JP4166680B2 - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP4166680B2
JP4166680B2 JP2003428384A JP2003428384A JP4166680B2 JP 4166680 B2 JP4166680 B2 JP 4166680B2 JP 2003428384 A JP2003428384 A JP 2003428384A JP 2003428384 A JP2003428384 A JP 2003428384A JP 4166680 B2 JP4166680 B2 JP 4166680B2
Authority
JP
Japan
Prior art keywords
ground fault
positive
negative
fault detection
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428384A
Other languages
Japanese (ja)
Other versions
JP2005189005A (en
Inventor
宜一 野本
敏明 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003428384A priority Critical patent/JP4166680B2/en
Publication of JP2005189005A publication Critical patent/JP2005189005A/en
Application granted granted Critical
Publication of JP4166680B2 publication Critical patent/JP4166680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、例えば車両等に搭載された地絡検知装置に関する。   The present invention relates to a ground fault detection device mounted on a vehicle or the like, for example.

従来、例えば高圧直流電源を具備する直流回路の陽極側および陰極側に対して、地絡検出用の電流検出器あるいは電圧検出器を選択的に切替接続することによって、直流回路の適宜の位置における地絡発生の有無を検出する地絡検出方法が知られている(例えば、特許文献1参照)。
さらに、このような地絡検出方法において高圧直流電源の電源電圧を検出し、この電源電圧の検出値によって、電源電圧の変動に伴う地絡検出用の電流検出器あるいは電圧検出器の検出結果の変動を補正する検出方法が知られている(例えば、特許文献2参照)。
特開平4−12616号公報 特許第2838462号公報
Conventionally, for example, by selectively switching and connecting a ground fault detection current detector or voltage detector to the anode side and the cathode side of a DC circuit equipped with a high-voltage DC power supply, the DC circuit can be connected at an appropriate position. A ground fault detection method for detecting the presence or absence of occurrence of a ground fault is known (see, for example, Patent Document 1).
Further, in such a ground fault detection method, the power source voltage of the high-voltage DC power source is detected, and the detection result of the current detector or the voltage detector for ground fault detection accompanying the fluctuation of the power source voltage is detected according to the detected value of the power source voltage. A detection method for correcting the fluctuation is known (see, for example, Patent Document 2).
JP-A-4-12616 Japanese Patent No. 2838462

しかしながら、上記従来技術に係る地絡検出方法においては、高圧直流電源の電源電圧を検出するための電圧検出部を備える必要があり、さらに、この電圧検出部による検出結果に基づき、地絡検出用の電流検出器あるいは電圧検出器の検出結果の変動を補正する構成が必要となり、装置構成が複雑化するという問題が生じる。
また、高圧直流電源を具備する直流回路に、例えば浮遊容量成分等が存在すると、地絡検出用の電流検出器あるいは電圧検出器の切替接続に伴う電流変化や電圧変化に時間依存性が生じることから、単に、切替接続の実行時に電流検出器あるいは電圧検出器で検出を行うだけでは、地絡発生の有無を精度良く検出することができない虞がある。
本発明は上記事情に鑑みてなされたもので、装置構成が複雑化することを防止しつつ、地絡発生の有無を精度良く検出することが可能な地絡検知装置を提供することを目的とする。
However, in the ground fault detection method according to the above-described prior art, it is necessary to include a voltage detection unit for detecting the power supply voltage of the high-voltage DC power supply. Further, based on the detection result by the voltage detection unit, ground fault detection This requires a configuration for correcting fluctuations in the detection result of the current detector or voltage detector, resulting in a problem that the device configuration becomes complicated.
In addition, if there is a stray capacitance component in a DC circuit equipped with a high-voltage DC power supply, for example, a current dependency or a voltage change due to the switching connection of a current detector for detecting a ground fault or a voltage detector will be time-dependent. Therefore, there is a possibility that the presence / absence of the ground fault cannot be accurately detected only by performing detection with the current detector or the voltage detector at the time of executing the switching connection.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a ground fault detection device capable of accurately detecting the presence or absence of a ground fault while preventing the device configuration from becoming complicated. To do.

上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の地絡検知装置は、地絡検出抵抗(例えば、実施の形態での正極側検出抵抗33a、負極側検出抵抗33b)および保護抵抗(例えば、実施の形態での正極側保護抵抗31a、負極側保護抵抗31b)からなる直列回路と定電流源(例えば、実施の形態での正極側定電流源34a、負極側定電流源34b)とを並列に接続してなる各正側地絡検出回路(例えば、実施の形態での正極側回路21)および負側地絡検出回路(例えば、実施の形態での負極側回路22)を、非接地直流電源(例えば、実施の形態での非接地直流電源11)の各正側端子(例えば、実施の形態での正極側端子11p)とアース(例えば、実施の形態での接地部20)との間および負側端子(例えば、実施の形態での負極側端子11n)とアース(例えば、実施の形態での接地部20)との間に接続してなる地絡検出装置であって、各前記正側地絡検出回路および前記負側地絡検出回路毎に異常状態の発生有無を検知する異常検知手段(例えば、実施の形態でのステップS11、ステップS12、ステップS13)と、前記異常検知手段にて前記正側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の前記負側端子に接続された負側ラインに地絡が発生したと判定し、前記異常検知手段にて前記負側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の前記正側端子に接続された正側ラインに地絡が発生したと判定し、前記異常検知手段にて前記正側地絡検出回路および前記負側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の内部に地絡が発生したと判定する地絡判定手段(例えば、実施の形態でのステップS13、ステップS14、ステップS16)と、前記地絡検出抵抗の両端に発生する電圧が所定の保護電圧を超えたときに、前記地絡検出抵抗と前記保護抵抗との接続を遮断する保護手段とを備えることを特徴としている。 In order to solve the above problems and achieve the object, the ground fault detection device according to the present invention is a ground fault detection resistor (for example, positive side detection resistor 33a, negative side detection in the embodiment). Resistor 33b) and a protective circuit (for example, positive electrode side protective resistor 31a, negative electrode side protective resistor 31b in the embodiment) and a constant current source (for example, positive electrode side constant current source 34a, negative electrode in the embodiment) Each of the positive side ground fault detection circuits (for example, the positive side circuit 21 in the embodiment) and the negative side ground fault detection circuit (for example, the negative electrode in the embodiment). The side circuit 22) is connected to each positive side terminal (for example, the positive side terminal 11p in the embodiment) of the ungrounded DC power source (for example, the ungrounded DC power source 11 in the embodiment) and ground (for example, the embodiment). And the negative terminal (example) For example, a ground fault detection device connected between the negative electrode side terminal 11n) in the embodiment and the ground (for example, the ground portion 20 in the embodiment), each positive side ground fault detection circuit. And an abnormality detection means (for example, step S11, step S12, step S13 in the embodiment) for detecting whether or not an abnormal condition has occurred for each negative ground fault detection circuit, and the abnormality detection means at the positive ground When the occurrence of an abnormal state in the fault detection circuit is detected, it is determined that a ground fault has occurred in the negative line connected to the negative terminal of the non-grounded DC power source, and the fault detection unit detects the ground fault. When the occurrence of an abnormal state is detected in the negative ground fault detection circuit, it is determined that a ground fault has occurred in the positive line connected to the positive terminal of the non-grounded DC power supply, and the abnormality detection means The positive side ground fault detection circuit and the negative side ground fault at When an occurrence of an abnormal state in the output circuit is detected, a ground fault determination unit that determines that a ground fault has occurred inside the ungrounded DC power supply (for example, step S13, step S14, step in the embodiment) S16), and a protection means for cutting off the connection between the ground fault detection resistor and the protection resistor when the voltage generated at both ends of the ground fault detection resistor exceeds a predetermined protection voltage. Yes.

上記構成の地絡検知装置によれば、非接地直流電源の正極側または負極側あるいは非接地直流電源内部に発生した地絡を検知することができ、地絡発生位置を取得することによって、例えば発生した地絡を解消するための作業等を容易に実行することができ、発生した地絡に対して適切な対応が可能となる。
さらに、この請求項1に記載の地絡検知装置において、前記定電流源から出力される電流の電流値を変更する電流値変更手段と、前記電流値変更手段にて前記電流値を変更したときの前記地絡検出抵抗の両端の端子間電圧の変化に基づき、前記負側ラインまたは前記正側ラインあるいは前記非接地直流電源の内部に発生した地絡に係る地絡抵抗値を検出する地絡抵抗値検出手段とを備え、前記異常検知手段は、前記地絡抵抗値検出手段にて検出される前記地絡抵抗値に基づき、各前記正側地絡検出回路および前記負側地絡検出回路毎に異常状態の発生有無を検知することを特徴とすることによって、非接地直流電源の出力電圧に依存しない検知結果を得ることができ、精度の良い地絡検知が可能となる。
According to the ground fault detection device having the above-described configuration, it is possible to detect a ground fault generated on the positive side or the negative side of the non-grounded DC power source or inside the non-grounded DC power source, and by acquiring the ground fault occurrence position, for example, The work for eliminating the generated ground fault can be easily performed, and an appropriate response to the generated ground fault is possible.
Further, in the ground fault detection device according to claim 1, when the current value is changed by the current value changing means for changing the current value of the current output from the constant current source, and the current value changing means. A ground fault for detecting a ground fault resistance value related to a ground fault generated in the negative line, the positive line, or the non-grounded DC power source based on a change in voltage between terminals at both ends of the ground fault detection resistor. Each of the positive ground fault detection circuit and the negative ground fault detection circuit based on the ground fault resistance value detected by the ground fault resistance value detection means. By detecting whether or not an abnormal state occurs every time, it is possible to obtain a detection result that does not depend on the output voltage of the non-grounded DC power supply, and it is possible to detect a ground fault with high accuracy.

また、請求項2に記載の本発明の地絡検知装置は、地絡検出抵抗(例えば、実施の形態での正極側検出抵抗33a、負極側検出抵抗33b)および保護抵抗(例えば、実施の形態での正極側保護抵抗31a、負極側保護抵抗31b)からなる直列回路と定電流源(例えば、実施の形態での正極側定電流源34a、負極側定電流源34b)とを並列に接続してなる各正側地絡検出回路(例えば、実施の形態での正極側回路21)および負側地絡検出回路(例えば、実施の形態での負極側回路22)を、非接地直流電源(例えば、実施の形態での非接地直流電源11)の各正側端子(例えば、実施の形態での正極側端子11p)とアース(例えば、実施の形態での接地部20)との間および負側端子(例えば、実施の形態での負極側端子11n)とアース(例えば、実施の形態での接地部20)との間に接続してなる地絡検出装置であって、前記定電流源から出力される電流の電流値(例えば、実施の形態での電流値I1,I2)を変更する電流値変更手段(例えば、実施の形態でのステップS03、ステップS08)と、前記電流値変更手段にて前記電流値を変更したときの前記地絡検出抵抗の両端の端子間電圧(例えば、実施の形態での電圧V2(I1),V2(I2)、電圧V4(I1),V4(I2))の変化に基づき、前記非接地直流電源の前記負側端子に接続された負側ラインまたは前記非接地直流電源の前記正側端子に接続された正側ラインあるいは前記非接地直流電源の内部に発生した地絡に係る地絡抵抗値(例えば、実施の形態での地絡抵抗RLn、地絡抵抗RLp、地絡抵抗RLnp)を検出する地絡抵抗値検出手段(例えば、実施の形態での制御部23、ステップS05、ステップS10)と、前記地絡検出抵抗の両端に発生する電圧が所定の保護電圧を超えたときに、前記地絡検出抵抗と前記保護抵抗との接続を遮断する保護手段とを備えることを特徴とする。 Further, the ground fault detection device according to the second aspect of the present invention includes a ground fault detection resistor (for example, the positive electrode side detection resistor 33a and the negative electrode side detection resistor 33b in the embodiment) and a protective resistor (for example, the embodiment). And a constant current source (for example, the positive side constant current source 34a and the negative side constant current source 34b in the embodiment) are connected in parallel. Each positive side ground fault detection circuit (for example, the positive side circuit 21 in the embodiment) and the negative side ground fault detection circuit (for example, the negative side circuit 22 in the embodiment) are connected to a non-grounded DC power source (for example, Between the positive terminals (for example, the positive terminal 11p in the embodiment) and the ground (for example, the grounding unit 20 in the embodiment) and the negative side of the non-grounded DC power supply 11) in the embodiment. Terminal (for example, negative electrode side terminal 11n in the embodiment) A ground fault detection device connected to ground (for example, the grounding unit 20 in the embodiment), and a current value of current output from the constant current source (for example, current in the embodiment) Current value changing means (for example, step S03, step S08 in the embodiment) for changing the values I1, I2), and both ends of the ground fault detection resistor when the current value is changed by the current value changing means On the negative terminal of the non-grounded DC power source based on the change in the voltage between the terminals (for example, the voltages V2 (I1), V2 (I2), the voltages V4 (I1), V4 (I2) in the embodiment). A ground fault resistance value related to a ground fault generated in the negative line connected to the positive side line connected to the positive terminal of the non-grounded DC power source or the non-grounded DC power source (for example, in the embodiment) Ground fault resistance RLn, ground fault resistance RLp Ground fault resistance value detecting means for detecting a ground fault resistance RLnp) (e.g., control unit 23 in the embodiment, step S05, and step S10), and the ground fault detection voltage is predetermined protection voltage generated across the resistor And a protection means for cutting off the connection between the ground fault detection resistor and the protection resistor .

上記構成の地絡検知装置によれば、非接地直流電源の出力電圧に依存しない検知結果を得ることができ、精度の良い地絡検知が可能となる。   According to the ground fault detection apparatus having the above-described configuration, it is possible to obtain a detection result that does not depend on the output voltage of the non-grounded DC power supply, and it is possible to detect a ground fault with high accuracy.

請求項1に記載の本発明の地絡検知装置によれば、地絡発生の有無に加えて地絡発生位置を取得することによって、例えば発生した地絡を解消するための作業等を容易に実行することができ、発生した地絡に対して適切な対応が可能となる。
また、請求項2に記載の本発明の地絡検知装置によれば、非接地直流電源の出力電圧に依存せずに地絡検知の検知精度を向上させることができる。
According to the ground fault detection device of the first aspect of the present invention, by acquiring the ground fault occurrence position in addition to the presence or absence of the occurrence of the ground fault, for example, an operation for eliminating the generated ground fault can be easily performed. It can be executed, and an appropriate response can be made to the generated ground fault.
Further, according to the ground fault detection device of the present invention described in claim 2, it is possible to improve the detection accuracy of ground fault detection without depending on the output voltage of the ungrounded DC power supply.

以下、本発明の一実施形態に係る地絡検知装置について添付図面を参照しながら説明する。
本実施の形態による地絡検知装置10は、例えば燃料電池車両やハイブリッド車両等の車両に搭載され、例えば接地された車体から電気的に絶縁された非接地直流電源(以下、単に、直流電源と呼ぶ)11の正極側あるいは負極側あるいは直流電源11の内部に発生する地絡、つまり絶縁破壊の有無を検知する。
ここで、直流電源(電圧値Vbatt)11は、例えば電気二重層コンデンサや電解コンデンサ等からなる複数のキャパシタセルが直列に接続されてなるキャパシタや、例えば複数のセル(例えばリチウムイオン電池等の二次電池)が直列に接続されてなるバッテリである。
Hereinafter, a ground fault detection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The ground fault detection device 10 according to the present embodiment is mounted on a vehicle such as a fuel cell vehicle or a hybrid vehicle, for example, and is, for example, an ungrounded DC power source (hereinafter simply referred to as a DC power source) that is electrically insulated from a grounded vehicle body. 11) detecting a ground fault occurring on the positive electrode side or the negative electrode side of 11 or the DC power source 11, that is, the presence or absence of dielectric breakdown.
Here, the DC power supply (voltage value Vbatt) 11 is a capacitor in which a plurality of capacitor cells, such as electric double layer capacitors or electrolytic capacitors, are connected in series, or a plurality of cells (for example, two batteries such as a lithium ion battery). A secondary battery is connected in series.

なお、直流電源11の正極側に発生する地絡とは、直流電源11の正極側端子11pに接続された正極側ラインの適宜の位置で発生する絶縁破壊であり、この地絡が発生した場合、地絡に係る適宜の大きさの地絡抵抗RL(例えば、図1に示す地絡抵抗RLp)が、正極側ラインの適宜の位置と、接地された車体等との間に設定される。
また、直流電源11の負極側に発生する地絡とは、直流電源11の負極側端子11nに接続された負極側ラインの適宜の位置で発生する絶縁破壊であり、この地絡が発生した場合、地絡に係る適宜の大きさの地絡抵抗RL(例えば、図1に示す地絡抵抗RLn)が、負極側ラインの適宜の位置と、接地された車体等との間に設定される。
また、直流電源11内部に発生する地絡とは、例えば互いに接続されるキャパシタセル同士やセル同士の接点等で発生する絶縁破壊であり、この地絡が発生した場合、地絡に係る適宜の大きさの地絡抵抗RL(例えば、図1に示す地絡抵抗RLnp)が、直流電源11内部の適宜の位置と、接地された車体等の接地部との間に設定される。
そして、この直流電源11は、例えば図1に示すように、車両の駆動源としてのモータ12の駆動および回生作動を制御するモータ駆動回路13に並列に接続されている。
The ground fault generated on the positive electrode side of the DC power source 11 is a dielectric breakdown that occurs at an appropriate position on the positive electrode side line connected to the positive terminal 11p of the DC power source 11. When this ground fault occurs A ground fault resistance RL (for example, the ground fault resistance RLp shown in FIG. 1) having an appropriate magnitude related to the ground fault is set between an appropriate position of the positive electrode side line and the grounded vehicle body or the like.
Moreover, the ground fault generated on the negative electrode side of the DC power source 11 is a dielectric breakdown that occurs at an appropriate position on the negative electrode side line connected to the negative electrode side terminal 11n of the DC power source 11. When this ground fault occurs A ground fault resistance RL (for example, ground fault resistance RLn shown in FIG. 1) having an appropriate magnitude related to the ground fault is set between an appropriate position of the negative electrode side line and the grounded vehicle body or the like.
Moreover, the ground fault generated in the DC power supply 11 is, for example, a dielectric breakdown that occurs between capacitor cells connected to each other, contact points between the cells, and the like. A ground fault resistance RL having a magnitude (for example, a ground fault resistance RLnp shown in FIG. 1) is set between an appropriate position inside the DC power supply 11 and a grounding portion such as a grounded vehicle body.
The DC power supply 11 is connected in parallel to a motor drive circuit 13 that controls the drive and regenerative operation of a motor 12 as a vehicle drive source, for example, as shown in FIG.

また、モータ駆動回路13は、例えばトランジスタ等のスイッチング素子を複数用いてブリッジ接続したスイッチング回路から構成されたパルス幅変調(PWM)によるPWMインバータを備え、例えば複数相のモータ12の固定子巻線への通電を順次転流させるようになっている。
すなわち、モータ駆動回路13は、例えばモータ12の駆動時に、モータ制御装置(図示略)から出力されるトルク指令に基づき、直流電源11から供給される直流電力を交流電力に変換してモータ12へ供給する。一方、例えば車両の減速時等の回生作動時において駆動輪W側から変速機(T/M)を介してモータ12側に駆動力が伝達されると、モータ駆動回路13はモータ12を発電機として作動させ、いわゆる回生制動力を発生させ、車体の運動エネルギーを電気エネルギーとして回収する。
The motor drive circuit 13 includes a PWM inverter based on pulse width modulation (PWM), which is configured by a bridge circuit using a plurality of switching elements such as transistors, for example. The energization is sequentially commutated.
That is, for example, when the motor 12 is driven, the motor drive circuit 13 converts the DC power supplied from the DC power supply 11 into AC power to the motor 12 based on a torque command output from a motor control device (not shown). Supply. On the other hand, when a driving force is transmitted from the driving wheel W side to the motor 12 side via the transmission (T / M) during regenerative operation such as when the vehicle is decelerated, the motor driving circuit 13 causes the motor 12 to generate power. To generate a so-called regenerative braking force and recover the kinetic energy of the vehicle body as electric energy.

本実施の形態による地絡検知装置10は、例えば図1に示すように、例えば車体等に接続されることで接地された接地部20と、正極側回路21と、負極側回路22と、制御部23とを備えて構成され、直列に接続された正極側回路21および負極側回路22間に接地部20が配置され、正極側回路21および負極側回路22は直流電源11およびモータ駆動回路13に並列に接続されている。
正極側回路21は、例えば図2に示すように、直流電源11の正極側端子11pから接地部20に向かい順次、直列に接続された正極側保護抵抗31a(抵抗値R1)および正極側スイッチング素子(S1)32aおよび正極側検出抵抗33a(抵抗値R2)と、一連のこれらの素子に対して並列に接続された正極側定電流源34aと、さらに、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aとを備えて構成され、直流電源11の負極側に発生する地絡および直流電源11内部に発生する地絡の検知に利用される。
負極側回路22は、例えば図3に示すように、直流電源11の負極側端子11nから接地部20に向かい順次、直列に接続された負極側保護抵抗31b(抵抗値R3)および負極側スイッチング素子(S3)32bおよび負極側検出抵抗33b(抵抗値R4)と、一連のこれらの素子に対して並列に接続された負極側定電流源34bと、さらに、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bとを備えて構成され、直流電源11の正極側に発生する地絡および直流電源11内部に発生する地絡の検知に利用される。
For example, as shown in FIG. 1, the ground fault detection device 10 according to the present embodiment includes a grounding unit 20 that is grounded by being connected to, for example, a vehicle body, a positive circuit 21, a negative circuit 22, and a control. The ground part 20 is arranged between the positive circuit 21 and the negative circuit 22 connected in series, and the positive circuit 21 and the negative circuit 22 are connected to the DC power supply 11 and the motor drive circuit 13. Connected in parallel.
For example, as shown in FIG. 2, the positive side circuit 21 includes a positive side protective resistor 31a (resistance value R1) and a positive side switching element connected in series sequentially from the positive side terminal 11p of the DC power source 11 to the ground unit 20. (S1) 32a and positive-side detection resistor 33a (resistance value R2), a positive-side constant current source 34a connected in parallel to a series of these elements, and further connected in parallel to the positive-side detection resistor 33a And is used to detect a ground fault occurring on the negative electrode side of the DC power supply 11 and a ground fault occurring inside the DC power supply 11.
For example, as shown in FIG. 3, the negative electrode side circuit 22 includes a negative electrode side protective resistor 31b (resistance value R3) and a negative electrode side switching element that are connected in series from the negative electrode side terminal 11n of the DC power supply 11 to the ground unit 20. (S3) 32b and the negative electrode side detection resistor 33b (resistance value R4), a negative electrode side constant current source 34b connected in parallel to a series of these elements, and further connected in parallel to the negative electrode side detection resistor 33b. And is used to detect a ground fault occurring on the positive side of the DC power source 11 and a ground fault occurring inside the DC power source 11.

ここで、正極側スイッチング素子32aは、例えばnチャネルMOSFET(Metal Oxide Semi-conductor Field Effect Transistor)等のFETとされ、ドレインは正極側保護抵抗31aに接続され、ソースは正極側検出抵抗33aに接続され、ゲートは制御部23に接続されている。
また、負極側スイッチング素子32bは、例えばpチャネルMOSFET等のFETとされ、ドレインは負極側保護抵抗31bに接続され、ソースは負極側検出抵抗33bに接続され、ゲートは制御部23に接続されている。
Here, the positive side switching element 32a is an FET such as an n-channel MOSFET (Metal Oxide Semi-conductor Field Effect Transistor), the drain is connected to the positive side protection resistor 31a, and the source is connected to the positive side detection resistor 33a. The gate is connected to the control unit 23.
The negative-side switching element 32b is an FET such as a p-channel MOSFET, the drain is connected to the negative-side protection resistor 31b, the source is connected to the negative-side detection resistor 33b, and the gate is connected to the control unit 23. Yes.

正極側定電流源34aは、例えば図4に示すように、オペアンプ41aと、例えばnチャネルMOSFET等のFETからなるスイッチング素子(S2)42aと、抵抗43a(抵抗値Ra)と、電源44aと、第1〜第3抵抗45a,46a、47a(各抵抗値Ra1,Ra2,Ra3)と、スイッチ48aと、電流制限抵抗49aとを備えて構成されている。
抵抗43aの一方の端子は接地部20に接続されることで接地されており、他方の端子はオペアンプ41aの反転入力端子およびスイッチング素子42aのソースに接続されている。また、スイッチング素子42aのドレインは直流電源11の正極側端子11pに接続され、スイッチング素子42aのゲートは電流制限抵抗49aを介してオペアンプ41aの出力端子に接続されている。
また、電源44aは、順次、直列に接続された第1〜第3抵抗45a,46a、47aを介して接地部20に接続され、第1抵抗45aと第2抵抗46aとの接続部がオペアンプ41aの非反転入力端子に接続され、さらに、スイッチ48aは第3抵抗47aに並列に接続されている。
For example, as shown in FIG. 4, the positive-side constant current source 34a includes an operational amplifier 41a, a switching element (S2) 42a made of an FET such as an n-channel MOSFET, a resistor 43a (resistance value Ra), a power source 44a, The first to third resistors 45a, 46a, 47a (respective resistance values Ra1, Ra2, Ra3), a switch 48a, and a current limiting resistor 49a are provided.
One terminal of the resistor 43a is grounded by being connected to the ground unit 20, and the other terminal is connected to the inverting input terminal of the operational amplifier 41a and the source of the switching element 42a. The drain of the switching element 42a is connected to the positive terminal 11p of the DC power supply 11, and the gate of the switching element 42a is connected to the output terminal of the operational amplifier 41a via the current limiting resistor 49a.
The power supply 44a is sequentially connected to the ground unit 20 through first to third resistors 45a, 46a, 47a connected in series, and a connection portion between the first resistor 45a and the second resistor 46a is an operational amplifier 41a. The switch 48a is connected in parallel to the third resistor 47a.

ここで、オペアンプ41aの非反転入力端子には電源44aの出力電圧(電圧値V0)およびスイッチ48aのオン/オフ状態に応じた適宜の基準電圧Vriが入力されており、オペアンプ41aの反転入力端子には抵抗43a(抵抗値Ra)に流れる電流Iに応じた電圧(I×Ra)が入力されており、この電圧(I×Ra)と基準電圧Vriとに差ΔV=(Vri−I×Rb)があると、この差ΔVを適宜の利得Amで増幅して得た電圧Am×ΔVがオペアンプ41aからスイッチング素子42aのゲートへ入力される。ここで、スイッチング素子42aのソースの電位、つまりオペアンプ41aの反転入力端子に入力される電圧は、ゲートに入力される電圧Am×ΔVからスイッチング素子42aでのゲート・ソース端子間のPN接合の順方向電圧Vfを減算して得た値(Am×ΔV−Vf)となるが、この値は、例えば利得Amが十分に大きな値に設定されていると、基準電圧Vriにほぼ等しくなり、抵抗43aに流れる電流Iは一定の電流値(例えば、Vri/Ra)となる。   Here, the output voltage (voltage value V0) of the power supply 44a and an appropriate reference voltage Vri corresponding to the on / off state of the switch 48a are input to the non-inverting input terminal of the operational amplifier 41a, and the inverting input terminal of the operational amplifier 41a. Is input with a voltage (I × Ra) corresponding to the current I flowing through the resistor 43a (resistance value Ra), and a difference ΔV = (Vri−I × Rb) between the voltage (I × Ra) and the reference voltage Vri. ), The voltage Am × ΔV obtained by amplifying the difference ΔV with an appropriate gain Am is input from the operational amplifier 41a to the gate of the switching element 42a. Here, the potential of the source of the switching element 42a, that is, the voltage input to the inverting input terminal of the operational amplifier 41a is the order of the PN junction between the gate and the source terminal of the switching element 42a from the voltage Am × ΔV input to the gate. A value (Am × ΔV−Vf) obtained by subtracting the direction voltage Vf is obtained. This value, for example, is substantially equal to the reference voltage Vri and the resistance 43a when the gain Am is set to a sufficiently large value. The current I flowing through the capacitor has a constant current value (for example, Vri / Ra).

これにより、抵抗43aに流れる電流Iの電流値は、基準電圧Vriに応じた適宜の電流値以下の値となるように規制される。
この基準電圧Vriは、制御部23により制御されるスイッチ48aのオン/オフ状態に応じて変化し、スイッチ48aがオフ状態では、電源44aの出力電圧が、第1抵抗45aの抵抗値Ra1と第2および第3抵抗46a、47aの合成抵抗値(Ra2+Ra3)とによって分圧された電圧値(V0×(Ra2+Ra3)/(Ra1+Ra2+Ra3))となる。一方、スイッチ48aがオン状態では、電源44aの出力電圧が、第1抵抗45aの抵抗値Ra1と第2抵抗46aの抵抗値Ra2とによって分圧された電圧値(V0×Ra2/(Ra1+Ra2))となる。
つまり、正極側定電流源34aから出力される電流Iの電流値はスイッチ48aのオン/オフ状態に応じて変化し、以下においては、スイッチ48aのオフ状態で電流値I1とし、スイッチ48aのオン状態で電流値I2とする。
なお、スイッチング素子42aのゲートは制御部23に接続されており、制御部23においてスイッチング素子42aのゲートが接地されると、スイッチング素子42aはオフ状態となって、正極側定電流源34aから出力される電流Iの電流値はゼロとなる。
また、オペアンプ41aの非反転入力端子へ入力される基準電圧Vriおよび反転入力端子へ入力される電圧(I×Ra)は正の電圧とされている。
As a result, the current value of the current I flowing through the resistor 43a is regulated to be a value equal to or less than an appropriate current value according to the reference voltage Vri.
The reference voltage Vri changes according to the on / off state of the switch 48a controlled by the control unit 23. When the switch 48a is in the off state, the output voltage of the power source 44a is equal to the resistance value Ra1 of the first resistor 45a. 2 and the combined resistance value (Ra2 + Ra3) of the third resistors 46a and 47a (V0 × (Ra2 + Ra3) / (Ra1 + Ra2 + Ra3)). On the other hand, when the switch 48a is on, the output voltage of the power supply 44a is divided by the resistance value Ra1 of the first resistor 45a and the resistance value Ra2 of the second resistor 46a (V0 × Ra2 / (Ra1 + Ra2)). It becomes.
That is, the current value of the current I output from the positive-side constant current source 34a changes according to the on / off state of the switch 48a. In the following, the current value I1 is set when the switch 48a is off, and the switch 48a is turned on. In this state, the current value is I2.
The gate of the switching element 42a is connected to the control unit 23. When the gate of the switching element 42a is grounded in the control unit 23, the switching element 42a is turned off and output from the positive-side constant current source 34a. The current value of the current I is zero.
Further, the reference voltage Vri input to the non-inverting input terminal of the operational amplifier 41a and the voltage (I × Ra) input to the inverting input terminal are positive voltages.

また、負極側定電流源34bは、例えば図5に示すように、オペアンプ41bと、例えばpチャネルMOSFET等のFETからなるスイッチング素子42bと、スイッチング素子(S4)42bと、抵抗43b(抵抗値Rb)と、電源44bと、第4〜第6抵抗45b,46b、47b(各抵抗値Rb1,Rb2,Rb3)と、スイッチ48bと、電流制限抵抗49bとを備えて構成されている。
抵抗43bの一方の端子は接地部20に接続されることで接地されており、他方の端子はオペアンプ41bの非反転入力端子およびスイッチング素子42bのソースに接続されている。また、スイッチング素子42bのドレインは直流電源11の負極側端子11nに接続され、スイッチング素子42bのゲートは電流制限抵抗49bを介してオペアンプ41bの出力端子に接続されている。
また、電源44bは、順次、直列に接続された第4〜第6抵抗45b,46b、47bを介して接地部20に接続され、第4抵抗45bと第5抵抗46bとの接続部がオペアンプ41bの反転入力端子に接続され、さらに、スイッチ48bは第6抵抗47bに並列に接続されている。
Further, for example, as shown in FIG. 5, the negative-side constant current source 34b includes an operational amplifier 41b, a switching element 42b made of an FET such as a p-channel MOSFET, a switching element (S4) 42b, and a resistor 43b (resistance value Rb). ), A power supply 44b, fourth to sixth resistors 45b, 46b, 47b (respective resistance values Rb1, Rb2, Rb3), a switch 48b, and a current limiting resistor 49b.
One terminal of the resistor 43b is grounded by being connected to the ground unit 20, and the other terminal is connected to the non-inverting input terminal of the operational amplifier 41b and the source of the switching element 42b. The drain of the switching element 42b is connected to the negative terminal 11n of the DC power supply 11, and the gate of the switching element 42b is connected to the output terminal of the operational amplifier 41b via the current limiting resistor 49b.
The power supply 44b is sequentially connected to the ground unit 20 through fourth to sixth resistors 45b, 46b, 47b connected in series, and a connection portion between the fourth resistor 45b and the fifth resistor 46b is an operational amplifier 41b. The switch 48b is connected in parallel to the sixth resistor 47b.

ここで、オペアンプ41bの反転入力端子には電源44bの出力電圧(電圧値V0)およびスイッチ48bのオン/オフ状態に応じた適宜の基準電圧Vriが入力されており、オペアンプ41bの非反転入力端子には抵抗43bに流れる電流Iに応じた電圧(I×Rb)が入力されており、この電圧(I×Rb)と基準電圧Vriとに差ΔV=(I×Rb−Vri)があると、この差ΔVを適宜の利得Amで増幅して得た電圧Am×ΔVがオペアンプ41bからスイッチング素子42bのゲートへ入力される。ここで、スイッチング素子42bのソースの電位、つまりオペアンプ41bの非反転入力端子に入力される電圧は、ゲートに入力される電圧Am×ΔVにスイッチング素子42bでのゲート・ソース端子間のPN接合の順方向電圧Vfを加算して得た値(Am×ΔV+Vf)となるが、この値は、例えば利得Amが十分に大きな値に設定されていると、基準電圧Vriにほぼ等しくなり、抵抗43bに流れる電流Iは一定の電流値(例えば、Vri/Rb)となる。   Here, the output voltage (voltage value V0) of the power supply 44b and an appropriate reference voltage Vri according to the on / off state of the switch 48b are input to the inverting input terminal of the operational amplifier 41b, and the non-inverting input terminal of the operational amplifier 41b. Is input with a voltage (I × Rb) corresponding to the current I flowing through the resistor 43b, and there is a difference ΔV = (I × Rb−Vri) between the voltage (I × Rb) and the reference voltage Vri. A voltage Am × ΔV obtained by amplifying the difference ΔV with an appropriate gain Am is input from the operational amplifier 41b to the gate of the switching element 42b. Here, the potential of the source of the switching element 42b, that is, the voltage input to the non-inverting input terminal of the operational amplifier 41b is the voltage Am × ΔV input to the gate of the PN junction between the gate and source terminals of the switching element 42b. The value obtained by adding the forward voltage Vf (Am × ΔV + Vf) is obtained. For example, when the gain Am is set to a sufficiently large value, the value is substantially equal to the reference voltage Vri, and the resistance 43b The flowing current I has a constant current value (for example, Vri / Rb).

これにより、抵抗43bに流れる電流Iの電流値は、基準電圧Vriに応じた適宜の電流値以下の値となるように規制される。
この基準電圧Vriは、制御部23により制御されるスイッチ48bのオン/オフ状態に応じて変化し、スイッチ48bがオフ状態では、電源44bの出力電圧が、第4抵抗45bの抵抗値Rb1と第5および第6抵抗46b、47bの合成抵抗値(Rb2+Rb3)とによって分圧された電圧値(V0×(Rb2+Rb3)/(Rb1+Rb2+Rb3))となる。一方、スイッチ48bがオン状態では、電源44bの出力電圧が、第4抵抗45bの抵抗値Rb1と第5抵抗46bの抵抗値Rb2とによって分圧された電圧値(V0×Rb2/(Rb1+Rb2))となる。
つまり、負極側定電流源34bから出力される電流Iの電流値はスイッチ48bのオン/オフ状態に応じて変化し、以下においては、スイッチ48bのオフ状態で電流値I1とし、スイッチ48bのオン状態で電流値I2とする。
なお、スイッチング素子42bのゲートは制御部23に接続されており、制御部23においてスイッチング素子42bのゲートが接地されると、スイッチング素子42bはオフ状態となって、負極側定電流源34bから出力される電流Iの電流値はゼロとなる。
また、オペアンプ41bの反転入力端子へ入力される基準電圧Vriおよび非反転入力端子へ入力される電圧(I×Rb)は負の電圧とされている。
As a result, the current value of the current I flowing through the resistor 43b is regulated to be a value equal to or less than an appropriate current value according to the reference voltage Vri.
The reference voltage Vri changes according to the on / off state of the switch 48b controlled by the control unit 23. When the switch 48b is in the off state, the output voltage of the power source 44b is equal to the resistance value Rb1 of the fourth resistor 45b. And a voltage value (V0 × (Rb2 + Rb3) / (Rb1 + Rb2 + Rb3)) divided by the combined resistance value (Rb2 + Rb3) of the fifth and sixth resistors 46b and 47b. On the other hand, when the switch 48b is in the ON state, the output voltage of the power source 44b is divided by the resistance value Rb1 of the fourth resistor 45b and the resistance value Rb2 of the fifth resistor 46b (V0 × Rb2 / (Rb1 + Rb2)). It becomes.
That is, the current value of the current I output from the negative-side constant current source 34b changes according to the on / off state of the switch 48b. In the following description, the current value I1 is set when the switch 48b is off, and the switch 48b is turned on. In this state, the current value is I2.
The gate of the switching element 42b is connected to the control unit 23. When the gate of the switching element 42b is grounded in the control unit 23, the switching element 42b is turned off and output from the negative-side constant current source 34b. The current value of the current I is zero.
The reference voltage Vri input to the inverting input terminal of the operational amplifier 41b and the voltage (I × Rb) input to the non-inverting input terminal are negative voltages.

制御部23は、CPU等を含む電子回路により構成され、正極側回路21の正極側スイッチング素子32aおよび負極側回路22の負極側スイッチング素子32bのオン/オフ切替制御と、正極側定電流源34aおよび負極側定電流源34bの各スイッチング素子42a,42bおよび各スイッチ48a,48bのオン/オフ切替制御を実行すると共に、正極側電圧検出器35aおよび負極側電圧検出器35bから出力される各電圧値V2,V4に基づき地絡発生の有無を判定する。
例えば、制御部23は、地絡検知処理の実行時以外においては、正極側回路21の各スイッチング素子32a,42aおよび負極側回路22の各スイッチング素子32b,42bの各ゲートを接地することによって、各スイッチング素子32a,42a,32b,42bをオフ状態に設定する。
そして、例えば、制御部23は、直流電源11の負極側に発生する地絡および直流電源11内部に発生する地絡に対する地絡検知処理の実行時に、正極側回路21の正極側スイッチング素子(S1)32aおよび正極側定電流源34aのスイッチング素子(S2)42aの各ゲートの接地を解除し、適宜の電圧レベルのオン信号が各ゲートへ入力されるように設定することで、各スイッチング素子32a,42aをオン状態に設定する。
このとき、制御部23は、スイッチ(S5)48aをオフ状態に設定するオフ信号またはオン状態に設定するオン信号を出力することによって、正極側定電流源34aから出力される電流Iの電流値を電流値I1または電流値I2に変更する。
また、例えば、制御部23は、直流電源11の正極側に発生する地絡および直流電源11内部に発生する地絡に対する地絡検知処理の実行時に、負極側回路22の負極側スイッチング素子(S3)32bおよび負極側定電流源34bのスイッチング素子(S4)42bの各ゲートの接地を解除し、適宜の電圧レベルのオン信号が各ゲートへ入力されるように設定することで、各スイッチング素子32b,42bをオン状態に設定する。
このとき、制御部23は、スイッチ(S6)48bをオフ状態に設定するオフ信号またはオン状態に設定するオン信号を出力することによって、負極側定電流源34bから出力される電流Iの電流値を電流値I1または電流値I2に変更する。
The control unit 23 is configured by an electronic circuit including a CPU and the like, and controls on / off switching of the positive side switching element 32a of the positive side circuit 21 and the negative side switching element 32b of the negative side circuit 22, and the positive side constant current source 34a. The on / off switching control of the switching elements 42a and 42b and the switches 48a and 48b of the negative constant current source 34b and the voltages output from the positive voltage detector 35a and the negative voltage detector 35b are performed. Whether or not a ground fault has occurred is determined based on the values V2 and V4.
For example, the control unit 23 grounds the respective gates of the switching elements 32a and 42a of the positive circuit 21 and the switching elements 32b and 42b of the negative circuit 22 except when the ground fault detection process is performed. Each switching element 32a, 42a, 32b, 42b is set to an OFF state.
For example, the control unit 23 performs the positive-side switching element (S1) of the positive-side circuit 21 at the time of executing the ground fault detection process for the ground fault occurring on the negative side of the DC power source 11 and the ground fault occurring inside the DC power source 11. ) 32a and the switching element (S2) 42a of the positive-side constant current source 34a are released from grounding, and each switching element 32a is set so that an ON signal of an appropriate voltage level is input to each gate. , 42a are set to the on state.
At this time, the control unit 23 outputs an off signal for setting the switch (S5) 48a to the off state or an on signal for setting the switch to the on state, whereby the current value of the current I output from the positive-side constant current source 34a. Is changed to the current value I1 or the current value I2.
Further, for example, the control unit 23 performs the negative-side switching element (S3) of the negative-side circuit 22 at the time of executing the ground-fault detection process for the ground fault occurring on the positive side of the DC power source 11 and the ground fault occurring inside the DC power source 11. ) 32b and the switching element (S4) 42b of the negative-side constant current source 34b are released from grounding and set so that an ON signal of an appropriate voltage level is input to each gate. , 42b are set to the on state.
At this time, the control unit 23 outputs an off signal for setting the switch (S6) 48b to an off state or an on signal for setting the switch to an on state, whereby the current value of the current I output from the negative constant current source 34b. Is changed to the current value I1 or the current value I2.

例えば図6に示すように、直流電源11の負極側に地絡抵抗RLnの地絡が発生している場合に、正極側回路21をオン状態(つまり、正極側回路21の各スイッチング素子32a,42aをオン状態)かつ負極側回路22をオフ状態(つまり、負極側回路22の各スイッチング素子32b,42bをオフ状態)に設定することによって、直流電源11から、順次、正極側保護抵抗31aおよび正極側スイッチング素子(S1)32aおよび正極側検出抵抗33aおよび地絡抵抗RLnを流通して、直流電源11へと適宜の電流が還流する第1閉回路L1と、直流電源11から、順次、正極側定電流源34aおよび地絡抵抗RLnを流通して、直流電源11へと、スイッチ48aのオン/オフ状態に応じて変化する電流値I1または電流値I2の電流Iが還流する第2閉回路L2とが形成される。
ここで、正極側定電流源34aから出力される電流Iが電流値I1であるときに、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aによって検出される電圧V2(I1)は、例えば下記数式(1)に示すように記述され、正極側定電流源34aから出力される電流Iが電流値I2であるときに正極側電圧検出器35aによって検出される電圧V2(I2)は、例えば下記数式(2)に示すように記述される。
For example, as shown in FIG. 6, when the ground fault of the ground fault resistance RLn is generated on the negative electrode side of the DC power supply 11, the positive side circuit 21 is turned on (that is, each switching element 32 a of the positive side circuit 21, 42a is turned on) and the negative side circuit 22 is turned off (that is, the switching elements 32b and 42b of the negative side circuit 22 are turned off). The first closed circuit L1 through which a suitable current flows back to the DC power supply 11 through the positive-side switching element (S1) 32a, the positive-side detection resistor 33a, and the ground fault resistance RLn, and the DC power supply 11 in order, A current value I1 or a current value I that flows through the side constant current source 34a and the ground fault resistance RLn and changes to the DC power source 11 according to the on / off state of the switch 48a. A second closed circuit L2 is formed of the current I is refluxed.
Here, when the current I output from the positive-side constant current source 34a is the current value I1, the voltage V2 (I1) detected by the positive-side voltage detector 35a connected in parallel to the positive-side detection resistor 33a. Is described as, for example, the following formula (1), and the voltage V2 (I2) detected by the positive voltage detector 35a when the current I output from the positive constant current source 34a is the current value I2. Is described, for example, as shown in Equation (2) below.

Figure 0004166680
Figure 0004166680

Figure 0004166680
Figure 0004166680

上記数式(1),(2)の差分(V2(I1)−V2(I2))に基づき地絡抵抗RLnを記述すると、例えば下記数式(3)に示すように、直流電源11の電圧値Vbattには依存しない値となる。   When the ground fault resistance RLn is described based on the difference (V2 (I1) −V2 (I2)) between the above formulas (1) and (2), for example, as shown in the following formula (3), the voltage value Vbatt of the DC power supply 11 The value does not depend on.

Figure 0004166680
Figure 0004166680

また、例えば図7に示すように、直流電源11の正極側に地絡抵抗RLpの地絡が発生している場合に、負極側回路22をオン状態(つまり、負極側回路22の各スイッチング素子32b,42bをオン状態)かつ正極側回路21をオフ状態(つまり、正極側回路21の各スイッチング素子32a,42aをオフ状態)に設定することによって、直流電源11から、順次、地絡抵抗RLpおよび負極側検出抵抗33bおよび負極側スイッチング素子(S3)32bおよび負極側保護抵抗31bを流通して、直流電源11へと適宜の電流が還流する第3閉回路L3と、直流電源11から、順次、地絡抵抗RLpおよび負極側定電流源34bを流通して、直流電源11へと、スイッチ48bのオン/オフ状態に応じて変化する電流値I1または電流値I2の電流Iが還流する第4閉回路L4とが形成される。
ここで、負極側定電流源34bから出力される電流Iが電流値I1であるときに、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bによって検出される電圧V4(I1)は、例えば下記数式(4)に示すように記述され、負極側定電流源34bから出力される電流Iが電流値I2であるときに負極側電圧検出器35bによって検出される電圧V4(I2)は、例えば下記数式(5)に示すように記述される。
For example, as shown in FIG. 7, when the ground fault of the ground fault resistance RLp is generated on the positive electrode side of the DC power supply 11, the negative circuit 22 is turned on (that is, each switching element of the negative circuit 22 32b and 42b are turned on) and the positive side circuit 21 is turned off (that is, the switching elements 32a and 42a of the positive side circuit 21 are turned off). And a third closed circuit L3 through which an appropriate current flows back to the DC power source 11 through the negative electrode side detection resistor 33b, the negative electrode side switching element (S3) 32b, and the negative electrode side protection resistor 31b, and the DC power source 11 sequentially. , The current value I1 or the electric current that changes according to the on / off state of the switch 48b to the DC power source 11 through the ground fault resistance RLp and the negative-side constant current source 34b. Current I value I2 and a fourth closed circuit L4 refluxing is formed.
Here, when the current I output from the negative-side constant current source 34b is the current value I1, the voltage V4 (I1) detected by the negative-side voltage detector 35b connected in parallel to the negative-side detection resistor 33b. Is described as, for example, the following mathematical formula (4), and the voltage V4 (I2) detected by the negative voltage detector 35b when the current I output from the negative constant current source 34b is the current value I2. Is described, for example, as shown in Equation (5) below.

Figure 0004166680
Figure 0004166680

Figure 0004166680
Figure 0004166680

上記数式(4),(5)の差分(V4(I1)−V4(I2))に基づき地絡抵抗RLpを記述すると、例えば下記数式(6)に示すように、直流電源11の電圧値Vbattには依存しない値となる。   When the ground fault resistance RLp is described based on the difference (V4 (I1) −V4 (I2)) between the above formulas (4) and (5), for example, as shown in the following formula (6), the voltage value Vbatt of the DC power supply 11 The value does not depend on.

Figure 0004166680
Figure 0004166680

また、直流電源11内部の適宜の位置に地絡抵抗RLnpの地絡が発生している場合に、正極側回路21をオン状態(つまり、正極側回路21の各スイッチング素子32a,42aをオン状態)かつ負極側回路22をオフ状態(つまり、負極側回路22の各スイッチング素子32b,42bをオフ状態)に設定すると、例えば図8に示すように、直流電源11の正極側端子11pから、順次、正極側保護抵抗31aおよび正極側スイッチング素子(S1)32aおよび正極側検出抵抗33aおよび地絡抵抗RLnpを流通して、直流電源11内部の地絡発生位置11npへと適宜の電流が還流する第5閉回路L5と、直流電源11の正極側端子11pから、順次、正極側定電流源34aおよび地絡抵抗RLnpを流通して、直流電源11内部の地絡発生位置11npへと、スイッチ48aのオン/オフ状態に応じて変化する電流値I1または電流値I2の電流Iが還流する第6閉回路L6とが形成される。
さらに、この場合には、直流電源11の正極側に地絡抵抗RLpの地絡が発生している場合に、負極側回路22をオン状態(つまり、負極側回路22の各スイッチング素子32b,42bをオン状態)かつ正極側回路21をオフ状態(つまり、正極側回路21の各スイッチング素子32a,42aをオフ状態)に設定すると、例えば図9に示すように、直流電源11内部の地絡発生位置11npから、順次、地絡抵抗RLnpおよび負極側検出抵抗33bおよび負極側スイッチング素子(S3)32bおよび負極側保護抵抗31bを流通して、直流電源11の負極側端子11nへと適宜の電流が還流する第7閉回路L7と、直流電源11内部の地絡発生位置11npから、順次、地絡抵抗RLnpおよび負極側定電流源34bを流通して、直流電源11の負極側端子11nへと、スイッチ48bのオン/オフ状態に応じて変化する電流値I1または電流値I2の電流Iが還流する第8閉回路L8とが形成される。
Further, when the ground fault of the ground fault resistance RLnp occurs at an appropriate position inside the DC power supply 11, the positive circuit 21 is turned on (that is, the switching elements 32a and 42a of the positive circuit 21 are turned on). ) And the negative circuit 22 is turned off (that is, the switching elements 32b and 42b of the negative circuit 22 are turned off), for example, sequentially from the positive terminal 11p of the DC power supply 11, as shown in FIG. The appropriate current flows back to the ground fault occurrence position 11np in the DC power supply 11 through the positive protection resistor 31a, the positive switching element (S1) 32a, the positive detection resistor 33a, and the ground fault resistance RLnp. From the closed circuit L5 and the positive terminal 11p of the DC power supply 11, the positive constant current source 34a and the ground fault resistor RLnp are sequentially distributed to the DC power supply 11 inside. To earth 絡発 raw position 11Np, and the sixth closed circuit L6 current I of the current value I1 or the current value I2 that varies according to the on / off state of the switch 48a is reflux was formed.
Further, in this case, when the ground fault of the ground fault resistance RLp is generated on the positive electrode side of the DC power supply 11, the negative electrode side circuit 22 is turned on (that is, the switching elements 32b and 42b of the negative electrode side circuit 22). Is turned on) and the positive circuit 21 is turned off (that is, the switching elements 32a and 42a of the positive circuit 21 are turned off). For example, as shown in FIG. From the position 11np, an appropriate current is passed through the ground fault resistor RLnp, the negative electrode side detection resistor 33b, the negative electrode side switching element (S3) 32b, and the negative electrode side protective resistor 31b sequentially to the negative electrode side terminal 11n of the DC power supply 11. From the seventh closed circuit L7 that circulates and the ground fault occurrence position 11np in the DC power source 11, the ground fault resistance RLnp and the negative-side constant current source 34b are sequentially distributed to To the negative terminal 11n of the power source 11, and the eighth closed circuit L8 current I of the current value I1 or the current value I2 that varies according to the on / off state of the switch 48b is reflux was formed.

つまり、直流電源11内部に地絡が発生している場合には、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aによって検出される電圧V2(I1)および電圧V2(I2)に基づき、例えば下記数式(7)に示すように、正極側端子11pと地絡発生位置11npとの間の電圧Vaに依存しない値として地絡抵抗RLpnを記述することができ、さらに、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bによって検出される電圧V4(I1)および電圧V4(I2)に基づき、例えば下記数式(8)に示すように、地絡発生位置11npと負極側端子11nとの間の電圧Vbに依存しない値として地絡抵抗RLnpを記述することができ
そして、下記数式(7)の右辺は上記数式(3)の右辺と同等となり、下記数式(8)の右辺は上記数式(6)の右辺と同等となる。
That is, when a ground fault occurs in the DC power supply 11, the voltage V2 (I1) and the voltage V2 (I2) detected by the positive voltage detector 35a connected in parallel to the positive detection resistor 33a. For example, as shown in the following formula (7), the ground fault resistance RLpn can be described as a value independent of the voltage Va between the positive terminal 11p and the ground fault occurrence position 11np, and further, the negative side Based on the voltage V4 (I1) and the voltage V4 (I2) detected by the negative voltage detector 35b connected in parallel to the detection resistor 33b, for example, as shown in the following formula (8), the ground fault occurrence position 11np Ru can be described grounding resistor RL np as a value that does not depend on the voltage Vb between the negative terminal 11n.
The right side of the following formula (7) is equivalent to the right side of the formula (3), and the right side of the following formula (8) is equivalent to the right side of the formula (6).

Figure 0004166680
Figure 0004166680

Figure 0004166680
Figure 0004166680

なお、地絡検知処理の実行時に、制御部23によって正極側回路21の正極側スイッチング素子32aまたは負極側回路22の負極側スイッチング素子32bがオン状態に設定されると、直流電源11は、正極側保護抵抗31aおよび正極側検出抵抗33aを介して、あるいは、負極側保護抵抗31bおよび負極側検出抵抗33bを介して、例えば車体等に接続されることで接地される。
このため、制御部23は、正極側保護抵抗31aおよび正極側検出抵抗33aに流れる電流が所定の電流値を超えて過剰に大きくなった場合には、正極側スイッチング素子32aをオフ状態に設定するオフ信号を出力し、負極側保護抵抗31bおよび負極側検出抵抗33bに流れる電流が所定の電流値を超えて過剰に大きくなった場合には、負極側スイッチング素子32bをオフ状態に設定するオフ信号を出力する。
すなわち、正極側電圧検出器35aによって検出される正極側検出抵抗33aの両端に発生する出力電圧の電圧値V2に対して所定の保護電圧Vgateが設定されており、例えば地絡が発生していない場合等のように、地絡抵抗RLn,RLnpが相対的に大きいときに、出力電圧の電圧値V2が保護電圧Vgateを超えることがないように設定されている。同様にして、負極側電圧検出器35bによって検出される負極側検出抵抗33bの両端に発生する出力電圧の電圧値V4は所定の保護電圧Vgateを超えることがないように設定されている。
When the control unit 23 sets the positive side switching element 32a of the positive side circuit 21 or the negative side switching element 32b of the negative side circuit 22 to the on state during the execution of the ground fault detection process, the DC power source 11 It is grounded by being connected to, for example, a vehicle body via the side protection resistor 31a and the positive electrode side detection resistor 33a, or via the negative electrode side protection resistor 31b and the negative electrode side detection resistor 33b.
For this reason, the control part 23 sets the positive electrode side switching element 32a to an OFF state, when the electric current which flows into the positive electrode side protection resistance 31a and the positive electrode side detection resistance 33a exceeds a predetermined electric current value, and becomes large excessively. An off signal that outputs an off signal and sets the negative side switching element 32b to an off state when the current flowing through the negative side protection resistor 31b and the negative side detection resistor 33b exceeds a predetermined current value and becomes excessively large. Is output.
That is, a predetermined protection voltage Vgate is set for the voltage value V2 of the output voltage generated at both ends of the positive electrode detection resistor 33a detected by the positive electrode voltage detector 35a, for example, no ground fault has occurred. As in the case, when the ground fault resistances RLn and RLnp are relatively large, the voltage value V2 of the output voltage is set so as not to exceed the protection voltage Vgate. Similarly, the voltage value V4 of the output voltage generated at both ends of the negative electrode side detection resistor 33b detected by the negative electrode side voltage detector 35b is set so as not to exceed a predetermined protection voltage Vgate.

制御部23は、上記数式(3),(6)、(7),(8)に基づき、直流電源11の正極側または負極側、あるいは、直流電源11内部において地絡が発生したか否かを判定する。
そして、地絡が発生していると判定した場合には、この判定結果を、例えば警報装置(図示略)等へ出力する。
The control unit 23 determines whether or not a ground fault has occurred on the positive or negative side of the DC power supply 11 or inside the DC power supply 11 based on the above formulas (3), (6), (7), and (8). Determine.
If it is determined that a ground fault has occurred, the determination result is output to, for example, an alarm device (not shown).

本実施の形態による地絡検知装置10は上記構成を備えており、次に、この地絡検知装置10の動作について添付図面を参照しながら説明する。   The ground fault detection apparatus 10 according to the present embodiment has the above-described configuration. Next, the operation of the ground fault detection apparatus 10 will be described with reference to the accompanying drawings.

先ず、例えば図10に示すステップS01においては、正極側回路21をオン状態かつ負極側回路22をオフ状態に設定する。これにより、例えば図11に示す時刻t1のように、正極側スイッチング素子(S1)32aおよびスイッチング素子(S2)42aがオン状態とされ、負極側スイッチング素子(S3)32bおよびスイッチング素子(S4)42bがオフ状態となる。
そして、ステップS02においては、例えば図11に示す時刻t1のように、正極側定電流源34aのスイッチ(S5)48aをオフ状態として正極側定電流源34aから電流値I1の電流Iを出力させ、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aによって電圧V2(I1)を検出する。この正極側電圧検出器35aの検出結果は、例えば図11に示す時刻t2〜時刻t3において、AD変換器(図示略)にてAD変換される。
次に、ステップS03においては、例えば図11に示す時刻t3のように、正極側定電流源34aのスイッチ(S5)48aをオフ状態からオン状態へ切り換え、正極側定電流源34aから出力される電流Iを電流値I1から電流値I2へと切り換える。
そして、ステップS04においては、正極側定電流源34aから電流値I2の電流Iを出力させた状態で、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aによって電圧V2(I2)を検出する。この正極側電圧検出器35aの検出結果は、例えば図11に示す時刻t4〜時刻t5において、AD変換器(図示略)にてAD変換される。
そして、ステップS05においては、上記数式(3)に基づき、直流電源11の負極側に発生した地絡の地絡抵抗RLnを算出する。
First, for example, in step S01 shown in FIG. 10, the positive side circuit 21 is set to an on state and the negative side circuit 22 is set to an off state. Thus, for example, at time t1 shown in FIG. 11, the positive side switching element (S1) 32a and the switching element (S2) 42a are turned on, and the negative side switching element (S3) 32b and the switching element (S4) 42b are turned on. Is turned off.
In step S02, for example, at time t1 shown in FIG. 11, the switch (S5) 48a of the positive-side constant current source 34a is turned off to output the current I having the current value I1 from the positive-side constant current source 34a. The voltage V2 (I1) is detected by the positive voltage detector 35a connected in parallel to the positive detection resistor 33a. The detection result of the positive voltage detector 35a is AD-converted by an AD converter (not shown) at time t2 to time t3 shown in FIG. 11, for example.
Next, in step S03, for example, at time t3 shown in FIG. 11, the switch (S5) 48a of the positive-side constant current source 34a is switched from the off state to the on state, and output from the positive-side constant current source 34a. The current I is switched from the current value I1 to the current value I2.
In step S04, the voltage V2 (I2) is output by the positive voltage detector 35a connected in parallel to the positive detection resistor 33a in a state where the current I having the current value I2 is output from the positive constant current source 34a. Is detected. The detection result of the positive voltage detector 35a is AD converted by an AD converter (not shown), for example, from time t4 to time t5 shown in FIG.
In step S05, the ground fault resistance RLn of the ground fault generated on the negative electrode side of the DC power source 11 is calculated based on the formula (3).

次に、ステップS06においては、負極側回路22をオン状態かつ正極側回路21をオフ状態に設定する。これにより、例えば図11に示す時刻t5のように、正極側スイッチング素子(S1)32aおよびスイッチング素子(S2)42aがオフ状態とされ、さらに、例えば図11に示す時刻t6のように、負極側スイッチング素子(S3)32bおよびスイッチング素子(S4)42bがオン状態となる。
次に、ステップS07においては、例えば図11に示す時刻t6のように、負極側定電流源34bのスイッチ48bをオフ状態として負極側定電流源34bから電流値I1の電流Iを出力させ、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bによって電圧V4(I1)を検出する。この負極側電圧検出器35bの検出結果は、例えば図11に示す時刻t7〜時刻t8において、AD変換器(図示略)にてAD変換される。
次に、ステップS08においては、例えば図11に示す時刻t8のように、負極側定電流源34bのスイッチ48bをオフ状態からオン状態へ切り換え、負極側定電流源34bから出力される電流Iを電流値I1から電流値I2へと切り換える。
そして、ステップS09においては、負極側定電流源34bから電流値I2の電流Iを出力させた状態で、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bによって電圧V4(I2)を検出する。この負極側電圧検出器35bの検出結果は、例えば図11に示す時刻t9〜時刻t10において、AD変換器(図示略)にてAD変換される。
そして、ステップS10においては、上記数式(6)に基づき、直流電源11の正極側に発生した地絡の地絡抵抗RLpを算出する。
Next, in step S06, the negative side circuit 22 is set to an on state and the positive side circuit 21 is set to an off state. Accordingly, for example, at time t5 shown in FIG. 11, the positive side switching element (S1) 32a and the switching element (S2) 42a are turned off, and further, for example, at time t6 shown in FIG. 11, the negative side Switching element (S3) 32b and switching element (S4) 42b are turned on.
Next, in step S07, for example, at time t6 shown in FIG. 11, the switch 48b of the negative-side constant current source 34b is turned off to output the current I having the current value I1 from the negative-side constant current source 34b. The voltage V4 (I1) is detected by the negative voltage detector 35b connected in parallel to the side detection resistor 33b. The detection result of the negative voltage detector 35b is AD converted by an AD converter (not shown) at time t7 to time t8 shown in FIG. 11, for example.
Next, in step S08, for example, at time t8 shown in FIG. 11, the switch 48b of the negative side constant current source 34b is switched from the off state to the on state, and the current I output from the negative side constant current source 34b is changed. The current value I1 is switched to the current value I2.
In step S09, the voltage V4 (I2) is output by the negative voltage detector 35b connected in parallel to the negative detection resistor 33b while the current I having the current value I2 is output from the negative constant current source 34b. Is detected. The detection result of the negative voltage detector 35b is AD-converted by an AD converter (not shown), for example, from time t9 to time t10 shown in FIG.
In step S10, the ground fault resistance RLp of the ground fault generated on the positive electrode side of the DC power supply 11 is calculated based on the above formula (6).

そして、ステップS11においては、負極側の地絡抵抗RLnが所定の判定閾値#R以下か否かを判定する。
この判定結果が「NO」の場合には、後述するステップS15に進む。
一方、この判定結果が「YES」の場合には、ステップS12に進む。
ステップS12においては、正極側の地絡抵抗RLpが所定の判定閾値#R以下か否かを判定する。
ステップS12の判定結果が「NO」の場合には、ステップS13に進み、直流電源11の負極側に地絡が発生したと判断して、一連の処理を終了する。
一方、ステップS12の判定結果が「YES」の場合には、ステップS14に進み、直流電源11内部に地絡が発生したと判断して、一連の処理を終了する。
また、ステップS15においては、正極側の地絡抵抗RLpが所定の判定閾値#R以下か否かを判定する。
ステップS12の判定結果が「YES」の場合には、ステップS16に進み、直流電源11の正極側に地絡が発生したと判断して、一連の処理を終了する。
一方、ステップS12の判定結果が「NO」の場合には、ステップS17に進み、地絡は発生していないと判断して、一連の処理を終了する。
In step S11, it is determined whether or not the negative side ground fault resistance RLn is equal to or less than a predetermined determination threshold #R.
If this determination is “NO”, the flow proceeds to step S 15 described later.
On the other hand, if this determination is “YES”, the flow proceeds to step S12.
In step S12, it is determined whether the positive side ground fault resistance RLp is equal to or less than a predetermined determination threshold value #R.
If the determination result in step S12 is “NO”, the process proceeds to step S13, where it is determined that a ground fault has occurred on the negative electrode side of the DC power supply 11, and the series of processing ends.
On the other hand, if the determination result in step S12 is “YES”, the process proceeds to step S14, where it is determined that a ground fault has occurred in the DC power supply 11, and the series of processes is terminated.
In step S15, it is determined whether or not the positive side ground fault resistance RLp is equal to or less than a predetermined determination threshold #R.
If the determination result in step S12 is “YES”, the process proceeds to step S16, where it is determined that a ground fault has occurred on the positive electrode side of the DC power supply 11, and the series of processes is terminated.
On the other hand, if the determination result in step S12 is “NO”, the process proceeds to step S17, where it is determined that no ground fault has occurred, and the series of processes is terminated.

なお、上述した各スイッチング素子32a,42a,32b,42bおよび各スイッチ48a,48bのオン/オフ状態の継続時間や、AD変換に要する時間や、例えば図11に示す時刻t10〜時刻t11において実行される上述したステップS11からステップS17における判定処理に要する時間等は、適宜の長さに設定可能とされている。
また、上述したステップS01からステップS17の一連の処理では、先ず、正極側回路21をオン状態とし、次に、負極側回路22をオン状態としたが、これに限定されず、先ず、負極側回路22をオン状態とし、次に、正極側回路21をオン状態としてもよい。
The switching elements 32a, 42a, 32b, 42b and the switches 48a, 48b described above are executed in durations of ON / OFF states, time required for AD conversion, for example, from time t10 to time t11 shown in FIG. The time required for the determination processing in steps S11 to S17 described above can be set to an appropriate length.
Further, in the above-described series of processing from step S01 to step S17, first, the positive side circuit 21 is turned on and then the negative side circuit 22 is turned on. However, the present invention is not limited to this. The circuit 22 may be turned on, and then the positive side circuit 21 may be turned on.

上述したように、本実施の形態による地絡検知装置10によれば、直流電源11の正極側または負極側あるいは直流電源11内部に発生した地絡を検知することができ、地絡発生位置を取得することによって、例えば発生した地絡を解消するための作業等を容易に実行することができ、発生した地絡に対して適切な対応が可能となる。
しかも、直流電源11の出力電圧に依存しない検知結果を得ることができ、精度の良い地絡検知が可能となる。
As described above, according to the ground fault detection device 10 according to the present embodiment, it is possible to detect a ground fault occurring on the positive electrode side or the negative electrode side of the DC power source 11 or inside the DC power source 11, and the position of the ground fault occurrence is determined. By acquiring, for example, work for eliminating the generated ground fault can be easily performed, and an appropriate response to the generated ground fault can be performed.
In addition, a detection result that does not depend on the output voltage of the DC power source 11 can be obtained, and a ground fault can be detected with high accuracy.

本発明の一実施形態に係る地絡検知装置を搭載した車両の構成図である。It is a lineblock diagram of vehicles carrying a ground fault detection device concerning one embodiment of the present invention. 図1に示す地絡検知装置の正極側回路の構成図である。It is a block diagram of the positive electrode side circuit of the ground fault detection apparatus shown in FIG. 図1に示す地絡検知装置の負極側回路の構成図である。It is a block diagram of the negative electrode side circuit of the ground fault detection apparatus shown in FIG. 図1に示す正極側定電流源の構成図である。It is a block diagram of the positive electrode side constant current source shown in FIG. 図1に示す負極側定電流源の構成図である。It is a block diagram of the negative electrode side constant current source shown in FIG. 直流電源の負極側に地絡抵抗RLnの地絡が発生している場合の一例を示す図である。It is a figure which shows an example in case the ground fault of the ground fault resistance RLn has generate | occur | produced in the negative electrode side of DC power supply. 直流電源の正極側に地絡抵抗RLpの地絡が発生している場合の一例を示す図である。It is a figure which shows an example in case the ground fault of the ground fault resistance RLp has generate | occur | produced in the positive electrode side of DC power supply. 直流電源内部に地絡抵抗RLnpの地絡が発生している場合の一例を示す図である。It is a figure which shows an example in case the ground fault of the ground fault resistance RLnp has generate | occur | produced in DC power supply. 直流電源内部に地絡抵抗RLnpの地絡が発生している場合の一例を示す図である。It is a figure which shows an example in case the ground fault of the ground fault resistance RLnp has generate | occur | produced in DC power supply. 図1に示す地絡検知装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the ground fault detection apparatus shown in FIG. 図1に示す地絡検知装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the ground fault detection apparatus shown in FIG.

符号の説明Explanation of symbols

10 地絡検知装置
11 非接地直流電源
11p 正極側端子(正極端子)
11n 負極側端子(負極端子)
12 モータ
20 接地部
21 正極側回路(正側地絡検出回路)
22 負極側回路(負側地絡検出回路)
23 制御部(地絡抵抗値検出手段)
32a 正極側スイッチング素子(スイッチング素子)
32b 負極側スイッチング素子(スイッチング素子)
33a 正極側検出抵抗(地絡検出抵抗)
33b 負極側検出抵抗(地絡検出抵抗)
34a 正極側定電流源(定電流源)
34b 負極側定電流源(定電流源)
35a 正極側電圧検出器
35b 負極側電圧検出器
ステップS03、ステップS08 電流値変更手段
ステップS05、ステップS10 地絡抵抗値検出手段
ステップS11、ステップS12、ステップS15 異常検知手段
ステップS13、ステップS14、ステップS16 地絡判定手段

10 Ground fault detection device 11 Ungrounded DC power supply 11p Positive terminal (positive terminal)
11n Negative terminal (negative terminal)
12 Motor 20 Grounding part 21 Positive side circuit (Positive side ground fault detection circuit)
22 Negative circuit (negative ground fault detection circuit)
23 Control unit (ground fault resistance detection means)
32a Positive side switching element (switching element)
32b Negative side switching element (switching element)
33a Positive side detection resistor (ground fault detection resistor)
33b Negative electrode side detection resistor (ground fault detection resistor)
34a Positive current source (constant current source)
34b Negative current source (constant current source)
35a Positive side voltage detector 35b Negative side voltage detector Step S03, Step S08 Current value changing means Step S05, Step S10 Ground fault resistance value detecting means Step S11, Step S12, Step S15 Abnormality detecting means Step S13, Step S14, Step S16 Ground fault determination means

Claims (2)

地絡検出抵抗および保護抵抗からなる直列回路と定電流源とを並列に接続してなる各正側地絡検出回路および負側地絡検出回路を、非接地直流電源の各正側端子とアースとの間および負側端子とアースとの間に接続してなる地絡検出装置であって、
各前記正側地絡検出回路および前記負側地絡検出回路毎に異常状態の発生有無を検知する異常検知手段と、
前記異常検知手段にて前記正側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の前記負側端子に接続された負側ラインに地絡が発生したと判定し、
前記異常検知手段にて前記負側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の前記正側端子に接続された正側ラインに地絡が発生したと判定し、
前記異常検知手段にて前記正側地絡検出回路および前記負側地絡検出回路での異常状態の発生を検知した場合には、前記非接地直流電源の内部に地絡が発生したと判定する地絡判定手段と、前記地絡検出抵抗の両端に発生する電圧が所定の保護電圧を超えたときに、前記地絡検出抵抗と前記保護抵抗との接続を遮断する保護手段とを備えることを特徴とする地絡検知装置。
Connect each positive-side ground fault detection circuit and negative-side ground fault detection circuit, which consists of a series circuit consisting of a ground fault detection resistor and protective resistance, and a constant current source in parallel to each positive terminal of the ungrounded DC power supply and ground. And a ground fault detection device connected between the negative terminal and the ground,
An abnormality detection means for detecting the presence or absence of an abnormal state for each of the positive ground fault detection circuit and the negative ground fault detection circuit;
When the abnormality detection means detects the occurrence of an abnormal state in the positive ground fault detection circuit, a ground fault has occurred in the negative line connected to the negative terminal of the non-grounded DC power supply. Judgment,
When the abnormality detection means detects the occurrence of an abnormal state in the negative ground fault detection circuit, a ground fault has occurred in the positive line connected to the positive terminal of the non-grounded DC power supply. Judgment,
When the abnormality detection means detects the occurrence of an abnormal state in the positive ground fault detection circuit and the negative ground fault detection circuit, it is determined that a ground fault has occurred in the non-grounded DC power source. A ground fault determination means; and a protection means for cutting off a connection between the ground fault detection resistor and the protection resistor when a voltage generated at both ends of the ground fault detection resistor exceeds a predetermined protection voltage. A ground fault detection device.
地絡検出抵抗および保護抵抗からなる直列回路と定電流源とを並列に接続してなる各正側地絡検出回路および負側地絡検出回路を、非接地直流電源の各正側端子とアースとの間および負側端子とアースとの間に接続してなる地絡検出装置であって、
前記定電流源から出力される電流の電流値を変更する電流値変更手段と、
前記電流値変更手段にて前記電流値を変更したときの前記地絡検出抵抗の両端の端子間電圧の変化に基づき、前記非接地直流電源の前記負側端子に接続された負側ラインまたは前記非接地直流電源の前記正側端子に接続された正側ラインあるいは前記非接地直流電源の内部に発生した地絡に係る地絡抵抗値を検出する地絡抵抗値検出手段と、前記地絡検出抵抗の両端に発生する電圧が所定の保護電圧を超えたときに、前記地絡検出抵抗と前記保護抵抗との接続を遮断する保護手段とを備えることを特徴とする地絡検知装置。
Connect each positive-side ground fault detection circuit and negative-side ground fault detection circuit, which consists of a series circuit consisting of a ground fault detection resistor and protective resistance, and a constant current source in parallel to each positive terminal of the ungrounded DC power supply and ground. And a ground fault detection device connected between the negative terminal and the ground,
Current value changing means for changing the current value of the current output from the constant current source;
Based on the change in the voltage across the terminals of the ground fault detection resistor when the current value is changed by the current value changing means, the negative line connected to the negative terminal of the non-grounded DC power source or the A ground fault resistance value detecting means for detecting a ground fault resistance value related to a ground fault generated in the positive line connected to the positive terminal of the non-grounded DC power source or in the non-grounded DC power source, and the ground fault detection A ground fault detection device comprising: protection means for cutting off a connection between the ground fault detection resistor and the protection resistor when a voltage generated at both ends of the resistor exceeds a predetermined protection voltage .
JP2003428384A 2003-12-24 2003-12-24 Ground fault detector Expired - Fee Related JP4166680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428384A JP4166680B2 (en) 2003-12-24 2003-12-24 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428384A JP4166680B2 (en) 2003-12-24 2003-12-24 Ground fault detector

Publications (2)

Publication Number Publication Date
JP2005189005A JP2005189005A (en) 2005-07-14
JP4166680B2 true JP4166680B2 (en) 2008-10-15

Family

ID=34787377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428384A Expired - Fee Related JP4166680B2 (en) 2003-12-24 2003-12-24 Ground fault detector

Country Status (1)

Country Link
JP (1) JP4166680B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686356B2 (en) * 2005-09-22 2011-05-25 矢崎総業株式会社 Insulation detector
JP4705495B2 (en) * 2006-03-23 2011-06-22 株式会社ケーヒン Leakage detection circuit and battery electronic control device
JP4978970B2 (en) * 2007-12-20 2012-07-18 本田技研工業株式会社 Non-grounded circuit insulation detector
JP5415480B2 (en) * 2011-06-02 2014-02-12 中国電力株式会社 Ground fault detection device, program
WO2013098932A1 (en) 2011-12-27 2013-07-04 株式会社日立製作所 Battery system, and ground-fault detection device
WO2013190611A1 (en) * 2012-06-18 2013-12-27 日立ビークルエナジー株式会社 Leak detecting apparatus
JP5926796B2 (en) * 2012-06-18 2016-05-25 日立オートモティブシステムズ株式会社 Leak detector
JP6499455B2 (en) * 2015-01-20 2019-04-10 株式会社デンソーテン Monitoring device and battery monitoring system
CN112051484A (en) * 2020-09-02 2020-12-08 天津大学 Low-voltage direct-current system single-end fault location method based on voltage balancer

Also Published As

Publication number Publication date
JP2005189005A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4056923B2 (en) Ground fault detector
JP5602167B2 (en) Battery monitoring device
US8004284B2 (en) Leak detecting circuit
JP6014404B2 (en) Earth leakage detector
JP4832840B2 (en) Battery control device
US10505363B2 (en) Overcurrent protection circuit
JP5104416B2 (en) Abnormality detection device for battery pack
CN109247040B (en) Battery pack monitoring system
WO2013190733A1 (en) Leak detection device
EP3336565B1 (en) Secondary battery monitoring device and method for diagnosing failure
CN110895312B (en) Ground fault detection device
CN111465866B (en) Sensor fault detection using paired sample correlation
EP3190680B1 (en) Battery protection circuit
JP4166680B2 (en) Ground fault detector
JP4064292B2 (en) Ground fault detector
JP6009665B2 (en) Electric power steering device
CN111337850B (en) Ground fault detection device
US11467190B2 (en) In-vehicle voltage detection circuit
US9859739B2 (en) Load driver circuit including load model parameter estimation
JP2006185685A (en) Disconnection detecting device and disconnection detecting method
WO2015092522A1 (en) Drive control apparatus for semiconductor device
JP2015102336A (en) Battery monitoring device
US11874332B2 (en) Failure detection apparatus
JP5926796B2 (en) Leak detector
WO2018012408A1 (en) Current measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees