JP4163136B2 - Manufacturing method of rotor - Google Patents

Manufacturing method of rotor Download PDF

Info

Publication number
JP4163136B2
JP4163136B2 JP2004102081A JP2004102081A JP4163136B2 JP 4163136 B2 JP4163136 B2 JP 4163136B2 JP 2004102081 A JP2004102081 A JP 2004102081A JP 2004102081 A JP2004102081 A JP 2004102081A JP 4163136 B2 JP4163136 B2 JP 4163136B2
Authority
JP
Japan
Prior art keywords
magnet
outer peripheral
peripheral surface
mounting hole
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004102081A
Other languages
Japanese (ja)
Other versions
JP2005287271A (en
Inventor
秀徳 岡田
明拓 岡村
明 椛澤
正明 貝塚
一成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004102081A priority Critical patent/JP4163136B2/en
Publication of JP2005287271A publication Critical patent/JP2005287271A/en
Application granted granted Critical
Publication of JP4163136B2 publication Critical patent/JP4163136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、永久磁石式モータの回転子の製造方法に関する。   The present invention relates to a method for manufacturing a rotor of a permanent magnet motor.

従来、例えば回転子の外周部に設けられた磁石装着孔に永久磁石を装着して固定する場合、例えば稀土類磁石等のように焼結体からなり、脆性を有する永久磁石では、圧入して装着することは困難であることから、磁石装着孔の寸法が永久磁石の寸法よりも大きくなるように所定のクリアランスを設け、このクリアランス分の隙間を埋めるようにして接着剤等を充填する方法が知られている。
ところで、回転子の静止状態において磁石装着孔に装着された永久磁石は、回転子の径方向に対して相対的に磁性材料の量が多い内周側にずれた位置に位置決めされる。しかしながら、回転子が回転すると永久磁石に遠心力が作用して、永久磁石が回転子の外周側へ変位しようとする。これにより、回転子の静止状態において永久磁石の外周面と磁石装着孔の外周面との間に設けられた相対的に大きな隙間に接着剤が充填されている場合には、この接着剤が固化して形成された接着層に永久磁石の遠心力に伴う過剰な圧力が作用して、接着層の圧壊等の不具合が生じる虞がある。例えば接着層が破損すると、回転子の回転に伴い磁石装着孔内で永久磁石が変位し、振動や騒音が増大すると共に、回転子本体に衝撃荷重が作用して疲労強度が低下してしまうという問題が生じる。
このような問題に対して、例えば磁石装着孔内に充填した接着剤が硬化するより以前のタイミングで回転子を回転させ、磁石装着孔内の永久磁石に回転に伴う遠心力等を作用させて所定位置に位置決めする方法(例えば、特許文献1参照)が知られている。
特開平11−252839号公報
Conventionally, for example, when a permanent magnet is mounted and fixed in a magnet mounting hole provided on the outer peripheral portion of the rotor, for example, a rare earth magnet or the like is made of a sintered body, and a brittle permanent magnet is press-fitted. Since it is difficult to mount, there is a method of providing a predetermined clearance so that the size of the magnet mounting hole is larger than the size of the permanent magnet, and filling the adhesive or the like so as to fill the gap for this clearance. Are known.
By the way, the permanent magnet mounted in the magnet mounting hole in the stationary state of the rotor is positioned at a position shifted to the inner peripheral side where the amount of the magnetic material is relatively large with respect to the radial direction of the rotor. However, when the rotor rotates, centrifugal force acts on the permanent magnet, and the permanent magnet tends to be displaced toward the outer peripheral side of the rotor. As a result, when the adhesive is filled in a relatively large gap provided between the outer peripheral surface of the permanent magnet and the outer peripheral surface of the magnet mounting hole when the rotor is stationary, the adhesive is solidified. An excessive pressure accompanying the centrifugal force of the permanent magnet acts on the adhesive layer formed in this manner, and there is a possibility that problems such as crushing of the adhesive layer may occur. For example, if the adhesive layer breaks, the permanent magnet is displaced in the magnet mounting hole with the rotation of the rotor, and vibration and noise increase, and an impact load acts on the rotor body to reduce the fatigue strength. Problems arise.
To solve this problem, for example, rotate the rotor at a timing before the adhesive filled in the magnet mounting hole is cured, and act on the permanent magnet in the magnet mounting hole with the centrifugal force accompanying the rotation. A method of positioning at a predetermined position (for example, see Patent Document 1) is known.
Japanese Patent Laid-Open No. 11-252839

しかしながら、上記従来技術に係る磁石位置決め方法では、硬化前の接着剤にも回転に伴う遠心力等が作用することで接着剤が磁石装着孔内から外部に漏れ出てしまったり、複数の積層鋼板からなる回転子においては磁石装着孔内に充填された接着剤が積層鋼板間に浸透してしまい、接着剤によって永久磁石を磁石装着孔内に固定することが困難になるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、磁石を回転子の所定位置に適切に位置決めすることが可能な回転子の製造方法を提供することを目的とする。
However, in the magnet positioning method according to the above prior art, the adhesive leaks out from the magnet mounting hole due to the centrifugal force or the like accompanying rotation acting on the adhesive before curing, or a plurality of laminated steel plates In such a rotor, the adhesive filled in the magnet mounting hole penetrates between the laminated steel plates, and it becomes difficult to fix the permanent magnet in the magnet mounting hole by the adhesive.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a rotor capable of appropriately positioning a magnet at a predetermined position of the rotor.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の回転子の製造方法は、略円筒状の回転子本体(例えば、後述する実施の形態でのヨーク12)の外周部に設けられた回転軸方向に貫通する磁石装着部(例えば、後述する実施の形態での磁石装着部13)に磁石(例えば、後述する実施の形態での磁石14)が装着されてなる回転子の製造方法であって、前記回転子本体の径方向での外周側および内周側に対して、前記磁石装着孔部は前記外周側の外周側内面と前記内周側の内周側内面を備え、前記磁石は前記磁石装着孔部に装着された場合に前記外周側の外周面と前記内周側の内周面とを備え、前記磁石装着部に未装着の前記磁石を、該磁石の前記外周面上の磁束密度が前記内周面上の磁束密度よりも大きくなるように、前記磁石装着孔部に装着された状態で前記磁石の前記径方向に沿った磁束密度分布が非対称分布となるように磁化させる初期着磁工程(例えば、後述する実施の形態でのステップS01)と、樹脂(例えば、後述する実施の形態での樹脂22)を前記磁石装着部に注入する樹脂注入工程(例えば、後述する実施の形態でのステップS03)と、前記初期着磁工程にて磁化された前記磁石を、前記樹脂注入工程にて前記樹脂が注入された前記磁石装着部内に挿入し、前記磁石の前記外周面と前記磁石装着部の前記外周側内面との間の磁気吸引力により前記磁石を前記磁石装着部内の前記外周側にずれた位置に位置決めすると共に、位置決めされた前記磁石を前記磁石装着部内に固定する磁石位置固定工程(例えば、後述する実施の形態でのステップS04)と、前記磁石位置固定工程にて前記磁石装着部内に固定された前記磁石を前記初期着磁工程よりも強い磁場で磁化させる着磁工程(例えば、後述する実施の形態でのステップS10)とを含むことを特徴としている。 In order to solve the above-described problems and achieve the object, a method for manufacturing a rotor according to the first aspect of the present invention includes a substantially cylindrical rotor body (for example, a yoke 12 in an embodiment described later) . A magnet (for example, a magnet 14 in an embodiment described later) is mounted on a magnet mounting hole (for example, a magnet mounting portion 13 in an embodiment described later) penetrating in the rotation axis direction provided in the outer peripheral portion. In the rotor manufacturing method according to the present invention, the magnet mounting hole portion has an outer peripheral side inner surface on the outer peripheral side and an inner peripheral side on the inner peripheral side with respect to the outer peripheral side and the inner peripheral side in the radial direction of the rotor body. comprising a side inner surface, said magnet includes an inner peripheral surface of the inner peripheral side and the outer peripheral surface of the outer peripheral side when it is mounted on the magnet mounting holes, the magnet is not mounted on the magnet mounting holes , the magnetic flux density on the outer peripheral surface of the magnet is larger than the magnetic flux density on the inner peripheral surface Sea urchin, the initial magnetizing step of the magnetic flux density distribution along the radial direction of the magnet in a state of being mounted on the magnet mounting holes can be magnetized so that the asymmetric distribution (e.g., step S01 in the embodiment described below ), A resin injection process (for example, step S03 in the later-described embodiment) for injecting a resin (for example, the resin 22 in the later-described embodiment) into the magnet mounting hole , and the initial magnetization process said magnet being magnetized Te, wherein a resin injection step is inserted into said magnet mounting hole portion in which the resin is injected, between the outer peripheral surface and the outer peripheral side inner surface of the magnet mounting hole of the magnet with positioning the magnet by magnetic attraction force at a position shifted to the outer periphery of the magnet mounting hole portion, the magnet position fixing step of fixing the magnet positioned in the magnet mounting hole portion (e.g., below And step S04) in the facilities of the form, the magnetizing step of the magnet fixed to the magnet mounting hole portion by the magnet position fixing process is magnetized by a strong magnetic field than the initial magnetizing step (e.g., implementation described below Step S10) in the form of

上記の回転子の製造方法によれば、略円筒状の回転子本体の径方向での外周側および内周側に対して、磁石装着孔部は回転子本体の外周側の外周側内面と回転子本体の内周側の内周側内面を備え、磁石は磁石装着孔部に装着された場合に回転子本体の外周側の外周面と回転子本体の内周側の内周面とを備え、初期着磁工程によって磁化された磁石は、この磁石の内周面上よりも外周面上の磁束密度のほうがより大きくなることから、この磁石の周囲に配置された磁性体に対する吸引力は内周面よりも外周面のほうがより強くなる。このため、初期着磁工程により磁化された磁石を、例えば回転子本体を貫通する貫通孔等からなる磁石装着部に挿入すると、この磁石は、磁石の外周面が磁石装着部の外周側内面に引き付けられるようにして、磁石装着部内の外周側にずれた所定の位置、例えば磁石の外周面が磁石装着部の外周側内面に当接する位置等に位置決めされる。
また、樹脂注入工程によって、磁石を磁石装着部内に挿入するより以前のタイミングで磁石装着部内に樹脂を注入しておくことにより、磁石位置固定工程によって磁石を磁石装着部内に挿入すると樹脂内に磁石が押し込まれることにより、磁石と磁石装着部との間の隙間を埋めるようにして樹脂が流動する。そして、磁石と磁石装着部との間に充填された樹脂が硬化すると、位置決めされた磁石が磁石装着部内に固定される。
これにより、予め、磁石を磁石装着部内の外周側にずれた所定の位置に容易に位置決めして固定することができ、回転子の回転時において外周側へ変位しようとする磁石に対して所望の機械的強度を確保することができ、振動や騒音の発生および疲労強度の低下を抑制することができる。
しかも、着磁工程によって、磁石装着部内に固定された磁石を初期着磁工程よりも強い磁場で磁化させることにより、回転子に対する所望の運転特性を確保するために必要とされる所定の帯磁磁束を形成することができる。
According to the above rotor manufacturing method , the magnet mounting hole rotates with the outer peripheral inner surface of the rotor body on the outer peripheral side and the inner peripheral side in the radial direction of the substantially cylindrical rotor main body. The inner surface of the rotor body has an inner surface on the inner periphery side, and the magnet has an outer peripheral surface on the outer periphery side of the rotor body and an inner peripheral surface on the inner periphery side of the rotor body when mounted in the magnet mounting hole. Since the magnet magnetized by the initial magnetization process has a higher magnetic flux density on the outer peripheral surface than on the inner peripheral surface of the magnet, the attraction force to the magnetic material arranged around the magnet is The outer peripheral surface is stronger than the peripheral surface. For this reason, when the magnet magnetized by the initial magnetization process is inserted into a magnet mounting portion made of, for example, a through hole penetrating the rotor body, the magnet has an outer peripheral surface of the magnet on the outer peripheral side inner surface of the magnet mounting portion. As a result of being attracted, it is positioned at a predetermined position shifted to the outer peripheral side in the magnet mounting portion, for example, a position where the outer peripheral surface of the magnet contacts the outer peripheral inner surface of the magnet mounting hole .
Further, the resin injection step, by previously injecting the resin into magnet mounting hole portion in an earlier timing than inserting the magnets into magnet mounting hole portion, inserting a magnet into magnet mounting hole portion by the magnet position fixing process resin When the magnet is pushed into the resin, the resin flows so as to fill a gap between the magnet and the magnet mounting hole . When the resin filled between the magnet and the magnet mounting hole is cured, the positioned magnet is fixed in the magnet mounting hole .
As a result, the magnet can be easily positioned and fixed in advance at a predetermined position shifted to the outer peripheral side in the magnet mounting hole , and it is desirable for the magnet to be displaced to the outer peripheral side when the rotor rotates. The mechanical strength can be ensured, and the occurrence of vibration and noise and the reduction in fatigue strength can be suppressed.
In addition, by magnetizing the magnet fixed in the magnet mounting hole with a magnetic field stronger than that in the initial magnetization process, a predetermined magnetization required to ensure the desired operating characteristics for the rotor is obtained. Magnetic flux can be formed.

また、請求項2に記載の発明の回転子の製造方法は、略円筒状の回転子本体(例えば、後述する実施の形態でのヨーク12)の外周部に設けられた磁石装着部(例えば、後述する実施の形態での磁石装着部13)に磁石(例えば、後述する実施の形態での磁石14)が装着されてなる回転子の製造方法であって、前記回転子本体の径方向での外周側および内周側に対して、前記磁石装着孔部は前記外周側の外周側内面と前記内周側の内周側内面を備え、前記磁石は前記磁石装着孔部に装着された状態で前記外周側の外周面と前記内周側の内周面とを備え、前記磁石装着部に未装着の前記磁石を、該磁石の前記外周面上の磁束密度が前記内周面上の磁束密度よりも大きくなるように、前記磁石装着孔部に装着された状態で前記磁石の前記径方向に沿った磁束密度分布が非対称分布となるように磁化させる初期着磁工程(例えば、後述する実施の形態でのステップS01)と、前記初期着磁工程にて磁化された前記磁石を前記磁石装着部内に挿入し、前記磁石の前記外周面と前記磁石装着部の前記外周側内面との間の磁気吸引力により前記磁石を前記磁石装着部内の前記外周側にずれた位置に位置決めする位置決め工程(例えば、後述する実施の形態でのステップS11)と、樹脂(例えば、後述する実施の形態での樹脂22)を前記磁石装着部の内面と前記磁石の表面との間に充填し、前記位置決め工程にて位置決めされた前記磁石を前記磁石装着部内に固定する磁石固定工程(例えば、後述する実施の形態でのステップS12)と、前記磁石固定工程にて前記磁石装着部内に固定された前記磁石を前記初期着磁工程よりも強い磁場で磁化させる着磁工程(例えば、後述する実施の形態でのステップS10)とを含むことを特徴としている。 According to a second aspect of the present invention, there is provided a rotor manufacturing method comprising a magnet mounting portion (e.g., an outer peripheral portion of a substantially cylindrical rotor body (e.g., a yoke 12 in an embodiment described later)). A method for manufacturing a rotor in which a magnet (for example, a magnet 14 in an embodiment to be described later) is mounted on a magnet mounting portion 13 in an embodiment to be described later, in the radial direction of the rotor body. With respect to the outer peripheral side and the inner peripheral side, the magnet mounting hole includes an outer peripheral inner surface on the outer peripheral side and an inner peripheral inner surface on the inner peripheral side, and the magnet is mounted in the magnet mounting hole. and a inner peripheral surface of the inner peripheral side and the outer peripheral surface of the outer peripheral side, the said magnet is not mounted on the magnet mounting holes, the magnetic flux density on the outer peripheral surface of the magnet is on the inner circumferential surface magnetic flux as is larger than the density, wherein said magnet in a state of being mounted on the magnet mounting holes radially above The initial magnetizing step of the magnetic flux density distribution along causes magnetized such that asymmetric distribution (e.g., step S01 in the embodiment described below) and the magnet mounting the magnets which are magnetized in the initial magnetizing step was inserted into the hole portion, is positioned at a position shifted to the magnet on the outer periphery side of the magnet mounting hole portion by a magnetic attraction force between the outer peripheral surface and the outer peripheral side inner surface of the magnet mounting hole of the magnet A positioning step (for example, step S11 in the embodiment described later) and a resin (for example, resin 22 in the embodiment described later) are filled between the inner surface of the magnet mounting hole and the surface of the magnet. the magnet fixing step of said magnet being positioned at the positioning step to secure to the magnet mounting hole portion (e.g., step S12 in the embodiment described below) and the magnet mounting at the magnet fixing step Magnetizing step of magnetizing the magnet fixed to the portion with a strong magnetic field than the initial magnetizing step (e.g., step S10 in the embodiment described below) is characterized in that it comprises a.

上記の回転子の製造方法によれば、略円筒状の回転子本体の径方向での外周側および内周側に対して、磁石装着孔部は回転子本体の外周側の外周側内面と回転子本体の内周側の内周側内面を備え、磁石は磁石装着孔部に装着された状態で回転子本体の外周側の外周面と回転子本体の内周側の内周面とを備え、初期着磁工程によって磁化された磁石は、この磁石の内周面上よりも外周面上の磁束密度のほうがより大きくなることから、この磁石の周囲に配置された磁性体に対する吸引力は内周面よりも外周面のほうがより強くなる。このため、初期着磁工程により磁化された磁石を、例えば回転子本体を貫通する貫通孔等からなる磁石装着部に挿入すると、この磁石は、磁石の外周面が磁石装着部の外周側内面に引き付けられるようにして、磁石装着部内の外周側にずれた所定の位置、例えば磁石の外周面が磁石装着部の外周側内面に当接する位置等に位置決めされる。
そして、樹脂注入工程によって、位置決め工程にて位置決めされた磁石と磁石装着部との間の隙間を埋めるようにして樹脂を充填することにより、磁石が磁石装着部内に固定される。
これにより、予め、磁石を磁石装着部内の外周側にずれた所定の位置に容易に位置決めして固定することができ、回転子の回転時において外周側へ変位しようとする磁石に対して所望の機械的強度を確保することができ、振動や騒音の発生および疲労強度の低下を抑制することができる。
しかも、着磁工程によって、磁石装着部内に固定された磁石を初期着磁工程よりも強い磁場で磁化させることにより、回転子に対する所望の運転特性を確保するために必要とされる所定の帯磁磁束を形成することができる。
According to the above rotor manufacturing method , the magnet mounting hole rotates with the outer peripheral inner surface of the rotor body on the outer peripheral side and the inner peripheral side in the radial direction of the substantially cylindrical rotor main body. The inner surface of the rotor body has an inner surface on the inner periphery side, and the magnet has an outer peripheral surface on the outer periphery side of the rotor body and an inner peripheral surface on the inner periphery side of the rotor body in a state of being mounted in the magnet mounting hole. Since the magnet magnetized by the initial magnetization process has a higher magnetic flux density on the outer peripheral surface than on the inner peripheral surface of the magnet, the attraction force to the magnetic material arranged around the magnet is The outer peripheral surface is stronger than the peripheral surface. For this reason, when the magnet magnetized by the initial magnetization process is inserted into a magnet mounting hole portion made of, for example, a through-hole penetrating the rotor body, the magnet has an outer peripheral surface on the outer peripheral side of the magnet mounting hole portion. The magnet is positioned so as to be attracted to the inner surface at a predetermined position shifted toward the outer peripheral side in the magnet mounting hole , for example, a position where the outer peripheral surface of the magnet contacts the outer peripheral inner surface of the magnet mounting hole .
Then, the resin is filled in the resin mounting step so as to fill the gap between the magnet positioned in the positioning step and the magnet mounting hole , thereby fixing the magnet in the magnet mounting hole .
As a result, the magnet can be easily positioned and fixed in advance at a predetermined position shifted to the outer peripheral side in the magnet mounting hole , and it is desirable for the magnet to be displaced to the outer peripheral side when the rotor rotates. The mechanical strength can be ensured, and the occurrence of vibration and noise and the reduction in fatigue strength can be suppressed.
In addition, by magnetizing the magnet fixed in the magnet mounting hole with a magnetic field stronger than that in the initial magnetization process, a predetermined magnetization required to ensure the desired operating characteristics for the rotor is obtained. Magnetic flux can be formed.

さらに、請求項3に記載の発明の回転子の製造方法では、前記初期着磁工程は、他の磁石(例えば、後述する実施の形態での永久磁石31)の磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴としている。 Furthermore, in the manufacturing method of the rotor of the invention described in claim 3, wherein the outer peripheral surface of the initial magnetizing step, the other magnets (e.g., permanent magnets 31 in the embodiment described below) the magnetic poles of the magnet It is characterized by arranging from the upper or outer peripheral surface opposite a position spaced in the radial direction outward.

上記の回転子の製造方法によれば、初期着磁工程では、例えば永久磁石や電磁石等の他の磁石の磁極を磁石の外周面上に配置することによって、磁石を、この磁石の外周面上の適宜の位置での磁束密度が、この外周面上の適宜の位置に対向する内周面上の位置での磁束密度よりも大きくなるように、つまり磁石の径方向に沿った磁束密度分布が非対称分布となるように磁化させることができる。   According to the rotor manufacturing method described above, in the initial magnetization step, for example, by arranging the magnetic poles of other magnets such as permanent magnets and electromagnets on the outer circumferential surface of the magnet, the magnet is placed on the outer circumferential surface of the magnet. The magnetic flux density at an appropriate position of the magnet is larger than the magnetic flux density at the position on the inner peripheral surface opposite to the appropriate position on the outer peripheral surface, that is, the magnetic flux density distribution along the radial direction of the magnet is It can be magnetized to have an asymmetric distribution.

さらに、請求項4に記載の発明の回転子の製造方法では、前記初期着磁工程は、前記他の磁石の1対の互いに異なる磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴としている。 Furthermore, in the manufacturing method of the rotor of the invention described in claim 4, wherein the initial magnetizing step, the diameter different magnetic poles of a pair of the other magnet from the outer peripheral surface or on the outer peripheral surface of the magnet It is characterized by being arranged at a position that is spaced outward in the direction.

上記の回転子の製造方法によれば、初期着磁工程では、例えば永久磁石や電磁石等の他の磁石の1対の磁極を磁石の外周面上に配置することによって、これら1対の磁極に対応した異極の1対の磁極が磁石の外周面上に形成され、さらに、内周面上には外周面上の1対の各磁極に対する異極の各磁極が形成され、磁石を、この磁石の外周面上の適宜の位置での磁束密度が、この外周面上の適宜の位置に対向する内周面上の位置での磁束密度よりも大きくなるように、つまり磁石の径方向に沿った磁束密度分布が非対称分布となるように磁化させることができる。   According to the rotor manufacturing method described above, in the initial magnetization step, for example, a pair of magnetic poles of other magnets such as permanent magnets and electromagnets are arranged on the outer peripheral surface of the magnets, so that these one pair of magnetic poles are arranged. A corresponding pair of magnetic poles having different polarities is formed on the outer peripheral surface of the magnet, and further, magnetic poles having different polarities with respect to the pair of magnetic poles on the outer peripheral surface are formed on the inner peripheral surface. The magnetic flux density at an appropriate position on the outer peripheral surface of the magnet is larger than the magnetic flux density at a position on the inner peripheral surface opposite to the appropriate position on the outer peripheral surface, that is, along the radial direction of the magnet. The magnetic flux density distribution can be magnetized so as to be an asymmetric distribution.

さらに、請求項5に記載の発明の回転子の製造方法では、前記初期着磁工程は、前記他の磁石の何れか1つの磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴としている。 Furthermore, in the manufacturing method of the rotor of the invention described in claim 5, wherein the initial magnetizing step, the radial any one of the magnetic poles of the other magnet from the outer peripheral surface or on the outer peripheral surface of the magnet It is characterized by being arranged at a position spaced outward.

上記の回転子の製造方法によれば、初期着磁工程では、例えば永久磁石や電磁石等の他の磁石の何れか1つの磁極を磁石の外周面上に配置することによって、この磁極に対応した異極の磁極が磁石の外周面上に形成され、さらに、内周面上には外周面上の磁極に対する異極の磁極が形成され、磁石を、この磁石の外周面上の適宜の位置での磁束密度が、この外周面上の適宜の位置に対向する内周面上の位置での磁束密度よりも大きくなるように、つまり磁石の径方向に沿った磁束密度分布が非対称分布となるように磁化させることができる。   According to the rotor manufacturing method described above, in the initial magnetization step, for example, any one magnetic pole of another magnet such as a permanent magnet or an electromagnet is disposed on the outer peripheral surface of the magnet, thereby corresponding to this magnetic pole. A magnetic pole of a different polarity is formed on the outer peripheral surface of the magnet, and further, a magnetic pole of a different polarity with respect to the magnetic pole on the outer peripheral surface is formed on the inner peripheral surface, and the magnet is placed at an appropriate position on the outer peripheral surface of the magnet. So that the magnetic flux density distribution in the radial direction of the magnet becomes an asymmetric distribution. Can be magnetized.

さらに、請求項6に記載の発明の回転子の製造方法では、前記初期着磁工程は、前記磁石の前記外周面上の央部あるいは該央部から前記径方向外方に向かい離間した位置に他の磁石(例えば、後述する実施の形態での永久磁石31)の磁極を配置することを特徴としている。 Furthermore, in the manufacturing method of the rotor of the invention described in claim 6, wherein the initial magnetizing step, a position spaced toward said radially outwardly from the central portion or該央portion on the outer peripheral surface of the magnet A magnetic pole of another magnet (for example, a permanent magnet 31 in an embodiment described later) is arranged.

上記の回転子の製造方法によれば、初期着磁工程では、磁石の央部に磁極を形成することによって、磁石を磁石装着部内の外周側にずれた所定の位置に容易に位置決めすることができる。 According to the above rotor manufacturing method, in the initial magnetization step, the magnet can be easily positioned at a predetermined position shifted to the outer peripheral side in the magnet mounting hole by forming a magnetic pole at the center of the magnet. Can do.

さらに、請求項7に記載の発明の回転子の製造方法では、前記樹脂はシリコンあるいはエポキシ基を具備することを特徴としている。   Furthermore, in the method for manufacturing a rotor according to the seventh aspect of the present invention, the resin includes silicon or an epoxy group.

上記の回転子の製造方法によれば、シリコン樹脂あるいはエポキシ樹脂によって磁石を固定することにより、この回転子を、例えばハイブリッド車両や燃料電池車両等の車両の駆動源とされる車両用電動機に具備した場合であっても、車両の駆動源の使用環境や車両用電動機の運転状態等に応じて回転子本体や磁石に生じる熱変形等の変形に追従して磁石の固定状態を維持することができる。   According to the above method for manufacturing a rotor, a magnet is fixed by silicon resin or epoxy resin so that the rotor is provided in a vehicle electric motor that is a drive source of a vehicle such as a hybrid vehicle or a fuel cell vehicle. Even in such a case, it is possible to maintain the magnet fixed state following the deformation such as the thermal deformation generated in the rotor body or the magnet in accordance with the use environment of the vehicle drive source or the driving state of the vehicle motor. it can.

請求項1または請求項2に記載の発明の回転子の製造方法によれば、予め、磁石を磁石装着部内の外周側(つまり略円筒状の回転子本体の径方向での外周側)にずれた所定の位置に容易に位置決めして固定することができ、回転子の回転時において外周側(つまり略円筒状の回転子本体の径方向での外周側)へ変位しようとする磁石に対して所望の機械的強度を確保することができ、振動や騒音の発生および疲労強度の低下を抑制することができる。しかも、着磁工程によって、磁石装着部内に固定された磁石を初期着磁工程よりも強い磁場で磁化させることにより、回転子に対する所望の運転特性を確保するために必要とされる所定の帯磁磁束を形成することができる。 According to the rotor manufacturing method of the first or second aspect of the present invention, the magnet is previously placed on the outer peripheral side in the magnet mounting hole (that is, on the outer peripheral side in the radial direction of the substantially cylindrical rotor body) . It can be easily positioned and fixed at a deviated predetermined position, and when the rotor rotates, the magnet is to be displaced to the outer peripheral side (that is , the outer peripheral side in the radial direction of the substantially cylindrical rotor body) . Thus, desired mechanical strength can be ensured, and generation of vibration and noise and reduction in fatigue strength can be suppressed. In addition, by magnetizing the magnet fixed in the magnet mounting hole with a magnetic field stronger than that in the initial magnetization process, a predetermined magnetization required to ensure the desired operating characteristics for the rotor is obtained. Magnetic flux can be formed.

さらに、請求項3から請求項5の何れかひとつに記載の発明によれば、磁石を、この磁石の外周面上の適宜の位置での磁束密度が、この外周面上の適宜の位置に対向する内周面上の位置での磁束密度よりも大きくなるように、つまり磁石の径方向に沿った磁束密度分布が非対称分布となるように容易に磁化させることができる。
さらに、請求項6に記載の発明によれば、磁石を磁石装着部内の外周側にずれた所定の位置に容易に位置決めすることができる。
さらに、請求項7に記載の発明によれば、回転子を、例えばハイブリッド車両や燃料電池車両等の車両の駆動源とされる車両用電動機に具備した場合であっても、車両の駆動源の使用環境や車両用電動機の運転状態等に応じて回転子本体や磁石に生じる熱変形等の変形に追従して磁石の固定状態を維持することができる。
Furthermore, according to the invention described in any one of claims 3 to 5, the magnetic flux density at an appropriate position on the outer peripheral surface of the magnet is opposed to an appropriate position on the outer peripheral surface. It is possible to easily magnetize the magnetic flux so that it is larger than the magnetic flux density at the position on the inner peripheral surface, that is, so that the magnetic flux density distribution along the radial direction of the magnet becomes an asymmetric distribution.
Furthermore, according to the sixth aspect of the present invention, the magnet can be easily positioned at a predetermined position shifted to the outer peripheral side in the magnet mounting hole .
Furthermore, according to the seventh aspect of the present invention, even when the rotor is provided in a vehicle electric motor that is a drive source of a vehicle such as a hybrid vehicle or a fuel cell vehicle, The fixed state of the magnet can be maintained by following deformation such as thermal deformation generated in the rotor main body and the magnet according to the use environment, the driving state of the vehicle motor, and the like.

以下、本発明の回転子の製造方法の一実施形態について添付図面を参照しながら説明する。
本実施の形態に係る回転子10は、例えば内燃機関と共に車両の駆動源とされるハイブリッド車両用電動機をなすブラシレスDCモータの回転子であって、このブラシレスDCモータは、回転子10を回転させる回転磁界を発生する複数相の固定子巻線を具備する固定子を備えて構成されている。そして、例えば内燃機関とブラシレスDCモータとトランスミッションとを直列に直結した構造のパラレルハイブリッド車両において、内燃機関およびブラシレスDCモータの両方の駆動力は、トランスミッションを介して車両の駆動輪に伝達されるようになっている。
Hereinafter, an embodiment of a method for manufacturing a rotor of the present invention will be described with reference to the accompanying drawings.
The rotor 10 according to the present embodiment is a rotor of a brushless DC motor that forms an electric motor for a hybrid vehicle that is used as a vehicle drive source together with an internal combustion engine, for example. The brushless DC motor rotates the rotor 10. A stator having a plurality of stator windings for generating a rotating magnetic field is provided. For example, in a parallel hybrid vehicle having a structure in which an internal combustion engine, a brushless DC motor, and a transmission are directly connected in series, the driving forces of both the internal combustion engine and the brushless DC motor are transmitted to the drive wheels of the vehicle via the transmission. It has become.

この回転子10は、例えば図1に示すように、内燃機関のクランクシャフトおよびトランスミッションの入力軸に連結されてモータトルクを伝達するためのシャフト11と、例えば珪素鋼板等の複数の電磁鋼板が積層されてなる略円筒状のヨーク12と、ヨーク12に設けられた複数の磁石装着部13,…,13に装着される複数の磁石14,…,14と、ヨーク12の回転軸O方向の端面12A,12Bを両側から挟み込むようにして配置された1対の略円環板状の端面板15,15と、略円環状のカラー16とを備えて構成されている。   As shown in FIG. 1, for example, the rotor 10 includes a shaft 11 that is connected to a crankshaft of an internal combustion engine and an input shaft of a transmission and transmits a motor torque, and a plurality of electromagnetic steel plates such as silicon steel plates. The substantially cylindrical yoke 12, the plurality of magnet mounting portions 13,..., 13 mounted on the yoke 12, and the end surface of the yoke 12 in the direction of the rotation axis O. 12A and 12B are provided with a pair of substantially annular plate-shaped end face plates 15 and 15 arranged so as to sandwich the both sides of both sides, and a substantially annular collar 16.

例えば鍛造により略円筒状に形成されたシャフト11は、外周面11A上における回転軸O方向の一方の端部において一段拡径するようにして周方向に沿って外周面11A上から突出する突出部11aを備え、さらに、外周面11A上の周方向に沿った所定位置には回転軸O方向に伸びる複数(例えば2つ)の凹溝11b,11bが形成され、各凹溝11bは、外周面11A上およびシャフト11の回転軸O方向の他方の端面11B上において開口するように形成されている。   For example, the shaft 11 formed into a substantially cylindrical shape by forging has a protruding portion that protrudes from the outer peripheral surface 11A along the circumferential direction so as to increase in diameter by one step at one end portion in the direction of the rotation axis O on the outer peripheral surface 11A. 11a, and a plurality of (for example, two) concave grooves 11b and 11b extending in the direction of the rotation axis O are formed at predetermined positions along the circumferential direction on the outer circumferential surface 11A. An opening is formed on 11A and on the other end surface 11B of the shaft 11 in the direction of the rotation axis O.

略円筒状のヨーク12は、シャフト11の外周面11Aの外径よりも僅かに小さな内径を有する内周面12Cを備え、この内周面12C上の周方向に沿った所定位置には回転軸O方向に伸びる複数(例えば2つ)の凸部12a,12aが形成され、ヨーク12の内周面12Cがシャフト11の外周面11Aに当接するようにしてヨーク12を相対的にシャフト11に装着する際に、ヨーク12の凸部12aがシャフト11の凹溝11bに装着されることで、ヨーク12とシャフト11とが周方向の所定相対位置に位置決めされるようになっている。   The substantially cylindrical yoke 12 includes an inner peripheral surface 12C having an inner diameter slightly smaller than the outer diameter of the outer peripheral surface 11A of the shaft 11, and a rotating shaft is provided at a predetermined position along the circumferential direction on the inner peripheral surface 12C. A plurality of (for example, two) convex portions 12a, 12a extending in the O direction are formed, and the yoke 12 is relatively attached to the shaft 11 so that the inner peripheral surface 12C of the yoke 12 contacts the outer peripheral surface 11A of the shaft 11. At this time, the convex portion 12a of the yoke 12 is mounted in the concave groove 11b of the shaft 11, so that the yoke 12 and the shaft 11 are positioned at a predetermined relative position in the circumferential direction.

ヨーク12の外周部には周方向に所定間隔をおいて複数の磁石装着部13,…,13が設けられ、隣り合う磁石装着部13,13間においてヨーク12の外周面12D上には回転軸O方向に伸びる凹溝12bが形成されている。
周方向の両側から凹溝12b,12bにより挟み込まれる突極状に形成された各磁石装着部13は、例えば図2に示すように、回転軸O方向に貫通する1対の磁石装着孔13a,13aを備え、これら2つの磁石装着孔13a,13aはセンターリブ13bを介して周方向に隣り合うように配置されている。各磁石装着孔13aは回転軸線O方向に対する断面が略長方形状に形成され、各磁石装着孔13aの周方向および径方向の各寸法は、略長方形板状の磁石14の幅寸法および厚さ寸法よりも所定寸法だけ大きく設定されている。
そして、各磁石装着孔13a内に挿入された磁石14は、磁石14の外周面14Aと磁石装着孔13aの外周側内面13Aとが当接し、磁石14の各両側面14B,14Cおよび内周面14Dと、磁石装着孔13aの各周方向内面13B,13Cおよび内周側内面13Dとの間に所定寸法の隙間21が形成されるようにして位置決めされ、この隙間21に、例えばシリコン樹脂やエポキシ樹脂等の樹脂22が充填されている。
A plurality of magnet mounting portions 13,..., 13 are provided on the outer peripheral portion of the yoke 12 at predetermined intervals in the circumferential direction, and a rotating shaft is disposed on the outer peripheral surface 12D of the yoke 12 between the adjacent magnet mounting portions 13, 13. A concave groove 12b extending in the O direction is formed.
Each magnet mounting portion 13 formed in a salient pole shape sandwiched by the concave grooves 12b, 12b from both sides in the circumferential direction has, for example, a pair of magnet mounting holes 13a penetrating in the direction of the rotation axis O, as shown in FIG. 13a, and these two magnet mounting holes 13a, 13a are arranged adjacent to each other in the circumferential direction via the center rib 13b. Each magnet mounting hole 13a has a substantially rectangular cross section with respect to the direction of the rotation axis O. The circumferential and radial dimensions of each magnet mounting hole 13a are the width and thickness of the magnet 14 having a substantially rectangular plate shape. Is set larger than the predetermined dimension.
The magnet 14 inserted into each magnet mounting hole 13a is in contact with the outer peripheral surface 14A of the magnet 14 and the outer peripheral side inner surface 13A of the magnet mounting hole 13a, so that both side surfaces 14B and 14C and the inner peripheral surface of the magnet 14 are in contact with each other. 14D is positioned such that a gap 21 having a predetermined dimension is formed between the circumferential inner surfaces 13B and 13C and the inner circumferential side inner surface 13D of the magnet mounting hole 13a. In this gap 21, for example, silicon resin or epoxy A resin 22 such as a resin is filled.

また、1対の磁石装着孔13a,13aに装着される1対の磁石14,14は、厚さ方向(つまり回転子12の径方向)に磁化され、互いに磁化方向が同方向となるように設定される。なお、周方向で隣り合う磁石装着部13,13に対して、各1対の磁石装着孔13a,13aおよび13a,13aに装着される各1対の磁石14,14および14,14は互いに磁化方向が異方向となるように設定される。すなわち外周側がN極とされた1対の磁石14,14が装着された磁石装着部13には、外周側がS極とされた1対の磁石14,14が装着された磁石装着部13が、凹溝12bを介して周方向に隣接するようになっている。   Further, the pair of magnets 14 and 14 mounted in the pair of magnet mounting holes 13a and 13a are magnetized in the thickness direction (that is, the radial direction of the rotor 12) so that the magnetization directions are the same. Is set. The pair of magnets 14, 14 and 14, 14 mounted in the pair of magnet mounting holes 13 a, 13 a and 13 a, 13 a are magnetized with respect to the magnet mounting portions 13, 13 adjacent in the circumferential direction. The direction is set to be different. That is, the magnet mounting portion 13 to which the pair of magnets 14 and 14 having the N pole on the outer peripheral side is mounted has the magnet mounting portion 13 to which the pair of magnets 14 and 14 having the S pole on the outer peripheral side are mounted. It is adjacent to the circumferential direction through the concave groove 12b.

略円環板状の端面板15は、ヨーク12の外径よりも僅かに小さな外径を有する外周面15Aおよび磁石装着孔13aの内周面よりも小さな径の内径を有する内周面15Bを備え、ヨーク12の端面12A,12Bを両側から挟み込む1対の端面板15,15は、各磁石装着孔13aに装着された磁石14の両端面に当接し、磁石14が回転軸O方向に変位することを規制するようになっている。
なお、端面板15の内周面15Bは、シャフト11の外周面11Aの外径と同等あるいは外周面11Aの外径よりも僅かに大きく、かつ、シャフト11の外周面11A上に設けられた突出部11aの外径よりも小さい内径を有するように形成され、さらに、この内周面15B上の周方向に沿った所定位置には回転軸O方向に伸びる複数(例えば2つ)の突部15a,15aが形成されている。すなわち、端面板15の内周面15Bがシャフト11の外周面11Aに対向するようにして端面板15を相対的にシャフト11に装着する際に、端面板15の突部15aがシャフト11の凹溝11bに装着されることで、端面板15とシャフト11とが周方向の所定相対位置に位置決めされ、さらに、端面板15がシャフト11の突出部11aに当接することで、端面板15がシャフト11の回転軸O方向の一方の端部から抜けてしまうことを防止するようになっている。
The substantially annular plate-like end plate 15 has an outer peripheral surface 15A having an outer diameter slightly smaller than the outer diameter of the yoke 12 and an inner peripheral surface 15B having an inner diameter smaller than the inner peripheral surface of the magnet mounting hole 13a. The pair of end face plates 15 and 15 sandwiching the end faces 12A and 12B of the yoke 12 from both sides are in contact with both end faces of the magnets 14 mounted in the magnet mounting holes 13a, and the magnets 14 are displaced in the direction of the rotation axis O. It is supposed to regulate what to do.
The inner peripheral surface 15B of the end face plate 15 is the same as or slightly larger than the outer diameter of the outer peripheral surface 11A of the shaft 11 and is a protrusion provided on the outer peripheral surface 11A of the shaft 11. A plurality of (for example, two) protrusions 15a that are formed to have an inner diameter smaller than the outer diameter of the portion 11a, and extend in the direction of the rotation axis O at predetermined positions along the circumferential direction on the inner peripheral surface 15B. , 15a are formed. That is, when the end face plate 15 is relatively attached to the shaft 11 so that the inner peripheral face 15 B of the end face plate 15 faces the outer peripheral face 11 A of the shaft 11, the protrusion 15 a of the end face plate 15 is recessed in the shaft 11. By mounting in the groove 11b, the end face plate 15 and the shaft 11 are positioned at a predetermined relative position in the circumferential direction. Further, the end face plate 15 abuts against the protruding portion 11a of the shaft 11, so that the end face plate 15 becomes the shaft. 11 is prevented from coming off from one end in the direction of the rotation axis O.

略円環状のカラー16は、シャフト11の外周面11Aの外径よりも僅かに小さな内径を有する内周面16Aおよび端面板15の内周面15Bの内径よりも大きな外径を有する外周面16Bを備え、複数の磁石14,…,14が装着されたヨーク12および1対の端面板15,15が装着されたシャフト11に対して、カラー16の内周面16Aがシャフト11の外周面11Aに当接するようにしてカラー16を相対的にシャフト11に装着することによって、カラー16が端面板15に当接し、端面板15がシャフト11の回転軸O方向の他方の端部から抜けてしまうことを防止するようになっている。   The substantially annular collar 16 has an inner peripheral surface 16A having an inner diameter slightly smaller than the outer diameter of the outer peripheral surface 11A of the shaft 11 and an outer peripheral surface 16B having an outer diameter larger than the inner diameter of the inner peripheral surface 15B of the end plate 15. The inner peripheral surface 16A of the collar 16 is the outer peripheral surface 11A of the shaft 11 with respect to the shaft 12 on which the yoke 12 and the pair of end face plates 15 and 15 to which the plurality of magnets 14,. When the collar 16 is relatively mounted on the shaft 11 so as to abut against the shaft 11, the collar 16 abuts against the end face plate 15, and the end face plate 15 comes off from the other end of the shaft 11 in the direction of the rotation axis O. To prevent this.

本実施の形態に係る回転子10は上記構成を備えており、次に、この回転子10の製造方法、特に、磁石14を回転子10に固定する方法について添付図面を参照しながら説明する。   The rotor 10 according to the present embodiment has the above-described configuration. Next, a method for manufacturing the rotor 10, in particular, a method for fixing the magnet 14 to the rotor 10 will be described with reference to the accompanying drawings.

先ず、図3に示すステップS01においては、磁石14に対して、磁化方向が少なくとも厚さ方向であって、この厚さ方向に沿った磁束密度分布が外周面14Aから内周面14Dに向かい減少傾向に変化する非対称分布となるように、つまり外周面14A上の適宜の位置での表面磁束密度が、この外周面14A上の適宜の位置に対向する内周面14D上の位置での表面磁束密度よりも大きくなるように、かつ、外周面14A上の磁極位置での表面磁束密度が相対的に小さい所定値(例えば、200ガウス=0.02テスラ等)程度となるような着磁(以下、単に、弱着磁と呼ぶ。)を行う。   First, in step S01 shown in FIG. 3, with respect to the magnet 14, the magnetization direction is at least the thickness direction, and the magnetic flux density distribution along the thickness direction decreases from the outer peripheral surface 14A toward the inner peripheral surface 14D. The surface magnetic flux density at an appropriate position on the outer peripheral surface 14A is a surface magnetic flux at a position on the inner peripheral surface 14D opposite to the appropriate position on the outer peripheral surface 14A. Magnetization (hereinafter referred to as 200 gauss = 0.02 Tesla or the like) such that the surface magnetic flux density at the magnetic pole position on the outer peripheral surface 14A becomes a relatively small predetermined value (for example, 200 Gauss = 0.02 Tesla). Simply called weak magnetization).

この弱着磁の工程においては、例えば図4に示すような弱着磁用治具30を磁石14の外周面14Aに接触させる。この弱着磁用治具30は、例えば厚さ方向に着磁された略直方体の永久磁石31と、この永久磁石31を磁化方向の両側から挟み込む1対の略板状の磁性体32a,32bとを備えて構成され、例えば、1対の磁性体32a,32b間の距離LMは磁石14の幅寸法よりも小さく形成され、各磁性体32a,32bの長さは磁石14の長さと同等に形成されている。
そして、弱着磁用治具30を磁石14の幅方向央部に配置し、互いに異なる磁極をなす1対の磁性体32a,32bの各端部を磁石14の外周面14Aに当接させ、さらに、1対の磁性体32a,32bが磁石14の幅方向に沿って距離LMだけ離間し、各磁性体32a,32bの長さ方向と磁石14の長さ方向とが平行となるように設定する。
これにより、例えば図5(a),(b)に示すように、磁石14の外周面14A上で幅方向に所定距離LMだけ離れた位置Wa,Wbに1対の磁性体32a,32bに対応した異極の互いに異なる磁極が磁石14の長さ方向に沿って伸びるようにして形成される。そして、この磁石14の外周面14A上に形成された各磁極に対し、内周面14D上には異極の各磁極が形成され、この磁石14は、幅方向および厚さ方向が磁化方向とされて両面4極に着磁される。
In this weak magnetization process, for example, a weak magnetization jig 30 as shown in FIG. 4 is brought into contact with the outer peripheral surface 14 </ b> A of the magnet 14. The weakly magnetizing jig 30 includes, for example, a substantially rectangular permanent magnet 31 magnetized in the thickness direction, and a pair of substantially plate-like magnetic bodies 32a and 32b sandwiching the permanent magnet 31 from both sides in the magnetization direction. For example, the distance LM between the pair of magnetic bodies 32 a and 32 b is formed smaller than the width dimension of the magnet 14, and the length of each magnetic body 32 a and 32 b is equal to the length of the magnet 14. Is formed.
Then, the weakly magnetizing jig 30 is arranged at the center in the width direction of the magnet 14, and the ends of the pair of magnetic bodies 32a and 32b having different magnetic poles are brought into contact with the outer peripheral surface 14A of the magnet 14, Further, the pair of magnetic bodies 32a and 32b are separated by a distance LM along the width direction of the magnet 14, and the length direction of each magnetic body 32a and 32b and the length direction of the magnet 14 are set in parallel. To do.
As a result, for example, as shown in FIGS. 5A and 5B, a pair of magnetic bodies 32a and 32b correspond to positions Wa and Wb that are separated by a predetermined distance LM in the width direction on the outer peripheral surface 14A of the magnet 14. The different magnetic poles having different polarities are formed so as to extend along the length direction of the magnet 14. For each magnetic pole formed on the outer peripheral surface 14A of the magnet 14, magnetic poles having different polarities are formed on the inner peripheral surface 14D. The magnet 14 has a width direction and a thickness direction as magnetization directions. And magnetized on both sides of 4 poles.

次に、ステップS02においては、ロータシャフト11に一方の端面板15を装着し、さらに、ヨーク12にロータシャフト11を圧入するようにして、ロータシャフト11にヨーク12を装着する。
次に、ステップS03においては、ヨーク12の各磁石装着孔13aの一方の開口部が一方の端面板15により閉塞された磁石装着孔13aに所定量の樹脂22を注入する。
次に、ステップS04においては、樹脂22が注入された磁石装着孔13a内に磁石14を挿入する。このとき、樹脂22内に磁石14が押し込まれることにより、磁石14と磁石装着孔13aとの間の隙間21を埋めるようにして樹脂22が流動する。また、磁石14は、外周面14A上の各磁極位置(つまり、磁石幅方向の位置Wa,Wb)が、これらの各磁極位置に対向する内周面14D上の各磁極位置に比べて相対的に強く着磁されていることから、磁石14の外周面14Aが磁石装着孔13aの外周側内面13Aに吸引される吸引力は、磁石14の内周面14Dが磁石装着孔13aの内周側内面13Dに吸引される吸引力よりも強くなり、磁石14の外周面14Aが磁石装着孔13aの外周側内面13Aに当接するようにして磁石14が位置決めされる。
Next, in step S02, one end face plate 15 is attached to the rotor shaft 11, and the yoke 12 is attached to the rotor shaft 11 so that the rotor shaft 11 is press-fitted into the yoke 12.
Next, in step S03, a predetermined amount of resin 22 is injected into the magnet mounting hole 13a in which one opening of each magnet mounting hole 13a of the yoke 12 is closed by one end face plate 15.
Next, in step S04, the magnet 14 is inserted into the magnet mounting hole 13a into which the resin 22 has been injected. At this time, when the magnet 14 is pushed into the resin 22, the resin 22 flows so as to fill the gap 21 between the magnet 14 and the magnet mounting hole 13a. Further, the magnet 14 has relative positions of the magnetic poles on the outer peripheral surface 14A (that is, positions Wa and Wb in the magnet width direction) relative to the magnetic pole positions on the inner peripheral surface 14D facing these magnetic pole positions. Since the magnet 14 is attracted by the outer peripheral surface 14A of the magnet 14 to the outer peripheral side inner surface 13A, the inner peripheral surface 14D of the magnet 14 is on the inner peripheral side of the magnet mounting hole 13a. The magnet 14 is positioned such that the attraction force attracted by the inner surface 13D is stronger and the outer peripheral surface 14A of the magnet 14 contacts the outer peripheral inner surface 13A of the magnet mounting hole 13a.

次に、ステップS05においては、樹脂22を所定温度まで加熱して硬化させ、磁石14を磁石装着孔13a内に固定する。
次に、ステップS06においては、ロータシャフト11に他方の端面板15を装着し、ヨーク12の各磁石装着孔13aの他方の開口部を他方の端面板15により閉塞する。
次に、ステップS07においては、カラー16にロータシャフト11を圧入するようにして、ロータシャフト11にカラー16を装着する。
そして、ステップS08においては、例えばロータシャフト11とヨーク12と1対の端面板15,15とカラー16との相対位置等の検査および修正を行う。
そして、ステップS09においては、回転バランス等を調整する。
次に、ステップS10においては、各磁石装着孔13aに装着された磁石14に対して、磁化方向を厚さ方向として適宜の着磁装置(図示略)により着磁(以下、単に、本着磁と呼ぶ。)を行い、一連の処理を終了する。
なお、ステップS10における本着磁の工程では、各磁石14に対して、ブラシレスDCモータの所望の運転特性を確保するために必要とされる所定の帯磁磁束が形成されるようにして、ステップS01にて実行する弱着磁よりも相対的に強い磁場によって着磁を行う。これにより、例えば図5(c)に示すように、磁石14の外周面14A上に所定の磁極が形成される。
Next, in step S05, the resin 22 is heated to a predetermined temperature and cured to fix the magnet 14 in the magnet mounting hole 13a.
Next, in step S <b> 06, the other end face plate 15 is mounted on the rotor shaft 11, and the other opening of each magnet mounting hole 13 a of the yoke 12 is closed by the other end face plate 15.
Next, in step S07, the collar 16 is mounted on the rotor shaft 11 so as to press-fit the rotor shaft 11 into the collar 16.
In step S08, for example, the relative position between the rotor shaft 11, the yoke 12, the pair of end face plates 15, 15 and the collar 16 is inspected and corrected.
In step S09, the rotation balance and the like are adjusted.
Next, in step S10, the magnets 14 installed in the magnet mounting holes 13a are magnetized by an appropriate magnetizing device (not shown) with the magnetization direction as the thickness direction (hereinafter simply referred to as main magnetization). To complete the series of processes.
In the main magnetizing step in step S10, a predetermined magnetic flux required for ensuring the desired operating characteristics of the brushless DC motor is formed for each magnet 14 in step S01. Magnetization is performed by a magnetic field relatively stronger than the weak magnetization executed in step (b). Thereby, for example, as shown in FIG. 5C, a predetermined magnetic pole is formed on the outer peripheral surface 14 </ b> A of the magnet 14.

上述したように、本実施の形態による回転子の製造方法によれば、予め、磁石14を各磁石装着孔13a内の外周側にずれた所定の位置に容易に位置決めして固定することができ、回転子10の回転時において外周側へ変位しようとする磁石14に対して所望の機械的強度を確保することができ、振動や騒音の発生および回転子10の疲労強度の低下を抑制することができる。しかも、本着磁の工程では、各磁石装着孔13a内に固定された磁石14を弱着磁の工程よりも強い磁場で磁化させることにより、回転子10に対する所望の運転特性を確保するために必要とされる所定の帯磁磁束を形成することができる。
また、弱着磁の工程では、弱着磁用治具30を磁石14の外周面14A上の幅方向央部に配置するだけの単純な作業だけで、磁石14を、この磁石14の外周面14A上の適宜の位置での磁束密度が、この外周面14A上の適宜の位置に対向する内周面14D上の位置での磁束密度よりも大きくなるように、つまり磁石14の径方向に沿った磁束密度分布が非対称分布となるように容易に磁化させることができる。
そして、例えばシリコン樹脂やエポキシ樹脂等の樹脂22によって磁石14を磁石装着孔13a内に固定することによって、回転子10を、例えばハイブリッド車両や燃料電池車両等の車両の駆動源とされる車両用電動機に具備した場合であっても、車両の駆動源の使用環境や車両用電動機の運転状態等に応じてヨーク12や磁石14に生じる熱変形等の変形に追従して磁石14の固定状態を維持することができる。
As described above, according to the method of manufacturing a rotor according to the present embodiment, the magnet 14 can be easily positioned and fixed in advance at a predetermined position shifted to the outer peripheral side in each magnet mounting hole 13a. The desired mechanical strength can be ensured for the magnet 14 that is going to be displaced to the outer peripheral side during the rotation of the rotor 10, and the occurrence of vibration and noise and the decrease in the fatigue strength of the rotor 10 can be suppressed. Can do. Moreover, in the main magnetizing step, the magnet 14 fixed in each magnet mounting hole 13a is magnetized with a magnetic field stronger than that in the weakly magnetizing step in order to ensure desired operating characteristics for the rotor 10. A predetermined magnetic flux required can be formed.
Further, in the weak magnetization process, the magnet 14 can be attached to the outer peripheral surface of the magnet 14 only by a simple operation of arranging the weak magnetization jig 30 at the center in the width direction on the outer peripheral surface 14A of the magnet 14. The magnetic flux density at an appropriate position on 14A is larger than the magnetic flux density at a position on the inner peripheral surface 14D opposite to the appropriate position on the outer peripheral surface 14A, that is, along the radial direction of the magnet 14. The magnetic flux density distribution can be easily magnetized so as to be an asymmetric distribution.
Then, by fixing the magnet 14 in the magnet mounting hole 13a with a resin 22 such as a silicon resin or an epoxy resin, the rotor 10 is used as a drive source for a vehicle such as a hybrid vehicle or a fuel cell vehicle. Even when the motor is provided, the magnet 14 is fixed in accordance with the deformation of the yoke 12 and the magnet 14 according to the use environment of the vehicle drive source, the driving state of the vehicle motor, and the like. Can be maintained.

なお、上述した実施の形態において、弱着磁用治具30の各磁性体32a,32bの長さを磁石14の長さと同等に形成したが、これに限定されず、各磁性体32a,32bの長さを磁石14の長さよりも短く形成してもよい。この場合には、弱着磁の実行時に、弱着磁用治具30を磁石14の幅方向央部に配置し、互いに異なる磁極をなす1対の磁性体32a,32bの各端部を磁石14の外周面14Aに当接させ、さらに、1対の磁性体32a,32bが磁石14の幅方向に沿って距離LMだけ離間した状態を維持しつつ、弱着磁用治具30を磁石14の長さ方向に沿って相対移動させる。
また、上述した実施の形態において、弱着磁用治具30は永久磁石31を備えたが、これに限定されず、永久磁石31の代わりに電磁石を備えてもよい。
In the above-described embodiment, the length of each magnetic body 32a, 32b of the weak magnetization jig 30 is formed to be equal to the length of the magnet 14, but the present invention is not limited to this, and each magnetic body 32a, 32b. This length may be shorter than the length of the magnet 14. In this case, at the time of execution of weak magnetization, the weak magnetization jig 30 is arranged at the center in the width direction of the magnet 14 and each end of the pair of magnetic bodies 32a and 32b having different magnetic poles is connected to the magnet. 14, and the pair of magnetic bodies 32 a, 32 b are maintained apart from each other by a distance LM along the width direction of the magnet 14, and the weakly magnetized jig 30 is placed in the magnet 14. Relative movement along the length direction.
In the above-described embodiment, the weak magnetization jig 30 includes the permanent magnet 31, but the invention is not limited thereto, and an electromagnet may be included instead of the permanent magnet 31.

なお、上述した実施の形態においては、弱着磁用治具30によって磁石14の外周面14A上に1対の磁極を形成し、各磁極位置での磁束密度が同等となるように設定したが、これに限定されず、例えば図6に示す上述した実施形態の第1変形例に係る弱着磁用治具40によって、各磁極位置での磁束密度が異なるようにして、例えば、本着磁によって形成される磁極(例えば、N極)と同等の磁極の磁束密度が、本着磁によって形成される磁極とは異なる磁極(例えば、S極)の磁束密度よりも大きくなるようにして、弱着磁を行ってもよい。   In the above-described embodiment, a pair of magnetic poles is formed on the outer peripheral surface 14A of the magnet 14 by the weak magnetization jig 30, and the magnetic flux density at each magnetic pole position is set to be equal. However, the present invention is not limited thereto. For example, the weak magnetization jig 40 according to the first modification of the embodiment shown in FIG. The magnetic flux density of the magnetic pole equivalent to the magnetic pole formed by the magnetic field (for example, N pole) is larger than the magnetic flux density of the magnetic pole (for example, the S pole) different from the magnetic pole formed by the main magnetization. Magnetization may be performed.

この弱着磁用治具40は、例えば厚さ方向に着磁された略直方体の2つの永久磁石41a,41bと、互いに磁化方向が反対方向となるように対向配置された永久磁石41a,41bによって両側から挟み込まれる略板状の磁性体42aと、各永久磁石41a,41bを、磁性体42aとによって磁化方向の両側から挟み込む略板状の各磁性体42b,42cとを備えて構成され、磁性体42a,42b間の所定距離LM1と磁性体42a,42c間の所定距離LM2とを加算して得た距離(LM1+LM2)は磁石14の幅寸法よりも小さく形成されている。
そして、弱着磁用治具40を磁石14の幅方向央部に配置し、各磁性体42a,42b,42cの各端部を磁石14の外周面14Aに当接させ、さらに、順次、各磁性体42b,42a,42cが磁石14の幅方向に沿って所定距離LM1,LM2だけ離間し、各磁性体42b,42a,42cの長さ方向と磁石14の長さ方向とが平行となるように設定する。
The weakly magnetized jig 40 includes, for example, two substantially rectangular parallelepiped permanent magnets 41a and 41b magnetized in the thickness direction, and permanent magnets 41a and 41b arranged so that the magnetization directions are opposite to each other. A substantially plate-like magnetic body 42a sandwiched from both sides by the magnetic material 42a and each permanent magnet 41a, 41b, and substantially plate-like magnetic bodies 42b, 42c sandwiched from both sides of the magnetization direction by the magnetic body 42a, A distance (LM1 + LM2) obtained by adding a predetermined distance LM1 between the magnetic bodies 42a and 42b and a predetermined distance LM2 between the magnetic bodies 42a and 42c is formed to be smaller than the width dimension of the magnet 14.
Then, the weakly magnetized jig 40 is disposed at the center in the width direction of the magnet 14, the respective end portions of the magnetic bodies 42 a, 42 b, 42 c are brought into contact with the outer peripheral surface 14 A of the magnet 14. The magnetic bodies 42b, 42a, 42c are separated by a predetermined distance LM1, LM2 along the width direction of the magnet 14 so that the length direction of each magnetic body 42b, 42a, 42c and the length direction of the magnet 14 are parallel to each other. Set to.

これにより、例えば図7(a),(b)に示すように、磁石14の外周面14A上で幅方向に、順次、所定距離LM1,LM2だけ離れた位置W1,W2,W3に各磁性体42b,42a,42cに対応した異極の互いに異なる磁極が隣り合い、かつ、磁石14の長さ方向に沿って伸びるようにして形成される。そして、この磁石14の外周面14A上に形成された各磁極に対し、内周面14D上には異極の各磁極が形成され、この磁石14は、幅方向および厚さ方向が磁化方向とされて両面6極に着磁される。
そして、各磁石装着孔13aに装着された磁石14に対して本着磁を行う際には、例えば図7(c)に示すように、弱着磁において磁束密度が相対的に大きくなるように設定された磁極と同等の磁極が磁石14の外周面14A上に形成される。
As a result, for example, as shown in FIGS. 7A and 7B, each magnetic body is sequentially placed at positions W1, W2, and W3 spaced apart by a predetermined distance LM1, LM2 in the width direction on the outer peripheral surface 14A of the magnet 14. Different magnetic poles having different polarities corresponding to 42 b, 42 a, and 42 c are adjacent to each other and extend along the length direction of the magnet 14. For each magnetic pole formed on the outer peripheral surface 14A of the magnet 14, magnetic poles having different polarities are formed on the inner peripheral surface 14D. The magnet 14 has a width direction and a thickness direction as magnetization directions. And magnetized to 6 poles on both sides.
When the main magnetizing is performed on the magnets 14 installed in the magnet mounting holes 13a, for example, as shown in FIG. 7C, the magnetic flux density is relatively increased in the weak magnetization. A magnetic pole equivalent to the set magnetic pole is formed on the outer peripheral surface 14 </ b> A of the magnet 14.

この第1変形例においては、弱着磁の際に、本着磁によって形成される磁極とは異なる磁極が形成される面積を、本着磁によって形成される磁極と同等の磁極が形成される面積よりも大きく設定することで、本着磁によって形成される磁極とは異なる磁極の磁束密度を相対的に小さくすることができ、本着磁の実行時に減磁耐力が低下してしまうことを防止することができる。
例えば、磁石14の幅方向央部の磁極位置での磁束密度を、200ガウス=0.02テスラ程度に設定した場合、磁石14の幅方向端部にずれた磁極位置での磁束密度が、20ガウス=0.002テスラ程度となるように設定する。
In this first modification, a magnetic pole equivalent to the magnetic pole formed by the main magnetization is formed in an area where the magnetic pole different from the magnetic pole formed by the main magnetization is formed in the weak magnetization. By setting it to be larger than the area, the magnetic flux density of the magnetic pole different from the magnetic pole formed by the main magnetization can be made relatively small, and the demagnetization resistance is reduced when the main magnetization is performed. Can be prevented.
For example, when the magnetic flux density at the magnetic pole position in the center in the width direction of the magnet 14 is set to about 200 Gauss = 0.02 Tesla, the magnetic flux density at the magnetic pole position shifted to the width direction end of the magnet 14 is 20 It is set to be about Gauss = 0.002 Tesla.

また、上述した実施の形態においては、弱着磁用治具30によって磁石14の外周面14A上に1対の磁極を形成したが、これに限定されず、例えば図8に示す上述した実施形態の第2変形例のように、単に、永久磁石31の1対の磁極のうち、本着磁によって形成される磁極(例えば、N極)と反対の磁極(つまり、S極)を磁石14の外周面14Aに当接させてもよい。
この場合には、例えば図9(a)に示すように、磁石14の外周面14A上の幅方向央部に磁石14の長さ方向に沿って伸びるようにして、本着磁によって形成される磁極と同等の磁極が形成され、さらに、例えば図9(b)に示すように、この外周面14A上に形成された磁極に対し、内周面14D上には異極の磁極(例えば、S極)が形成され、この磁石14は、厚さ方向が磁化方向とされて両面2極に着磁される。
この第2変形例においては、弱着磁の際に、磁石14の外周面14Aと、内周面14Dとに対して、本着磁によって形成される磁極と同等の磁極のみが形成されるだけであるから、本着磁の実行時に異なる磁極が存在することで減磁耐力が低下してしまうことを防止することができる。
In the above-described embodiment, the pair of magnetic poles is formed on the outer peripheral surface 14A of the magnet 14 by the weakly magnetizing jig 30, but the present invention is not limited to this. For example, the above-described embodiment shown in FIG. As in the second modified example, the magnetic pole (that is, the S pole) opposite to the magnetic pole (for example, the N pole) formed by the main magnetization among the pair of magnetic poles of the permanent magnet 31 is simply used. You may make it contact | abut on 14 A of outer peripheral surfaces.
In this case, for example, as shown in FIG. 9A, it is formed by the main magnetization so as to extend along the length direction of the magnet 14 at the center in the width direction on the outer peripheral surface 14A of the magnet 14. A magnetic pole equivalent to the magnetic pole is formed. Further, as shown in FIG. 9B, for example, a magnetic pole having a different polarity (for example, S) is formed on the inner peripheral surface 14D with respect to the magnetic pole formed on the outer peripheral surface 14A. This magnet 14 is magnetized to two poles on both sides with the thickness direction being the magnetization direction.
In the second modification, only the magnetic poles equivalent to the magnetic poles formed by the main magnetization are formed on the outer peripheral surface 14A and the inner peripheral surface 14D of the magnet 14 during weak magnetization. Therefore, it is possible to prevent the demagnetization resistance from being lowered due to the presence of different magnetic poles when performing the main magnetization.

また、上述した実施の形態においては、ステップS03およびステップS04に示すように、磁石装着孔13aに樹脂22を注入した後に、磁石14を装着するとしたが、これに限定されず、例えば図10に示す本実施形態の第3変形例のように、磁石装着孔13aに磁石14を装着した後に、樹脂22を注入してもよい。
すなわち、この第3変形例においては、上述したステップS02の実行後に、ステップS11に進む。
そして、ステップS11においては、磁石装着孔13a内に磁石14を挿入することによって、磁石14の外周面14Aが磁石装着孔13aの外周側内面13Aに当接するようにして磁石14が位置決めされる。
次に、ステップS12においては、磁石14の各両側面14B,14Cおよび内周面14Dと、磁石装着孔13aの各周方向内面13B,13Cおよび内周側内面13Dとの間に形成される隙間21に樹脂22を注入して、上述したステップS05に進む。
Further, in the above-described embodiment, as shown in Step S03 and Step S04, the magnet 14 is mounted after injecting the resin 22 into the magnet mounting hole 13a. However, the present invention is not limited to this. For example, FIG. As shown in the third modification of the present embodiment, the resin 22 may be injected after the magnet 14 is mounted in the magnet mounting hole 13a.
That is, in the third modified example, after the execution of step S02 described above, the process proceeds to step S11.
In step S11, the magnet 14 is positioned by inserting the magnet 14 into the magnet mounting hole 13a so that the outer peripheral surface 14A of the magnet 14 abuts on the outer peripheral side inner surface 13A of the magnet mounting hole 13a.
Next, in step S12, gaps formed between the side surfaces 14B and 14C and the inner peripheral surface 14D of the magnet 14 and the circumferential inner surfaces 13B and 13C and the inner peripheral side inner surface 13D of the magnet mounting hole 13a. Resin 22 is injected into 21 and the process proceeds to step S05 described above.

また、上述した実施の形態においては、ヨーク12を貫通する磁石装着孔13a内に磁石14を装着するとしたが、これに限定されず、例えばヨーク12の外周面12D上で開口する凹部に磁石14が装着され、この凹部の開口部に磁石14の外周面14Aに当接して磁石14が外周側に変位することを規制する爪部が設けられていてもよい。   In the above-described embodiment, the magnet 14 is mounted in the magnet mounting hole 13a penetrating the yoke 12. However, the present invention is not limited to this. For example, the magnet 14 is formed in a recess opening on the outer peripheral surface 12D of the yoke 12. And a claw portion that abuts the outer peripheral surface 14A of the magnet 14 and regulates the displacement of the magnet 14 to the outer peripheral side may be provided in the opening of the concave portion.

本発明の一実施形態に係る回転子の分解斜視図である。It is a disassembled perspective view of the rotor which concerns on one Embodiment of this invention. 図1に示す磁石が装着されたヨークの要部平面図である。It is a principal part top view of the yoke with which the magnet shown in FIG. 1 was mounted | worn. 本発明の一実施形態に係る回転子の製造方法の各工程について示すフローチャートである。It is a flowchart shown about each process of the manufacturing method of the rotor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る弱着磁用治具によって磁石を着磁する際の弱着磁用治具と磁石との相対位置を示す図である。It is a figure which shows the relative position of the jig | tool for weak magnetization at the time of magnetizing a magnet with the jig | tool for weak magnetization which concerns on one Embodiment of this invention, and a magnet. 図5(a)は図4に示す弱着磁用治具によって着磁された磁石の外周面上に形成された磁極を模式的に示す図であり、図5(b)は図4に示す弱着磁用治具によって着磁された磁石の外周面上における表面磁束密度の変化の一例を磁石幅方向の位置に応じて示すグラフ図であり、図5(c)は弱着磁実行後の本着磁によって着磁された磁石の外周面上における表面磁束密度の変化の一例を磁石幅方向の位置に応じて示すグラフ図である。FIG. 5A is a diagram schematically showing the magnetic poles formed on the outer peripheral surface of the magnet magnetized by the weak magnetizing jig shown in FIG. 4, and FIG. 5B is the diagram shown in FIG. It is a graph which shows an example of the change of the surface magnetic flux density on the outer peripheral surface of the magnet magnetized by the jig | tool for weak magnetization according to the position of a magnet width direction, FIG.5 (c) is after weak magnetization execution. It is a graph which shows an example of the change of the surface magnetic flux density on the outer peripheral surface of the magnet magnetized by this permanent magnetization according to the position of a magnet width direction. 本実施形態の第1変形例に係る弱着磁用治具によって磁石を着磁する際の弱着磁用治具と磁石との相対位置を示す図である。It is a figure which shows the relative position of the jig | tool for weak magnetization and a magnet at the time of magnetizing a magnet with the jig | tool for weak magnetization which concerns on the 1st modification of this embodiment. 図7(a)は図6に示す弱着磁用治具によって着磁された磁石の外周面上に形成された磁極を模式的に示す図であり、図7(b)は図6に示す弱着磁用治具によって着磁された磁石の外周面上における表面磁束密度の変化の一例を磁石幅方向の位置に応じて示すグラフ図であり、図7(c)は弱着磁実行後の本着磁によって着磁された磁石の外周面上における表面磁束密度の変化の一例を磁石幅方向の位置に応じて示すグラフ図である。FIG. 7A is a diagram schematically showing magnetic poles formed on the outer peripheral surface of the magnet magnetized by the weak magnetizing jig shown in FIG. 6, and FIG. 7B is a diagram showing FIG. It is a graph which shows an example of the change of the surface magnetic flux density on the outer peripheral surface of the magnet magnetized by the jig | tool for weak magnetization according to the position of a magnet width direction, FIG.7 (c) is after weak magnetization execution. It is a graph which shows an example of the change of the surface magnetic flux density on the outer peripheral surface of the magnet magnetized by this permanent magnetization according to the position of a magnet width direction. 本実施形態の第2変形例において、図4に示す弱着磁用治具と磁石との相対位置を示す図である。In the 2nd modification of this embodiment, it is a figure which shows the relative position of the jig | tool for weak magnetization shown in FIG. 4, and a magnet. 図9(a)は本実施形態の第2変形例において弱着磁により着磁された磁石の外周面上に形成された磁極を模式的に示す図であり、図9(b)は本実施形態の第2変形例において弱着磁により着磁された磁石の外周面および内周面上に形成された磁極を模式的に示す図である。FIG. 9A is a diagram schematically showing the magnetic poles formed on the outer peripheral surface of the magnet magnetized by weak magnetization in the second modification of the present embodiment, and FIG. It is a figure which shows typically the magnetic pole formed on the outer peripheral surface and inner peripheral surface of the magnet magnetized by weak magnetization in the 2nd modification of a form. 本実施形態の第3変形例に係る回転子の製造方法の各工程について示すフローチャートである。It is a flowchart shown about each process of the manufacturing method of the rotor which concerns on the 3rd modification of this embodiment.

符号の説明Explanation of symbols

10 回転子
12 ヨーク(回転子本体)
13 磁石装着部
14 磁石
22 樹脂
31 永久磁石(他の磁石)
ステップS01 初期着磁工程
ステップS03 樹脂注入工程
ステップS04 磁石位置固定工程
ステップS10 着磁工程
ステップS11 位置決め工程
ステップS12 磁石固定工程

10 Rotor 12 York (rotor body)
13 Magnet mounting part 14 Magnet 22 Resin 31 Permanent magnet (other magnets)
Step S01 Initial magnetization process step S03 Resin injection process step S04 Magnet position fixing process step S10 Magnetization process step S11 Positioning process step S12 Magnet fixing process

Claims (7)

略円筒状の回転子本体の外周部に設けられた回転軸方向に貫通する磁石装着部に磁石が装着されてなる回転子の製造方法であって、
前記回転子本体の径方向での外周側および内周側に対して、前記磁石装着孔部は前記外周側の外周側内面と前記内周側の内周側内面を備え、前記磁石は前記磁石装着孔部に装着された場合に前記外周側の外周面と前記内周側の内周面とを備え、
前記磁石装着部に未装着の前記磁石を、該磁石の前記外周面上の磁束密度が前記内周面上の磁束密度よりも大きくなるように、前記磁石装着孔部に装着された状態で前記磁石の前記径方向に沿った磁束密度分布が非対称分布となるように磁化させる初期着磁工程と、
樹脂を前記磁石装着部に注入する樹脂注入工程と、
前記初期着磁工程にて磁化された前記磁石を、前記樹脂注入工程にて前記樹脂が注入された前記磁石装着部内に挿入し、前記磁石の前記外周面と前記磁石装着部の前記外周側内面との間の磁気吸引力により前記磁石を前記磁石装着部内の前記外周側にずれた位置に位置決めすると共に、位置決めされた前記磁石を前記磁石装着部内に固定する磁石位置固定工程と、
前記磁石位置固定工程にて前記磁石装着部内に固定された前記磁石を前記初期着磁工程よりも強い磁場で磁化させる着磁工程と
を含むことを特徴とする回転子の製造方法。
A method for manufacturing a rotor in which a magnet is mounted in a magnet mounting hole that penetrates in a rotation axis direction provided on an outer peripheral portion of a substantially cylindrical rotor body,
The magnet mounting hole includes an outer peripheral inner surface on the outer peripheral side and an inner peripheral inner surface on the inner peripheral side with respect to the outer peripheral side and the inner peripheral side in the radial direction of the rotor body, and the magnet is the magnet When mounted on the mounting hole, the outer peripheral surface of the outer peripheral side and the inner peripheral surface of the inner peripheral side,
The magnet is not mounted on the magnet mounting holes, as in the magnetic flux density on the outer peripheral surface of the magnet is larger than the magnetic flux density on the inner peripheral surface, in a state of being mounted on the magnet mounting holes an initial magnetizing step of the magnetic flux density distribution along the radial direction of the magnet is magnetized such that the asymmetric distribution,
A resin injection step of injecting resin into the magnet mounting hole ;
The magnets which are magnetized in the initial magnetizing step, the insert in the resin injection step to the magnet mounting hole portion in which the resin is injected, the outer periphery of the outer peripheral surface and the magnet mounting hole of the magnet while positioning at a position shifted to the magnet on the outer periphery side of the magnet mounting hole portion by a magnetic attraction force between the side inner surface, and the magnet position fixing step of fixing the magnet positioned in the magnet mounting hole portion ,
And a magnetizing step of magnetizing the magnet fixed in the magnet mounting hole in the magnet position fixing step with a magnetic field stronger than the initial magnetizing step.
略円筒状の回転子本体の外周部に設けられた磁石装着部に磁石が装着されてなる回転子の製造方法であって、
前記回転子本体の径方向での外周側および内周側に対して、前記磁石装着孔部は前記外周側の外周側内面と前記内周側の内周側内面を備え、前記磁石は前記磁石装着孔部に装着された場合に前記外周側の外周面と前記内周側の内周面とを備え、
前記磁石装着部に未装着の前記磁石を、該磁石の前記外周面上の磁束密度が前記内周面上の磁束密度よりも大きくなるように、前記磁石装着孔部に装着された状態で前記磁石の前記径方向に沿った磁束密度分布が非対称分布となるように磁化させる初期着磁工程と、
前記初期着磁工程にて磁化された前記磁石を前記磁石装着部内に挿入し、前記磁石の前記外周面と前記磁石装着部の前記外周側内面との間の磁気吸引力により前記磁石を前記磁石装着部内の前記外周側にずれた位置に位置決めする位置決め工程と、
樹脂を前記磁石装着部の内面と前記磁石の表面との間に充填し、前記位置決め工程にて位置決めされた前記磁石を前記磁石装着部内に固定する磁石固定工程と、
前記磁石固定工程にて前記磁石装着部内に固定された前記磁石を前記初期着磁工程よりも強い磁場で磁化させる着磁工程と
を含むことを特徴とする回転子の製造方法。
A method of manufacturing a rotor in which a magnet is mounted in a magnet mounting hole provided in an outer peripheral portion of a substantially cylindrical rotor body,
The magnet mounting hole includes an outer peripheral inner surface on the outer peripheral side and an inner peripheral inner surface on the inner peripheral side with respect to the outer peripheral side and the inner peripheral side in the radial direction of the rotor body, and the magnet is the magnet When mounted on the mounting hole, the outer peripheral surface of the outer peripheral side and the inner peripheral surface of the inner peripheral side,
The magnet is not mounted on the magnet mounting holes, as in the magnetic flux density on the outer peripheral surface of the magnet is larger than the magnetic flux density on the inner peripheral surface, in a state of being mounted on the magnet mounting holes an initial magnetizing step of the magnetic flux density distribution along the radial direction of the magnet is magnetized such that the asymmetric distribution,
Inserting the magnet is magnetized in the initial magnetization step to the magnet mounting hole portion, the magnet by magnetic attraction force between the outer peripheral surface and the outer peripheral side inner surface of the magnet mounting hole of the magnet a positioning step for positioning at a position shifted to the outer periphery of the magnet mounting hole portion,
A magnet fixing step of filling resin between the inner surface of the magnet mounting hole and the surface of the magnet, and fixing the magnet positioned in the positioning step in the magnet mounting hole ;
And a magnetizing step of magnetizing the magnet fixed in the magnet mounting hole in the magnet fixing step with a magnetic field stronger than the initial magnetizing step.
前記初期着磁工程は、他の磁石の磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴とする請求項1または請求項2に記載の回転子の製造方法。 The initial magnetizing step, claim, characterized in placing the pole of the other magnet at a position spaced toward said radially outwardly from the outer peripheral surface or on the outer peripheral surface of the magnet 1 or claim 2 A method for producing a rotor as described in 1. 前記初期着磁工程は、前記他の磁石の1対の互いに異なる磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴とする請求項3に記載の回転子の製造方法。 The initial magnetizing step, wherein, characterized in that placing the different magnetic poles of a pair of the other magnet at a position spaced toward said radially outwardly from the outer peripheral surface or on the outer peripheral surface of the magnet Item 4. A method for manufacturing a rotor according to Item 3. 前記初期着磁工程は、前記他の磁石の何れか1つの磁極を前記磁石の前記外周面上あるいは該外周面から前記径方向外方に向かい離間した位置に配置することを特徴とする請求項3に記載の回転子の製造方法。 The initial magnetizing step, claims, characterized in that disposed at a position spaced toward said radially outwardly any one pole from the outer peripheral surface or on the outer peripheral surface of the magnet of the other magnet A method for manufacturing the rotor according to claim 3. 前記初期着磁工程は、前記磁石の前記外周面上の央部あるいは該央部から前記径方向外方に向かい離間した位置に他の磁石の磁極を配置することを特徴とする請求項3から請求項5の何れかひとつに記載の回転子の製造方法。 The magnetic pole of another magnet is arrange | positioned in the position which left | separated from the central part on the said outer peripheral surface of the said magnet or the said radial direction outward from the said central part at the said initial stage magnetization process. The method for manufacturing a rotor according to claim 5. 前記樹脂はシリコンあるいはエポキシ基を具備することを特徴とする請求項1から請求項6の何れかひとつに記載の回転子の製造方法。 The method for manufacturing a rotor according to any one of claims 1 to 6, wherein the resin includes silicon or an epoxy group.
JP2004102081A 2004-03-31 2004-03-31 Manufacturing method of rotor Expired - Fee Related JP4163136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102081A JP4163136B2 (en) 2004-03-31 2004-03-31 Manufacturing method of rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102081A JP4163136B2 (en) 2004-03-31 2004-03-31 Manufacturing method of rotor

Publications (2)

Publication Number Publication Date
JP2005287271A JP2005287271A (en) 2005-10-13
JP4163136B2 true JP4163136B2 (en) 2008-10-08

Family

ID=35185061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102081A Expired - Fee Related JP4163136B2 (en) 2004-03-31 2004-03-31 Manufacturing method of rotor

Country Status (1)

Country Link
JP (1) JP4163136B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266032A (en) * 2006-03-27 2007-10-11 Japan Magnetic Chemical Institute Permanent magnet and manufacturing method therefor
JP2009225543A (en) * 2008-03-14 2009-10-01 Honda Motor Co Ltd Claw-pole type motor
JP5452892B2 (en) * 2008-06-17 2014-03-26 本田技研工業株式会社 Permanent magnet motor
JP2010246185A (en) * 2009-04-01 2010-10-28 Honda Motor Co Ltd Rotor and motor
CN102576595B (en) * 2009-10-19 2014-12-10 三菱电机株式会社 Magnetizing device and method for manufacturing permanent magnet motor
KR101235064B1 (en) 2011-06-23 2013-02-19 기아자동차주식회사 Fixing method of permanent magnet in rotor
JP6380640B2 (en) * 2017-10-04 2018-08-29 株式会社デンソー Rotating electric machine and manufacturing method thereof
JP7222999B2 (en) * 2017-11-30 2023-02-15 エルジー イノテック カンパニー リミテッド Rotor and motor equipped with it
JP6813009B2 (en) * 2018-08-01 2021-01-13 株式会社デンソー How to manufacture the rotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487143B2 (en) * 1997-09-18 2004-01-13 トヨタ自動車株式会社 Rotary electric machine rotor and method for manufacturing rotary electric machine rotor
JPH11252839A (en) * 1998-03-06 1999-09-17 Nissan Motor Co Ltd Magnet positioning for rotor
JP2000012331A (en) * 1998-06-25 2000-01-14 Sumitomo Metal Mining Co Ltd Method and apparatus for magnetizing
JP2000188837A (en) * 1998-12-21 2000-07-04 Matsushita Electric Ind Co Ltd Permanent magnet rotor and its manufacture
JP3887541B2 (en) * 2001-02-16 2007-02-28 三菱電機株式会社 Embedded magnet rotor
JP2003164082A (en) * 2001-11-22 2003-06-06 Hitachi Metals Ltd Ferrite magnet, rotating machine and production method of ferrite magnet

Also Published As

Publication number Publication date
JP2005287271A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US8659199B2 (en) Axial gap permanent magnet motor, rotor used for the same, and production method of the rotor
KR102075338B1 (en) Rotor of rotating electric machine and manufacturing method of the same
US10050481B2 (en) Permanent magnet type motor and method for manufacturing permanent magnet type motor
JP4706397B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP5976122B2 (en) Permanent magnet embedded motor
US20130334910A1 (en) Rotor for electric rotating machine and method of manufacturing the same
EP2216883A1 (en) Rotary machine rotor
JP2010148235A (en) Permanent magnet type rotary electric machine
CN102957239A (en) Interior permanent magnet motor
JP2007049805A (en) Permanent magnet type rotor
JP2011254677A (en) Rotor for motor and method for manufacturing the same
JP4163136B2 (en) Manufacturing method of rotor
JP6065568B2 (en) Magnetizer
WO2013061427A1 (en) Rotor and interior permanent magnet motor
JP2019030208A (en) Soft magnetic core
JP2014045634A (en) Rotor and rotary electric machine including the same
CN114465382B (en) Rotary motor and method for manufacturing rotor
JP4786193B2 (en) Permanent magnet rotor
JP2007267574A (en) Process for manufacturing rotor and motor for electric power steering
JP2011239607A (en) Inner magnetic type rotor and magnet fixing method for the same
US10476359B2 (en) Motor rotor and method for manufacturing the same
JPWO2018042634A1 (en) Rotor, rotating electrical machine, and method of manufacturing rotor
JP4545475B2 (en) Rotor
JP4731920B2 (en) Rotor
EP3223409B1 (en) Orientation magnetization device and magnet-embedded rotor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees