JP4164065B2 - Air pulsar - Google Patents

Air pulsar Download PDF

Info

Publication number
JP4164065B2
JP4164065B2 JP2004373804A JP2004373804A JP4164065B2 JP 4164065 B2 JP4164065 B2 JP 4164065B2 JP 2004373804 A JP2004373804 A JP 2004373804A JP 2004373804 A JP2004373804 A JP 2004373804A JP 4164065 B2 JP4164065 B2 JP 4164065B2
Authority
JP
Japan
Prior art keywords
chamber
air
valve
valve body
valve plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004373804A
Other languages
Japanese (ja)
Other versions
JP2006177506A (en
Inventor
正雄 尾上
Original Assignee
カネキタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネキタ株式会社 filed Critical カネキタ株式会社
Priority to JP2004373804A priority Critical patent/JP4164065B2/en
Publication of JP2006177506A publication Critical patent/JP2006177506A/en
Application granted granted Critical
Publication of JP4164065B2 publication Critical patent/JP4164065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Fluid-Driven Valves (AREA)

Description

この発明は、パルスエアを噴射し、粉体等の空気輸送などに用いられるエアパルサに関する。   The present invention relates to an air pulser that is used for air transportation such as powder by jetting pulsed air.

間歇的に噴射される圧縮エア、所謂パルスエアによって粉粒体を空気輸送したり、ホッパ内に充填された粉粒体のブリッジを破壊したりすることは従来から普通に行なわれている。   Conventionally, it is common practice to pneumatically transport the granular material by compressed air jetted intermittently, so-called pulsed air, or to destroy the bridge of the granular material filled in the hopper.

例えば、特許文献1に記載された粉粒体の輸送装置においては、コンプレッサから成る圧縮空気供給源と加圧タンクとを第1通路で連通し、加圧タンクの下部出口に接続された粉粒体の輸送管と前記圧縮空気供給源とを第2通路で連通し、前記第1通路と第2通路のそれぞれに電磁弁を接続し、各電磁弁の開閉を制御装置で制御して、加圧タンク内および輸送管内にパルスエアを交互に供給し、加圧タンク内に供給されるパルスエアにより内部の粉粒体を流動化させてブリッジの発生を抑制するようにしている。また、輸送管内に供給されるパルスエアによって、加圧タンク内から輸送管内に排出される粉粒体を空気輸送するようにしている。   For example, in the granular material transport apparatus described in Patent Document 1, a compressed air supply source composed of a compressor and a pressurized tank communicate with each other through a first passage and are connected to a lower outlet of the pressurized tank. A body transport pipe and the compressed air supply source are communicated with each other through a second passage, and an electromagnetic valve is connected to each of the first passage and the second passage. Pulse air is alternately supplied into the pressure tank and the transport pipe, and the internal powder particles are fluidized by the pulse air supplied into the pressure tank to suppress the occurrence of bridges. In addition, the granular material discharged from the pressurized tank into the transport pipe is pneumatically transported by pulsed air supplied into the transport pipe.

また、特許文献2に記載されたエアバイブレータにおいては、シリンダの上方にバルブ室を設け、そのバルブ室内に小孔を有するダイヤフラムを張設して、バルブ室を上室と圧縮エアが供給される下室とに仕切り、上室の周壁に形成された排気口に電磁弁を接続し、この電磁弁の開閉を制御し、電磁弁の開放により上室内の圧縮エアを外部に排気し、上室内の圧縮低下によりダイヤフラムを上室側にわん曲させてシリンダの上端を開口し、下室からシリンダ内に供給されるパルスエアによって、そのシリンダ内に組込まれたピストンを下降させ、このピストンにより打撃プレートを打撃するようにしている。   Further, in the air vibrator described in Patent Document 2, a valve chamber is provided above the cylinder, a diaphragm having a small hole is stretched in the valve chamber, and compressed air is supplied to the upper chamber and the valve chamber. A solenoid valve is connected to an exhaust port formed on the peripheral wall of the upper chamber, and the opening and closing of the solenoid valve is controlled, and the compressed air in the upper chamber is exhausted to the outside by opening the solenoid valve. Due to the lowering of compression, the diaphragm is bent to the upper chamber side, the upper end of the cylinder is opened, and the piston built in the cylinder is lowered by the pulsed air supplied from the lower chamber into the cylinder, and the piston hits the plate. Like to blow.

ところで、上記のような噴流体の輸送装置やエアバイブレータにおいては、パルスエアの形成に電磁弁を必要とするため、装置が大型化すると共に、電磁弁の開閉を制御装置で制御する必要があるため、コストが高くつくという不都合がある。そのような不都合を解消するため、本件出願人は、電磁弁を用いることなく圧縮エアを連続的に供給するのみでパルスエアを噴射させることができるようにしたエアパルサを特許文献3で提案している。   By the way, in the jet fluid transport apparatus and the air vibrator as described above, an electromagnetic valve is required for the formation of pulsed air. Therefore, the apparatus is enlarged and the opening / closing of the electromagnetic valve needs to be controlled by the control device. There is a disadvantage that the cost is high. In order to eliminate such inconvenience, the present applicant has proposed an air pulser in Patent Document 3 that can inject pulsed air only by continuously supplying compressed air without using a solenoid valve. .

上記特許文献3に記載されたエアパルサは、ボディの内部空間をダイヤフラムによって給気チャンバと排気チャンバとに仕切り、給気チャンバ内には前記ダイヤフラムによって開閉されるエア噴射筒を設け、排気チャンバ内には、その排気チャンバを第1室と第2室に仕切る弁プレートを設け、第2室には弁プレートに形成された弁孔を開閉する弁体を組込み、その弁体に保持された永久磁石が弁プレートに吸着する作用によって弁体を閉鎖位置に保持するように構成されている。   The air pulser described in Patent Document 3 divides the internal space of the body into a supply chamber and an exhaust chamber by a diaphragm, and an air injection cylinder that is opened and closed by the diaphragm is provided in the supply chamber. Is provided with a valve plate that partitions the exhaust chamber into a first chamber and a second chamber, a valve body that opens and closes a valve hole formed in the valve plate is incorporated in the second chamber, and a permanent magnet held by the valve body Is configured to hold the valve body in the closed position by the action of adsorbing to the valve plate.

そして、上記ボディに形成された給気口から給気チャンバ内に供給される圧縮エアをダイヤフラムに形成された小孔から第1室内に流入させ、その第1室内の圧力が永久磁石の吸着力より高くなったとき、弁体を後退させて排気チャンバ内の圧縮エアを排気口から外部に流出させ、その流出による排気チャンバ内の圧力低下によりダイヤフラムを排気チャンバ側に変形させて、給気チャンバ内の圧縮エアをエア噴射筒から噴射させるようにしている。   Then, compressed air supplied into the air supply chamber from the air supply port formed in the body is caused to flow into the first chamber from a small hole formed in the diaphragm, and the pressure in the first chamber is adjusted to the attractive force of the permanent magnet. When it becomes higher, the valve body is moved backward to let the compressed air in the exhaust chamber flow out to the outside from the exhaust port, and the diaphragm is deformed to the exhaust chamber side due to the pressure drop in the exhaust chamber due to the outflow, and the air supply chamber The compressed air inside is injected from the air injection cylinder.

しかし、上記特許文献3に記載されたエアパルサにおいては、弁体の永久磁石が弁プレートの内周面と接触する構成として、永久磁石の端面が弁プレートの内周面と直線当接し吸着するようになっており、磁石面と吸着面が円形状の平坦面となっている。しかし、このような吸着方式では、永久磁石の磁束分布が不均一、かつ全周に亘って連続分布しているため、各動作タイミングによっては吸着時に大きな吸着力、離反時に大きな離反力を必要とし、動作インターバルと動作圧力が一定の動作を繰り返さず、場合によっては吸着したままとなることもあり、このためエアの動作圧の下限と上限の差圧が大きくなり、不安定動作の要因となっていた。従って、エアパルサを精度よく作動させることができず、改良すべき点が残されていた。
特開平5−330652号公報 特公平6−30735号公報 特開2003−34429号公報
However, in the air pulser described in Patent Document 3, the permanent magnet of the valve body is in contact with the inner peripheral surface of the valve plate, so that the end surface of the permanent magnet is in linear contact with and adsorbs the inner peripheral surface of the valve plate. The magnet surface and the attracting surface are circular flat surfaces. However, in such an adsorption method, the magnetic flux distribution of the permanent magnet is non-uniform and continuously distributed over the entire circumference, so depending on each operation timing, a large adsorption force at the time of adsorption and a large separation force at the time of separation are required. The operation interval and the operation pressure do not repeat the operation, and in some cases, it may remain adsorbed, which increases the differential pressure between the lower and upper limits of the air operation pressure, causing unstable operation. It was. Therefore, the air pulser cannot be operated with high accuracy, and there remains a point to be improved.
Japanese Patent Laid-Open No. 5-330652 Japanese Patent Publication No. 6-30735 JP 2003-34429 A

この発明の課題は、上記のようなエアパルサにおいて、永久磁石の吸着によって閉鎖状態に保持される弁体と弁プレートの対向面間の吸着と離反の動作圧の振れ幅の変動による差圧を減少させ、弁体の開閉動作を安定化することである。   The object of the present invention is to reduce the differential pressure due to fluctuations in the swing width of the adsorption and separation operating pressure between the opposed surfaces of the valve body and the valve plate held in the closed state by the adsorption of the permanent magnet in the air pulser as described above. It is to stabilize the opening and closing operation of the valve body.

上記の課題を解決するために、この発明においては、ボディの内部空間内に小孔を有するダイヤフラムを張設して、内部空間を給気チャンバと排気チャンバとに仕切り、給気チャンバ内にはダイヤフラムによって開閉されるエア噴射筒を設け、排気チャンバ内には、その排気チャンバを第1室と第2室とに仕切る弁プレートを設け、第1室にはダイヤフラムがエア噴射筒を閉じる方向にダイヤフラムを変形させるスプリングを設け、第2室には、弁プレートに形成された弁孔の開閉用の弁体と、その弁体を弁プレートに対して移動自在に支持するガイド筒とを組込み、ガイド筒の両端部にはその内部と第2室を連通する通気孔を形成し、弁体には弁プレートに吸着して弁体を閉鎖状態に保持する永久磁石を設け、ボディには給気チャンバに圧縮エアを供給する給気口と、第2室内のエアを外部に排気する排気口とを形成したエアパルサにおいて、弁体に設けられた永久磁石の弁プレートに対向する面に吸着盤を取付け、弁プレートの内周部の上記吸着盤と対向する面に放射方向に複数の分割溝を設け、前記弁プレートとガイド筒の対向面間にシール部材を組込み、そのシール部材の内周に弁体先端部外周に形成された凹面と弾性接触する環状のシールリップを設け、前記弁プレートの弁体との対向面に前記シールリップの移動を許容する溝を設け、弁体の閉鎖状態で前記第1室内の圧力が高くなると、前記弁プレートと弁体の対向面間の圧縮エアによって、前記移動が許容されたシールリップの凹面に対する接触圧が増大するようにした構成を採用したのである。 In order to solve the above problems, in the present invention, a diaphragm having a small hole is stretched in the internal space of the body, and the internal space is partitioned into an air supply chamber and an exhaust chamber, An air injection cylinder that is opened and closed by a diaphragm is provided, and a valve plate that divides the exhaust chamber into a first chamber and a second chamber is provided in the exhaust chamber, and the diaphragm closes the air injection cylinder in the first chamber. A spring for deforming the diaphragm is provided, and in the second chamber, a valve body for opening and closing a valve hole formed in the valve plate and a guide cylinder for supporting the valve body movably with respect to the valve plate are incorporated. Ventilation holes communicating the inside and the second chamber are formed at both ends of the guide cylinder. The valve body is provided with a permanent magnet that is attracted to the valve plate and holds the valve body in a closed state. Pressure in chamber In an air pulsar formed with an air supply port for supplying air and an exhaust port for exhausting the air in the second chamber to the outside, an adsorption plate is attached to the surface of the valve body facing the valve plate of the permanent magnet. A plurality of dividing grooves are provided in a radial direction on the surface of the inner peripheral portion of the plate facing the suction plate, a seal member is incorporated between the opposing surfaces of the valve plate and the guide tube, and the tip of the valve body is disposed on the inner periphery of the seal member. An annular seal lip that elastically contacts with the concave surface formed on the outer periphery of the part is provided, a groove that allows the seal lip to move is provided on a surface of the valve plate that faces the valve body, and the first of the valve body is closed. When the pressure in the chamber increases, the configuration is adopted in which the contact pressure against the concave surface of the seal lip allowed to move is increased by the compressed air between the opposed surfaces of the valve plate and the valve body .

上記構成としたこの発明のエアパルサは、上記ボディの内部機構の作用により所望のパルス間隔でパルスエアが供給される。給気口から給気チャンバ内に圧縮エアを供給すると、その圧縮エアはダイヤフラムに形成された小孔から排気チャンバの第1室内に流入し、その第1室内の圧力が永久磁石の吸着力より高くなると弁体が後退して弁孔を開放し、第1室内の圧縮エアが弁孔から第2室に流れて排気口から外部に排出される。   In the air pulser of the present invention having the above-described configuration, pulse air is supplied at a desired pulse interval by the action of the internal mechanism of the body. When compressed air is supplied into the air supply chamber from the air supply port, the compressed air flows into the first chamber of the exhaust chamber through a small hole formed in the diaphragm, and the pressure in the first chamber is determined by the adsorption force of the permanent magnet. When it becomes higher, the valve body moves backward to open the valve hole, and the compressed air in the first chamber flows from the valve hole to the second chamber and is discharged from the exhaust port to the outside.

その排気によって排気チャンバ内の圧力が給気チャンバ内の圧力より低くなるため、ダイヤフラムは排気チャンバ側に変形し、エア噴射筒のエア入口が開放される。このため、給気チャンバ内の圧縮エアはエア噴射筒内に流れて、そのエア噴射筒から噴射される。また、排気チャンバ内の圧力がほぼ大気圧に保持されると、永久磁石と弁プレートの相互間に作用する吸着力によって弁体が弁孔を閉じる状態に戻り、その弁体の閉鎖後、ダイヤフラムは給気チャンバ側に変形してエア噴射筒のエア入口を閉じ、給気チャンバからエア噴射筒への圧縮エアの流動を遮断する。弁体は排気チャンバの第1室の圧力上昇の都度開放し、その弁体が開放するたびにダイヤフラムは排気チャンバ側に変形してエア噴射筒のエア入口を開放するため、エア噴射筒からパルスエアを間歇的に噴射することができる。   Due to the exhaust, the pressure in the exhaust chamber becomes lower than the pressure in the air supply chamber, so that the diaphragm is deformed to the exhaust chamber side and the air inlet of the air injection cylinder is opened. For this reason, the compressed air in the air supply chamber flows into the air injection cylinder and is injected from the air injection cylinder. Further, when the pressure in the exhaust chamber is maintained at almost atmospheric pressure, the valve body returns to the state of closing the valve hole by the attractive force acting between the permanent magnet and the valve plate, and after closing the valve body, the diaphragm Deforms to the air supply chamber side, closes the air inlet of the air injection cylinder, and blocks the flow of compressed air from the air supply chamber to the air injection cylinder. The valve body is released each time the pressure in the first chamber of the exhaust chamber rises. Each time the valve body is opened, the diaphragm is deformed to the exhaust chamber side to open the air inlet of the air injection cylinder. Can be intermittently injected.

このようなエアパルサの基本作用を確保するためには、永久磁石の吸着によって閉鎖状態に保持される弁体と弁プレートの対向面間の吸着と離反の動作時のエアの動作圧の下限と上限の振れ幅による差圧を小さくし、弁体の開閉動作をスムーズに安定化させる必要があるが、上記構成では永久磁石の弁プレートに対向する面に吸着盤を取付け、吸着盤に対向する弁プレートの内周部に放射方向の複数の分割溝を設けたため、永久磁石の磁束は周方向に分割され、分割された磁束毎に吸着、離反作用を弁プレートに及ぼして磁束の不均一分布、連続性による過剰な吸着力・離反力を低下させる。   In order to secure such a basic function of the air pulser, the lower and upper limits of the operating pressure of the air during the adsorption and separation operation between the opposed surfaces of the valve body and the valve plate held closed by the permanent magnet adsorption It is necessary to reduce the differential pressure due to the swing width of the valve and to stabilize the opening and closing operation of the valve body smoothly. However, in the above configuration, the suction plate is attached to the surface of the permanent magnet that faces the valve plate, and the valve that faces the suction plate Since a plurality of radial dividing grooves are provided in the inner peripheral portion of the plate, the magnetic flux of the permanent magnet is divided in the circumferential direction, and the magnetic flux is attracted and separated for each divided magnetic flux, exerting a non-uniform distribution on the valve plate, Reduces excessive adsorption force and separation force due to continuity.

上記のように、この発明のエアパルサでは、永久磁石に吸着盤を取付け、これに対向する弁プレートの内周部に放射方向の複数の分割溝を設けることにより磁束分布を周方向に分割したため、分割された磁束毎の吸着、離反作用により動作圧力の上、下限振れ幅とその変動が減少し、吸着と離反時の応答性が向上し、弁体の開閉動作が安定化される。このため、エアパルサをきわめて高精度に作動させることができる。   As described above, in the air pulser of the present invention, the magnetic flux distribution is divided in the circumferential direction by attaching a suction disk to the permanent magnet and providing a plurality of radial dividing grooves on the inner peripheral portion of the valve plate facing the permanent magnet. By the adsorption and separation action for each divided magnetic flux, the lower limit swing width and its fluctuation are reduced on the operating pressure, the responsiveness at the time of adsorption and separation is improved, and the opening / closing operation of the valve body is stabilized. For this reason, the air pulser can be operated with extremely high accuracy.

以下、この発明の実施の形態を図面に基づいて説明する。図1に示すように、ボディ1は、円筒状のボディ本体2と、そのボディ本体2の一端にボルト止めされたヘッドカバー3とから成り、そのボディ本体2とヘッドカバー3とによってダイヤフラム4の外周部が挾持されている。ボディ1の内部空間は、上記ダイヤフラム4の張設によって給気チャンバ5と排気チャンバ6とに仕切られ、前記給気チャンバ5内にエア噴射筒7が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the body 1 includes a cylindrical body main body 2 and a head cover 3 bolted to one end of the body main body 2, and the outer periphery of the diaphragm 4 is formed by the body main body 2 and the head cover 3. Is held. The internal space of the body 1 is partitioned into an air supply chamber 5 and an exhaust chamber 6 by the extension of the diaphragm 4, and an air injection cylinder 7 is provided in the air supply chamber 5.

ダイヤフラム4は、給気チャンバ5と排気チャンバ6を連通する小孔8が設けられている。ダイヤフラム4は排気チャンバ6内に組込まれたスプリング9の押圧により給気チャンバ5側に弾性変形して、エア噴射筒7のエア入口を閉鎖している。排気チャンバ6の内周には段部10が形成され、その段部10によって排気チャンバ6の内周にねじ係合された弁プレート11が支持されている。この弁プレート11の取付けによって排気チャンバ6は第1室6aと第2室6bとに仕切られている。   The diaphragm 4 is provided with a small hole 8 that allows the air supply chamber 5 and the exhaust chamber 6 to communicate with each other. The diaphragm 4 is elastically deformed toward the air supply chamber 5 by pressing of a spring 9 incorporated in the exhaust chamber 6 and closes the air inlet of the air injection cylinder 7. A step portion 10 is formed on the inner periphery of the exhaust chamber 6, and a valve plate 11 that is screw-engaged with the inner periphery of the exhaust chamber 6 is supported by the step portion 10. By attaching the valve plate 11, the exhaust chamber 6 is partitioned into a first chamber 6a and a second chamber 6b.

前記段部10と弁プレート11の対向面間には弾性シール12が組込まれ、この弾性シール12は段部10と弁プレート11の対向面に弾性接触して、その対向面間をシールしている。弁プレート11は永久磁石が吸着可能な磁性体から成っている。この弁プレート11には第1室6aと第2室6bを連通する弁孔14が形成されている。また、弁プレート11には第1室6aに対向する端面に放射状の溝15が形成されている。   An elastic seal 12 is incorporated between the opposed surfaces of the step portion 10 and the valve plate 11, and the elastic seal 12 is in elastic contact with the opposed surfaces of the step portion 10 and the valve plate 11 to seal between the opposed surfaces. Yes. The valve plate 11 is made of a magnetic material that can attract a permanent magnet. The valve plate 11 is formed with a valve hole 14 for communicating the first chamber 6a and the second chamber 6b. The valve plate 11 is formed with a radial groove 15 on the end surface facing the first chamber 6a.

弁プレート11の第2室6bに対する対向面には、弁孔14を中心とする円形の凹部16が設けられ、その凹部16内にガイド筒17の先端部が嵌合されている。ガイド筒17は弁プレート11の締付けにより、先端面が凹部16の端面に衝合されていると共に、後端面が第2室6bの端面に衝合されている。ガイド筒17は両端部に通気孔18を有し、内部には弁孔14を開閉する弁体19が摺動自在に組込まれている。弁体19の弁プレート11の内周部11aと対向する先端部には永久磁石20と吸着盤20aが埋設され、その永久磁石20が吸着盤20aを介して及ぼす弁プレート11の内周部11aに対する吸着力によって弁体19は閉鎖状態に保持されている。   A circular recess 16 centered on the valve hole 14 is provided on the surface of the valve plate 11 facing the second chamber 6 b, and the leading end of the guide tube 17 is fitted in the recess 16. The guide cylinder 17 is abutted with the end face of the recess 16 by the tightening of the valve plate 11, and the rear end face is abutted with the end face of the second chamber 6b. The guide cylinder 17 has vent holes 18 at both ends, and a valve body 19 for opening and closing the valve hole 14 is slidably incorporated therein. A permanent magnet 20 and a suction plate 20a are embedded in the tip of the valve body 19 facing the inner peripheral portion 11a of the valve plate 11, and the inner periphery 11a of the valve plate 11 exerted by the permanent magnet 20 via the suction plate 20a. The valve element 19 is held in a closed state by the adsorbing force with respect to.

従来のエアパルサの構造では永久磁石20は弁プレート11の内周部11aに直接吸着して弁体19を閉鎖状態としていたが、弁体19は実際には吸着と離反を繰返し、その動作状態は必ずしも安定していない。この動作状態を安定化させるため、この実施形態では上記のように、永久磁石20に取付けられた吸着盤20aを弁プレート11の内周部11aに対向して設けている。そして、弁プレート11の内周部11aの吸着盤20aに対向する面に弁孔14のテーパ面付近から放射方向に複数(4〜8つ)(図示の例では8つ)のV字状の分割溝(幅0.4〜0.6mm)11vを互いに等間隔に設けて弁体19の動作安定化機構を形成している。   In the conventional air pulser structure, the permanent magnet 20 is directly attracted to the inner peripheral portion 11a of the valve plate 11 to close the valve body 19, but the valve body 19 is actually repeatedly attracted and separated, and its operating state is Not necessarily stable. In order to stabilize this operation state, in this embodiment, as described above, the suction plate 20a attached to the permanent magnet 20 is provided to face the inner peripheral portion 11a of the valve plate 11. A plurality (4 to 8) (eight in the illustrated example) of V-shaped radial surfaces from the vicinity of the tapered surface of the valve hole 14 on the surface of the inner peripheral portion 11a of the valve plate 11 facing the suction plate 20a. Dividing grooves (width 0.4 to 0.6 mm) 11v are provided at equal intervals to form an operation stabilization mechanism of the valve body 19.

図2に示すように、弁プレート11の前記ガイド筒17の先端面が衝合された凹部16端面には環状のシール溝21が形成され、そのシール溝21に環状のシール部材22が組込まれている。シール部材22は凹部16の端面とガイド筒17の先端面に密着して、弁プレート11とガイド筒17の対向面間をシールしている。   As shown in FIG. 2, an annular seal groove 21 is formed on the end surface of the recess 16 where the tip surface of the guide cylinder 17 of the valve plate 11 is abutted, and an annular seal member 22 is incorporated in the seal groove 21. ing. The seal member 22 is in close contact with the end surface of the recess 16 and the front end surface of the guide tube 17 to seal between the opposed surfaces of the valve plate 11 and the guide tube 17.

シール部材22の内周面には環状のシールリップ23が形成され、シールリップ23の断面視形状は内周端がゆるやかな凸曲面状とされ、そのシールリップ23は弁体19が閉鎖位置に保持された状態で、その弁体19の先端部外周で弁体19の大径部とこれより所定寸法小さい小径部との境界に形成された断面視曲線状の凹面24と弾性接触して、第1室6a内に圧縮エアが流入した際、その圧縮エアが弁プレート11と弁体19の対向面間から第2室6bに漏洩するのを防止している。25はシールリップ23の移動を許容するための溝である。   An annular seal lip 23 is formed on the inner peripheral surface of the seal member 22, and the sectional view of the seal lip 23 is a convex curve with a gentle inner peripheral end. The seal lip 23 has the valve element 19 in the closed position. In a held state, in elastic contact with the concave surface 24 having a curved cross-sectional view formed at the boundary between the large diameter portion of the valve body 19 and the small diameter portion smaller than the predetermined diameter on the outer periphery of the distal end portion of the valve body 19, When compressed air flows into the first chamber 6a, the compressed air is prevented from leaking from between the opposing surfaces of the valve plate 11 and the valve body 19 to the second chamber 6b. Reference numeral 25 denotes a groove for allowing the seal lip 23 to move.

上記の構成としたこの実施形態で示すエアパルサは、給気口26に対する圧縮エアの供給停止状態において、弁体19は弁プレート11と永久磁石20の吸着によって閉鎖状態に保持されている。また、ダイヤフラム4はエア噴射筒7のエア入口を閉じている。給気通路28から流量調整弁である可変絞り29により流量を調整して給気口26に圧縮エアを供給すると、その圧縮エアは給気チャンバ5内に流入すると共に、給気チャンバ5からダイヤフラム4の小孔8を通って排気チャンバ6の第1室6a内に流入する。   In the air pulser shown in this embodiment configured as described above, the valve body 19 is held in a closed state by the adsorption of the valve plate 11 and the permanent magnet 20 when the supply of compressed air to the air supply port 26 is stopped. The diaphragm 4 closes the air inlet of the air injection cylinder 7. When the flow rate is adjusted from the air supply passage 28 by the variable throttle 29 which is a flow rate adjusting valve and the compressed air is supplied to the air supply port 26, the compressed air flows into the air supply chamber 5 and from the air supply chamber 5 to the diaphragm. It flows into the first chamber 6 a of the exhaust chamber 6 through the four small holes 8.

第1室6a内の圧力は圧縮エアの流入によって次第に高くなり、その圧力が永久磁石20が弁プレート11を吸着する吸着力より高くなると、弁体19が後退して弁孔14を開放する。上記弁孔14の開放によって第1室6a内の圧縮エアは弁孔14から第2室6b内に流入し、排気口27から外部に排気される。その排気によって排気チャンバ6内の圧力が低下し、給気チャンバ5と排気チャンバ6の圧力差によりダイヤフラム4は図3に示すように、排気チャンバ6側に弾性変形し、エア噴射筒7のエア入口が開放する。このため、給気チャンバ5内の圧縮エアはエア噴射筒7に流入して、そのエア噴射筒7から噴射される。   The pressure in the first chamber 6a gradually increases due to the inflow of compressed air. When the pressure becomes higher than the attracting force that the permanent magnet 20 attracts the valve plate 11, the valve element 19 moves backward to open the valve hole 14. By opening the valve hole 14, the compressed air in the first chamber 6 a flows into the second chamber 6 b from the valve hole 14 and is exhausted to the outside through the exhaust port 27. Due to the exhaust, the pressure in the exhaust chamber 6 is reduced, and the diaphragm 4 is elastically deformed toward the exhaust chamber 6 due to the pressure difference between the air supply chamber 5 and the exhaust chamber 6, and the air in the air injection cylinder 7 is The entrance opens. For this reason, the compressed air in the air supply chamber 5 flows into the air injection cylinder 7 and is injected from the air injection cylinder 7.

一方、排気チャンバ6内の圧縮エアが排気口27から排気されて、その排気チャンバ6内の圧力が低下すると、永久磁石20、吸着盤20aと弁プレート11の内周部11a相互間に作用する吸着力により弁体19が前進して弁孔14を閉鎖する。その閉鎖によって給気チャンバ5内の圧縮エアはダイヤフラム4の小孔8から排気チャンバ6の第1室6a内に流入し、第1室6a内の圧力が上昇する。第1室6a内の圧力が給気チャンバ5内の圧力とほぼ等しくなると、ダイヤフラム4が給気チャンバ5側に弾性変形して、エア噴射筒7のエア入口を閉鎖し、エア噴射筒7からの圧縮エアの噴射が遮断される。   On the other hand, when the compressed air in the exhaust chamber 6 is exhausted from the exhaust port 27 and the pressure in the exhaust chamber 6 decreases, the permanent magnet 20, the suction plate 20 a and the valve plate 11 act between the inner peripheral portions 11 a. The valve element 19 moves forward by the adsorption force and closes the valve hole 14. By the closure, the compressed air in the supply chamber 5 flows into the first chamber 6a of the exhaust chamber 6 from the small hole 8 of the diaphragm 4, and the pressure in the first chamber 6a increases. When the pressure in the first chamber 6a becomes substantially equal to the pressure in the air supply chamber 5, the diaphragm 4 is elastically deformed toward the air supply chamber 5 to close the air inlet of the air injection cylinder 7, and from the air injection cylinder 7 The injection of compressed air is cut off.

弁体19は第1室6a内の圧力が永久磁石20の吸着力より高くなると弁孔14を開放し、排気チャンバ6内の圧縮エアが排気口27から排気されて排気チャンバ6内の圧力が低下すると弁孔14を閉鎖する。一方、ダイヤフラム4は排気チャンバ6内の圧力が低下するとエア噴射筒7のエア入口を開放し、弁体19が閉鎖して第1室6a内の圧力が給気チャンバ5内の圧力とほぼ等しくなると上記エア入口を閉鎖するため、エア噴射筒7からパルスエアを間歇的に噴射することができる。   When the pressure in the first chamber 6a becomes higher than the attractive force of the permanent magnet 20, the valve body 19 opens the valve hole 14, and the compressed air in the exhaust chamber 6 is exhausted from the exhaust port 27, so that the pressure in the exhaust chamber 6 is increased. When lowered, the valve hole 14 is closed. On the other hand, when the pressure in the exhaust chamber 6 decreases, the diaphragm 4 opens the air inlet of the air injection cylinder 7, the valve body 19 is closed, and the pressure in the first chamber 6 a is almost equal to the pressure in the air supply chamber 5. In order to close the air inlet, pulsed air can be intermittently injected from the air injection cylinder 7.

このため、電磁弁を用いることなくエアパルサを形成することができる。ここで、給気通路28に設けられた可変絞り29の操作によって給気口26への圧縮エアの供給量を調整することにより、エア噴射筒7から噴射されるパルスエアの間隔を調整することができる。上記のようなエアパルサにおいて、弁体19が弁孔14を閉鎖する状態で、第1室6a内の高圧エアが弁プレート11と弁体19の対向部間から第2室6bに漏洩すると、その漏洩量が多い場合は第1室6a内の圧力を上昇させることができず、弁体19を後退させることができないためにパルスエアを噴射させることができなくなる。   For this reason, an air pulser can be formed without using a solenoid valve. Here, by adjusting the amount of compressed air supplied to the air supply port 26 by operating the variable throttle 29 provided in the air supply passage 28, the interval of the pulse air injected from the air injection cylinder 7 can be adjusted. it can. In the above air pulser, when the high pressure air in the first chamber 6a leaks into the second chamber 6b from between the opposed portions of the valve plate 11 and the valve body 19 with the valve body 19 closing the valve hole 14, When the amount of leakage is large, the pressure in the first chamber 6a cannot be increased, and the valve body 19 cannot be retracted, so that pulsed air cannot be injected.

一方、第1室6a内の圧縮エアの漏洩量が微量な場合には、第1室6a内の圧力が永久磁石20の吸着力より高くなるまでに時間を要し、パルスエアの噴射間隔が長くなる。実施の形態では、弁プレート11とガイド筒17の対向面間にシール部材22を組込み、そのシール部材22の内周に弁体19の先端部外周に形成された凹面24に弾性接触する環状のシールリップ23を設けているため、弁体19の閉鎖状態でシールリップ23が弁体19の凹面24に弾性接触すると共に、第1室6a内の圧力が高くなると、凹面24に対するシールリップ23の接触圧がさらに増大することになる。   On the other hand, when the amount of compressed air leakage in the first chamber 6a is very small, it takes time until the pressure in the first chamber 6a becomes higher than the attractive force of the permanent magnet 20, and the pulse air injection interval is long. Become. In the embodiment, the seal member 22 is incorporated between the opposing surfaces of the valve plate 11 and the guide cylinder 17, and the annular member that elastically contacts the concave surface 24 formed on the outer periphery of the tip of the valve body 19 on the inner periphery of the seal member 22. Since the seal lip 23 is provided, the seal lip 23 comes into elastic contact with the concave surface 24 of the valve body 19 when the valve body 19 is closed, and when the pressure in the first chamber 6a increases, the seal lip 23 against the concave surface 24 The contact pressure further increases.

このため、弁プレート11と弁体19の対向面間を確実にシールすることができ、上記対向面間から第2室6bへの高圧エアの漏れを確実に防止することができるので、パルスエアを所定の間隔で確実に噴射させることができる。この場合、前述したように、弁体19は実際の動作時には吸着と離反を短時間に繰り返してパルスエアを生成する。このパルスエアを所望のパルス間隔で生成するためには、弁体19による開閉動作を安定化させる必要がある。   For this reason, the space between the opposed surfaces of the valve plate 11 and the valve body 19 can be reliably sealed, and the leakage of high-pressure air from the space between the opposed surfaces to the second chamber 6b can be reliably prevented. It is possible to reliably inject at a predetermined interval. In this case, as described above, the valve element 19 generates pulsed air by repeating adsorption and separation in a short time during actual operation. In order to generate this pulse air at a desired pulse interval, it is necessary to stabilize the opening / closing operation by the valve body 19.

しかし、この実施形態では上述した動作安定化機構により、弁体19は弁プレート11に対し極めて安定して動作する。この動作安定化は、弁プレート11の内周部に分割溝11vを設けたことにより弁体19の開閉動作時の吸着、離反圧力の振れ幅が従来より小さくなり、圧力差が減少したことによる。図4に弁体19の動作状態の波形をオシログラフで測定した結果を示す。(a)図は比較例としての従来例(分割溝なし、オリフィス径φ6、吸着面外径φ9.4)、(b)図は上記実施形態(8分割溝有り、オリフィス径φ6、吸着面外径φ9.4)の場合である。   However, in this embodiment, the valve body 19 operates extremely stably with respect to the valve plate 11 by the operation stabilization mechanism described above. This stabilization of operation is due to the fact that the fluctuation width of the adsorption and separation pressure during the opening and closing operation of the valve body 19 is smaller than the conventional one by providing the dividing groove 11v in the inner peripheral portion of the valve plate 11, and the pressure difference is reduced. . The result of having measured the waveform of the operation state of the valve body 19 in FIG. 4 with the oscillograph is shown. (A) The figure shows a conventional example as a comparative example (no split groove, orifice diameter φ6, suction surface outer diameter φ9.4), and (b) the above embodiment (with eight split groove, orifice diameter φ6, suction face outside) This is the case of the diameter φ9.4).

両図共、横軸は時間、縦軸はパルスエアの圧力変動を示し、振幅の下方が弁体19の吸着、上方が離反を示す。(a)図から分るように、従来例では弁体19の動作圧力波形の振幅が大きく、従ってパルスエアの生成は必ずしもスムーズではなく、安定化していない。これは、弁体19の永久磁石20による磁束は全周に亘って分布しているが、その磁束分布が必ずしも全周で均一でなく、かつ全周に連続しているため、全周で不均一、かつ連続的磁束分布では弁体19の開閉動作時に過剰な吸着力と離反力を必要とするためである。なお、図示していないが、供給エアーの圧力、流量を変化させた場合、状態によっては弁体19が吸着したまま離反しなくなる場合もある。   In both figures, the horizontal axis represents time, the vertical axis represents the pressure fluctuation of the pulsed air, the lower part of the amplitude shows the adsorption of the valve body 19, and the upper part shows the separation. (A) As can be seen from the figure, in the conventional example, the amplitude of the operating pressure waveform of the valve element 19 is large, and therefore the generation of pulsed air is not necessarily smooth and is not stabilized. This is because the magnetic flux generated by the permanent magnet 20 of the valve body 19 is distributed over the entire circumference, but the magnetic flux distribution is not necessarily uniform over the entire circumference and is continuous over the entire circumference. This is because the uniform and continuous magnetic flux distribution requires excessive adsorption force and separation force when the valve body 19 is opened and closed. Although not shown, when the pressure and flow rate of the supply air are changed, depending on the state, the valve body 19 may not be separated while being adsorbed.

これに対し、(b)図から分るように、上記実施形態では弁体19の吸着と離反の圧力差の変動はわずかである。これは、分割溝11vを弁プレート11の内周部11aに設けたため磁束が分割され、分割されたことにより内周部11aの当接面に対する過剰な吸着力、離反力が低下し、均一化されて弁体11の吸着と離反が生じ易くなった、即ち弁体19の応答性が向上したためである。   On the other hand, as can be seen from FIG. 5B, in the above embodiment, the pressure difference between the adsorption and separation of the valve body 19 is slight. This is because the dividing groove 11v is provided in the inner peripheral portion 11a of the valve plate 11, so that the magnetic flux is divided. As a result, the excessive attracting force and separation force with respect to the contact surface of the inner peripheral portion 11a are reduced and uniformized. This is because the valve body 11 is easily attracted and separated, that is, the responsiveness of the valve body 19 is improved.

なお、図示の例は、圧力0.6Mpaの供給エアーの流量を流量調整弁である可変絞り29で調整し所定の目的(図示の例はノッカとして)に適合するパルス間隔とした動作圧の変化を示し、図中の時間t1 、t2 =5分、圧力レベルP1 =0.2Mpa、P2 =0.4Mpaである。それぞれの測定結果は次の通りである。 In the illustrated example, the flow rate of the supply air at a pressure of 0.6 Mpa is adjusted by the variable throttle 29 which is a flow rate adjusting valve, and the operating pressure is changed to a pulse interval suitable for a predetermined purpose (in the illustrated example, as a knocker). In the figure, time t 1 , t 2 = 5 minutes, pressure level P 1 = 0.2 Mpa, P 2 = 0.4 Mpa. Each measurement result is as follows.

従来例 実施形態
供給エアー流量 L/H 約118 約105
動作インターバル 回/sec 0.45/5sec 0.45/5sec
動作圧力上限値 Mpa(MAX) 0.482 0.351
動作圧力下限値 Mpa(MIN) 0.263 0.233
上記結果から分るように、従来例では動作圧力の上、下限値の圧力差が大きく(約0.2)、実施形態では圧力差が小さく(約0.12)なっている。
Conventional Example Embodiment Supply Air Flow Rate L / H About 118 About 105
Operation interval times / sec 0.45 / 5 sec 0.45 / 5 sec
Maximum operating pressure Mpa (MAX) 0.482 0.351
Operating pressure lower limit value Mpa (MIN) 0.263 0.233
As can be seen from the above results, in the conventional example, the pressure difference between the upper and lower limits of the operating pressure is large (about 0.2), and in the embodiment, the pressure difference is small (about 0.12).

オシログラフの図示は省略するが、上記実測例以外にも種々異なる状態の測定結果が得られており、その一例の結果のみを示す。   Although illustration of the oscillograph is omitted, measurement results in various states other than the above actual measurement example are obtained, and only the result of the example is shown.

供給エアー圧力0.5Mpa 従来例 実施形態
動作圧力上限値Mpa(MAX) (振幅)0.20〜0.40 (振幅)0.01〜0.02
動作圧力下限値Mpa(MIN) (振幅)0.15〜0.25 (振幅)0.01〜0.02
以上の実測データからも動作安定化機構として弁プレート11に複数の分割溝を設けることが有効であることが理解される。なお、分割溝数は4〜6分割でも測定結果は若干異なるが同じ効果がえられることが確認されている。
Supply Air Pressure 0.5 Mpa Conventional Example Embodiment Operating Pressure Upper Limit Mpa (MAX) (Amplitude) 0.20 to 0.40 (Amplitude) 0.01 to 0.02
Operating pressure lower limit value Mpa (MIN) (Amplitude) 0.15-0.25 (Amplitude) 0.01-0.02
From the above measured data, it is understood that it is effective to provide a plurality of dividing grooves in the valve plate 11 as an operation stabilization mechanism. It is confirmed that the same effect can be obtained even if the number of divided grooves is 4 to 6 although the measurement results are slightly different.

この発明に係るエアパルサの実施の形態を示す縦断正面図Longitudinal front view showing an embodiment of an air pulser according to the present invention 図1のエアパルサの弁体部分を拡大して示す(a)断面図、(b)(a)図の矢視B−Bの断面図(A) sectional drawing which expands and shows the valve body part of the air pulsar of FIG. 1, (b) Sectional drawing of BB of (a) figure 図1におけるエアパルサの弁体の開放状態を示す断面図Sectional drawing which shows the open state of the valve body of the air pulser in FIG. エアパルサの圧力差変動波形のオシログラフによる測定結果のグラフ((a)従来例、(b)実施形態)Graph of measurement result by oscillograph of pressure difference fluctuation waveform of air pulsar ((a) conventional example, (b) embodiment)

符号の説明Explanation of symbols

1 ボディ
4 ダイヤフラム
5 給気チャンバ
6 排気チャンバ
6a 第1室
6b 第2室
7 エア噴射筒
8 小孔
11 弁プレート
14 弁孔
17 ガイド筒
18 通気孔
19 弁体
20 永久磁石
20a 吸着盤
21 シール溝
22 シール部材
23 シールリップ
24 凹面
DESCRIPTION OF SYMBOLS 1 Body 4 Diaphragm 5 Supply chamber 6 Exhaust chamber 6a 1st chamber 6b 2nd chamber 7 Air injection cylinder 8 Small hole 11 Valve plate 14 Valve hole 17 Guide cylinder 18 Vent hole 19 Valve body 20 Permanent magnet 20a Adsorption board 21 Seal groove 22 Seal member 23 Seal lip 24 Concave surface

Claims (2)

ボディの内部空間内に小孔を有するダイヤフラムを張設して、内部空間を給気チャンバと排気チャンバとに仕切り、給気チャンバ内にはダイヤフラムによって開閉されるエア噴射筒を設け、排気チャンバ内には、その排気チャンバを第1室と第2室とに仕切る弁プレートを設け、第1室にはダイヤフラムがエア噴射筒を閉じる方向にダイヤフラムを変形させるスプリングを設け、第2室には、弁プレートに形成された弁孔の開閉用の弁体と、その弁体を弁プレートに対して移動自在に支持するガイド筒とを組込み、ガイド筒の両端部にはその内部と第2室を連通する通気孔を形成し、弁体には弁プレートに吸着して弁体を閉鎖状態に保持する永久磁石を設け、ボディには給気チャンバに圧縮エアを供給する給気口と、第2室内のエアを外部に排気する排気口とを形成したエアパルサにおいて、弁体に設けられた永久磁石の弁プレートに対向する面に吸着盤を取付け、弁プレートの内周部の上記吸着盤と対向する面に放射方向に複数の分割溝を設け、
前記弁プレートとガイド筒の対向面間にシール部材を組込み、そのシール部材の内周に弁体先端部外周に形成された凹面と弾性接触する環状のシールリップを設け、前記弁プレートの弁体との対向面に前記シールリップの移動を許容する溝を設け、弁体の閉鎖状態で前記第1室内の圧力が高くなると、前記弁プレートと弁体の対向面間の圧縮エアによって、前記移動が許容されたシールリップの凹面に対する接触圧が増大するようにしたことを特徴とするエアパルサ。
A diaphragm having a small hole is stretched in the internal space of the body to partition the internal space into an air supply chamber and an exhaust chamber, and an air injection cylinder that is opened and closed by the diaphragm is provided in the air supply chamber. Is provided with a valve plate that partitions the exhaust chamber into a first chamber and a second chamber, the first chamber is provided with a spring that deforms the diaphragm in a direction in which the diaphragm closes the air injection cylinder, and the second chamber has A valve body for opening and closing a valve hole formed in the valve plate and a guide cylinder that supports the valve body movably with respect to the valve plate are incorporated, and the inside and the second chamber are provided at both ends of the guide cylinder. A communicating air hole is formed, the valve body is provided with a permanent magnet that is attracted to the valve plate and holds the valve body in a closed state, the body has an air supply port for supplying compressed air to the air supply chamber, Indoor air to outside In an air pulser formed with an exhaust port to be ventilated, a suction plate is attached to the surface of the permanent magnet provided on the valve body facing the valve plate, and the inner surface of the valve plate is radially directed to the surface facing the suction plate. Provide multiple dividing grooves,
Incorporate sealing member between the facing surfaces of the valve plate and the guide tube, an annular seal lip inner circumference on the valve body tip outer periphery formed concave and the elastic contact of the seal member, the valve body of the valve plate When the pressure in the first chamber increases when the valve body is closed, the movement is caused by the compressed air between the valve plate and the opposing surface of the valve body. An air pulser characterized in that the contact pressure with respect to the concave surface of the seal lip allowed to increase is increased .
前記分割溝を等間隔でV字状の溝として形成したことを特徴とする請求項1に記載のエアパルサ。   The air pulser according to claim 1, wherein the divided grooves are formed as V-shaped grooves at equal intervals.
JP2004373804A 2004-12-24 2004-12-24 Air pulsar Active JP4164065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373804A JP4164065B2 (en) 2004-12-24 2004-12-24 Air pulsar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373804A JP4164065B2 (en) 2004-12-24 2004-12-24 Air pulsar

Publications (2)

Publication Number Publication Date
JP2006177506A JP2006177506A (en) 2006-07-06
JP4164065B2 true JP4164065B2 (en) 2008-10-08

Family

ID=36731782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373804A Active JP4164065B2 (en) 2004-12-24 2004-12-24 Air pulsar

Country Status (1)

Country Link
JP (1) JP4164065B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871935B1 (en) * 2007-06-29 2008-12-05 주식회사 후상 Air blaster
JP2010014162A (en) * 2008-07-02 2010-01-21 Nippon Spindle Mfg Co Ltd Diaphragm valve
CN109969797B (en) * 2019-04-17 2024-03-01 深圳市博威克斯科技有限公司 Electromagnetic drive type negative pressure pump

Also Published As

Publication number Publication date
JP2006177506A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
KR100498942B1 (en) Air pulsar and device that use the air pulsar
US7647941B2 (en) Air pulser
US6354562B1 (en) Valve for dust collector
US20060278278A1 (en) Pressure control device for a pipeline
JPH0198773A (en) Valve device
KR20070087639A (en) Diaphragm valve
ATE435380T1 (en) AIR SPRING ARRANGEMENT
US7334770B2 (en) Solenoid isolation valve
JP4164065B2 (en) Air pulsar
KR20020022014A (en) Vacuum exhaust valve
ATE327460T1 (en) VALVE ACTUATED VIA GAS PRESSURE TANK
US7303176B2 (en) Controller
JP2005291493A (en) Air pulser
US6253784B1 (en) Monostable valve
JP2010185469A (en) Control valve and air hammer
JP2006214394A (en) Fuel injection valve
MXPA00008375A (en) Surge suppression apparatus incorporating a pressure regulation assembly.
US5579806A (en) High speed self switching valve for producing from a constant pressure fluid source a series of repetitive and variable fluid pulses
JP2004003660A (en) Quick air discharge device with improved discharge duct
JP6647555B2 (en) Intermittent air generator
KR20030010942A (en) Normal open solenoid valve
JPH041464A (en) Solenoid-operated fuel injection valve
JP2013234586A (en) Fuel injection valve
JP5936092B2 (en) Sealing structure and gas injection valve
JPS5926403Y2 (en) Negative pressure generation valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4164065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250