JP4163039B2 - In-container bubble determination method and apparatus - Google Patents

In-container bubble determination method and apparatus Download PDF

Info

Publication number
JP4163039B2
JP4163039B2 JP2003115584A JP2003115584A JP4163039B2 JP 4163039 B2 JP4163039 B2 JP 4163039B2 JP 2003115584 A JP2003115584 A JP 2003115584A JP 2003115584 A JP2003115584 A JP 2003115584A JP 4163039 B2 JP4163039 B2 JP 4163039B2
Authority
JP
Japan
Prior art keywords
container
transmitted light
reflected light
light
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115584A
Other languages
Japanese (ja)
Other versions
JP2004325071A (en
Inventor
茂 佐藤
Original Assignee
株式会社エム・アイ・エル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エム・アイ・エル filed Critical 株式会社エム・アイ・エル
Priority to JP2003115584A priority Critical patent/JP4163039B2/en
Publication of JP2004325071A publication Critical patent/JP2004325071A/en
Application granted granted Critical
Publication of JP4163039B2 publication Critical patent/JP4163039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体が封入された透明又は半透明の容器に光を照射して容器内の気泡を判定する方法及び装置に関する。
【0002】
【従来の技術】
例えば、点滴パック等の液体充填容器内の気泡を判定する方法として本出願人により出願され公開された方法が知られている。この方法では、容器に透過光と反射光を照射して輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在している容器内浮遊物の全体が高輝度に表出されるように透過光と反射光の光量を調整することで、全体が高輝度に表出された浮遊物を気泡と判定する(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−116703号公報
【0004】
【発明が解決しようとする課題】
特許文献1の方法によれば、気泡全体を高輝度に表出させるために透過光と反射光の光量を調整しなければならず、面倒であった。また、容器内にプラスチック粉が混入している場合、このプラスチック粉が混入しているものは不良品として排除しなければならないが、特許文献1の方法では、プラスチック粉も常に薄い輝度で明るく表出されるので、液体容器内に混入している気泡とプラスチック粉とを正確に判別することができないという課題があった。
本発明は、液体容器内に混入する気泡を簡単かつ正確に判別できる方法及び装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の容器内気泡判定方法は、液体が封入された透明または半透明の容器を挟んで相対向する位置から容器に照射する同一光軸の透過光と反射光とに強弱差を付けることにより、輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在している容器内浮遊物を確認し、その後、透過光と反射光の強弱関係を逆転させた場合に上記浮遊物の第1部分と第2部分の輝度の高低関係が反転したならば当該浮遊物を気泡であると判定する。
本発明の容器内気泡判定装置は、液体が封入された透明または半透明の容器を挟んで相対向する一方の位置に透過光発生部を備えるとともに他方の位置に反射光発生部を備え、透過光発生部は所定時間毎に容器に照射する強い透過光と弱い透過光とを交互に発生するものであり、反射光発生部は透過光と同一光軸の反射光を発生するものであって、透過光発生部が強い透過光を発生している時には弱い反射光を発生し、透過光発生部が弱い透過光を発生している時には強い反射光を発生するものであり、さらに、透過光及び反射光が照射される容器内浮遊物の画像を撮像して画像フレーム又はフィールド毎の画像信号を出力する検査カメラと、時間的に連続する画像フレーム間又はフィールド間の画像信号を比較し、輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在していた容器内浮遊物の第1部分と第2部分の輝度の高低関係が反転したことを検出した場合に当該浮遊物を気泡であると判定する判定手段とを備えた。
【0006】
【発明の実施の形態】
本発明による気泡判定装置は、例えば、点滴パック、ガラス製,プラスチック製等の医薬品容器、飲料容器、工業液体収容パック等の容器の良品及び不良品の選別検査をする際に用いるものである。容器には各種用途に応じた液体が充填されて使用されるものであるが、液体充填時において、空気が混入したり、容器あるいは液体注入手段等に付着する各種浮遊物が混入してしまう場合がある。この浮遊物としては、気泡のほかに、虫、塵埃、毛、プラスチック粉等の異物が想定される。そして、気泡については容器内に浮遊していても製品の品質には全く影響がないが、仮に上記異物が混入している容器については不良品として製品から排除する必要がある。本発明の気泡判定装置によれば、製品の品質に影響のない気泡を正確に判別でき、良品と不良品とを正確に峻別できるようになる。
【0007】
図1は本発明の実施の形態による容器内気泡判定方法に使用する容器内気泡判定装置の構成図である。
図1に示すように、実施の形態による容器内気泡判定装置は、液体が封入された透明または半透明の容器1を挟んで相対向する位置から同一光軸の透過光2aと反射光3aとを容器1に照射するために、上記相対向する一方の位置に設けられた透過光発生部と、上記相対向する他方の位置に設けられた反射光発生部と、透過光2a及び反射光3aが照射される容器1内浮遊物の画像を撮像して画像フレーム又はフィールド毎の画像信号を出力する検査デジタルカメラKと、時間的に連続する画像フレーム間又はフィールド間の画像信号を比較し、輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在していた容器1内浮遊物の第1部分と第2部分の輝度の高低関係が反転したことを検出した場合に当該浮遊物を気泡であると判定するコンピュータ等による判定手段Pとを備える。
【0008】
透過光発生部は、所定時間毎に強い透過光と弱い透過光を交互に発生するものであり、反射光発生部は、透過光発生部が強い透過光を発生している時には弱い反射光を発生して、透過光発生部が弱い透過光を発生している時には強い反射光を発生するものである。
透過光発生部は、例えば、ストロボ光源2により構成される。
反射光発生部は、例えば、ストロボ光源3と、このストロボ光源3からの光を反射して透過光2aとは反対側から当該透過光2aの光軸と同一光軸の反射光3aを容器1に照射するハーフミラー4とにより構成される。
【0009】
尚、5はシェーディング(画面の輝度ムラ)を防止するための拡散板、6は容器1内に流れを誘発して気泡と異物とに動きを誘発する動作誘発手段である。この動作誘発手段6としては、例えば、容器1を回転させることにより容器1内に流れを誘発させる構成とすることができる。このため、例えば、この動作誘発手段6は容器1の上下部を掴む把持部6aとこの把持部6aを図示のように水平方向へ回転自在に支持する支持棒6bとから構成することができる。これにより容器1内には気泡及び異物を水平方向へ回転させる流れが生じる。この動作誘発手段6は容器1を回転させる以外に、容器1を上,下あるいは左,右に振るようにして、流れを誘発するものであってもよい。
【0010】
次に実施の形態の容器内気泡判定装置による判定方法について図1及び図2に基づき説明する。
動作誘発手段6により容器1内に流れを誘発させ、透過光用のストロボ光源2及び反射光用のストロボ光源3の電源を投入する。すると、ストロボ光源2,3は所定時間毎に強い光を発生する状態と弱い光を発生する状態を交互に繰り返す。ここで、ストロボ光源2,3は強い光を発生するタイミングと弱い光を発生するタイミングが逆になっている。即ち、透過光用のストロボ光源2が強い透過光を発生している時には反射光用のストロボ光源3は弱い反射光を発生し、透過光用のストロボ光源2が弱い透過光を発生している時には反射光用のストロボ光源3は強い反射光を発生するようになっている。
【0011】
図2は、容器1内に浮遊する気泡A及び異物Bに透過光2a及び反射光3aが照射された場合の光学的状態を示す。
例えば、図2(1)(ア)に示すように、透過光用のストロボ光源2が強い透過光2aを発生し、反射光用のストロボ光源3が弱い反射光3aを発生している状態においては、図2(1)(イ)に示すように、同一光軸の透過光2a及び反射光3aが照射される気泡Aの外側部分fは透過光2aによって白く光って輝度が高く認識されるが、気泡Aの内側部分iは透過光2aによる影となって暗くなり、輝度が低い状態に認識される。
次に、図2(2)(ア)に示すように、透過光用のストロボ光源2が弱い透過光2aを発生し、反射光用のストロボ光源3が強い反射光3aを発生している状態においては、図2(2)(イ)に示すように、同一光軸の透過光2a及び反射光3aが照射される気泡Aの外側部分fは透過光2aが照射されていないため暗くなり、輝度が低く認識されるが、気泡Aの内側部分iは反射光3aによって白く光って輝度が高い状態に認識される。
【0012】
従って、浮遊物の輝度状態が図2(1)(イ)の状態から図2(2)(イ)の状態に変化したこと(あるいは図2(2)(イ)の状態から図2(1)(イ)の状態に変化したこと)、即ち、同一光軸の透過光2a及び反射光3aが照射される浮遊物の外側部分fと内側部分iの輝度の高低関係が反転したことを判定手段Pで判定することにより該当浮遊物が気泡Aであると判定される。
即ち、上述のように透過光2a及び反射光3aを照射した容器1内浮遊物の画像を検査デジタルカメラKで撮像して画像フレーム又はフィールド毎の画像信号を判定手段Pに出力することで、判定手段Pが時間的に連続する画像フレーム間又はフィールド間の画像信号を比較して浮遊物の外側部分f(第1部分)と内側部分i(第2部分)の輝度の高低関係が反転したことを検出することで当該浮遊物を気泡Aであると判定して判定結果を出力する。
【0013】
一方、虫、塵埃、毛等の浮遊物については全体形状が気泡Aのように球状ではなく不規則の形状をしているため、図2(3)(ア)に示すように、反射光3aが乱反射されてしまい、その結果、同図(3)(イ)に示すように、常に輝度の低い黒い状態に把握されるので、これを判定手段Pで認識することで、当該浮遊物が異物Bであると判定できる。即ち、判定手段Pにより、時間的に連続する画像フレーム間又はフィールド間の画像信号を比較することで浮遊物を追尾し、容器1内を下方へ移動する(下降する)浮遊物を検出することで当該浮遊物が異物Bであると判定したり、あるいは浮遊物の形状又は面積が変化しているものを検出することで当該浮遊物が異物Bであると判定する。
【0014】
尚、浮遊物がプラスチック粉である場合は、当該プラスチック粉に透過光2a及び反射光3aが照射されると当該プラスチック粉は常に薄い輝度で明るく表出され、気泡Aのように外側と内側の輝度の高低関係が反転することはない。従って、プラスチック粉と気泡とを確実かつ正確に判別できる。即ち、確実かつ正確に容器1内の気泡を判別できるようになる。
【0015】
実施の形態による装置によれば、製品の品質に影響のない気泡を簡単かつ正確に判定でき、気泡のみが混入した製品を不良品として排除することが無いようにできて製品の歩留まりを向上させることができ、また、虫、塵埃、毛、プラスチック粉等の異物が混入した製品のみを簡単かつ正確に判別できて排除できるようになる。尚、上述した気泡判定処理及び異物判定処理は、気泡判定処理及び異物判定処理プログラムを実行するコンピュータによるソフトウェア処理で実現できる。
【0016】
また、図1に示す如く、上記ハーフミラー4に代えて、検査デジタルカメラK方向に膨出して容器1側が凹状となった縦置の放物線状の凹形ハーフミラー4Aを採用することが望ましい。これは、平板形のハーフミラー4では、容器1の表面の反射が強くなってしまい、内部の浮遊物を透過光で十分に強調できないが、上記凹形ハーフミラー4Aを用いると、光が散乱光となるために、容器1の表面の形状に関わりなく、影の無い、正反射も無い映像を得ることができる。即ち、容器1の表面において満遍無く同一輝度の画像が得られる。
【0017】
尚、ストロボ光源2,3として、所定時間毎に点滅するストロボ光源を用いてもよい。
【0018】
【発明の効果】
本発明によれば、簡単かつ正確に容器内の気泡を判別できるようになり、良品と不良品とを正確に峻別できるようになる。
【図面の簡単な説明】
【図1】 本発明の実施の形態による容器内気泡判定装置を示す構成図。
【図2】 実施の形態による容器内気泡判定方法を説明するための図。
【符号の説明】
1 容器、2,3 ストロボ光源、4 ハーフミラー、A 気泡、B 異物、K 検査デジタルカメラ、P 判定手段、f 外側部分(第1部分)、i 内側部分(第2部分)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for determining bubbles in a container by irradiating light to a transparent or translucent container enclosing a liquid.
[0002]
[Prior art]
For example, a method that has been filed and published by the present applicant is known as a method for determining bubbles in a liquid-filled container such as an infusion pack. In this method, the entire suspended matter in the container in which the first part that is recognized as having high brightness and the second part that is recognized as having low brightness are mixed with the transmitted light and reflected light to the container has high brightness. By adjusting the light amounts of transmitted light and reflected light so as to be exposed, the suspended matter that is exposed with high brightness as a whole is determined as a bubble (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-116703
[Problems to be solved by the invention]
According to the method of Patent Document 1, the amount of transmitted light and reflected light must be adjusted in order to expose the entire bubble with high brightness, which is troublesome. Further, when plastic powder is mixed in the container, the plastic powder must be excluded as a defective product. However, in the method of Patent Document 1, the plastic powder is always brightly displayed with low brightness. Therefore, there is a problem that bubbles and plastic powder mixed in the liquid container cannot be accurately discriminated.
An object of this invention is to provide the method and apparatus which can distinguish easily and correctly the bubble mixed in the liquid container.
[0005]
[Means for Solving the Problems]
The method for determining bubbles in a container according to the present invention provides a difference in intensity between transmitted light and reflected light of the same optical axis that irradiates the container from opposite positions across a transparent or translucent container filled with liquid. When the floating part in the container in which the first part recognized with high brightness and the second part recognized with low brightness are mixed is confirmed, and then the strength relationship between transmitted light and reflected light is reversed. If the brightness level relationship between the first part and the second part of the suspended matter is reversed, the suspended matter is determined to be a bubble.
The in-container bubble determination device of the present invention includes a transmitted light generator at one position facing each other across a transparent or translucent container in which a liquid is sealed, and a reflected light generator at the other position. The light generating unit alternately generates strong transmitted light and weak transmitted light that irradiate the container every predetermined time, and the reflected light generating unit generates reflected light having the same optical axis as the transmitted light. When the transmitted light generating part generates strong transmitted light, weak reflected light is generated. When the transmitted light generating part generates weak transmitted light, strong reflected light is generated. And an inspection camera that captures an image of suspended matter in the container irradiated with reflected light and outputs an image signal for each image frame or field, and compares the image signal between temporally continuous image frames or fields, The brightness is recognized high When it is detected that the brightness relationship between the first part and the second part of the floating substance in the container in which the part and the second part whose brightness is recognized to be low is mixed, the floating substance is a bubble. And a determination means for determining.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The bubble determination device according to the present invention is used, for example, when performing a screening inspection of non-defective products and defective products of containers such as infusion packs, pharmaceutical containers such as glass and plastic, beverage containers, and industrial liquid storage packs. Containers are filled with liquids according to various applications, but when liquid is filled, air or various floating substances adhering to the container or liquid injection means are mixed. There is. As this floating substance, in addition to bubbles, foreign substances such as insects, dust, hair, and plastic powder are assumed. Even if air bubbles are floating in the container, the quality of the product is not affected at all. However, a container in which the foreign matter is mixed needs to be excluded from the product as a defective product. According to the bubble determination device of the present invention, it is possible to accurately determine bubbles that do not affect the quality of products, and to accurately distinguish good products from defective products.
[0007]
FIG. 1 is a configuration diagram of an in-container bubble determination device used in an in-container bubble determination method according to an embodiment of the present invention.
As shown in FIG. 1, the in-container bubble determination device according to the embodiment includes transmitted light 2a and reflected light 3a having the same optical axis from opposite positions across a transparent or translucent container 1 filled with liquid. In order to irradiate the container 1, the transmitted light generator provided at the one opposite position, the reflected light generator provided at the other opposite position, the transmitted light 2a and the reflected light 3a The inspection digital camera K that captures an image of the suspended matter in the container 1 that is irradiated and outputs an image signal for each image frame or field is compared with an image signal between temporally continuous image frames or fields, It was detected that the first and second parts of the suspended matter in the container 1 in which the first part recognized with high brightness and the second part recognized with low brightness were mixed were inverted. If the suspended matter is a bubble And a determination unit P by determining a computer or the like.
[0008]
The transmitted light generating unit alternately generates strong transmitted light and weak transmitted light every predetermined time. The reflected light generating unit generates weak reflected light when the transmitted light generating unit generates strong transmitted light. When the transmitted light generating unit generates weak transmitted light, strong reflected light is generated.
The transmitted light generation unit is configured by, for example, a strobe light source 2.
The reflected light generator, for example, reflects the light from the strobe light source 3 and the light from the strobe light source 3, and receives the reflected light 3a having the same optical axis as the optical axis of the transmitted light 2a from the side opposite to the transmitted light 2a. And a half mirror 4 for irradiating the light.
[0009]
Reference numeral 5 denotes a diffusion plate for preventing shading (uneven brightness of the screen), and 6 is an action inducing means for inducing a flow in the container 1 to induce movement of bubbles and foreign matter. As this action induction means 6, it can be set as the structure which induces a flow in the container 1 by rotating the container 1, for example. For this reason, for example, the motion inducing means 6 can be composed of a gripping portion 6a that grips the upper and lower portions of the container 1 and a support bar 6b that rotatably supports the gripping portion 6a in the horizontal direction as shown. Thereby, the flow which rotates a bubble and a foreign material in a horizontal direction in the container 1 arises. In addition to rotating the container 1, the motion inducing means 6 may be one that induces a flow by swinging the container 1 up, down, left, or right.
[0010]
Next, a determination method by the in-container bubble determination device according to the embodiment will be described with reference to FIGS.
A flow is induced in the container 1 by the operation inducing means 6, and the stroboscopic light source 2 for transmitted light and the stroboscopic light source 3 for reflected light are turned on. Then, the strobe light sources 2 and 3 alternately repeat the state of generating strong light and the state of generating weak light every predetermined time. Here, in the strobe light sources 2 and 3, the timing for generating strong light and the timing for generating weak light are reversed. That is, when the transmitted light strobe light source 2 generates strong transmitted light, the reflected light strobe light source 3 generates weak reflected light, and the transmitted light strobe light source 2 generates weak transmitted light. At times, the strobe light source 3 for reflected light generates strong reflected light.
[0011]
FIG. 2 shows an optical state when the transmitted light 2a and the reflected light 3a are irradiated to the bubble A and the foreign matter B floating in the container 1. FIG.
For example, as shown in FIGS. 2A and 2A, in a state in which the strobe light source 2 for transmitted light generates strong transmitted light 2a and the strobe light source 3 for reflected light generates weak reflected light 3a. As shown in FIGS. 2A and 2B, the outer portion f of the bubble A irradiated with the transmitted light 2a and the reflected light 3a having the same optical axis shines white by the transmitted light 2a and is recognized as having high luminance. However, the inner part i of the bubble A becomes a shadow due to the transmitted light 2a and becomes dark, and is recognized as having a low luminance.
Next, as shown in FIGS. 2 (2) (a), the transmitted light strobe light source 2 generates weak transmitted light 2a, and the reflected light strobe light source 3 generates strong reflected light 3a. 2 (2) (a), the outer portion f of the bubble A irradiated with the transmitted light 2a and the reflected light 3a of the same optical axis becomes dark because the transmitted light 2a is not irradiated, Although the brightness is recognized to be low, the inner portion i of the bubble A is recognized to be in a high brightness state by shining white by the reflected light 3a.
[0012]
Therefore, the brightness state of the floating substance has changed from the state of FIG. 2 (1) (a) to the state of FIG. 2 (2) (a) (or from the state of FIG. 2 (2) (a) to FIG. ) (B) changed), that is, it is determined that the brightness relationship between the outer part f and the inner part i of the floating object irradiated with the transmitted light 2a and the reflected light 3a having the same optical axis is inverted. By determining by means P, the corresponding suspended matter is determined to be a bubble A.
That is, by taking an image of the suspended matter in the container 1 irradiated with the transmitted light 2a and the reflected light 3a as described above with the inspection digital camera K, and outputting the image signal for each image frame or field to the determination means P, The determination means P compares the image signals between temporally continuous image frames or fields, and the relationship between the brightness levels of the outer portion f (first portion) and the inner portion i (second portion) of the floating object is inverted. By detecting this, the suspended matter is determined to be the bubble A, and the determination result is output.
[0013]
On the other hand, the floating object such as insects, dust, hair, and the like has an irregular shape as shown in FIGS. As a result, as shown in (3) (a) in the figure, the black state with a low luminance is always grasped. B can be determined. That is, the determination means P tracks the floating substance by comparing the image signals between temporally continuous image frames or fields, and detects the floating substance moving downward (lowering) in the container 1. Then, it is determined that the floating substance is the foreign substance B, or the floating substance is determined to be the foreign substance B by detecting a change in the shape or area of the floating substance.
[0014]
When the floating substance is plastic powder, when the transmitted light 2a and the reflected light 3a are irradiated to the plastic powder, the plastic powder is always displayed with a thin brightness and bright, and like the bubble A, the outer and inner surfaces are exposed. The relationship between brightness levels is not reversed. Therefore, it is possible to reliably and accurately distinguish between plastic powder and bubbles. That is, the bubbles in the container 1 can be determined reliably and accurately.
[0015]
According to the apparatus according to the embodiment, it is possible to easily and accurately determine bubbles that do not affect the quality of the product, and it is possible to prevent products containing only bubbles from being excluded as defective products, thereby improving the product yield. In addition, only products containing foreign matters such as insects, dust, hair, and plastic powder can be easily and accurately identified and eliminated. The above-described bubble determination processing and foreign matter determination processing can be realized by software processing by a computer that executes the bubble determination processing and foreign matter determination processing program.
[0016]
In addition, as shown in FIG. 1, it is desirable to employ a vertical parabolic concave half mirror 4A which bulges in the direction of the inspection digital camera K and has a concave shape on the container 1 side, instead of the half mirror 4. This is because, in the flat half mirror 4, the reflection on the surface of the container 1 becomes strong, and the suspended matter inside cannot be sufficiently emphasized by the transmitted light. However, if the concave half mirror 4A is used, light is scattered. Since it becomes light, an image without shadow and without regular reflection can be obtained regardless of the shape of the surface of the container 1. That is, an image having the same luminance can be obtained evenly on the surface of the container 1.
[0017]
As the strobe light sources 2 and 3, a strobe light source that blinks every predetermined time may be used.
[0018]
【The invention's effect】
According to the present invention, air bubbles in a container can be easily and accurately discriminated, and a good product and a defective product can be accurately distinguished.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an in-container bubble determination device according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a method for determining bubbles in a container according to an embodiment.
[Explanation of symbols]
1 container, 2, 3 strobe light source, 4 half mirror, A bubble, B foreign material, K inspection digital camera, P judging means, f outer part (first part), i inner part (second part).

Claims (2)

液体が封入された透明または半透明の容器を挟んで相対向する位置から容器に照射する同一光軸の透過光と反射光とに強弱差を付けることにより、輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在している容器内浮遊物を確認し、その後、透過光と反射光の強弱関係を逆転させた場合に上記浮遊物の第1部分と第2部分の輝度の高低関係が反転したならば当該浮遊物を気泡であると判定することを特徴とする容器内気泡判定方法。A first part that is recognized to have high brightness by making a difference in intensity between transmitted light and reflected light of the same optical axis that irradiates the container from opposite positions across a transparent or translucent container in which liquid is enclosed And the second part that is recognized to have low brightness are confirmed, and then the first part and the second part of the floating substance are reversed when the strength relationship between the transmitted light and the reflected light is reversed. An in-container bubble determination method, wherein the suspended matter is determined to be a bubble if the brightness level of the portion is inverted. 液体が封入された透明または半透明の容器を挟んで相対向する一方の位置に透過光発生部を備えるとともに他方の位置に反射光発生部を備え、透過光発生部は所定時間毎に容器に照射する強い透過光と弱い透過光とを交互に発生するものであり、反射光発生部は透過光と同一光軸の反射光を発生するものであって、透過光発生部が強い透過光を発生している時には弱い反射光を発生し、透過光発生部が弱い透過光を発生している時には強い反射光を発生するものであり、さらに、透過光及び反射光が照射される容器内浮遊物の画像を撮像して画像フレーム又はフィールド毎の画像信号を出力する検査カメラと、時間的に連続する画像フレーム間又はフィールド間の画像信号を比較し、輝度が高く認識される第1部分と輝度が低く認識される第2部分とが混在していた容器内浮遊物の第1部分と第2部分の輝度の高低関係が反転したことを検出した場合に当該浮遊物を気泡であると判定する判定手段とを備えたことを特徴とする容器内気泡判定装置。A transparent light generating part is provided at one position opposite to each other across a transparent or translucent container filled with liquid, and a reflected light generating part is provided at the other position. The transmitted light generating part is attached to the container at predetermined time intervals. Irradiated strong transmitted light and weak transmitted light are generated alternately, and the reflected light generating unit generates reflected light having the same optical axis as the transmitted light, and the transmitted light generating unit generates strong transmitted light. When generated, weak reflected light is generated, and when the transmitted light generating part generates weak transmitted light, strong reflected light is generated. Further, floating in the container irradiated with transmitted light and reflected light is generated. An inspection camera that captures an image of an object and outputs an image signal for each image frame or field, and a first portion that recognizes a high brightness by comparing image signals between image frames or fields that are temporally continuous The brightness is perceived as low Judgment means for determining that the suspended matter is a bubble when it is detected that the brightness relationship between the first part and the second part of the suspended matter in the container in which the part is mixed is reversed. An in-container bubble determination device characterized by the above.
JP2003115584A 2003-04-21 2003-04-21 In-container bubble determination method and apparatus Expired - Fee Related JP4163039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115584A JP4163039B2 (en) 2003-04-21 2003-04-21 In-container bubble determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115584A JP4163039B2 (en) 2003-04-21 2003-04-21 In-container bubble determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2004325071A JP2004325071A (en) 2004-11-18
JP4163039B2 true JP4163039B2 (en) 2008-10-08

Family

ID=33496094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115584A Expired - Fee Related JP4163039B2 (en) 2003-04-21 2003-04-21 In-container bubble determination method and apparatus

Country Status (1)

Country Link
JP (1) JP4163039B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458367B1 (en) * 2010-11-25 2015-08-05 Mettler-Toledo AG Device and method for recognising solid substances in a liquid phase
ITBO20120282A1 (en) * 2012-05-24 2013-11-25 Gd Spa METHOD OF INSPECTING A PRODUCT IN A PACKAGING MACHINE.
JP5784815B1 (en) * 2014-12-26 2015-09-24 五洋商事株式会社 Appearance inspection apparatus and inspection system
EP3943922A4 (en) * 2019-03-19 2022-04-06 Nec Corporation Inspection device, inspection method, and non-transitory computer-readable medium
CN110261322B (en) * 2019-06-21 2023-03-14 山东明佳科技有限公司 Optical imaging system and method for detecting tiny impurities in bottled transparent solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806415B2 (en) * 1993-09-22 1998-09-30 澁谷工業株式会社 Foreign matter inspection device
JP3497107B2 (en) * 1999-10-21 2004-02-16 株式会社エム・アイ・エル Method and apparatus for determining suspended matter in container
JP4580122B2 (en) * 2001-05-21 2010-11-10 第一三共株式会社 Detecting foreign matter in liquid

Also Published As

Publication number Publication date
JP2004325071A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
FI108260B (en) Method and apparatus for inspecting containers filled with liquid
RU2223480C2 (en) Optical inspection of clear container with use of two cameras and single light source
EP1934585B1 (en) Method and system for irradiating and inspecting liquid-carrying containers
JPS62127633A (en) Method and instrument for measuring liquid level
JP4476283B2 (en) Method and system for inspecting packages
JP4101555B2 (en) Foreign matter inspection device
JPH0641924B2 (en) Defect detection device for bottle body
KR20170003573A (en) Test apparatus for checking container products
JP4163039B2 (en) In-container bubble determination method and apparatus
JP3497107B2 (en) Method and apparatus for determining suspended matter in container
JP4566769B2 (en) Defect information detection device
JPS63304146A (en) Inspecting device for drum part of bottle
JP2005017004A (en) System for inspecting foreign matter in glass bottle
JP2006329906A (en) X-ray inspection device
JPS61215948A (en) Particle flocculation discriminating device
JP2005121592A (en) System for inspecting foreign substance in liquid within bottle
JPH04118546A (en) Bottle inspection device
JP2001059822A (en) Apparatus and method for inspecting foreign matter in liquid within transparent container
JP2000304706A (en) Apparatus and method for inspecting foreign matter in container
JP2002131239A (en) Apparatus and method for inspection of foreign body
KR20200105207A (en) Optical Apparatus and method for detecting foreign substances mixed in solution
JP4605890B2 (en) Grain quality discrimination device
JP2008107347A (en) Device for inspecting glass container
JP2004177299A (en) X-ray foreign matter inspection apparatus
JPH09281048A (en) Method and apparatus for inspecting foreign matter in powder and granular material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees