JP3870571B2 - Electric heating type pressure sintering equipment - Google Patents

Electric heating type pressure sintering equipment Download PDF

Info

Publication number
JP3870571B2
JP3870571B2 JP23419798A JP23419798A JP3870571B2 JP 3870571 B2 JP3870571 B2 JP 3870571B2 JP 23419798 A JP23419798 A JP 23419798A JP 23419798 A JP23419798 A JP 23419798A JP 3870571 B2 JP3870571 B2 JP 3870571B2
Authority
JP
Japan
Prior art keywords
heating element
powder
mold
type pressure
pressure sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23419798A
Other languages
Japanese (ja)
Other versions
JP2000063906A (en
Inventor
浩一 藤田
智俊 望月
和美 森
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP23419798A priority Critical patent/JP3870571B2/en
Publication of JP2000063906A publication Critical patent/JP2000063906A/en
Application granted granted Critical
Publication of JP3870571B2 publication Critical patent/JP3870571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof

Description

【0001】
【発明の属する技術分野】
本発明は、通電加熱式加圧焼結装置に関するものであり、より詳しくは、発熱体による発熱量を大きくし、粉末を速やかに目的温度に昇温させるようにした通電加熱式加圧焼結装置に関するものである。
【0002】
【従来の技術】
金属の粉末やセラミックの粉末等を加圧焼結する装置として、通電加熱式加圧焼結装置がある。
【0003】
従来の通電加熱式加圧焼結装置は、その一例を図3に示すように、内部に粉末1を加圧成形するための成形空間2を有する筒状のモールド3を設け、該モールド3の成形空間2に上側発熱体4と下側発熱体5を嵌合するようにしている。
【0004】
前記モールド3の材料としては、高温時の強度が高く、且つ粉末1等が付着し難い黒鉛等が一般に用いられている。
【0005】
一方、前記上側発熱体4及び下側発熱体5は、前記モールド3を構成している黒鉛に対して不純物を含有することにより電気抵抗が高められた例えばセミグラファイト等にて構成されており、発熱体4,5は一般に図4に示すように円柱形状を有している。
【0006】
さらに、上側発熱体4の上部には、油圧シリンダ等からなる加圧手段6を設置すると共に、モールド3及び下側発熱体5を支持する台座ブロックからなる支持手段7を設けている。
【0007】
前記加圧手段6と支持手段7は共に良導体であり、加圧手段6と支持手段7との間には電源8が接続されている。電源8には、商用電源、或いは直流電源を用いることができる。
【0008】
なお、少くとも前記モールド3の部分は、図示しない真空チャンバ内に収容されるようになっている。
【0009】
このような構成において、まず、モールド3の成形空間2に下側から下側発熱体5を挿入してモールド3及び下側発熱体5を台座ブロックによる支持手段7によって支持した状態において、金属やセラミック等の粉末1を上方から前記成形空間2内に供給する。そして、成形空間2に上方から上側発熱体4を挿入する。
【0010】
この状態において、少くともモールド3部分を包囲するようにした真空チャンバ内を真空状態、または不活性ガス雰囲気、あるいは水素ガス等の還元ガス雰囲気とする。
【0011】
さらに、電源8を用いて、上側発熱体4と下側発熱体5の間に電圧を印加することにより、上側発熱体4と下側発熱体5を通してモールド3及びモールド3内の粉末1に電流を流し、該電流によって、上側発熱体4及び下側発熱体5のジュール発熱、更には粉末1自身のジュール発熱により、粉末1を高温に加熱する。
【0012】
この状態で、加圧手段6により上側発熱体4を下降させる。この時、下側発熱体5は支持手段7に固定されているため、上側発熱体4と下側発熱体5は接近し、これにより、その間の粉末1は加圧されるが、粉末1は高温に加熱されていて結合し易い状態となっているために、焼結されて加圧焼結体となる。
【0013】
【発明が解決しようとする課題】
上記の通電加熱式加圧焼結装置において、大型の焼結体を製造する要求が生じており、大型の焼結体を製造するためには、装置全体を大型にすると共に、上側発熱体4と下側発熱体5間のプレス荷重も大きくなり、このために、強度上の観点から発熱体4,5の径も大きくしなければならない。
【0014】
ここで、発熱体4,5の径が大きくなると、発熱体4,5による電気抵抗は減少することになる。このために、電源8によって高電圧を作用させても、発熱体4,5による発熱が十分に得られなくなり、よって、粉末1を効率よく昇温することができないという問題が生じる。また、焼結体が大きくなるほど、粉末1の量が多くなるために、粉末1に対する熱の供給が低下することになって、粉末1の加熱に時間が掛かるという問題がある。
【0015】
本発明は、上述の実情に鑑み、大型の焼結体に対応して発熱体の径を大きくした場合にも、発熱体により十分なジュール熱が発生されるようにした通電加熱式加圧焼結装置を提供することを目的とするものである。
【0016】
【課題を解決するための手段】
本発明は、内部に粉末を加圧成形するための成形空間を有するモールドと、モールドの成形空間に上下から嵌合される上側発熱体及び下側発熱体と、モールド及び下側発熱体を支持する支持手段と、上側発熱体に加圧力を与える加圧手段と、加圧手段と支持手段とに接続した電源と、を備えた通電加熱式加圧焼結装置において、前記上側発熱体及び下側発熱体は導電体部と絶縁体部とからなり、加圧手段及び支持手段の電気抵抗以上の電気抵抗を有する前記導電体部を介して粉末に電流が流れるようにしたことを特徴とする通電加熱式加圧焼結装置、に係るものである。
【0017】
上側発熱体及び下側発熱体が、同心的に配された導電体部と絶縁体部とからなる2重構造を有していてもよく、また、上側発熱体と粉末との間及び下側発熱体と粉末との間にスペーサを備えていても良い。
【0018】
上記手段によれば、以下のような作用が得られる。
【0019】
電源のオンにより上側発熱体及び下側発熱体間が通電され、両発熱体に電流が流れる。ここで、両発熱体は、所要の電気抵抗を有する導電体部と絶縁体部とによって構成されているので、発熱体全体の径が大きくても、実際に発熱する導電体部の水平方向断面積は小さく、その分、電気抵抗が大きくなるので、発熱体には十分なジュール熱が発生することになる。
【0020】
この結果、発熱体の径を大きくしてプレス荷重に対する面圧を低く抑えながら、大きな発熱量を得ることができる。
【0021】
上側発熱体と下側発熱体の粉末に対向する面にスペーサを設置すると、発熱体の導電体部からの熱をスペーサよって分散させることができて、粉末を均一に加熱することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0023】
図1は本発明の実施の形態に係る通電加熱式加圧焼結装置の概略構成図であり、図3と同一の構成部分には同一の符号を付して詳細な説明は省略し、本発明の特徴部分についてのみ説明する。
【0024】
図1に示すように、モールド3の成形空間2に嵌合して、粉末1の加圧と加熱を行うようにした上側発熱体9と下側発熱体10を備えている。
【0025】
上側発熱体9及び下側発熱体10は、その軸を中心として内側に所要の電気抵抗を有する導電体部9a,10aを備え、外側に対して同心的に絶縁体部9b,10bを備えた2重構造を有している。
【0026】
更に具体的に述べると、前記上側発熱体9と下側発熱体10は、図1、図2に示すように、筒状に形成された例えばセラミックからなる絶縁体部9b,10bの内部に、所要の電気抵抗を有する円柱状のセミグラファイトからなる導電体部9a,10aを一体に充填固化した構成を有している。又図1、図2とは逆に、絶縁体部9b,10bを内側に、外側に導電体部9a,10aを備えるようにしても良い。
【0027】
また、図1では、前記上側発熱体9と下側発熱体10における粉末1に対向する面には、スペーサ11,12を設置している。
【0028】
以下に上記形態例の作用を説明する。
【0029】
図1、図2に示すように、上側発熱体9及び下側発熱体10は、外側に絶縁体部9b,10bを備え、中心部に導電体部9a,10aを備えた2層構造としているので、大型の焼結体を製造するために、加圧手段6によるプレス荷重を大きくし、また径を大きくした発熱体4,5を用いても、実際に発熱する導電体部9a,10a自体の径は小さく抑えることができ、よって大きな電気抵抗が得られる。その結果、この導電体部9a,10aによって粉末1を速やかに昇温させるに足る十分なジュール熱を得ることができる。
【0030】
ここで、発熱体9,10における発熱量について述べる。
【0031】
仮に、上側発熱体9及び下側発熱体10の両端に電源8が直接接続されて電圧が印加される場合には、図3、図4に示す一般的な発熱体4,5も、図1、図2に示す本実施形態の発熱体9,10も、印加電圧が同じであれば、当然のことながら、総発熱量は変わりがない。
【0032】
しかし実際には、電源8に接続された油圧シリンダによる加圧手段6及び台座ブロックによる支持手段7が、両発熱体9,10と直列に接続されている。従って、発熱体9,10部分の抵抗が大きくなればなるほど、全体を流れる電流iは小さくなり、この結果、i1R1(R1を加圧手段6の抵抗値とする)及びi2R2(R2を支持手段7の抵抗値とする)で表される加圧手段6部分の発熱量と支持手段7部分の発熱量は小さくなる。
【0033】
電源8の印加電圧が等しければ、直列回路全体の総発熱量は同じであるから、加圧手段6と支持手段7の発熱量が小さくなれば、その分、発熱体9,10部分の発熱量が大きくなる。すなわち、図3、図4に示した一般的な発熱体4,5を用いるよりも、本実施形態の発熱体9,10を用いる方が発熱体9,10部分の発熱量を大きくすることができるのである。
【0034】
なお発熱体9,10の導電体部9a,10aは、加圧手段6及び支持手段7以上の電気抵抗を有している必要があり、そのために上記導電体部9a,10aにはセミグラファイト等の材料が用いられる。
【0035】
また、上側発熱体9と下側発熱体10の粉末1に対向する面には、スペーサ11,12を設置しているので、前記導電体部9a,10aによって発生される熱は、スペーサ11,12の伝熱により径方向に分散されて粉末1に伝えられることになり、よって粉末1を均一に加熱することができる。
【0036】
更に、上記スペーサ11,12は、モールド3の成形空間2に密に嵌合する形状を有していて、粉末1が上側発熱体9及び下側発熱体10とモールド3との間に粉末1が侵入するのを防止するようにしており、このために、前記スペーサ11,12は黒鉛にて形成されているモールドと略同等の熱膨張率を有するセミグラファイトによって構成するのが好ましい。
【0037】
前記したような構成において、前述の如く、電源8により加圧手段6と支持手段7との間に電圧を印加すると、加圧手段6、上側発熱体9の導電体部9a、スペーサ11、粉末1、モールド3、スペーサ12、下側発熱体10の導電体部10a、支持手段7という経路で電流が流れる。
【0038】
このとき上述したように、図3、図4に示す一般的な発熱体4,5を使用した場合よりも大きなジュール熱が発熱体9,10で得られるので、粉末1の容積が大きくても十分にこの粉末1を加熱することができる。また、前記発熱体9,10の導電体部9a,10aからの熱がスペーサ11,12によって径方向に分散されることにより、粉末1を均一に加熱することができる。
【0039】
なお、本実施形態では、発熱体9,10の内側に導電体部9a,10aを形成し、外側に絶縁体部9b,10bを形成した場合について例示したが、その逆でもよいし、また2重構造以外に3重、4重構造となっていてもよく、更には導電体部9a,10aが発熱体9,10の軸心からズレた位置に形成されていても良いこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ること、等は勿論である。
【0040】
【発明の効果】
以上説明したように、本発明によれば、上側発熱体及び下側発熱体を、導電体部と絶縁体部とによって構成しているので、発熱体全体の径を大きくしてプレス荷重に対する面圧を抑えつつ、発熱体の抵抗を大きくし発熱量を増加させることができる。従って、大きな加圧焼結体であっても、確実にかつ効率よく生産することが可能な通電加熱式加圧焼結装置を提供することができる。
【0041】
また、上側発熱体と下側発熱体の粉末に対向する面にスペーサを設置すると、発熱体の導電体部からの熱をスペーサよって分散させることができて、粉末を均一に加熱することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る通電加熱式加圧焼結装置の概略構成図である。
【図2】本発明の実施の形態に係る発熱体の斜視図である。
【図3】従来の通電加熱式加圧焼結装置の概略構成図である。
【図4】従来の発熱体の斜視図である。
【符号の説明】
1 粉末
2 成形空間
3 モールド
6 加圧手段
7 支持手段
8 電源
9 上側発熱体
9a,10a 導電体部
9b,10b 絶縁体部
10 下側発熱体
11,12 スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric heating type pressure sintering apparatus. More specifically, the present invention relates to an electric heating type pressure sintering in which the amount of heat generated by a heating element is increased and the temperature of a powder is quickly raised to a target temperature. It relates to the device.
[0002]
[Prior art]
As an apparatus for pressure-sintering metal powder, ceramic powder, etc., there is an electric heating type pressure sintering apparatus.
[0003]
As shown in FIG. 3, a conventional electric heating type pressure sintering apparatus is provided with a cylindrical mold 3 having a molding space 2 for pressure-molding the powder 1 therein. The upper heating element 4 and the lower heating element 5 are fitted in the molding space 2.
[0004]
As the material of the mold 3, graphite or the like, which has high strength at high temperatures and is difficult to adhere the powder 1 or the like, is generally used.
[0005]
On the other hand, the upper heating element 4 and the lower heating element 5 are made of, for example, semi-graphite whose electric resistance is increased by containing impurities in the graphite constituting the mold 3, The heating elements 4 and 5 generally have a cylindrical shape as shown in FIG.
[0006]
Further, a pressurizing means 6 made of a hydraulic cylinder or the like is installed on the upper part of the upper heating element 4, and a supporting means 7 made of a pedestal block for supporting the mold 3 and the lower heating element 5 is provided.
[0007]
The pressurizing means 6 and the support means 7 are both good conductors, and a power source 8 is connected between the pressurizing means 6 and the support means 7. As the power source 8, a commercial power source or a DC power source can be used.
[0008]
Note that at least a portion of the mold 3 is accommodated in a vacuum chamber (not shown).
[0009]
In such a configuration, first, in a state where the lower heating element 5 is inserted into the molding space 2 of the mold 3 from the lower side and the mold 3 and the lower heating element 5 are supported by the support means 7 by the pedestal block, Powder 1 such as ceramic is supplied into the molding space 2 from above. Then, the upper heating element 4 is inserted into the molding space 2 from above.
[0010]
In this state, the inside of the vacuum chamber that surrounds at least the mold 3 portion is set to a vacuum state, an inert gas atmosphere, or a reducing gas atmosphere such as hydrogen gas.
[0011]
Further, by applying a voltage between the upper heating element 4 and the lower heating element 5 using the power source 8, a current is supplied to the mold 3 and the powder 1 in the mold 3 through the upper heating element 4 and the lower heating element 5. The powder 1 is heated to a high temperature by the Joule heating of the upper heating element 4 and the lower heating element 5 and the Joule heating of the powder 1 itself.
[0012]
In this state, the upper heating element 4 is lowered by the pressurizing means 6. At this time, since the lower heating element 5 is fixed to the support means 7, the upper heating element 4 and the lower heating element 5 approach each other, whereby the powder 1 between them is pressurized, but the powder 1 Since it is heated to a high temperature and is in a state of being easily bonded, it is sintered into a pressure sintered body.
[0013]
[Problems to be solved by the invention]
In the above-mentioned current heating type pressure sintering apparatus, there is a demand for manufacturing a large-sized sintered body. To manufacture a large-sized sintered body, the entire apparatus is enlarged and the upper heating element 4 is used. Further, the press load between the lower heating element 5 and the heating element 5 is increased. For this reason, the diameter of the heating elements 4 and 5 must be increased from the viewpoint of strength.
[0014]
Here, when the diameters of the heating elements 4 and 5 are increased, the electrical resistance due to the heating elements 4 and 5 is reduced. For this reason, even if a high voltage is applied by the power supply 8, heat generation by the heat generating elements 4 and 5 cannot be sufficiently obtained, and thus there is a problem that the temperature of the powder 1 cannot be increased efficiently. Moreover, since the quantity of the powder 1 increases as the sintered body becomes larger, the supply of heat to the powder 1 decreases, and there is a problem that it takes time to heat the powder 1.
[0015]
In view of the above circumstances, the present invention is an electric heating type pressure firing in which sufficient heating of Joule heat is generated by a heating element even when the diameter of the heating element is increased corresponding to a large sintered body. The object is to provide a binding device.
[0016]
[Means for Solving the Problems]
The present invention supports a mold having a molding space for pressure-forming powder inside, an upper heating element and a lower heating element fitted from above and below into the molding space of the mold, and the mold and the lower heating element. In the energization heating type pressure sintering apparatus, comprising: a supporting means for applying pressure; a pressing means for applying pressure to the upper heating element; and a power source connected to the pressing means and the supporting means. The side heating element comprises a conductor portion and an insulator portion, and a current flows through the powder through the conductor portion having an electric resistance equal to or higher than that of the pressing means and the supporting means. The present invention relates to an electric heating type pressure sintering apparatus.
[0017]
The upper heating element and the lower heating element may have a double structure consisting of a conductor part and an insulator part arranged concentrically, and between the lower heating element and the lower heating element. A spacer may be provided between the heating element and the powder.
[0018]
According to the above means, the following operation can be obtained.
[0019]
When the power is turned on, the upper heating element and the lower heating element are energized, and a current flows through both heating elements. Here, since both of the heating elements are composed of a conductor part having a required electric resistance and an insulator part, even if the diameter of the entire heating element is large, the conductor part that actually generates heat is cut off in the horizontal direction. Since the area is small and the electrical resistance is correspondingly increased, sufficient Joule heat is generated in the heating element.
[0020]
As a result, a large calorific value can be obtained while increasing the diameter of the heating element to keep the surface pressure against the press load low.
[0021]
If a spacer is provided on the surface of the upper heating element and the lower heating element facing the powder, the heat from the conductor portion of the heating element can be dispersed by the spacer, and the powder can be heated uniformly.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a schematic configuration diagram of an electric heating type pressure sintering apparatus according to an embodiment of the present invention. The same components as those in FIG. Only the features of the invention will be described.
[0024]
As shown in FIG. 1, an upper heating element 9 and a lower heating element 10 which are fitted in the molding space 2 of the mold 3 and pressurize and heat the powder 1 are provided.
[0025]
The upper heating element 9 and the lower heating element 10 are provided with conductor portions 9a and 10a having required electric resistance on the inner side with the axis as the center, and with insulator portions 9b and 10b concentrically with respect to the outer side. Has a double structure.
[0026]
More specifically, as shown in FIGS. 1 and 2, the upper heating element 9 and the lower heating element 10 are provided inside the insulating portions 9b and 10b made of, for example, ceramic, which are formed in a cylindrical shape. It has a configuration in which conductor portions 9a and 10a made of cylindrical semi-graphite having a required electric resistance are filled and solidified integrally. In contrast to FIGS. 1 and 2, the insulator portions 9b and 10b may be provided inside and the conductor portions 9a and 10a provided outside.
[0027]
In FIG. 1, spacers 11 and 12 are provided on the surfaces of the upper heating element 9 and the lower heating element 10 facing the powder 1.
[0028]
The operation of the above embodiment will be described below.
[0029]
As shown in FIGS. 1 and 2, the upper heating element 9 and the lower heating element 10 have a two-layer structure including insulator portions 9 b and 10 b on the outside and conductor portions 9 a and 10 a at the center. Therefore, in order to manufacture a large-sized sintered body, the conductor portions 9a and 10a themselves that actually generate heat even when the heating elements 4 and 5 having a large diameter and a large pressing load by the pressing means 6 are used. The diameter can be kept small, so that a large electric resistance is obtained. As a result, sufficient Joule heat sufficient to quickly raise the temperature of the powder 1 can be obtained by the conductor portions 9a and 10a.
[0030]
Here, the heat generation amount in the heating elements 9 and 10 will be described.
[0031]
If the power supply 8 is directly connected to both ends of the upper heating element 9 and the lower heating element 10 and a voltage is applied, the general heating elements 4 and 5 shown in FIGS. The heating elements 9 and 10 of the present embodiment shown in FIG. 2 also have the same total heat generation as long as the applied voltage is the same.
[0032]
However, in actuality, a pressurizing means 6 by a hydraulic cylinder connected to a power source 8 and a support means 7 by a pedestal block are connected in series with both heating elements 9 and 10. Therefore, as the resistance of the heating elements 9 and 10 increases, the current i flowing through the whole decreases, and as a result, i1R1 (R1 is the resistance value of the pressurizing means 6) and i2R2 (R2 is the support means 7). The heating value of the pressurizing means 6 portion and the heating value of the support means 7 portion expressed by
[0033]
If the applied voltage of the power source 8 is equal, the total heat generation amount of the entire series circuit is the same. Therefore, if the heat generation amounts of the pressurizing means 6 and the support means 7 are reduced, the heat generation amounts of the heating elements 9 and 10 are correspondingly reduced. Becomes larger. That is, it is possible to increase the amount of heat generated by the heating elements 9 and 10 by using the heating elements 9 and 10 of this embodiment, rather than using the general heating elements 4 and 5 shown in FIGS. It can be done.
[0034]
Note that the conductor portions 9a and 10a of the heating elements 9 and 10 need to have an electrical resistance higher than that of the pressurizing means 6 and the support means 7, and therefore the conductor portions 9a and 10a have semi-graphite or the like. These materials are used.
[0035]
Further, since the spacers 11 and 12 are provided on the surfaces of the upper heating element 9 and the lower heating element 10 facing the powder 1, the heat generated by the conductor portions 9 a and 10 a 12 is dispersed in the radial direction by the heat transfer of 12 and transmitted to the powder 1, so that the powder 1 can be heated uniformly.
[0036]
Furthermore, the spacers 11 and 12 have a shape that closely fits in the molding space 2 of the mold 3, and the powder 1 is between the upper heating element 9 and the lower heating element 10 and the mold 3. Therefore, the spacers 11 and 12 are preferably made of semi-graphite having a thermal expansion coefficient substantially equal to that of a mold made of graphite.
[0037]
In the configuration as described above, when a voltage is applied between the pressurizing means 6 and the support means 7 by the power source 8 as described above, the pressurizing means 6, the conductor portion 9a of the upper heating element 9, the spacer 11, the powder 1, current flows through a path of the mold 3, the spacer 12, the conductor portion 10 a of the lower heating element 10, and the support means 7.
[0038]
At this time, as described above, since Joule heat larger than that obtained when the general heating elements 4 and 5 shown in FIGS. 3 and 4 are used is obtained by the heating elements 9 and 10, even if the volume of the powder 1 is large. The powder 1 can be heated sufficiently. Further, the heat from the conductor portions 9a, 10a of the heating elements 9, 10 is dispersed in the radial direction by the spacers 11, 12, so that the powder 1 can be heated uniformly.
[0039]
In the present embodiment, the case where the conductor portions 9a and 10a are formed inside the heat generating members 9 and 10 and the insulator portions 9b and 10b are formed outside is illustrated. In addition to the heavy structure, a triple or quadruple structure may be used, and further, the conductor portions 9a and 10a may be formed at positions shifted from the axial centers of the heating elements 9 and 10, and the present invention. Of course, various changes can be made without departing from the scope of the present invention.
[0040]
【The invention's effect】
As described above, according to the present invention, the upper heating element and the lower heating element are constituted by the conductor part and the insulator part. While suppressing the pressure, the resistance of the heating element can be increased and the amount of heat generation can be increased. Therefore, it is possible to provide an electric heating type pressure sintering apparatus that can reliably and efficiently produce even a large pressure sintered body.
[0041]
Further, when a spacer is provided on the surface of the upper heating element and the lower heating element facing the powder, the heat from the conductor portion of the heating element can be dispersed by the spacer, and the powder can be heated uniformly. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electric heating type pressure sintering apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view of a heating element according to the embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a conventional electric heating type pressure sintering apparatus.
FIG. 4 is a perspective view of a conventional heating element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder 2 Molding space 3 Mold 6 Pressurization means 7 Support means 8 Power supply 9 Upper heating element 9a, 10a Conductor part 9b, 10b Insulator part 10 Lower heating element 11, 12 Spacer

Claims (3)

内部に粉末を加圧成形するための成形空間を有するモールドと、モールドの成形空間に上下から嵌合される上側発熱体及び下側発熱体と、モールド及び下側発熱体を支持する支持手段と、上側発熱体に加圧力を与える加圧手段と、加圧手段と支持手段とに接続した電源と、を備えた通電加熱式加圧焼結装置において、前記上側発熱体及び下側発熱体は導電体部と絶縁体部とからなり、加圧手段及び支持手段の電気抵抗以上の電気抵抗を有する前記導電体部を介して粉末に電流が流れるようにしたことを特徴とする通電加熱式加圧焼結装置。A mold having a molding space for pressure-molding powder therein, an upper heating element and a lower heating element fitted from above and below in the molding space of the mold, and a support means for supporting the mold and the lower heating element In the energization heating type pressure sintering apparatus comprising a pressurizing means for applying pressure to the upper heating element, and a power source connected to the pressing means and the supporting means, the upper heating element and the lower heating element are An electric heating type heating device characterized in that an electric current flows in the powder through the electric conductor part which has an electric resistance equal to or higher than the electric resistance of the pressurizing means and the supporting means. Pressure sintering equipment. 上側発熱体及び下側発熱体が、同心的に配された導電体部と絶縁体部とからなる2重構造を有していることを特徴とする請求項1記載の通電加熱式加圧焼結装置。2. The energization heating type pressure firing according to claim 1, wherein the upper heating element and the lower heating element have a double structure comprising a conductor portion and an insulator portion arranged concentrically. Bonding device. 上側発熱体と粉末との間及び下側発熱体と粉末との間にスペーサを備えていることを特徴とする請求項1又は2記載の通電加熱式加圧焼結装置。The electric heating type pressure sintering apparatus according to claim 1 or 2, further comprising a spacer between the upper heating element and the powder and between the lower heating element and the powder.
JP23419798A 1998-08-20 1998-08-20 Electric heating type pressure sintering equipment Expired - Fee Related JP3870571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23419798A JP3870571B2 (en) 1998-08-20 1998-08-20 Electric heating type pressure sintering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23419798A JP3870571B2 (en) 1998-08-20 1998-08-20 Electric heating type pressure sintering equipment

Publications (2)

Publication Number Publication Date
JP2000063906A JP2000063906A (en) 2000-02-29
JP3870571B2 true JP3870571B2 (en) 2007-01-17

Family

ID=16967217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23419798A Expired - Fee Related JP3870571B2 (en) 1998-08-20 1998-08-20 Electric heating type pressure sintering equipment

Country Status (1)

Country Link
JP (1) JP3870571B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499983B1 (en) * 2008-12-18 2015-03-09 엘지이노텍 주식회사 Mold apparatus and method of fabricating sintering body
JP6447395B2 (en) * 2015-07-09 2019-01-09 トヨタ自動車株式会社 Forging method
FR3058340B1 (en) * 2016-11-07 2019-01-25 Sorbonne Universite PULSE CURVING SINK DEVICE AND ASSOCIATED METHOD
KR101874799B1 (en) 2017-05-08 2018-07-05 (주)태린 Metal mesh filter forming apparatus with multi mold

Also Published As

Publication number Publication date
JP2000063906A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP4421595B2 (en) Heating device
US20020185487A1 (en) Ceramic heater with heater element and method for use thereof
JP2003133195A (en) Heater
JP4028149B2 (en) Heating device
KR102094212B1 (en) Ceramic Member
JP2017119593A (en) Ceramic member
JP3870571B2 (en) Electric heating type pressure sintering equipment
JP4482535B2 (en) Heating device
JP4168521B2 (en) Electric heating type pressure sintering equipment
KR101955962B1 (en) Heater
JP2018504736A (en) Thick film heating element with high thermal conductivity on both sides
KR102024680B1 (en) Sintering apparatus for selectively applyung electric current
JP3835008B2 (en) Electric heating type pressure sintering equipment
US5883361A (en) Diffusion bonding furnace having a novel press arrangement
JP2014099431A (en) Composite ptc thermistor member
JP2001332525A (en) Ceramic heater
US1234973A (en) Electrical heating apparatus and process of making the same.
JP2003113405A (en) Sintering device with electrification and pressurization
CN2792075Y (en) Carbon fiber electric heating element
JP4123536B2 (en) Electric heating type pressure sintering apparatus and method of using the same
WO1991001474A1 (en) Oxidizing atmosphere hot isotropic press
JPS5932569Y2 (en) sintering equipment
JPH09227232A (en) Graphitization method for carbonaceous molding
JP2739136B2 (en) Carbon electrode for resistance welding
JP3491937B2 (en) Rapid heating method of sample under pressure, diamond growth method using this rapid heating method and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees