13へ出力する低選択器47と
を備えてなる構成を有している。
【0017】
前記第一関数発生器23には、図2に示す如く、負荷指令21の増加に伴って主蒸気圧力設定値22を増加させるような関数が入力されている。
【0018】
前記第二関数発生器29には、図3に示す如く、負荷指令21の増加に伴って高圧タービンバイパス弁開度上限設定値28を減少させるような関数が入力されており、この高圧タービンバイパス弁開度上限設定値28は、復水器7の受入許容容量以上の蒸気が復水器7へ導入されることを防止するために設定されるものである。
【0019】
前記第三関数発生器32には、図4に示す如く、負荷指令21の増加に伴って再熱蒸気圧力設定値31を増加させるような関数が入力されている。
【0020】
前記第四関数発生器40には、図5に示す如く、再熱蒸気圧力設定値31の増加に伴って低圧タービンバイパス弁流量特性値39を減少させるような関数が入力されている。
【0021】
前記第五関数発生器46には、図6に示す如く、負荷指令21の増加に伴って低圧タービンバイパス弁開度上限設定値45を減少させるような関数が入力されており、この低圧タービンバイパス弁開度上限設定値45は、前記高圧タービンバイパス弁開度上限設定値28と同様、復水器7の受入許容容量以上の蒸気が復水器7へ導入されることを防止するために設定されるものである。
【0022】
次に、上記図示例の作動を説明する。
【0023】
高圧タービン1へ導入される主蒸気圧力14が主蒸気圧力検出器15によって検出されると共に、低圧タービン2へ導入される再熱蒸気圧力16が再熱蒸気圧力検出器17によって検出され、制御装置20へ入力される。
【0024】
前記制御装置20においては、減算器25において前記主蒸気圧力検出器15で検出された主蒸気圧力14と負荷指令21に基づいて第一関数発生器23から出力される主蒸気圧力設定値22との差が求められ、主蒸気圧力偏差24が比例積分調節器27へ出力され、該比例積分調節器27において前記減算器25から出力される主蒸気圧力偏差24が比例積分処理され、該主蒸気圧力偏差24をなくすための高圧タービンバイパス弁開度指令26が低選択器30へ出力され、該低選択器30において、負荷指令21に基づき第二関数発生器29から出力される高圧タービンバイパス弁開度上限設定値28と前記比例積分調節器27から出力される高圧タービンバイパス弁開度指令26のうち低い方が選択され高圧タービンバイパス弁開度指令18として高圧タービンバイパス弁11へ出力され、該高圧タービンバイパス弁11の開度調整が行われる。
【0025】
これと同時に、減算器34において前記再熱蒸気圧力検出器17で検出された再熱蒸気圧力16と負荷指令21に基づき第三関数発生器32から出力される再熱蒸気圧力設定値31との差が求められ、再熱蒸気圧力偏差33が比例積分調節器36へ出力され、該比例積分調節器36において前記減算器34から出力される再熱蒸気圧力偏差33が比例積分処理され、該再熱蒸気圧力偏差33をなくすための低圧タービンバイパス弁開度指令35が高選択器44へ出力される一方、乗算器38において前記主蒸気圧力検出器15で検出された主蒸気圧力14に対し前記高圧タービンバイパス弁11へ出力される高圧タービンバイパス弁開度指令18が掛けられ高圧タービンバイパスライン10へ流される主蒸気のバイパス流量37が求められて除算器42へ出力され、該除算器42において、前記乗算器38から出力されるバイパス流量37が前記第三関数発生器32から出力される再熱蒸気圧力設定値31に基づき第四関数発生器40から出力される低圧タービンバイパス弁流量特性値39で割られ、低圧タービンバイパス弁開度下限設定値41が求められて高選択器44へ出力され、該高選択器44において、前記除算器42から出力される低圧タービンバイパス弁開度下限設定値41と前記比例積分調節器36から出力される低圧タービンバイパス弁開度指令35のうち高い方が選択され低圧タービンバイパス弁開度指令43として低選択器47へ出力され、該低選択器47において、負荷指令21に基づき第五関数発生器46から出力される低圧タービンバイパス弁開度上限設定値45と前記高選択器44から出力される低圧タービンバイパス弁開度指令43のうち低い方が選択され低圧タービンバイパス弁開度指令19として低圧タービンバイパス弁13へ出力され、該低圧タービンバイパス弁13の開度調整が行われる。
【0026】
ここで、ボイラ設備の起動時における高圧タービン1並びに低圧タービン2への通気前に、高圧タービン1並びに低圧タービン2入口の図示していないガバナ弁が閉じた状態で、高圧タービンバイパス弁11が開かれたとしても、主蒸気は再熱器5へ導入されるため、ボイラが暖まるまでに時間があまりかからなくなり、起動時間が短縮される。
【0027】
又、前記高圧タービンバイパス弁11の開度調整と前記低圧タービンバイパス弁13の開度調整により、基本的に高圧タービン1入口部での主蒸気圧力並びに低圧タービン2入口部での再熱蒸気圧力の制御が行われるが、前記低選択器30においては、負荷指令21に基づき第二関数発生器29から出力される高圧タービンバイパス弁開度上限設定値28と比例積分調節器27から出力される高圧タービンバイパス弁開度指令26のうち低い方が選択され高圧タービンバイパス弁開度指令18として高圧タービンバイパス弁11へ出力されると共に、前記低選択器47においては、負荷指令21に基づき第五関数発生器46から出力される低圧タービンバイパス弁開度上限設定値45と高選択器44から出力される低圧タービンバイパス弁開度指令43のうち低い方が選択され低圧タービンバイパス弁開度指令19として低圧タービンバイパス弁13へ出力されるため、復水器7の受入許容容量以上の蒸気が復水器7へ導入されることは防止される。
【0028】
更に又、前記乗算器38から除算器42へ出力されるバイパス流量37は、高圧タービンバイパスライン10へ流される主蒸気の流量であって、該バイパス流量37を低圧タービンバイパス弁流量特性値39で割ることにより低圧タービンバイパス弁開度下限設定値41を求めており、前記高選択器44においては、低圧タービンバイパス弁開度下限設定値41と比例積分調節器36から出力される低圧タービンバイパス弁開度指令35のうち高い方が選択され低圧タービンバイパス弁開度指令43として低選択器47へ出力されるため、少なくとも高圧タービンバイパスライン10へ流される主蒸気のバイパス流量37と同量の再熱蒸気が、低圧タービンバイパスライン12へ流される形となり、これにより、ボイラ設備における機器の故障等により負荷を急激に下げたいような場合に、高圧タービンバイパスライン10へ逃がした主蒸気は、同量の再熱蒸気として低圧タービンバイパスライン12へ逃がされ、図7に示した従来例におけるタービンバイパスライン8と同等のバイパス機能が確保されることとなる。尚、仮に、高圧タービンバイパスライン10へ流される主蒸気のバイパス流量37と同量の再熱蒸気を低圧タービンバイパスライン12へ流す機能がない場合には、高圧タービン1をバイパスさせた主蒸気の一部が再熱蒸気として低圧タービン2へ供給されてしまい、急激な負荷下げに対応できなくなるが、本図示例の場合には、前述したように急激な負荷下げにも対応可能となる。
【0029】
こうして、ボイラの起動時間を短縮し得、且つ通常運転時においては高圧タービン1入口部での主蒸気圧力並びに低圧タービン2入口部での再熱蒸気圧力を確実に制御し得、更に緊急時における急激な負荷下げにも対応し得る。
【0030】
尚、本発明のボイラ設備の高低圧タービンバイパス弁制御方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0031】
【発明の効果】
以上、説明したように本発明のボイラ設備の高低圧タービンバイパス弁制御方法によれば、ボイラの起動時間を短縮し得、且つ通常運転時においては高圧タービン入口部での主蒸気圧力並びに低圧タービン入口部での再熱蒸気圧力を確実に制御し得、更に緊急時における急激な負荷下げにも対応し得るという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例の全体概要構成図である。
【図2】図1に示される第一関数発生器に入力された関数を表わす線図である。
【図3】図1に示される第二関数発生器に入力された関数を表わす線図である。
【図4】図1に示される第三関数発生器に入力された関数を表わす線図である。
【図5】図1に示される第四関数発生器に入力された関数を表わす線図である。
【図6】図1に示される第五関数発生器に入力された関数を表わす線図である。
【図7】従来例の全体概要構成図である。
【符号の説明】
1 高圧タービン
2 低圧タービン
3 主蒸気ライン
4 再熱ライン
5 再熱器
6 復水ライン
7 復水器
10 高圧タービンバイパスライン
11 高圧タービンバイパス弁
12 低圧タービンバイパスライン
13 低圧タービンバイパス弁
14 主蒸気圧力
16 再熱蒸気圧力
20 制御装置
21 負荷指令
22 主蒸気圧力設定値
24 主蒸気圧力偏差
26 高圧タービンバイパス弁開度指令
28 高圧タービンバイパス弁開度上限設定値
30 低選択器
31 再熱蒸気圧力設定値
33 再熱蒸気圧力偏差
35 低圧タービンバイパス弁開度指令
37 バイパス流量
39 低圧タービンバイパス弁流量特性値
41 低圧タービンバイパス弁開度下限設定値
44 高選択器
45 低圧タービンバイパス弁開度上限設定値
47 低選択器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high- and low-pressure turbine bypass valve control method for boiler equipment.
[0002]
[Prior art]
Generally, as shown in FIG. 7, the boiler equipment is provided with a high-pressure turbine 1 and a low-pressure turbine 2, and main steam heated by a boiler superheater (not shown) is passed through a main steam line 3. The high-pressure turbine 1 is driven to generate power by driving the high-pressure turbine 1, and the steam after driving the high-pressure turbine 1 is guided to a boiler reheater 5 through a reheat line 4. After being reheated by the heater 5, it is introduced into the low-pressure turbine 2, the low-pressure turbine 2 is driven to generate power, and the steam after driving the low-pressure turbine 2 is sent to the condenser 7 via the condensate line 6. Then, the steam is returned to the boiler feed water by the condenser 7 and circulated.
[0003]
Further, in the boiler facility, conventionally, a turbine bypass line 8 branched from the middle of the main steam line 3 and connected to the middle of the condensate line 6 between the low-pressure turbine 2 and the condenser 7 is provided. A turbine bypass valve 9 is provided in the middle of the bypass line 8, and the inlets of the high-pressure turbine 1 and the low-pressure turbine 2 are not shown before ventilation to the high-pressure turbine 1 and the low-pressure turbine 2 when the boiler equipment is started. The governor valve is closed, the turbine bypass valve 9 is opened, and the main steam that has not been sufficiently heated and raised from the boiler superheater flows through the turbine bypass line 8 and reheats the high pressure turbine 1. Bypassing the steam generator 5 and the low-pressure turbine 2 and led through the condensate line 6 between the low-pressure turbine 2 and the condenser 7 and circulated so that the main steam is sufficiently heated and pressurized. Thereafter, with the main steam pressure at the inlet of the high pressure turbine 1 maintained at a set value by adjusting the opening of the turbine bypass valve 9, the governor valves at the inlets of the high pressure turbine 1 and the low pressure turbine 2 are opened and ventilated. While shifting to normal operation, during normal operation, pressure control of the main steam at the inlet of the high-pressure turbine 1 is performed by adjusting the opening of the turbine bypass valve 9 in accordance with the load command. When it is desired to reduce the load suddenly due to equipment failure or the like in the boiler facility, the turbine bypass valve 9 is fully opened, the main steam is released to the turbine bypass line 8, and the main steam pressure introduced into the high-pressure turbine 1 is reduced. Things are also happening.
[0004]
[Problems to be solved by the invention]
However, as described above, before ventilation to the high-pressure turbine 1 and the low-pressure turbine 2 at the start-up of the boiler equipment, the turbine bypass valve 9 is opened and the main steam is guided to the turbine bypass line 8 so that the high-pressure turbine 1 and the reheater 5 are opened. Since the steam is not introduced into the reheater 5 until the governor valve at the inlet of the high pressure turbine 1 is opened and ventilated, it takes time until the boiler is warmed up and the startup time is reduced. Had the disadvantage of becoming longer.
[0005]
Therefore, a high-pressure turbine bypass line that bypasses the high-pressure turbine 1 and a low-pressure turbine bypass line that bypasses the low-pressure turbine 2 are separately provided, a high-pressure turbine bypass valve is provided in the middle of the high-pressure turbine bypass line, and the low-pressure turbine bypass By providing a low-pressure turbine bypass valve in the middle of the line, steam is introduced into the reheater 5 before venting to the high-pressure turbine 1 and the low-pressure turbine 2 when the boiler equipment is started up. Although shortening is also proposed, the concrete control method of the high pressure turbine bypass valve and the low pressure turbine bypass valve has not been established.
[0006]
In view of such circumstances, the present invention can shorten the boiler start-up time and reliably control the main steam pressure at the high-pressure turbine inlet and the reheat steam pressure at the low-pressure turbine inlet during normal operation. In addition, an object of the present invention is to provide a high and low pressure turbine bypass valve control method for boiler equipment that can cope with a sudden load reduction in an emergency.
[0007]
[Means for Solving the Problems]
The present invention includes a high pressure turbine bypass line branched from the middle of the main steam line and connected in the middle of the reheat line between the high pressure turbine and the reheater, and provided with a high pressure turbine bypass valve in the middle, a reheater, A low pressure turbine bypass line branched from the middle of the reheat line between the low pressure turbine and connected to the middle of the condensate line between the low pressure turbine and the condenser, and provided with a low pressure turbine bypass valve in the middle A boiler equipment high / low pressure turbine bypass valve control method comprising:
By opening the high-pressure turbine bypass valve opening command to eliminate the main steam pressure deviation between the main steam pressure and the main steam pressure set value based on the load command, the opening of the high-pressure turbine bypass valve is set to open the high-pressure turbine bypass valve based on the load command. In addition to adjusting within the range not exceeding the upper limit setting value,
A low-pressure turbine bypass valve opening command for eliminating a reheat steam pressure deviation between the reheat steam pressure and the reheat steam pressure set value based on the load command causes the opening of the low-pressure turbine bypass valve to be transferred to the high-pressure turbine bypass line. Boiler equipment characterized by adjusting in a range not to be lower than a low pressure turbine bypass valve opening lower limit set value for securing a bypass flow rate and not to exceed a low pressure turbine bypass valve opening upper limit set value based on a load command The present invention relates to a method for controlling a high and low pressure turbine bypass valve.
[0008]
According to the above means, the following operation can be obtained.
[0009]
The high-pressure turbine bypass valve opening command is used to eliminate the main steam pressure deviation between the main steam pressure and the main steam pressure set value based on the load command. The low pressure turbine bypass valve opening command is used to reduce the reheat steam pressure deviation between the reheat steam pressure and the reheat steam pressure set value based on the load command. The opening degree of the turbine bypass valve is not less than the lower limit setting value of the low pressure turbine bypass valve for ensuring the bypass flow rate flowing to the high pressure turbine bypass line, and the upper limit setting value of the low pressure turbine bypass valve based on the load command It is adjusted within the range not exceeding.
[0010]
Here, even if the high-pressure turbine and the low-pressure turbine inlet governor valve are closed and the high-pressure turbine bypass valve is opened before venting to the high-pressure turbine and the low-pressure turbine when the boiler equipment is started up, the main steam is regenerated. Since it is introduced into the heater, it takes less time for the boiler to warm up, and the startup time is shortened.
[0011]
The main steam pressure at the high pressure turbine inlet and the reheat steam pressure at the low pressure turbine inlet are basically controlled by adjusting the opening of the high pressure turbine bypass valve and the opening of the low pressure turbine bypass valve. However, the opening of the high pressure turbine bypass valve is adjusted within a range not exceeding the upper limit set value of the high pressure turbine bypass valve opening based on the load command, and the opening of the low pressure turbine bypass valve is adjusted based on the load command. Since the adjustment is made within a range not exceeding the bypass valve opening upper limit setting value, it is possible to prevent steam exceeding the allowable capacity of the condenser from being introduced into the condenser.
[0012]
Furthermore, the opening of the low-pressure turbine bypass valve is adjusted so as not to be less than a low-pressure turbine bypass valve opening lower limit setting value for ensuring a bypass flow rate flowing to the high-pressure turbine bypass line. When the amount of reheat steam that is the same as the bypass flow rate of the main steam that flows to the bypass line flows to the low-pressure turbine bypass line, and you want to reduce the load suddenly due to equipment failure in the boiler facility, The main steam that has escaped to the high-pressure turbine bypass line is released to the low-pressure turbine bypass line as the same amount of reheated steam, ensuring the bypass function, and a part of the main steam that bypasses the high-pressure turbine is reheated. It will not be supplied to the low-pressure turbine as steam, and will be able to handle sudden load reduction. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is an example of an embodiment for carrying out the present invention. In the figure, the same reference numerals as those in FIG. 7 denote the same parts. A high-pressure turbine bypass line 10 connected in the middle of the reheat line 4 between the heater 5 and the high-pressure turbine bypass valve 11 is provided in the middle of the high-pressure turbine bypass line 10, and the reheater 5 and the low-pressure turbine 2 A low pressure turbine bypass line 12 is provided which branches from the middle of the reheat line 4 between the two and is connected to the middle of the condensate line 6 between the low pressure turbine 2 and the condenser 7. A turbine bypass valve 13 is provided.
[0015]
Further, a main steam pressure detector 15 for detecting the main steam pressure 14 introduced into the high pressure turbine 1 and a reheat steam pressure detector 17 for detecting the reheat steam pressure 16 introduced into the low pressure turbine 2 are provided. Based on the main steam pressure 14 detected by the main steam pressure detector 15 and the reheat steam pressure 16 detected by the reheat steam pressure detector 17, the high pressure turbine bypass valve opening command 18 and the low pressure turbine A control device 20 that outputs a bypass valve opening command 19 is provided.
[0016]
As shown in FIG.
A first function generator 23 for obtaining and outputting a main steam pressure set value 22 based on a load command 21;
The difference between the main steam pressure 14 detected by the main steam pressure detector 15 and the main steam pressure set value 22 output from the first function generator 23 is obtained, and a subtracter 25 that outputs a main steam pressure deviation 24 is obtained. When,
A proportional-integral controller 27 for proportionally integrating the main steam pressure deviation 24 output from the subtractor 25 and outputting a high-pressure turbine bypass valve opening command 26 for eliminating the main steam pressure deviation 24;
A second function generator 29 for obtaining and outputting a high-pressure turbine bypass valve opening upper limit set value 28 based on the load command 21;
The lower one of the high-pressure turbine bypass valve opening upper limit set value 28 output from the second function generator 29 and the high-pressure turbine bypass valve opening command 26 output from the proportional-plus-integral regulator 27 is selected to select a high-pressure turbine bypass. A low selector 30 that outputs the valve opening command 18 to the high-pressure turbine bypass valve 11;
A third function generator 32 for obtaining and outputting a reheat steam pressure set value 31 based on the load command 21;
A difference between the reheat steam pressure 16 detected by the reheat steam pressure detector 17 and the reheat steam pressure set value 31 output from the third function generator 32 is obtained, and a reheat steam pressure deviation 33 is output. A subtractor 34,
A proportional integration controller 36 for proportionally integrating the reheat steam pressure deviation 33 output from the subtractor 34 and outputting a low-pressure turbine bypass valve opening command 35 for eliminating the reheat steam pressure deviation 33;
Bypassing the main steam pressure 14 detected by the main steam pressure detector 15 with the high-pressure turbine bypass valve opening command 18 output to the high-pressure turbine bypass valve 11, the bypass flow rate of the main steam flowing to the high-pressure turbine bypass line 10 A multiplier 38 for obtaining and outputting 37;
A fourth function generator 40 for obtaining and outputting a low pressure turbine bypass valve flow rate characteristic value 39 based on the reheat steam pressure set value 31 output from the third function generator 32;
The bypass flow rate 37 output from the multiplier 38 is divided by the low pressure turbine bypass valve flow rate characteristic value 39 output from the fourth function generator 40, and the low pressure turbine bypass valve opening lower limit set value 41 is obtained and output. A vessel 42;
The lower one of the low-pressure turbine bypass valve opening lower limit set value 41 output from the divider 42 and the low-pressure turbine bypass valve opening command 35 output from the proportional-plus-integral regulator 36 is selected to select the low-pressure turbine bypass valve opening degree. A high selector 44 to output as a command 43;
A fifth function generator 46 for obtaining and outputting a low-pressure turbine bypass valve opening upper limit set value 45 based on the load command 21;
The lower one of the low-pressure turbine bypass valve opening upper limit set value 45 output from the fifth function generator 46 and the low-pressure turbine bypass valve opening command 43 output from the high selector 44 is selected to select the low-pressure turbine bypass valve. A low selector 47 that outputs to the low-pressure turbine bypass valve 13 as the opening degree command 19 is provided.
[0017]
As shown in FIG. 2, the first function generator 23 is input with a function that increases the main steam pressure set value 22 as the load command 21 increases.
[0018]
As shown in FIG. 3, the second function generator 29 is input with a function for decreasing the high pressure turbine bypass valve opening upper limit set value 28 as the load command 21 increases. The valve opening upper limit set value 28 is set in order to prevent the steam exceeding the allowable allowable capacity of the condenser 7 from being introduced into the condenser 7.
[0019]
As shown in FIG. 4, the third function generator 32 receives a function that increases the reheat steam pressure set value 31 as the load command 21 increases.
[0020]
As shown in FIG. 5, the fourth function generator 40 is input with a function for decreasing the low-pressure turbine bypass valve flow rate characteristic value 39 as the reheat steam pressure set value 31 increases.
[0021]
As shown in FIG. 6, the fifth function generator 46 is input with a function that decreases the low pressure turbine bypass valve opening upper limit set value 45 as the load command 21 increases. The valve opening upper limit set value 45 is set in order to prevent steam exceeding the allowable allowable capacity of the condenser 7 from being introduced into the condenser 7, similar to the high pressure turbine bypass valve opening upper limit set value 28. It is what is done.
[0022]
Next, the operation of the illustrated example will be described.
[0023]
The main steam pressure 14 introduced into the high-pressure turbine 1 is detected by the main steam pressure detector 15, and the reheat steam pressure 16 introduced into the low-pressure turbine 2 is detected by the reheat steam pressure detector 17. 20 is input.
[0024]
In the control device 20, the main steam pressure set value 22 output from the first function generator 23 based on the main steam pressure 14 detected by the main steam pressure detector 15 in the subtractor 25 and the load command 21, and The main steam pressure deviation 24 is output to the proportional-plus-integral controller 27, and the main-steam pressure deviation 24 output from the subtractor 25 is proportional-integrated in the proportional-plus-integral regulator 27. A high-pressure turbine bypass valve opening command 26 for eliminating the pressure deviation 24 is output to the low selector 30, and the high-pressure turbine bypass valve output from the second function generator 29 based on the load command 21 in the low selector 30. The lower one of the opening upper limit set value 28 and the high-pressure turbine bypass valve opening command 26 output from the proportional integral controller 27 is selected and the high-pressure turbine bypass valve opening instruction is selected. 18 is output to the high-pressure turbine bypass valve 11 as the opening adjustment of the high pressure turbine bypass valve 11 is performed.
[0025]
At the same time, the reheat steam pressure 16 detected by the reheat steam pressure detector 17 in the subtractor 34 and the reheat steam pressure set value 31 output from the third function generator 32 based on the load command 21 are obtained. The difference is obtained, and the reheat steam pressure deviation 33 is output to the proportional integration controller 36, and the reheat steam pressure deviation 33 output from the subtractor 34 is proportionally integrated in the proportional integration controller 36. A low pressure turbine bypass valve opening command 35 for eliminating the thermal steam pressure deviation 33 is output to the high selector 44, while the multiplier 38 detects the main steam pressure 14 detected by the main steam pressure detector 15. A high-pressure turbine bypass valve opening command 18 output to the high-pressure turbine bypass valve 11 is applied, and a bypass flow 37 of the main steam flowing into the high-pressure turbine bypass line 10 is obtained. The fourth function generator is configured to output the bypass flow rate 37 output from the multiplier 38 based on the reheat steam pressure set value 31 output from the third function generator 32. The low pressure turbine bypass valve flow rate characteristic value 39 output from 40 is divided, and a low pressure turbine bypass valve opening lower limit set value 41 is obtained and output to the high selector 44. In the high selector 44, the divider 42 The lower one of the low pressure turbine bypass valve opening lower limit set value 41 and the low pressure turbine bypass valve opening command 35 output from the proportional-plus-integral controller 36 is selected, and the lower one is selected as the low pressure turbine bypass valve opening command 43. The low pressure turbine bypass valve opening upper limit output from the fifth function generator 46 based on the load command 21 in the low selector 47 The lower one of the constant value 45 and the low-pressure turbine bypass valve opening command 43 output from the high selector 44 is selected and output to the low-pressure turbine bypass valve 13 as the low-pressure turbine bypass valve opening command 19. Thirteen opening adjustments are made.
[0026]
Here, before the ventilation to the high-pressure turbine 1 and the low-pressure turbine 2 at the start-up of the boiler equipment, the high-pressure turbine bypass valve 11 is opened with the governor valves (not shown) at the inlets of the high-pressure turbine 1 and the low-pressure turbine 2 closed. Even if this is done, since the main steam is introduced into the reheater 5, it takes less time for the boiler to warm up, and the startup time is shortened.
[0027]
Further, by adjusting the opening of the high-pressure turbine bypass valve 11 and adjusting the opening of the low-pressure turbine bypass valve 13, the main steam pressure at the inlet of the high-pressure turbine 1 and the reheat steam pressure at the inlet of the low-pressure turbine 2 basically. In the low selector 30, the high pressure turbine bypass valve opening upper limit set value 28 output from the second function generator 29 based on the load command 21 and the proportional integral controller 27 output. The lower one of the high-pressure turbine bypass valve opening command 26 is selected and output to the high-pressure turbine bypass valve 11 as the high-pressure turbine bypass valve opening command 18, and the low selector 47 uses the fifth command based on the load command 21. Low pressure turbine bypass valve opening upper limit set value 45 output from the function generator 46 and low pressure turbine bypass valve opening output from the high selector 44 Since the lower one of the commands 43 is selected and output to the low-pressure turbine bypass valve 13 as the low-pressure turbine bypass valve opening command 19, steam exceeding the allowable capacity of the condenser 7 is introduced into the condenser 7. Is prevented.
[0028]
Furthermore, the bypass flow rate 37 output from the multiplier 38 to the divider 42 is the flow rate of the main steam flowing into the high pressure turbine bypass line 10, and the bypass flow rate 37 is expressed by a low pressure turbine bypass valve flow rate characteristic value 39. The low pressure turbine bypass valve opening lower limit set value 41 is obtained by dividing, and in the high selector 44, the low pressure turbine bypass valve opening lower limit set value 41 and the low pressure turbine bypass valve output from the proportional integral controller 36 are obtained. Since the higher one of the opening degree commands 35 is selected and outputted to the low selector 47 as the low pressure turbine bypass valve opening degree command 43, at least the same amount as the bypass flow 37 of the main steam flowing into the high pressure turbine bypass line 10 is regenerated. The hot steam flows into the low-pressure turbine bypass line 12, which causes the equipment in the boiler facility to In the case where it is desired to reduce the load suddenly, the main steam released to the high pressure turbine bypass line 10 is released to the low pressure turbine bypass line 12 as the same amount of reheated steam, and the turbine in the conventional example shown in FIG. A bypass function equivalent to the bypass line 8 is ensured. If there is no function of flowing the reheat steam having the same amount as the main steam bypass flow 37 flowing to the high-pressure turbine bypass line 10 to the low-pressure turbine bypass line 12, A part of the steam is supplied to the low-pressure turbine 2 as reheated steam and cannot cope with a rapid load reduction. However, in the case of this illustrated example, it can also cope with a sudden load reduction as described above.
[0029]
Thus, the startup time of the boiler can be shortened, and the main steam pressure at the inlet of the high pressure turbine 1 and the reheat steam pressure at the inlet of the low pressure turbine 2 can be reliably controlled during normal operation. It can cope with sudden load reduction.
[0030]
In addition, the high / low pressure turbine bypass valve control method of the boiler equipment of this invention is not limited only to the above-mentioned illustration example, Of course, it can add various changes within the range which does not deviate from the summary of this invention. .
[0031]
【The invention's effect】
As described above, according to the high and low pressure turbine bypass valve control method for boiler equipment according to the present invention, the startup time of the boiler can be shortened, and the main steam pressure and the low pressure turbine at the inlet of the high pressure turbine can be reduced during normal operation. It is possible to reliably control the reheat steam pressure at the inlet, and to achieve an excellent effect of being able to cope with a sudden load reduction in an emergency.
[Brief description of the drawings]
1 is an overall schematic configuration diagram of an example of an embodiment for carrying out the present invention;
FIG. 2 is a diagram representing a function input to the first function generator shown in FIG. 1;
FIG. 3 is a diagram representing a function input to the second function generator shown in FIG. 1;
FIG. 4 is a diagram representing a function input to the third function generator shown in FIG. 1;
FIG. 5 is a diagram representing a function input to a fourth function generator shown in FIG. 1;
6 is a diagram showing a function input to the fifth function generator shown in FIG. 1; FIG.
FIG. 7 is an overall schematic configuration diagram of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High pressure turbine 2 Low pressure turbine 3 Main steam line 4 Reheat line 5 Reheater 6 Condensate line 7 Condenser 10 High pressure turbine bypass line 11 High pressure turbine bypass valve 12 Low pressure turbine bypass line 13 Low pressure turbine bypass valve 14 Main steam pressure 16 Reheat steam pressure 20 Controller 21 Load command 22 Main steam pressure set value 24 Main steam pressure deviation 26 High pressure turbine bypass valve opening command 28 High pressure turbine bypass valve opening upper limit set value 30 Low selector 31 Reheat steam pressure setting Value 33 Reheat steam pressure deviation 35 Low pressure turbine bypass valve opening command 37 Bypass flow 39 Low pressure turbine bypass valve flow rate characteristic value 41 Low pressure turbine bypass valve opening lower limit set value 44 High selector 45 Low pressure turbine bypass valve opening upper limit set value 47 Low selector

Claims (1)

主蒸気ライン途中から分岐して高圧タービンと再熱器との間の再熱ライン途中に接続され且つ途中に高圧タービンバイパス弁が設けられた高圧タービンバイパスラインと、再熱器と低圧タービンとの間の再熱ライン途中から分岐して低圧タービンと復水器との間の復水ライン途中に接続され且つ途中に低圧タービンバイパス弁が設けられた低圧タービンバイパスラインとを備えてなるボイラ設備の高低圧タービンバイパス弁制御方法であって、
主蒸気圧力と負荷指令に基づく主蒸気圧力設定値との主蒸気圧力偏差をなくすための高圧タービンバイパス弁開度指令により、高圧タービンバイパス弁の開度を、負荷指令に基づく高圧タービンバイパス弁開度上限設定値を越えない範囲で調整すると共に、
再熱蒸気圧力と負荷指令に基づく再熱蒸気圧力設定値との再熱蒸気圧力偏差をなくすための低圧タービンバイパス弁開度指令により、低圧タービンバイパス弁の開度を、前記高圧タービンバイパスラインへ流されるバイパス流量を確保するための低圧タービンバイパス弁開度下限設定値未満とならず且つ負荷指令に基づく低圧タービンバイパス弁開度上限設定値を越えない範囲で調整することを特徴とするボイラ設備の高低圧タービンバイパス弁制御方法。
A high-pressure turbine bypass line that branches off from the middle of the main steam line and is connected in the middle of the reheat line between the high-pressure turbine and the reheater, and in which a high-pressure turbine bypass valve is provided, A boiler facility comprising a low-pressure turbine bypass line that branches off from the middle of the reheat line between and is connected to the middle of the condensate line between the low-pressure turbine and the condenser and provided with a low-pressure turbine bypass valve in the middle A high and low pressure turbine bypass valve control method comprising:
By opening the high-pressure turbine bypass valve opening command to eliminate the main steam pressure deviation between the main steam pressure and the main steam pressure setting value based on the load command, the opening of the high-pressure turbine bypass valve is set to open the high-pressure turbine bypass valve based on the load command. In addition to adjusting within the range not exceeding the upper limit setting value,
The opening of the low-pressure turbine bypass valve is transferred to the high-pressure turbine bypass line according to the low-pressure turbine bypass valve opening command for eliminating the reheat steam pressure deviation between the reheat steam pressure and the reheat steam pressure set value based on the load command. Boiler equipment characterized by adjusting in a range that does not become less than the lower limit setting value of the low-pressure turbine bypass valve opening for securing the bypass flow rate and does not exceed the upper limit setting value of the low-pressure turbine bypass valve opening based on the load command High and low pressure turbine bypass valve control method.
JP23419698A 1998-08-20 1998-08-20 High and low pressure turbine bypass valve control method for boiler equipment Expired - Fee Related JP4168485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23419698A JP4168485B2 (en) 1998-08-20 1998-08-20 High and low pressure turbine bypass valve control method for boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23419698A JP4168485B2 (en) 1998-08-20 1998-08-20 High and low pressure turbine bypass valve control method for boiler equipment

Publications (2)

Publication Number Publication Date
JP2000064810A JP2000064810A (en) 2000-02-29
JP4168485B2 true JP4168485B2 (en) 2008-10-22

Family

ID=16967199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23419698A Expired - Fee Related JP4168485B2 (en) 1998-08-20 1998-08-20 High and low pressure turbine bypass valve control method for boiler equipment

Country Status (1)

Country Link
JP (1) JP4168485B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665842B2 (en) * 2006-06-15 2011-04-06 株式会社日立製作所 Turbine bypass valve control system and apparatus
CN112627923B (en) * 2020-11-30 2022-12-02 重庆工程职业技术学院 Steam turbine rotating speed control method based on valve characteristic curve under extreme working condition

Also Published As

Publication number Publication date
JP2000064810A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
EP0236959B1 (en) Method for starting thermal power plant
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
US5435138A (en) Reduction in turbine/boiler thermal stress during bypass operation
JP4168485B2 (en) High and low pressure turbine bypass valve control method for boiler equipment
CA1138657A (en) Control system for steam turbine plants including turbine bypass systems
JP2674263B2 (en) Control method for reheat steam turbine
JP2000297608A (en) Control device for feed water pump of power station
JPS6239655B2 (en)
JPS6239653B2 (en)
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
GB2176248A (en) Turbine control
JPH0467001B2 (en)
JP2620124B2 (en) Bleed turbine control method and apparatus
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JPS6239654B2 (en)
JPS6079107A (en) Turbine starting method
JPH04237806A (en) Intermediate pressure turbine by-pass device
JPS6153523B2 (en)
JP2523493B2 (en) Turbin bypass system
JPH108912A (en) Turbine bypass valve control device
JPH04259605A (en) Stem turbine control device
JPS6235002B2 (en)
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPH04140405A (en) Steam turbine type power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees