JP4166960B2 - Soundproof insulation and method for producing the same - Google Patents

Soundproof insulation and method for producing the same Download PDF

Info

Publication number
JP4166960B2
JP4166960B2 JP2001099579A JP2001099579A JP4166960B2 JP 4166960 B2 JP4166960 B2 JP 4166960B2 JP 2001099579 A JP2001099579 A JP 2001099579A JP 2001099579 A JP2001099579 A JP 2001099579A JP 4166960 B2 JP4166960 B2 JP 4166960B2
Authority
JP
Japan
Prior art keywords
heat
mineral
coating layer
scaly
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001099579A
Other languages
Japanese (ja)
Other versions
JP2002292795A5 (en
JP2002292795A (en
Inventor
英明 真殿
真文 田中
弘 真壁
一人 福原
謙二 玉置
修次 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2001099579A priority Critical patent/JP4166960B2/en
Priority to US10/108,094 priority patent/US20020168492A1/en
Priority to EP02007082A priority patent/EP1245718A3/en
Publication of JP2002292795A publication Critical patent/JP2002292795A/en
Publication of JP2002292795A5 publication Critical patent/JP2002292795A5/ja
Application granted granted Critical
Publication of JP4166960B2 publication Critical patent/JP4166960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Thermal Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、防音断熱材に関し、詳しくは主成分が耐熱繊維からなる基材の表面に鱗片状鉱物の被覆層を形成してなる防音断熱材およびその製造方法に関する。
【0002】
【従来の技術】
従来、自動車等のエンジン周りに用いられるエンジンカバーや、エキゾーストマニホールドカバー等の内面には、エンジンやエキゾーストマニホールドからの熱や音や振動を遮蔽、吸収するために防音断熱材が貼付されている。かかる防音断熱材としては、無機繊維などの耐熱繊維を、シリカクロスで外装したもの、金属繊維織物で外装したもの、穴あき鋼板で外装したもの、アルミ箔やアルミガラスクロスで外装したもの、あるいはポリエチレン織物またはポリプロピレン織物等で外装したものが使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の防音断熱材は、中でもシリカクロスで外装したもの、金属繊維織物で外装したもの等は素材が著しく高価である。また、アルミ箔やアルミガラスクロスで外装したもの、あるいはポリエチレン織物またはポリプロピレン織物等で外装したものは、耐熱性が不十分であり、高温環境となる場合は使用することが出来ない。また、エンジンの周りやエキゾーストマニホールド周りの用に高温環境下に配置される場合、基材を構成する耐熱繊維は長期間使用するにつれて熱により劣化して微粉化する傾向があるが、金属繊維織物で外装したもの、穴あき鋼板で外装したものは表面に大きな穿孔または間隙を有しているため、振動によりにより微粉化物がそれらの外装材料を経て飛散して種々のトラブルの原因となるなどの欠点を有する。
【0004】
【課題を解決するための手段】
本発明の防音断熱材は、鱗片状鉱物の水性ディスパージョンを塗布して得られる20g/m 〜300g/m 鱗片状鉱物被覆層を耐熱繊維製基材の表面に形成してなり、該防音断熱材の製造方法は、耐熱繊維製基材の表面に鱗片状鉱物の水性ディスパージョンを塗布し、乾燥して20g/m 〜300g/m 鱗片状鉱物被覆層を形成する。
【0005】
【発明の実施の形態】
本発明は、前記の課題を解決するため、鋭意検討した結果、無機繊維等の耐熱繊維を主成分とする基材の表面に鱗片状鉱物の水性ディスパージョンを塗布し、乾燥して形成される被覆層が意外にも基材表面に強固に密着し、かつ、その被覆層が微細繊維の通過を遮断しうることを見い出し、完成されたものであり、すなわち、 本発明において使用される基材層は、主成分として耐熱性繊維からなる防音性材料であり、通常、織布、不織布、マット状などのシート状、あるいは、不定形の立体形状を有する。上記の耐熱性繊維としては、特に限定されるものではないが、例えば、ロックウール、ガラス繊維、シリカ繊維、シリカアルミナ繊維、セラミック繊維、アルミナ繊維などの無機繊維、および、芳香族ポリアミド、ポリイミド、ポリベンズイミダゾール、シリコーン、金属キレート重合体等の耐熱性有機繊維が挙げられるが、本発明は中でも加熱環境において使用した場合に微粉化しやすい無機繊維を使用した場合に効果が顕著である。
【0006】
前記の基材表面に形成される被覆層に使用される鱗片状鉱物としては、例えば、マイカ、セリサイト、バーミキュライト等が挙げられる。中でもバーミキュライトがより好ましい。上記のバーミキュライトは、通常結晶水を含むが、結晶水を含む物は高温に曝される場合、被覆層が変形または崩壊しやすいため、例えば600〜900℃で焼成たものがさらに好ましい。なお、この被覆層および必要によりさらにその上に被覆される層には可燃性或いは耐熱性が乏しい素材は可能な限り使用しないのが好ましい。
【0007】
上記の鱗片状鉱物被覆層の厚さは、固形分換算で20g/m2以上、好ましくは50g/m2以上とされる。厚さが薄すぎる場合は被覆層としての強度が十分でなく、微粉化繊維の飛散を十分に遮蔽出来ない。また、厚さの上限は、コストの割には微粉化繊維の遮断効果が向上しないため、300g/m2以上は実用的でなく、実用的には200g/m2以下で十分である。
【0008】
上記の鱗片状鉱物被覆層が基材層の表面に形成される部分は、それを含む防音断熱材が使用される形態により適宜決定され、通常、基材の片側全表面または表裏の両全面とされるが、必要により基材の側面にも形成することが出来る。防音断熱材の使用形態によっては、外部空間に露出しない表面部分には形成を省略することも出来る。
【0009】
以下、本願発明の防音断熱材を製造する方法を説明する。
前記の基材層の表面に鱗片状鉱物を含む被覆層を形成する方法は、特に限定されないが、例えば、前記の鱗片状鉱物を水中に分散させて水性ディスパージョンとしたものを基材層表面に塗布し、その後、乾燥させることにより行うことが出来る。
【0010】
上記の水性ディスパージョンは、水中に主成分として鱗片状鉱物(例えば、バーミキュライト鱗片)を分散させることにより調製することが出来る。上記の水性ディスパージョンとしては、通常、固形分が5〜30重量%の濃度のものが好適に使用される。固形分が5重量%未満であると十分な厚みのバーミキュライト層を被覆することが困難であり、逆に固形分が30重量%を超えるとディスパージョンの粘度が高くなって塗布時に伸び難くなる。
【0011】
上記の水性ディスパージョン調製に際して、必要により分散剤、造粘剤などの助剤を併用することが出来る。これらの助剤としてはそれぞれ公知のものから適宜選択して使用することが出来が、具体的には、上記の分散剤としては例えばリグニンスルホン酸、オキシ有機酸塩、アルキルアリルスルホン酸塩、ポリオキシエチレンアルキルアリルエーテル、ポリオール複合塩、高級多価アルコールスルホン酸塩などを主成分とする物ものが挙げられる。上記の造粘剤としては例えばメチルセルロース、デンプンなどがあげられる。しかし、これらの助剤の使用量は、耐熱性などの観点から最少量とし、例えば、固形分換算で3重量%以下が望ましい。多すぎる場合は、耐熱性が低下したり、助剤が基材部分の空隙を塞ぎ基材による吸音効果を低下させ、また、発煙、発臭の原因ともなる。
【0012】
上記の水性ディスパージョンの塗布方法としては、刷毛、スプレー、ロールコーターを使用する方法、またはディッピング、シャワー方式などの方法など、公知の方法を用いることが出来る。基材を予め他の物品表面に耐熱性接着剤などを使用して接着した後、個別に基材の表面及び側面などの露出表面に塗布する場合は、刷毛による方法、スプレーによる方法などの塗布方法が実用的である。なお、上記の耐熱性接着剤としては、特に限定するものではないが、アクリル系接着剤、シリコーン系接着剤、シリカ系接着剤等を挙げることが出来る。
【0013】
また、上記の水性ディスパージョンの塗布量は、目的とする飛散防止効果の程度により適宜決定されるが、前記のように、通常、固形分換算で20g/mm2以上になるように管理される。塗布量の上限は特に限定する必要はないが、コストの観点から300g/m2以上は必要が無く、実用的な塗布量としては固形分換算で50〜200g/m2で十分である。
【0014】
上記の水性ディスパージョン塗布層は、乾燥させることによって鱗片状鉱物(バーミキュライト等)の被覆層となり、基材の表面に強固に密着して基材表面を被覆する。上記の乾燥する方法は特に限定されないが、通常、温度140〜200°Cの熱風条件下又は静置条件下で、30分〜90分程度で乾燥することができる。
【0015】
以下に実施例により、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0016】
実施例1
市販のバーミキュライト(0号、ニチアス株式会社製)を800°Cで1時間焼成して結晶水を除去した後、その150gを蒸留水1リットルに投入し、均一に分散して固形分13重量%のバーミキュライトの水性ディスパージョンを調製した。
別にシリカアルミナ繊維から成る厚さ6mm、平均嵩密度:0.13g/cm3のマット状基材(ファインフレックス1300ブランケット、ニチアス株式会社製)から100mm×200mmの大きさのシートを切り出して基材1とし、その両表面および四周の側面に上記の焼成済みバーミキュライトの水性ディスパージョンを、刷毛を使用して乾燥後のバーミキュライト層が厚さ100g/m2となるように塗布した。その後、オーブン中160°Cで1時間加熱して乾燥して被覆層2を形成して、本発明の防音断熱材を得た。同様にして防音断熱材を30枚製造した。 得られた防音断熱材について断熱性能、耐熱性能、騒音減衰特性、制振性、耐飛散性を測定し、その結果を表1に示した。
【0017】
なお、上記の各性能の測定は以下に示す方法によった。
断熱性能: あらかじめ、試験片の防音断熱材の片面上にシリカ系接着剤を使用して0.6mm厚のアルスター鋼板を接着する。ニクロム線ヒーター熱源から30mm離れ、雰囲気温度800°Cの位置に、上記試験片をそのアルスター鋼板が接着されていないバーミキュライト被覆層面に対して前記熱源が垂直位置となるように置き、その1時間後のアルスター鋼板上の温度を測定する。
【0018】
耐熱性能: 電気炉を使用して、600°C、8時間の条件で熱処理を行い、熱処理後の試験体の引張り強度を測定する。
【0019】
騒音減衰特性: 0.6mm厚のアルスター鋼板製の長さ300mm、曲率半径100mmの半円筒型容器の内側全面に防音断熱材を貼り付けて円曲面を上方に向け、容器の円筒部分の上方100mmの位置にマイクを向けて設置し、上記の半円筒型容器を長さ方向に1000Hzから4000Hzの間の周波数で振動させて発生する騒音を上記のマイクで拾って騒音特性(db)を測定し、その平均値を求め、下記の式により騒音減衰特性を算出する。
騒音減衰特性(db)=騒音特性(db、防音断熱材あり)
−騒音特性(db、防音断熱材なし)
【0020】
制振性: 0.6mm厚、240mm×15mmのアルスター鋼板と240mm×15mmの防音断熱材をシリカ系接着剤で貼り付け、次に説明する機械インピーダンス法により、JIS G0602に準拠し、−20℃〜100℃の温度範囲で1000Hzにおける制振性能を測定する。
【0021】
機械インピーダンス法
矩形の試料の中央部にインピーダンスヘッドを装着し、これをランダム信号で加振し、得られた加速度及び力の応答を高速フーリエ変換し、周波数応答関数を求める。1000Hzの共振周波数に対するインピーダンスのピークから3db下がったところの周波数幅(半置幅)を共振周波数で除した値を損失係数とする。
【0022】
耐飛散性: 吸音特性で用いた試験体を600°C、8時間焼成したものを振動試験機に組み付け、20G,100Hz、1000万回という条件で加振試験を行い、加振試験前後での重量変化率(減量、重量%)を測定する。
【0023】
比較例1
実施例1において使用したシリカアルミナ繊維のマット状基材を使用し、バーミキュライト被覆層を形成しない他は実施例1と同様にして、断熱性能、耐熱性能、吸音特性、制振性、耐飛散性を測定し、その結果を表1に示した。
【0024】
比較例2
実施例1において使用したシリカアルミナ繊維のマット状基材の表面に、バーミキュライトを含む層を被覆しない代わりに、線径が0.18mm、網目が50メッシュの金属製織網によって被包した防音断熱材を製造した以外は、実施例1と同様にして断熱性能、耐熱性能、吸音特性、制振性、耐飛散性を測定し、その結果を表1に示した。
【0025】
実施例2
本実施例は自動車のエキゾーストマニホールド用カバーの内側面に本発明の防音断熱材を被覆形成する方法を示したものである。以下図2を参照して説明する。
図1のエキゾーストマニホールド用カバー5の内側全表面にシリカ系接着剤4を塗布し、その後、実施例1で使用したものと同じシリカアルミナ繊維のマット状基材1をカバーの内側に密着するように貼り付けた。その後、そのシリカアルミナ繊維基材の露出表面に実施例1において調製した焼成済みバーミキュライトの水性ディスパージョンを、刷毛を使用して固形分重量が100g/m2となるように塗布し、ついで150℃の熱風により1時間乾燥してバーミキュライト被覆層2を形成させた。かくして得られた上記のマット状基材1とバーミキュライト被覆層2とからなる本発明の防音断熱材3のバーミキュライト被覆層2の厚さは0.12mmであった。
【0026】
【表1】

Figure 0004166960
【0027】
【発明の効果】
本発明の防音断熱材は、使用する材料が比較的安価であり、製造工程が比較的簡易であるため低コストで製造が可能である。そして、その被覆層が鱗片状鉱物の多層構造を形成しているために、耐飛散性が著しく改善されて、長期間使用する間に基材を構成する耐熱繊維が劣化して微粉化繊維が発生した場合でも、微粉化繊維が被覆層を通過して外部に飛散することがない。また、防音断熱材を構成する基材層が主として耐熱繊維から成る織布、不織布またはマット等からなり、しかも上記被膜層を形成する鱗片状鉱物が基材層には実質的に浸透していないため基材層内の空隙を塞ぐことがなく、優れた騒音減衰特性(防音性)を維持している。
【0028】
また、さらにエキゾーストマニホ−ルド用カバー等本発明の防音断熱材を接着して使用する物品が凹凸など複雑な形状を有する部位を含む場合には、予め当該複雑な形状に合わせて耐熱性接着剤を用いて基材のみを物品表面に接着した後、その基材表面に鱗片状鉱物被覆層を形成することにより、被覆層の折損部分がなく微粉化繊維が発生した場合でも微粉化繊維が被覆層を通過して外部に飛散することがない防音断熱材層を形成することが出来る。
【0029】
【図面の簡単な説明】
【図1】実施例1において製造された防音断熱材の横断面を示す図である。
【図2】実施例2において実施された自動車のエキゾーストマニホールドのカバーに本発明の防音断熱材を積層した部品の断面を示す。
【符号の説明】
1 基材
2 鱗片状鉱物被覆層
3 防音断熱材
4 接着剤層
5 カバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soundproofing heat insulating material, and more particularly to a soundproofing heat insulating material formed by forming a scaly mineral coating layer on the surface of a base material composed mainly of heat-resistant fibers and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, sound insulation and heat insulating materials have been attached to the inner surfaces of engine covers and exhaust manifold covers used around engines of automobiles and the like in order to shield and absorb heat, sound and vibration from the engine and exhaust manifold. As such a sound insulation material, heat-resistant fibers such as inorganic fibers are coated with silica cloth, coated with metal fiber fabric, coated with perforated steel sheet, coated with aluminum foil or aluminum glass cloth, or What was covered with a polyethylene fabric or a polypropylene fabric is used.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned soundproofing and heat insulating materials are particularly expensive in materials such as those coated with silica cloth and those coated with a metal fiber fabric. In addition, the one covered with aluminum foil or aluminum glass cloth, or one covered with polyethylene woven fabric or polypropylene woven fabric has insufficient heat resistance and cannot be used in a high temperature environment. Also, when placed in a high-temperature environment around the engine or around the exhaust manifold, the heat-resistant fibers that make up the base material tend to deteriorate and become fine powder due to heat as they are used for a long period of time. Since the ones covered with pierced steel and the ones covered with perforated steel sheets have large perforations or gaps on the surface, finely divided products are scattered through the outer packaging materials due to vibration, causing various troubles, etc. Has drawbacks.
[0004]
[Means for Solving the Problems]
Soundproof insulation material of the invention will form a scaly mineral coating layer of 20g / m 2 ~300g / m 2 obtained by coating an aqueous dispersion of the scaly mineral to the surface of the heat-resistant textile substrates, method for producing-proof sound insulation, the aqueous dispersion of the scaly mineral is applied to the surface of the heat-resistant textile base material and dried to form a scaly mineral coating layer of 20g / m 2 ~300g / m 2 .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present invention is formed by applying an aqueous dispersion of scaly minerals to the surface of a base material mainly composed of heat-resistant fibers such as inorganic fibers, and then drying. The coating layer is unexpectedly firmly adhered to the substrate surface, and the coating layer is found to be capable of blocking the passage of fine fibers, that is, completed, that is, the substrate used in the present invention. The layer is a soundproof material composed of heat-resistant fibers as a main component, and usually has a sheet shape such as a woven fabric, a non-woven fabric, or a mat shape, or an irregular three-dimensional shape. The heat-resistant fiber is not particularly limited. For example, inorganic fibers such as rock wool, glass fiber, silica fiber, silica alumina fiber, ceramic fiber, and alumina fiber, and aromatic polyamide, polyimide, Examples include heat-resistant organic fibers such as polybenzimidazole, silicone, and metal chelate polymers, but the present invention is particularly effective when inorganic fibers that are easily pulverized when used in a heating environment are used.
[0006]
Examples of the scaly mineral used for the coating layer formed on the surface of the substrate include mica, sericite, vermiculite, and the like. Of these, vermiculite is more preferable. The above vermiculite usually contains crystal water, but when the object containing crystal water is exposed to a high temperature, the coating layer is easily deformed or collapsed. In addition, it is preferable not to use a material having poor flammability or heat resistance as much as possible for this coating layer and, if necessary, a layer coated thereon.
[0007]
The thickness of the scale-like mineral coating layer is 20 g / m 2 or more, preferably 50 g / m 2 or more in terms of solid content. When the thickness is too thin, the strength as the coating layer is not sufficient, and the scattering of the finely divided fibers cannot be sufficiently shielded. Further, the upper limit of the thickness is not practical because 300 g / m 2 or more is not practical, and practically 200 g / m 2 or less is sufficient because the shielding effect of the finely divided fiber is not improved for the cost.
[0008]
The portion where the scale-like mineral coating layer is formed on the surface of the base material layer is appropriately determined depending on the form in which the soundproofing heat insulating material including the surface is used. However, it can also be formed on the side surface of the substrate if necessary. Depending on the usage form of the soundproofing heat insulating material, the formation on the surface portion not exposed to the external space can be omitted.
[0009]
Hereinafter, a method for producing the soundproof heat insulating material of the present invention will be described.
The method for forming the coating layer containing the flaky mineral on the surface of the base material layer is not particularly limited. For example, the surface of the base material layer is obtained by dispersing the flaky mineral in water to obtain an aqueous dispersion. It can be performed by applying to the substrate and then drying.
[0010]
The aqueous dispersion can be prepared by dispersing a scale-like mineral (for example, vermiculite scale) as a main component in water. As the aqueous dispersion, those having a solid content of 5 to 30% by weight are preferably used. If the solid content is less than 5% by weight, it is difficult to coat a sufficiently thick vermiculite layer. Conversely, if the solid content exceeds 30% by weight, the viscosity of the dispersion becomes high and it is difficult to extend during coating.
[0011]
In preparing the above aqueous dispersion, auxiliary agents such as a dispersant and a thickening agent can be used in combination as necessary. These auxiliaries can be appropriately selected from known ones. Specifically, examples of the dispersant include lignin sulfonic acid, oxyorganic acid salt, alkylallyl sulfonic acid salt, The thing which has oxyethylene alkyl allyl ether, a polyol composite salt, a higher polyhydric alcohol sulfonate, etc. as a main component is mentioned. Examples of the thickener include methyl cellulose and starch. However, the amount of these auxiliaries used is the minimum from the viewpoint of heat resistance, for example, 3% by weight or less in terms of solid content is desirable. When the amount is too large, the heat resistance is lowered, and the auxiliary agent closes the gaps in the base material portion to reduce the sound absorption effect by the base material, and also causes smoke and odor generation.
[0012]
As a method for applying the aqueous dispersion, a known method such as a method using a brush, a spray or a roll coater or a method such as dipping or a shower method can be used. When the base material is previously bonded to the surface of another article using a heat-resistant adhesive or the like, and then individually applied to the exposed surface such as the surface and side surface of the base material, application by brush method, spray method, etc. The method is practical. In addition, although it does not specifically limit as said heat resistant adhesive, An acrylic adhesive, a silicone type adhesive agent, a silica type adhesive agent etc. can be mentioned.
[0013]
Further, the coating amount of the above-mentioned aqueous dispersion is appropriately determined depending on the target degree of scattering prevention effect, but as described above, it is usually controlled so as to be 20 g / mm 2 or more in terms of solid content. . The upper limit of the coating amount is not particularly limited, but 300 g / m 2 or more is not necessary from the viewpoint of cost, and a practical coating amount of 50 to 200 g / m 2 is sufficient in terms of solid content.
[0014]
The aqueous dispersion coating layer becomes a coating layer of scaly mineral (such as vermiculite) by drying, and adheres firmly to the surface of the substrate to cover the surface of the substrate. Although the drying method is not particularly limited, the drying can be usually performed in about 30 minutes to 90 minutes under hot air conditions of 140 to 200 ° C. or standing conditions.
[0015]
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.
[0016]
Example 1
After commercially available vermiculite (No. 0, manufactured by Nichias Co., Ltd.) was baked at 800 ° C. for 1 hour to remove crystal water, 150 g of the solution was poured into 1 liter of distilled water and uniformly dispersed to obtain a solid content of 13% by weight. An aqueous dispersion of vermiculite was prepared.
Separately, a sheet having a size of 100 mm × 200 mm was cut out from a mat-like substrate (fine flex 1300 blanket, manufactured by NICHIAS Corporation) having a thickness of 6 mm and an average bulk density of 0.13 g / cm 3 made of silica alumina fibers. The above-mentioned aqueous dispersion of baked vermiculite was applied to both surfaces and the sides of the four sides using a brush so that the vermiculite layer after drying had a thickness of 100 g / m 2 . Thereafter, the coating layer 2 was formed by heating in an oven at 160 ° C. for 1 hour and drying to obtain a soundproof heat insulating material of the present invention. Similarly, 30 soundproofing heat insulating materials were produced. The obtained sound insulation material was measured for heat insulation performance, heat resistance performance, noise attenuation characteristics, vibration damping properties, and scattering resistance, and the results are shown in Table 1.
[0017]
The above performances were measured by the following methods.
Thermal insulation performance: An Alster steel sheet having a thickness of 0.6 mm is bonded in advance on one side of the soundproofing thermal insulation material of the test piece using a silica-based adhesive. Place the test piece 30 mm away from the nichrome wire heater heat source at an ambient temperature of 800 ° C. so that the heat source is in a vertical position with respect to the vermiculite coating layer surface to which the Alster steel plate is not bonded, and 1 hour later. Measure the temperature on the Ulster steel plate.
[0018]
Heat resistance performance: Using an electric furnace, heat treatment is performed at 600 ° C for 8 hours, and the tensile strength of the test specimen after heat treatment is measured.
[0019]
Noise attenuation characteristics: A 300mm long Alster steel plate with a length of 300mm and a radius of curvature of 100mm. A soundproof heat insulating material is attached to the entire inner surface of the container, with the circular curved surface facing upward, and 100mm above the cylindrical part of the container. Place the microphone at the position of, and measure the noise characteristics (db) by picking up the noise generated by vibrating the semi-cylindrical container in the length direction at a frequency between 1000 Hz and 4000 Hz. The average value is obtained, and the noise attenuation characteristic is calculated by the following formula.
Noise attenuation characteristics (db) = noise characteristics (db, with soundproofing insulation)
-Noise characteristics (db, no sound insulation)
[0020]
Damping property: 0.6 mm thick, 240 mm × 15 mm Alster steel plate and 240 mm × 15 mm soundproofing heat insulating material are pasted with a silica-based adhesive, and -20 ° C. in accordance with JIS G0602 by the mechanical impedance method described below. The vibration damping performance at 1000 Hz is measured in a temperature range of ˜100 ° C.
[0021]
The impedance head is attached to the center of the rectangular sample of the mechanical impedance method, and this is vibrated with a random signal, and the obtained acceleration and force responses are fast Fourier transformed to obtain a frequency response function. A loss coefficient is a value obtained by dividing the frequency width (half width) at 3 dB from the impedance peak with respect to the resonance frequency of 1000 Hz by the resonance frequency.
[0022]
Scatter resistance: A specimen used for sound absorption characteristics that was baked at 600 ° C for 8 hours was assembled in a vibration tester, and subjected to a vibration test under the conditions of 20 G, 100 Hz, 10 million times, before and after the vibration test. Measure the rate of weight change (weight loss, weight%).
[0023]
Comparative Example 1
Insulation performance, heat resistance, sound absorption characteristics, vibration damping, and scattering resistance are the same as in Example 1 except that the silica-alumina fiber mat-shaped substrate used in Example 1 is used and no vermiculite coating layer is formed. The results are shown in Table 1.
[0024]
Comparative Example 2
The surface of the silica-alumina fiber mat-like substrate used in Example 1 was covered with a metal woven mesh having a wire diameter of 0.18 mm and a mesh of 50 mesh, instead of coating a layer containing vermiculite. Except for manufacturing, the heat insulation performance, heat resistance performance, sound absorption characteristics, vibration damping, and scattering resistance were measured in the same manner as in Example 1, and the results are shown in Table 1.
[0025]
Example 2
This embodiment shows a method for coating the inner surface of an exhaust manifold cover of an automobile with the soundproofing and heat insulating material of the present invention. This will be described below with reference to FIG.
The silica-based adhesive 4 is applied to the entire inner surface of the exhaust manifold cover 5 in FIG. 1, and then the same silica-alumina fiber mat-like substrate 1 used in Example 1 is adhered to the inside of the cover. Pasted on. Thereafter, the aqueous dispersion of the calcined vermiculite prepared in Example 1 was applied to the exposed surface of the silica-alumina fiber substrate using a brush so that the solid weight would be 100 g / m 2, and then 150 ° C. The vermiculite coating layer 2 was formed by drying with hot air for 1 hour. The thickness of the vermiculite coating layer 2 of the soundproofing heat insulating material 3 of the present invention comprising the mat-like substrate 1 and the vermiculite coating layer 2 thus obtained was 0.12 mm.
[0026]
[Table 1]
Figure 0004166960
[0027]
【The invention's effect】
The soundproof heat insulating material of the present invention can be manufactured at low cost because the material used is relatively inexpensive and the manufacturing process is relatively simple. And since the coating layer forms a multi-layered structure of scale-like minerals, the scattering resistance is remarkably improved, and the heat-resistant fibers constituting the base material deteriorate during use over a long period of time. Even if it occurs, the micronized fiber does not pass through the coating layer and scatter outside. In addition, the base material layer constituting the soundproofing and heat insulating material is mainly composed of a woven fabric, a non-woven fabric, or a mat made of heat-resistant fibers, and the scale-like mineral forming the coating layer does not substantially penetrate into the base material layer. Therefore, the voids in the base material layer are not blocked, and excellent noise attenuation characteristics (soundproofing properties) are maintained.
[0028]
Further, when an article used by adhering the soundproofing and heat insulating material of the present invention such as a cover for an exhaust manifold includes a portion having a complicated shape such as unevenness, a heat-resistant adhesive is previously adjusted to the complicated shape. After adhering only the base material to the surface of the article using, a flaky mineral coating layer is formed on the surface of the base material, so that even if finely divided fibers are generated without breakage of the coating layer, the finely divided fibers are covered. It is possible to form a soundproof heat insulating material layer that does not pass through the layer and scatter to the outside.
[0029]
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross section of a soundproof heat insulating material manufactured in Example 1. FIG.
FIG. 2 shows a cross section of a part in which the soundproof heat insulating material of the present invention is laminated on the cover of the exhaust manifold of the automobile implemented in the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base material 2 Scale-like mineral coating layer 3 Soundproofing heat insulating material 4 Adhesive layer 5 Cover

Claims (6)

鱗片状鉱物の水性ディスパージョンを塗布して得られる20g/m 〜300g/m の鱗片状鉱物被覆層を耐熱繊維製基材の表面に形成して成ることを特徴とする防音断熱材。Soundproof insulation material, characterized by comprising a scaly mineral coating layer of scaly mineral aqueous dispersion par John coating obtained 20g / m 2 ~300g / m 2 formed on the surface of the heat-resistant textile substrates. 鱗片状鉱物が焼成されたバーミキュライトであることを特徴とする請求項1に記載の防音断熱材。 The soundproof heat insulating material according to claim 1, wherein the scaly mineral is calcined vermiculite. 自動車のエキゾーストマニホールド用カバーにおいて、当該カバーのエキゾーストマニホールド側表面に、請求項1又は2に記載の防音断熱材をその鱗片状鉱物被覆層が露出面となるように積層して成ることを特徴とする自動車のエキゾーストマニホールド用カバー。  A cover for an exhaust manifold of an automobile, characterized in that the soundproof heat insulating material according to claim 1 or 2 is laminated on the exhaust manifold side surface of the cover so that the scale-like mineral covering layer is an exposed surface. Exhaust manifold cover for automobiles. 耐熱繊維製基材の表面に鱗片状鉱物の水性ディスパージョンを塗布し、乾燥して20g/m 〜300g/m 鱗片状鉱物被覆層を形成することを特徴とする防音断熱材の製造方法。The aqueous dispersion of the scaly mineral is applied to the surface of the heat-resistant textile substrates, the production of soundproofing insulation dried and forming a scaly mineral coating layer of 20g / m 2 ~300g / m 2 Method. 物品表面に耐熱性接着剤を介して耐熱繊維製基材を貼付して被覆し、当該基材の露出表面に鱗片状鉱物の水性ディスパージョンを塗布し、乾燥して20g/m 〜300g/m 鱗片状鉱物被覆層を形成することを特徴とする防音断熱材の製造方法。A surface made of a heat-resistant fiber is pasted and coated on the surface of the article via a heat-resistant adhesive, and an aqueous dispersion of scaly mineral is applied to the exposed surface of the substrate, followed by drying to 20 g / m 2 to 300 g / method for producing a soundproofing insulation and forming a scaly mineral coating layer of m 2. 鱗片状鉱物が焼成されたバーミキュライトであることを特徴とする請求項4又は5に記載の防音断熱材の製造方法。 The method for producing a soundproofing heat insulating material according to claim 4 or 5, wherein the scaly mineral is calcined vermiculite.
JP2001099579A 2001-03-30 2001-03-30 Soundproof insulation and method for producing the same Expired - Fee Related JP4166960B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001099579A JP4166960B2 (en) 2001-03-30 2001-03-30 Soundproof insulation and method for producing the same
US10/108,094 US20020168492A1 (en) 2001-03-30 2002-03-26 Sound and heat insulating material and method for manufacturing the same and articles made thereof
EP02007082A EP1245718A3 (en) 2001-03-30 2002-03-27 Sound and heat insulating material and method for manufacturing the same and articles made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099579A JP4166960B2 (en) 2001-03-30 2001-03-30 Soundproof insulation and method for producing the same

Publications (3)

Publication Number Publication Date
JP2002292795A JP2002292795A (en) 2002-10-09
JP2002292795A5 JP2002292795A5 (en) 2005-09-02
JP4166960B2 true JP4166960B2 (en) 2008-10-15

Family

ID=18953105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099579A Expired - Fee Related JP4166960B2 (en) 2001-03-30 2001-03-30 Soundproof insulation and method for producing the same

Country Status (1)

Country Link
JP (1) JP4166960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915315B2 (en) * 2011-03-29 2016-05-11 三菱マテリアル株式会社 Ignition prevention structure for facilities that handle flammable fluids

Also Published As

Publication number Publication date
JP2002292795A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP2020033998A (en) Thermally insulated components
EP2212072B1 (en) Method of making mounting mats for mounting pollution control element
EP2212073B1 (en) Mat for mounting a pollution control element for the treatment of exhaust gas
JP4290376B2 (en) Soundproof insulation and method for producing the same
KR20150058547A (en) Erosion resistant mounting material and method of making and using the same
JP2018163233A (en) Sound absorber
JP5530184B2 (en) High heat insulation sound-absorbing material
JP4166960B2 (en) Soundproof insulation and method for producing the same
CN110857535A (en) Thermally conductive material with good sound absorption properties
US20020168492A1 (en) Sound and heat insulating material and method for manufacturing the same and articles made thereof
US20190242286A1 (en) Inorganic Fibre Mats
JP2008223165A (en) Heat insulating and sound absorbing material
JP6936597B2 (en) Vehicle parts
WO2018174180A1 (en) Sound-absorbing material and vehicle component
EP3990274B1 (en) Nonwoven fibrous web
JP6670914B1 (en) Sound absorbing material
WO2020217862A1 (en) Noise reduction structure for exhaust pipes
JP7154757B2 (en) mat material
WO2019131206A1 (en) Multi-layer mat and method for manufacturing multi-layer mat
EP3990278B1 (en) Nonwoven fibrous web
CN110914494B (en) Noise control article
WO2021255707A1 (en) A noise reduction article and method of manufacturing same
WO2020217863A1 (en) Inorganic-fiber containing mat and noise reduction structure for exhaust pipe
JP3302496B2 (en) Method of manufacturing sound-insulating heat shield plate of three-dimensional shape
JPH07269370A (en) Solid shape sound and heat insulation board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4166960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees