JP4168356B2 - Sintering equipment - Google Patents

Sintering equipment Download PDF

Info

Publication number
JP4168356B2
JP4168356B2 JP03678499A JP3678499A JP4168356B2 JP 4168356 B2 JP4168356 B2 JP 4168356B2 JP 03678499 A JP03678499 A JP 03678499A JP 3678499 A JP3678499 A JP 3678499A JP 4168356 B2 JP4168356 B2 JP 4168356B2
Authority
JP
Japan
Prior art keywords
sintering
punch
punch heating
heating element
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03678499A
Other languages
Japanese (ja)
Other versions
JP2000239708A (en
Inventor
清 根橋
和美 森
徹 吉田
智俊 望月
浩一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP03678499A priority Critical patent/JP4168356B2/en
Publication of JP2000239708A publication Critical patent/JP2000239708A/en
Application granted granted Critical
Publication of JP4168356B2 publication Critical patent/JP4168356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結型に充填したセラミックスや導電性の原料粉末を通電により焼結する焼結装置に関する。
【0002】
【従来の技術】
セラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末を、焼結型に充填して加熱し対向する一対のパンチで加圧して焼結体の製造が行われる。この焼結体を製造する焼結装置は加熱方式によりいくつかの方式に分類される。ヒータによる間接加熱方式は焼結型の周囲に抵抗加熱ヒータなどのヒータを配置し焼結型を表面から加熱し、この中の原料粉末を間接的に加熱する。この方式はセラミックスと導電性物質の両方の焼結に適用でき広く用いられている。
【0003】
誘導加熱方式は、焼結型を電磁誘導により直接加熱する加熱方式である。従って、抵抗加熱方式に比較し、焼結体の加熱速度が速い。通電方式は電極及びパンチに直接通電して加熱する方式である。通電方式については、特開昭64−55303,特開平5−70804,特開平5−117707に開示されている。
【0004】
図6は、通電方式においてパンチを主たる発熱体とする従来例である。以下、かかまパンチをパンチ発熱体と呼ぶ。この図に示すように、従来の通電方式の焼結装置では、焼結型1に原料粉末3を入れ、パンチ発熱体4a,4bを介して電極5a,5bを加圧6して、主としてパンチ発熱体4a,4bの発熱により、原料粉末3を加熱して焼結させるようになっている。この場合、パンチ発熱体4a,4bは、通電により発熱する発熱体(電気抵抗の大きい物質)からなり、熱は発熱したパンチ発熱体4a,4bから原料粉末3に伝熱してこれを加熱する。
【0005】
【発明が解決しようとする課題】
しかし、上述したパンチ発熱体を用いた従来の焼結装置には、以下の問題点があった。
1.穴の断面に欠損部が無いむく材(中実、ソリッド)の場合、原料粉末3の直径が大きくなると、発熱体(パンチ発熱体4a,4b)の抵抗がその断面積に反比例して小さくなるため(∵抵抗は断面積に反比例する)、同じ電気抵抗を維持するにはパンチ発熱体4a,4bを長くする必要がある。
例えば、パンチ発熱体4a,4bの直径が2倍になると、断面積が4倍になり、原料粉末3の厚さを同じとすると、原料粉末3の体積は4倍となる。従って、原料粉末3の単位体積当たり同じ発熱量(電気抵抗)を得るには、パンチ発熱体4a,4bの長さを図7のように16倍(4×4=16)にする必要がある。このためパンチ発熱体4a,4bの芯ズレが起きやすくなったり、上下面の平行度が良くないと、原料粉末3への加圧が不安定になり易く、一方へ偏り不均一になったり、場合によってはパンチ発熱体4a,4bが破損することがあった。
【0006】
2.また図7のように、パンチ発熱体4a,4bが長くなると原料粉末3まで熱が伝わりにくくなる。また、熱損失も大きくなる。
3.焼結空間2、原料粉末3は大きくなっても、中実のパンチ発熱体4a,4bは小さいままとすると、図8に示すようにパンチ発熱体4a,4bと原料粉末3の間に厚いスペーサ11を挿入し、加圧6がパンチ発熱体4a,4bを介して原料粉末3に均等にかかるようにする必要がある。
しかし、パンチ発熱体4a,4bが直接原料粉末3に接触しておらず、途中に厚いスペーサ11が入っているため、熱ロスが大きく、伝熱効率が悪い。また、原料粉末3が均一温度になりにくい。
【0007】
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、原料粉末の断面積が大きくなっても、これに併せてパンチ発熱体の外形を大きくできかつ高さを低く抑えることができ、これにより安定して操業ができる焼結装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体が少なくとも1つの加圧方向に延びる穴を有することを特徴とする焼結装置が提供される。本発明の構成によれば、パンチ発熱体が少なくとも1つの加圧方向に延びる穴を有するので、空洞による断面の欠損部の分、断面積が小さくなっており、その分電気抵抗が大きくなって抵抗発熱量も大きくなり効果的に加熱できる。
【0009】
また、穴の全長にわたり均一に断面積を小さくして抵抗発熱量を均等に大きくできる。なお、穴の数は複数が好ましいが1個でもよい。
【0010】
また、本発明によれば、焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体は、互いに積層された複数の平板からなり、かつ各平板は貫通穴を有する、ことを特徴とする焼結装置が提供される。この構成により、平板の積層面で電気的接触抵抗が増すため、外形寸法が同一でも発熱量を高めることができる。
【0011】
更に、前記平板の各貫通穴は隣接する平板の貫通穴と異なる位置に設けられている、ことが好ましい。この構成により、穴位置がずれているため電流の経路が増し、抵抗が増えて発熱量を更に高めることができる。
【0012】
また、本発明によれば、焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体は、発泡状に設けられた多数の独立気泡を有することを特徴とする焼結装置が提供される。この構成により、多数の独立気泡により、断面積が減少しかつ電流経路が増加するので、発熱量を高め原料粉末を効果的に加熱できる。
【0013】
【発明の実施の形態】
以下本発明の実施形態について、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0014】
図1は本発明の焼結装置の第1実施形態を示す構成図である。焼結型1は中空円筒状に構成されており、内部中央が原料粉末3を充填する焼結空間2となっている。この焼結型1の内部上下には、円筒状に構成されたパンチ発熱体4a,4bが摺動自在に嵌合している。パンチ発熱体4a,4bの上下には電極5a,5bが設けられている。電極5a,5bはパンチ発熱体4a,4bを押圧するとともにパンチ発熱体4a,4bに通電する。焼結型1,パンチ発熱体4a,4b,電極5a,5bの発熱体側は断熱囲壁7により囲まれ断熱性を保持している。
【0015】
電極5a,5bの上下端には図示しない油圧装置が接続されパンチ発熱体4a,4bを加圧するようになっている。電源8は50または60Hzなどの商用電源を用いる。電源8よりの電力をサイリスタで制御し、トランスで降圧した後、電極5a,5bに通電する。焼結型1の内面または外面には温度センサ10が設けられており、焼結体の温度を計測する。制御部9はこの温度センサ10の計測値に基づきサイリスタを制御して電流を制御する。なお、上述の説明では上下両方の電極5a,5bとパンチ発熱体4a,4bとを油圧装置で上下から加圧するとしたが、上下いずれかの電極5とパンチ発熱体4のみを加圧し、他方は固定するようにしてもよい。なお以上の説明は、以下に述べる他の実施形態にも同様に適用できる。
【0016】
上述したように、本発明の焼結装置は、焼結型1に原料粉末3を入れ、パンチ発熱体4a,4bを介して電極5a,5bを加圧6して、主としてパンチ発熱体4a,4bの発熱により、原料粉末3を加熱して焼結させるようになっている。この場合、パンチ発熱体4a,4bは、通電により発熱する発熱体(電気抵抗の大きい物質)からなり、熱はパンチ発熱体4a,4bから原料粉末3に伝導して原料粉末3を加熱する。
【0017】
図2は、図1のパンチ発熱体の構成図であり、(A)は真上から見た平面図、(B)は斜視図である。また、図3は、本発明の第2実施形態を示すパンチ発熱体の図2と同様の構成図であり、図4は、第3実施形態の同様の構成図である。更に、図5は、本発明の第4実施形態のパンチ発熱体の構成図である。
【0018】
図2〜図4に示すように、パンチ発熱体4a,4bの外形は焼結型1の内径(原料粉末3の外径)と同じとし、パンチ発熱体4a,4bに少なくとも1つの空洞12を設ける。すなわち、図2〜図4の例では、パンチ発熱体4a,4bの中に穴を開けて断面積を小さくする。穴は大きい穴を少し開けるより、小さい穴を多数、均一に分布させて開けるほうよい。
【0019】
図2では、全体が一体物で、一端から他端まで穴が通っている。穴の断面欠損分、断面積が小さくなっており、長さが一定とすると、穴がない場合より、電気抵抗が大きくなり、抵抗発熱量も大きくなる。なお、図2(B)において、上側が電極5a側、下側が原料粉末側であり、原料粉末側は原料粉末3が漏れないように穴無しとしてある。また、この図はパンチ発熱体4aを示しているが、パンチ発熱体4bは4aの勝手反対の形状である。
【0020】
図3は図2の一体物を多層板積層構造にした場合を示す。この例は、パンチ発熱体4aを示しパンチ発熱体4bはその勝手反対である。また、図3(B)において、上側が電極5a側、下側が原料粉末側である。
図3の構成により、各々の層板と層板との間で電気的接触抵抗が増すため、図2の一体物の場合より、同じ外径、同じ長さ、同じ断面欠損率があっても、合計電気抵抗が更に大きくなり、抵抗発熱量も対応して更に大きくなる。なお、パンチ発熱体4a,4bの原料粉末3側は原料粉末3がこぼれないよう穴はなく、「むく」の状態としてある。
【0021】
図4は、図3の上下各層板の穴をずらした場合である。その他の構成は図3の例と同様である。この場合、各層と層の境界では、ある層のバルク(穴でない部分)の部分を流れてきた電流は、次の層に流れ込むとき、直ぐ下に次の層のバルク部が完全にないため、電極5a,5bの軸方向に直角方向に流れてから次の層のバルク部に流れる必要があるため電流経路が増えて抵抗(発熱)が増えたり、境界の面積が減少して、抵抗(発熱)が増えて、原料粉末3をより効果的に加熱できる。
【0022】
図5では、パンチ発熱体の空洞12は、発泡状に設けられた多数の独立気泡である。すなわち、この例ではパンチ発熱体4a,4b全体が発泡体状になっているため、バルクより断面積が減少したことによる抵抗(発熱)の増加、また電流経路が真っ直ぐでないことによる経路長増加による抵抗(発熱)の増加により原料粉末3をより効果的に加熱できる。
【0023】
なお、いずれの場合も空洞12、すなわち穴又は気泡を細かくし、全体的に均一に分布させ、電極5a,5bを介して加圧6するとき、原料粉末3に全断面にわたり、均一に押圧が負荷される。
【0024】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0025】
【発明の効果】
上述した構成により、本発明では穴を例えば図2のように設けて、断面積を当初と同じとすると、パンチ発熱体4a,4bの直径が2倍になっても、パンチ発熱体4a,4bの長さは4倍でよく、従来の16倍より大幅に短くでき、従来の問題もなくなる。
また、穴の断面欠損分、断面積が小さくなっており、長さが一定とすると、穴が無い場合より、電気抵抗が大きくなり、抵抗発熱量も大きくなり効果的に加熱できる。
【0026】
更に、一体物を多層板積層構造にした場合、各々の層板と層板の間で電気的接触抵抗が増すため、図2の一体物の場合より、同じ外径、同じ長さ、同じ断面欠損率があっても、合計電気抵抗が更に大きくなり、抵抗発熱量も対応して更に大きくなる。逆に、同じ電気抵抗(発熱量)を得るには、図2の場合よりパンチ発熱体4a,4bの長さを短くでき、一層コンパクトとなると共に、上述した多くのメッリトも発揮される。
【0027】
また、上下各層板の穴をずらすことにより、各層と層の境界では、ある層のバルク(穴でない部分)の部分を流れてきた電流は、次の層に流れ込むとき、直ぐ下に次の層のバルク部が完全にないため、電極5a,5bの軸方向に直角方向に流れてから次の層のバルク部に流れる必要があるため電流経路が増えて抵抗(発熱)が増えたり、境界の面積が減少して、抵抗(発熱)が増えて、原料粉末3をより効果的に加熱できる。
また、パンチ発熱体4a,4b全体を発泡体状にすることにより、バルクより断面積が減少したことによる抵抗(発熱)の増加、また電流経路が真っ直ぐでないことによる経路長増加による抵抗(発熱)の増加により原料粉末3をより効果的に加熱できる。
【0028】
いずれの場合も穴、あるいは発泡を細かくし、全体的に均一に分布させ、電極5a,5bを介して加圧6するとき、原料粉末3に全断面にわたり、均一に押圧が負荷される。
更に、本発明の構成では、スペーサ11がなくパンチ発熱体4a,4bが直接、原料粉末3に接触するため、熱ロスが少なく、温度も均一になる。
【0029】
上述したように、本発明の焼結装置は、原料粉末の断面積が大きくなっても、これに併せてパンチ発熱体の外形を大きくできかつ高さを低く抑えることができ、これにより安定して操業ができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の焼結装置の第1実施形態を示す構成図である。
【図2】図1のパンチ発熱体の構成図である。
【図3】本発明の第2実施形態のパンチ発熱体の構成図である。
【図4】本発明の第3実施形態のパンチ発熱体の構成図である。
【図5】本発明の第4実施形態のパンチ発熱体の構成図である。
【図6】従来の焼結装置の構成図である。
【図7】従来の焼結装置の別の構成図である。
【図8】従来の焼結装置の更に別の構成図である。
【符号の説明】
1 焼結型
2 焼結空間
3 原料粉末
4a,4b パンチ発熱体
5a,5b 電極
6 加圧
7 断熱囲壁
8 電源
9 制御部
10 温度センサ
11 スペーサ
12 空洞(穴、気泡)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintering apparatus that sinters ceramics and conductive raw material powder filled in a sintering mold by energization.
[0002]
[Prior art]
A raw material powder of a conductive object such as ceramics, metal, carbide, or nitride is filled in a sintering mold, heated, and pressed with a pair of opposing punches to produce a sintered body. Sintering apparatuses for manufacturing this sintered body are classified into several systems depending on the heating system. In the indirect heating method using a heater, a heater such as a resistance heater is disposed around the sintering mold, the sintering mold is heated from the surface, and the raw material powder therein is indirectly heated. This method is applicable to the sintering of both ceramics and conductive materials and is widely used.
[0003]
The induction heating method is a heating method in which the sintered mold is directly heated by electromagnetic induction. Therefore, the heating rate of the sintered body is faster than that of the resistance heating method. The energization method is a method in which an electrode and a punch are directly energized and heated. The energization method is disclosed in Japanese Patent Laid-Open Nos. 64-55303, 5-70804, and 5-117707.
[0004]
FIG. 6 shows a conventional example in which a punch is the main heating element in the energization method. Hereinafter, the hook punch is referred to as a punch heating element. As shown in this figure, in the conventional energization type sintering apparatus, the raw material powder 3 is put into the sintering mold 1 and the electrodes 5a and 5b are pressurized 6 through the punch heating elements 4a and 4b, so that the punch is mainly used. The raw material powder 3 is heated and sintered by the heat generated by the heating elements 4a and 4b. In this case, the punch heating elements 4a and 4b are made of a heating element (a substance having a large electrical resistance) that generates heat when energized, and heat is transferred from the heated punch heating elements 4a and 4b to the raw material powder 3 to heat it.
[0005]
[Problems to be solved by the invention]
However, the conventional sintering apparatus using the punch heating element described above has the following problems.
1. In the case of a peeled material (solid, solid) having no defect in the cross section of the hole, when the diameter of the raw material powder 3 is increased, the resistance of the heating element (punch heating elements 4a and 4b) is decreased in inverse proportion to the sectional area. Therefore, the punch heating elements 4a and 4b need to be lengthened in order to maintain the same electric resistance (the wrinkle resistance is inversely proportional to the cross-sectional area).
For example, when the diameters of the punch heating elements 4a and 4b are doubled, the cross-sectional area is quadrupled, and when the thickness of the raw material powder 3 is the same, the volume of the raw material powder 3 is quadrupled. Therefore, in order to obtain the same calorific value (electric resistance) per unit volume of the raw material powder 3, the length of the punch heat generating elements 4a and 4b needs to be 16 times (4 × 4 = 16) as shown in FIG. . For this reason, the punch heating elements 4a, 4b are likely to be misaligned, and if the parallelism of the upper and lower surfaces is not good, the pressurization to the raw material powder 3 is likely to be unstable and unevenly biased to one side, In some cases, the punch heating elements 4a and 4b may be damaged.
[0006]
2. Further, as shown in FIG. 7, when the punch heating elements 4 a and 4 b become longer, it becomes difficult to transfer heat to the raw material powder 3. In addition, heat loss increases.
3. Even if the sintering space 2 and the raw material powder 3 become large, if the solid punch heating elements 4a and 4b remain small, a thick spacer is provided between the punch heating elements 4a and 4b and the raw material powder 3 as shown in FIG. 11 must be inserted so that the pressure 6 is evenly applied to the raw material powder 3 through the punch heating elements 4a and 4b.
However, since the punch heating elements 4a and 4b are not in direct contact with the raw material powder 3 and the thick spacer 11 is inserted in the middle, the heat loss is large and the heat transfer efficiency is poor. Moreover, the raw material powder 3 is unlikely to have a uniform temperature.
[0007]
The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to increase the outer shape of the punch heating element and to keep the height low even if the cross-sectional area of the raw material powder is increased, thereby enabling stable operation. It is in providing a tying device.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a sintering apparatus that pressurizes and energizes a pair of punch heating elements and electrodes arranged to face each other and the raw material powder filled in a sintering space of a sintering mold, In the sintering apparatus, wherein the punch heating element is composed of a conductor that generates heat when energized between electrodes, the punch heating element has at least one hole extending in the pressing direction. Provided. According to the configuration of the present invention, since the punch heating element has at least one hole extending in the pressing direction , the cross-sectional area is reduced by the amount of the missing portion of the cross section due to the cavity, and the electrical resistance is increased accordingly. The amount of heat generated by resistance increases and can be heated effectively.
[0009]
In addition, the resistance heating value can be increased uniformly by reducing the cross-sectional area uniformly over the entire length of the hole. The number of holes is preferably plural, but may be one.
[0010]
In addition, according to the present invention, there is provided a sintering apparatus in which the raw material powder filled in the sintering space of the sintering mold is pressed by a pair of punch heating elements and electrodes arranged opposite to each other and energized and sintered. In the sintering apparatus, the punch heating element is composed of a conductor that generates heat when energized between the electrodes, and the punch heating element is composed of a plurality of flat plates stacked on each other, and each flat plate has a through hole. There is provided a sintering apparatus characterized by comprising: With this configuration, since the electrical contact resistance is increased on the laminated surface of the flat plates, the heat generation amount can be increased even if the outer dimensions are the same.
[0011]
Furthermore, each through hole of the flat plate is provided at a position different from the through-hole of the adjacent flat, it is preferable. With this configuration, since the hole position is shifted, the current path is increased, the resistance is increased, and the heat generation amount can be further increased.
[0012]
In addition, according to the present invention, there is provided a sintering apparatus in which the raw material powder filled in the sintering space of the sintering mold is pressed by a pair of punch heating elements and electrodes arranged opposite to each other and energized and sintered. Te, the punch heating element in the sintering apparatus is composed of a conductive material which generates heat by energization between the electrodes, the punch heating element, characterized by having a large number of closed cells provided in foamed A sintering apparatus is provided. With this configuration, the cross-sectional area is reduced and the current path is increased due to a large number of closed cells, so that the heat generation amount can be increased and the raw material powder can be heated effectively.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0014]
FIG. 1 is a configuration diagram showing a first embodiment of a sintering apparatus of the present invention. The sintering die 1 is formed in a hollow cylindrical shape, and an inner center is a sintering space 2 filled with the raw material powder 3. Punch heating elements 4a and 4b configured in a cylindrical shape are slidably fitted on the upper and lower sides of the sintering die 1. Electrodes 5a and 5b are provided above and below the punch heating elements 4a and 4b. The electrodes 5a and 5b press the punch heating elements 4a and 4b and energize the punch heating elements 4a and 4b. The heating die side of the sintered mold 1, punch heating elements 4a and 4b, and electrodes 5a and 5b is surrounded by a heat insulating wall 7 to maintain heat insulation.
[0015]
A hydraulic device (not shown) is connected to the upper and lower ends of the electrodes 5a and 5b so as to pressurize the punch heating elements 4a and 4b. The power source 8 uses a commercial power source such as 50 or 60 Hz. The electric power from the power source 8 is controlled by a thyristor and stepped down by a transformer, and then the electrodes 5a and 5b are energized. A temperature sensor 10 is provided on the inner surface or outer surface of the sintering mold 1 and measures the temperature of the sintered body. The control unit 9 controls the current by controlling the thyristor based on the measurement value of the temperature sensor 10. In the above description, both the upper and lower electrodes 5a and 5b and the punch heating elements 4a and 4b are pressed from above and below with a hydraulic device. However, only one of the upper and lower electrodes 5 and the punch heating element 4 is pressed. May be fixed. The above description can be similarly applied to other embodiments described below.
[0016]
As described above, in the sintering apparatus of the present invention, the raw material powder 3 is put into the sintering mold 1, the electrodes 5a and 5b are pressurized 6 through the punch heating elements 4a and 4b, and the punch heating element 4a, The raw material powder 3 is heated and sintered by the heat generated by 4b. In this case, the punch heating elements 4a and 4b are made of a heating element (a substance having a large electrical resistance) that generates heat when energized, and heat is conducted from the punch heating elements 4a and 4b to the raw material powder 3 to heat the raw material powder 3.
[0017]
2 is a configuration diagram of the punch heating element of FIG. 1, (A) is a plan view seen from directly above, and (B) is a perspective view. FIG. 3 is a configuration diagram similar to FIG. 2 of the punch heating element showing the second embodiment of the present invention, and FIG. 4 is a configuration diagram similar to the third embodiment. Furthermore, FIG. 5 is a block diagram of the punch heating element of the fourth embodiment of the present invention.
[0018]
As shown in FIGS. 2 to 4, the outer shapes of the punch heating elements 4 a and 4 b are the same as the inner diameter of the sintering mold 1 (the outer diameter of the raw material powder 3), and at least one cavity 12 is provided in the punch heating elements 4 a and 4 b. Provide. That is, in the example of FIGS. 2 to 4, a hole is made in the punch heating elements 4a and 4b to reduce the cross-sectional area. It is better to make many small holes evenly distributed than to make a few large holes.
[0019]
In FIG. 2, the whole is a single body, and a hole passes from one end to the other end. When the cross-sectional area of the hole is small and the cross-sectional area is constant, the electrical resistance increases and the resistance heat generation amount increases as compared with the case where there is no hole. In FIG. 2B, the upper side is the electrode 5a side, the lower side is the raw material powder side, and the raw material powder side has no holes so that the raw material powder 3 does not leak. Although this figure shows the punch heating element 4a, the punch heating element 4b has a shape opposite to that of 4a.
[0020]
FIG. 3 shows a case where the integrated body of FIG. This example shows a punch heating element 4a, and the punch heating element 4b is the opposite. In FIG. 3B, the upper side is the electrode 5a side, and the lower side is the raw material powder side.
3 increases the electrical contact resistance between the respective layer plates, so that the same outer diameter, the same length, and the same cross-sectional defect rate as those in the case of the single unit shown in FIG. The total electrical resistance is further increased, and the resistance heating value is correspondingly increased. It should be noted that the raw material powder 3 side of the punch heating elements 4a and 4b has no holes so that the raw material powder 3 does not spill, and is in a “peeled” state.
[0021]
FIG. 4 shows a case where the holes of the upper and lower layer plates in FIG. 3 are shifted. Other configurations are the same as those in the example of FIG. In this case, at the boundary between each layer, the current flowing through the bulk of the layer (the part that is not a hole) flows into the next layer, so the bulk part of the next layer is not completely underneath, Since it is necessary to flow in the direction perpendicular to the axial direction of the electrodes 5a and 5b and then to the bulk portion of the next layer, the current path increases and resistance (heat generation) increases, or the boundary area decreases and resistance (heat generation) ) And the raw material powder 3 can be heated more effectively.
[0022]
In FIG. 5, the cavity 12 of the punch heating element is a large number of closed cells provided in a foam shape. That is, in this example, since the entire punch heating elements 4a and 4b are in the form of foam, the resistance (heat generation) increases due to the reduction in the cross-sectional area from the bulk, and the path length increases due to the current path not being straight. The raw material powder 3 can be heated more effectively by increasing the resistance (heat generation).
[0023]
In any case, when the cavities 12, that is, the holes or the bubbles are made fine and uniformly distributed and pressed through the electrodes 5a and 5b, the raw material powder 3 is uniformly pressed over the entire cross section. Be loaded.
[0024]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0025]
【The invention's effect】
With the configuration described above, in the present invention, if the holes are provided as shown in FIG. 2 and the cross-sectional area is the same as the initial one, the punch heating elements 4a and 4b can be obtained even if the diameters of the punch heating elements 4a and 4b are doubled. The length may be 4 times, which can be significantly shorter than the conventional 16 times, and the conventional problems are eliminated.
Further, when the cross-sectional area and the cross-sectional area of the hole are small and the length is constant, the electric resistance is increased and the resistance heating value is increased as compared with the case where there is no hole, and heating can be effectively performed.
[0026]
In addition, when the monolithic structure is a multilayer board laminated structure, the electrical contact resistance increases between each laminar board, so the same outer diameter, the same length, and the same cross-sectional defect rate than the monolithic one in FIG. Even if there is, the total electric resistance is further increased, and the resistance heating value is also increased correspondingly. On the contrary, in order to obtain the same electric resistance (heat generation amount), the lengths of the punch heating elements 4a and 4b can be shortened compared to the case of FIG.
[0027]
In addition, by shifting the holes in the upper and lower layer plates, the current flowing through the bulk (non-hole portion) of a certain layer at the boundary between each layer flows into the next layer immediately below the next layer. Since there is no complete bulk portion, it is necessary to flow in the direction perpendicular to the axial direction of the electrodes 5a and 5b and then to the bulk portion of the next layer, so the current path increases and resistance (heat generation) increases, The area is reduced, the resistance (heat generation) is increased, and the raw material powder 3 can be heated more effectively.
Further, by making the punch heating elements 4a and 4b into a foam shape, the resistance (heat generation) increases due to the reduction of the cross-sectional area from the bulk, and the resistance (heat generation) due to the increase in the path length due to the non-straight current path. The raw material powder 3 can be heated more effectively due to the increase in.
[0028]
In any case, when the holes or bubbles are made fine and distributed uniformly throughout and pressurized 6 through the electrodes 5a and 5b, the raw material powder 3 is uniformly pressed over the entire cross section.
Furthermore, in the configuration of the present invention, since the punch heating elements 4a and 4b are in direct contact with the raw material powder 3 without the spacer 11, the heat loss is small and the temperature is uniform.
[0029]
As described above, the sintering apparatus of the present invention can increase the outer shape of the punch heating element and keep the height low, even if the cross-sectional area of the raw material powder is increased, thereby stabilizing. It has excellent effects such as being able to operate.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a sintering apparatus of the present invention.
FIG. 2 is a configuration diagram of the punch heating element of FIG. 1;
FIG. 3 is a configuration diagram of a punch heating element according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a punch heating element according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a punch heating element according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional sintering apparatus.
FIG. 7 is another configuration diagram of a conventional sintering apparatus.
FIG. 8 is still another configuration diagram of a conventional sintering apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintering mold 2 Sintering space 3 Raw material powder 4a, 4b Punch heating element 5a, 5b Electrode 6 Pressurization 7 Heat insulation wall 8 Power supply 9 Control part 10 Temperature sensor 11 Spacer 12 Cavity (hole, bubble)

Claims (4)

焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体が少なくとも1つの加圧方向に延びる穴を有することを特徴とする焼結装置。A sintering device that pressurizes and energizes a pair of punch heating elements and electrodes facing raw powder filled in a sintering space of a sintering mold, and the punch heating element includes: A sintering apparatus comprising a conductor that generates heat when energized between electrodes, wherein the punch heating element has at least one hole extending in a pressurizing direction . 焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体は、互いに積層された複数の平板からなり、かつ各平板は加圧方向に貫通する貫通穴を有する、ことを特徴とする焼結装置。 A sintering device that pressurizes and energizes a pair of punch heating elements and electrodes facing raw powder filled in a sintering space of a sintering mold, and the punch heating element includes: In the sintering apparatus composed of a conductor that generates heat by energization between the electrodes, the punch heating element is composed of a plurality of flat plates stacked on each other, and each flat plate has a through hole penetrating in the pressurizing direction . A sintering apparatus characterized by that. 前記平板の各貫通穴は隣接する平板の貫通穴と異なる位置に設けられている、ことを特徴とする請求項に記載の焼結装置。Sintering apparatus of claim 2, each of the through holes of the flat plate is provided in different and the through hole of the adjacent flat position, it is characterized. 焼結型の焼結空間に充填された原料粉末を対向して配置された1対のパンチ発熱体及び電極で加圧し通電して焼結する焼結装置であって、前記パンチ発熱体は、電極間の通電により発熱する導電体で構成されている焼結装置において、前記パンチ発熱体は、発泡状に設けられた多数の独立気泡を有することを特徴とする焼結装置。 A sintering device that pressurizes and energizes a pair of punch heating elements and electrodes facing raw powder filled in a sintering space of a sintering mold, and the punch heating element includes: in the sintering apparatus is composed of a conductive material which generates heat by energization between the electrodes, the punch heating element, sintering apparatus characterized by having a large number of closed cells provided in foamed.
JP03678499A 1999-02-16 1999-02-16 Sintering equipment Expired - Lifetime JP4168356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03678499A JP4168356B2 (en) 1999-02-16 1999-02-16 Sintering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03678499A JP4168356B2 (en) 1999-02-16 1999-02-16 Sintering equipment

Publications (2)

Publication Number Publication Date
JP2000239708A JP2000239708A (en) 2000-09-05
JP4168356B2 true JP4168356B2 (en) 2008-10-22

Family

ID=12479415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03678499A Expired - Lifetime JP4168356B2 (en) 1999-02-16 1999-02-16 Sintering equipment

Country Status (1)

Country Link
JP (1) JP4168356B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003559B1 (en) 2007-04-10 2010-12-30 한국생산기술연구원 Hybrid hot press apparatus
JP6475147B2 (en) * 2015-11-26 2019-02-27 住友金属鉱山株式会社 Mold for discharge plasma sintering and discharge plasma sintering method
CN109081691B (en) * 2018-09-13 2021-01-08 长安大学 Tubular ceramic preparation method

Also Published As

Publication number Publication date
JP2000239708A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP5814326B2 (en) Fuel cell apparatus and system
US5326418A (en) Method of making positive-temperature-coefficient thermistor heating element
JP4350695B2 (en) Processing equipment
US20190319291A1 (en) Method Of Making Components For An Electrochemical Cell And An Electrochemical Cell And Cell Stack
JP4168356B2 (en) Sintering equipment
JP2002504235A (en) Electrochemical sensor element with a porous reference gas reservoir
JP5140411B2 (en) Semiconductor device
JP3781072B2 (en) Sintering equipment
JP4168521B2 (en) Electric heating type pressure sintering equipment
US11828490B2 (en) Ceramic heater for heating water in an appliance
JP4715375B2 (en) Method for manufacturing gas sensor element and gas sensor element
JP6678701B2 (en) Wiring member
JP3870571B2 (en) Electric heating type pressure sintering equipment
CN207835839U (en) Multi-layer series PTC resistor heat generating core
CN211481515U (en) High-efficiency single-side heat-transfer thick-film element
CN211961711U (en) Composite bottom pot
JP3117328U (en) Heating element
JP2006514280A (en) Sensor element
JP2000173751A (en) Ceramic heater
CN220935343U (en) Full-packaging heating plate
JPH09213352A (en) Electrode packing and electrode
CN212014440U (en) Heating assembly and electronic atomization device
JP2530349Y2 (en) Ceramic heater
WO2019189197A1 (en) Heater and heater system
KR200408349Y1 (en) Plane heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term