JP4161578B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP4161578B2
JP4161578B2 JP2002013634A JP2002013634A JP4161578B2 JP 4161578 B2 JP4161578 B2 JP 4161578B2 JP 2002013634 A JP2002013634 A JP 2002013634A JP 2002013634 A JP2002013634 A JP 2002013634A JP 4161578 B2 JP4161578 B2 JP 4161578B2
Authority
JP
Japan
Prior art keywords
ray
imaging
rays
subject
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002013634A
Other languages
Japanese (ja)
Other versions
JP2003210442A (en
Inventor
久男 辻
誠 古山
理 佐々木
章 中川
英樹 藤井
高啓 上武
功 中西
剛 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002013634A priority Critical patent/JP4161578B2/en
Publication of JP2003210442A publication Critical patent/JP2003210442A/en
Application granted granted Critical
Publication of JP4161578B2 publication Critical patent/JP4161578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線撮影装置に係り、特にX線管電圧によるX線エネルギースペクトル分布を付加フィルタによってフィルタリングし、X線画像の関心部位を適正なコントラストで撮影するX線撮影装置に関する。
【0002】
【従来の技術】
従来のX線撮影装置は、被検体にX線を照射するX線管と、そのX線管に管電圧及び管電流を供給する高圧発生器と、X線管と対向配置され、被検体を透過したX線から被検体のX線透過分布の差をX線像として撮像する撮像手段(例えば、フィルム)とから構成されていた。
X線管は回転陽極X線管が一般的に使用され、回転陽極X線管は、フィラメントを備えた陰極と、タングステン等を材質とするターゲットを備えた陽極とを備え、陰極と陽極間には高圧発生器から出力された高電圧が印加され、フィラメントには熱電子を放出させる電流が流される。
フィラメントから放出された熱電子は、陰極と陽極間の高電圧よって加速され、陽極のターゲットに衝突し、X線を発生させる。このとき発生するX線は、連続X線に特性X線が付加された特性を有し、陰極と陽極間に印加する高電圧に応じたX線のエネルギースペクトルを有するものとなる。
【0003】
一般撮影における代表的な胸部X線撮影のX線スペクトル分布を図5に示す。図5は、140kV、100mAsのX線条件で、Cu1.0mm厚の付加フィルタを用い、横軸にX線エネルギー(keV)、縦軸に相対X線量子数のX線スペクトルを示す。付加フィルタを用いないときに現れる20〜55keVの低エネルギーのX線成分が減弱され、付加フィルタCu1.0mmによって特性X線を含め、55keV以上の高エネルギー成分のみが放射されることになる。このように、X線管容器に封入されたX線管から放射されるX線スペクトルは、X線管の付加フィルタ等によって、低エネルギーの量子の数はかなり減少し、高エネルギーの量子の数が多いX線分布となる。
これは、入射X線のエネルギーを低くしすぎると、撮像手段(例えば、フィルム)などの受光系の有効濃度領域との関係から、次のような弊害が生じるためである。以前の胸部X線写真では、コントラストを重視して、50kV程度の低管電圧撮影によるX線を使用していたため、肋骨及び縦隔部に重なった病変が、有効濃度領域外になり表現されなかった。このような欠点を除くため、近年では140kVの比較的高い管電圧および付加フィルタCu1.0(mm)を用いることにより高エネルギーX線が使用されている。
【0004】
【発明が解決しようとする課題】
従来のX線撮影装置は以上のように構成され、付加フィルタを用いて撮影が行なわれているが、限られた濃度範囲に、被検体のより多くのX線吸収の異なる部分を示現しようとすれば、吸収差の少ない部分を示現することが困難となる。一方、吸収差の少ない部分を示現しようとすれば、示現できる吸収差や厚さの範囲が限られてくる。
従来の撮影技術では、高エネルギーX線は、低エネルギーX線に比較して透過能力が大きいので、肋骨及び縦隔部に重なった病変部分を撮影する場合に適しているが、その以外のX線吸収差が小さい部位を撮影対象とした場合には、高エネルギーX線ではX線透過性が大きくなってしまうので、コントラストの良い撮影ができないという問題がある。
この問題を解決する方法として、X線吸収差が小さい部位と大きい部位とで別々の管電圧および付加フィルタの種類を選択することによって、微少コントラストの示現が必要な部位から透過能力の大きなX線を必要とする部位までに対応する方法が考えられる。
しかし、従来のX線撮影装置においては、X線撮影の途中での付加フィルタ交換をするためには、一旦X線の発生を停止させてから付加フィルタ交換をすることになり、撮影を途中で中断させるため、その間に被写体が動いてしまうという問題がある。
【0005】
本発明は、このような事情に鑑みてなされたものであって、X線撮影を中断させることなく、高エネルギーX線と低エネルギーX線とによるX線像の撮像をおこない、X線吸収差の小さい部位から大きい部位までの示現性を向上させることができるX線撮影装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明のX線撮影装置は、X線源から放射されたX線を、付加フィルタを介して被検体に照射し、被検体を通過した透過X線をX線撮像手段により撮影するX線撮影装置において、X線源と前記被検体との間に少なくとも2種類以上の異なる付加フィルタを一回の撮影で順次に挿入する手段と、その付加フィルタに応じ異なる撮影条件でX線を放射する手段と、2種類以上の異なる付加フィルタによる撮影条件の合成濃度が適正値になるように、撮影条件を記憶した撮影条件メモリと、その撮影条件を設定する撮影条件設定器を備えたことを特徴とするものである。
【0008】
本発明のX線撮影装置は上記のように構成されており、X線源であるX線管の放射面側に付加フィルタが配置され、少なくとも2種類以上の異なる付加フィルタを一回の撮影で順次にモータの回転などの手段によって挿入し、X線エネルギースペクトルをフィルタリングさせるようにして、付加フィルタの位置を位置検出器により検出し、X線制御器に設定された付加フィルタに応じて異なる撮影条件で、高圧発生器からX線管に異なる高電圧が順次印加され、X線が放射制御される。
従って、X線源から付加フィルタを透過し被検体に照射されるX線は、そのX線スペクトルが制御され、複数のエネルギー分布のX線によって被検体のX線像が撮影される。
そして、2種類以上の異なる撮影条件によって撮影される合成濃度が適正値となるように、撮影条件が、過去の撮影条件のデータを記憶した撮影条件メモリから撮影条件設定器により設定される。そして、撮影されたフィルム等の合成画像の濃度が見やすい値になるように制御される。
従って、肺野部等を撮像対象とした一般撮影を行う場合において、肋骨及び縦隔部に重なった病変部分を、撮影部位の画像の階調を十分確保しつつ、X線吸収差が小さい部位の撮影画像も得ることができる。
また、撮影動作を中断させることなく1回の撮影で、低エネルギーX線と高エネルギーX線によるX線透過像を得ることができ、広範囲のX線スペクトルで適正な濃度で、X線吸収差の小さい部位から大きい部位までの示現性を向上させることができる。
【0009】
【発明の実施の形態】
本発明のX線撮影装置の一実施例を、図1、図2を参照しながら説明する。図1は本発明のX線撮影装置の構成を示す図である。図2は本X線撮影装置の付加フィルタ円板4を示す図である。
本X線撮影装置は、X線管3と、そのX線管3と被検体7の間に設けられ2個の異なる付加フィルタ4a、4bを備えモータ5によって回転する付加フィルタ円板4と、その付加フィルタ円板4の付加フィルタ4a、4bの回転位置を検出する位置検出器6と、異なる付加フィルタ4a、4bによって適正な濃度で撮影された撮影条件のデータが設定され記憶した撮影条件メモリ16と、被検体7の撮影部位を設定し撮影条件メモリ16に記憶されたデータから撮影条件を選択しX線制御器10に設定する撮影条件設定器11と、異なる付加フィルタ4a、4bに応じてX線制御器10に設定された撮影条件で管電圧・管電流を1回の撮影で順次X線管3に印加・供給する高圧発生器2と、異なる管電圧・管電流によってX線管3から放射されるX線がそれに対応して異なる付加フィルタ4a、4bを透過し異なるX線エネルギースペクトルのX線が被検体7を透過しそのX線像を撮影するフィルム8とから構成される。
【0010】
次に、本X線撮影装置の機構について説明する。X線管3からのX線出力は、付加フィルタ円板4を透過し、被写体7を透過してフィルム8で検出される。X線管3と被検体7との間には、図2に示す付加フィルタ円板4が挿入されており、X線スイッチ(図示せず)が押されると、X線信号12がX線制御器10に入力され、X線制御器10からのモータ駆動信号13によって、モータ5により付加フィルタ円板4が高速回転する。付加フィルタ円板4は、X線に対して透明な材質による円形の基板と異なる2種類の付加フィルタ4a、4bからなり、円形の基板を2等分する半円形に、それぞれ材質の異なる2種類の付加フィルタ4a、4bが貼付けられている。付加フィルタ円板4はモータ5で駆動され高速に回転し、付加フィルタ円板4の回転位置は、位置検出器6により検出される。その検出された位置のフィルタ検出信号14はX線制御器10に入力され、そのフィルタ検出信号14によってX線制御器10の撮影条件メモリ16に設定されたX線条件が読み出され、所定の時間後、X線放射信号15が出力され、回転する付加フィルタ4a、4bに応じた高電圧が、位置検出器6からのフィルタ検出信号14に対応してX線管3に印加され、1回の撮影でX線が順次放射される。
また、X線制御器10に撮影条件メモリ16と、操作パネルに撮影条件設定器11が設けられ、撮影条件メモリ16は、被検体7の各診断部位を異なる付加フィルタ4a、4bを用いて適正な濃度で撮影できる撮影条件のデータが記憶されている。そして、撮影条件設定器11は、被検体7の診断部位を投入すると、撮影条件メモリ16に記憶された診断部位に応じた撮影条件のデータが選択され、その撮影条件がX線制御器10に設定される。そして、位置検出器6からの異なる付加フィルタ4a、4bのフィルタ検出信号14により、X線制御器10に設定された撮影条件で、1回の撮影に、順次、撮影が行なわれる。
【0011】
次に、本X線撮影装置の撮影動作について、図3を参照しながら説明する。図3は、本X線撮影装置の撮影動作のタイミングチャートを示す図である。
はじめに、X線スイッチ(図示せず)が押されると、X線信号12がX線制御器10へ入力される。(図3のa時点)
X線制御器10からモータ5ヘモータ駆動信号13が送られ、モータ5が回転し始めると共に回転軸に取付けられた付加フィルタ円板4が回転し始める。(図3のb時点)
位置検出器6がフィルタ検出信号14を受けて、フィルタ位置が“付加フィルタ4a”(フィルタ無し)が検知されると、図4(a)に示すX線スペクトル分布を持つ第1撮影条件(60kV、300mAs)がX線制御器10の撮影条件メモリ16より読み出される。(図3のc時点)
そして、所定時間後、X線放射信号15が出力され、高圧発生器2からX線管3へ第1撮影条件の60kVの高電圧が印加される。(図3のd時点)
そして、第1撮影条件の300mAsの管電流時間積の間だけ印加され、X線放射信号15が停止し第1のX線放射が終了する。(図3のe時点)
続いてフィルタ位置が“付加フィルタ4b”(Cu、2mm)が検知されると、図4(b)に示すX線スペクトル分布を持つ第2撮影条件(140kV、100mAs)が撮影条件メモリ16より読み出される。(図3のf時点)
そして同様に、所定時間後、X線放射信号15が出力され、高圧発生器2からX線管3へ第2撮影条件の140kVの高電圧が印加される。(図3のg時点)そして、第2撮影条件の100mAsの管電流時間積の間だけ印加され、X線放射信号15が停止し第2のX線放射が終了する。(図3のh時点)
そして、モータ動作信号13が止まり、モータが停止する。(図3のi時点)最後に、X線信号12がOFFになる。(図3のj時点)
【0012】
上記の一連の第1と第2のX線放射の撮影動作により得られたX線写真は、図4(a)、(b)を合成した図4(c)のX線スペクトル分布を持つX線により撮影されたものとなる。このように付加フィルタ部材の種類とそれに応じ撮影条件を変更して撮影を行うことにより、高エネルギーX線と低エネルギーX線を併せ持つX線撮影をおこなうことができる。そしてX線吸収差の小さい部位から大きい部位までの示現性を向上させることが可能となる。
さらに撮影条件の管電流時間積間の組み合わせで合成濃度を適正値に保つことができる。従って、肺野部等を撮像対象とした一般撮影を行う場合に、肋骨および縦隔部に重なった病変部分を、撮影画像を十分確保しつつ、それ以外のX線吸収差が小さい部位の撮影画像も得ることができる。
【0013】
撮影条件メモリ16に記憶されている第1撮影条件、第2撮影条件のデータは、胸部ファントムを用いて実際の装置とX線管3の組み合わせにおいて付加フィルタ4a、4bの材質及び管電圧と管電流時間積値をパラメータとしてスペクトル分布を測定し求めることができる。
【0014】
また、上記の実施例では、付加フィルタ円板4に2種類の付加フィルタを配置する構成としたが、これに限定されることはなく、例えば、2種類以上の異なる付加フィルタを配置しX線撮影を行う構成としてもよい。
また、本実施例では、X線撮像手段としてフィルム8を用いたが、この他、I.I.‐TVシステムやFPD(Flat Panel Detector)システムを用いても同様に適用することができる。
【0015】
【発明の効果】
本発明のX線撮影装置は上記のように構成されており、X線源と被検体との間に、少なくとも2種類以上の異なる付加フィルタを、一回の撮影で順次回転挿入し、それに応じた、異なる撮影条件でX線を放射することにより、2種類以上の異なるX線スペクトルの合成画像を、一回の撮影で得ることができる。それによって、高エネルギーX線と低エネルギーX線とによるX線像の撮影を、1回の撮影で行うことができる。
そして、2種類以上の異なるX線スペクトルの合成画像でも、撮影条件メモリに記憶された撮影データを撮影条件設定器によって選択し、適正なX線撮影条件で照射が行なわれ、診断しやすい適正濃度のX線画像が得られ、X線吸収差の小さい部位から大きい部位までの示現性をよくして、診断効率を向上させることができる。
【図面の簡単な説明】
【図1】 本発明のX線撮影装置の一実施例を示す図である。
【図2】 本発明のX線撮影装置の付加フィルタ円板を示す図である。
【図3】 本発明のX線撮影装置の動作を説明するタイミングチャートを示す図である。
【図4】 本発明のX線撮影装置の付加フィルタを用いて撮影した透過スペクトル分布を示す図である。
【図5】 従来の胸部撮影時の透過スペクトル分布を示す図である。
【符号の説明】
2…高圧発生器
3…X線管
4…付加フィルタ円板
4a、4b…付加フィルタ
5…モータ
6…位置検出器
7…被検体
8…フィルム
10…X線制御器
11…撮影条件設定器
12…X線信号
13…モータ駆動信号
14…フィルタ検出信号
15…X線放射信号
16…撮影条件メモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray imaging apparatus, and more particularly to an X-ray imaging apparatus that filters an X-ray energy spectrum distribution due to an X-ray tube voltage with an additional filter and images a region of interest in an X-ray image with an appropriate contrast.
[0002]
[Prior art]
A conventional X-ray imaging apparatus includes an X-ray tube that irradiates a subject with X-rays, a high-voltage generator that supplies a tube voltage and a tube current to the X-ray tube, and an X-ray tube facing the subject. An imaging means (for example, a film) that captures the difference in the X-ray transmission distribution of the subject from the transmitted X-rays as an X-ray image.
As the X-ray tube, a rotary anode X-ray tube is generally used. The rotary anode X-ray tube includes a cathode having a filament and an anode having a target made of tungsten or the like, and the cathode and the anode are arranged between the cathode and the anode. The high voltage output from the high voltage generator is applied to the filament, and a current that causes thermionic electrons to flow is applied to the filament.
The thermoelectrons emitted from the filament are accelerated by a high voltage between the cathode and the anode, collide with the target of the anode, and generate X-rays. The X-rays generated at this time have characteristics in which characteristic X-rays are added to continuous X-rays, and have an X-ray energy spectrum corresponding to a high voltage applied between the cathode and the anode.
[0003]
FIG. 5 shows an X-ray spectrum distribution of typical chest X-ray imaging in general imaging. FIG. 5 shows X-ray energy (keV) on the horizontal axis and the X-ray spectrum of the relative X-ray quantum number on the vertical axis using an additional filter with a thickness of Cu 1.0 mm under X-ray conditions of 140 kV and 100 mAs. The low energy X-ray component of 20 to 55 keV that appears when the additional filter is not used is attenuated, and only the high energy component of 55 keV or higher including the characteristic X-ray is radiated by the additional filter Cu 1.0 mm. Thus, the X-ray spectrum emitted from the X-ray tube sealed in the X-ray tube container is considerably reduced in the number of low energy quanta by the additional filter of the X-ray tube, and the number of high energy quanta. There are many X-ray distributions.
This is because if the energy of incident X-rays is made too low, the following adverse effects occur due to the relationship with the effective density region of a light receiving system such as an imaging means (for example, a film). In previous chest X-rays, contrast was emphasized and X-rays taken at a low tube voltage of about 50 kV were used. Therefore, lesions that overlap the ribs and mediastinum were not expressed because they were outside the effective density region. It was. In order to eliminate such drawbacks, in recent years, high energy X-rays have been used by using a relatively high tube voltage of 140 kV and an additional filter Cu 1.0 (mm).
[0004]
[Problems to be solved by the invention]
The conventional X-ray imaging apparatus is configured as described above, and imaging is performed using an additional filter. However, an attempt is made to show more X-ray absorption different portions of the subject in a limited concentration range. Then, it becomes difficult to show a part with a small absorption difference. On the other hand, if an attempt is made to express a portion having a small absorption difference, the range of absorption difference and thickness that can be expressed is limited.
In conventional imaging techniques, high-energy X-rays have a higher transmission capability than low-energy X-rays, and are suitable for imaging lesions that overlap the ribs and mediastinum. When a part having a small difference in line absorption is to be imaged, there is a problem that high-contrast X-ray transmission increases X-ray transmission, and imaging with good contrast cannot be performed.
As a method for solving this problem, by selecting different tube voltages and types of additional filters for a portion where the X-ray absorption difference is small and a portion where the X-ray absorption difference is large, an X-ray having a large transmission ability is selected from a portion where a minute contrast is required. A method can be considered that corresponds to the part that needs to be used.
However, in the conventional X-ray imaging apparatus, in order to replace the additional filter in the middle of X-ray imaging, the generation of X-rays must be stopped and then the additional filter must be replaced. Since it is interrupted, there is a problem that the subject moves during that time.
[0005]
The present invention has been made in view of such circumstances, and performs X-ray imaging with high-energy X-rays and low-energy X-rays without interrupting X-ray imaging. An object of the present invention is to provide an X-ray imaging apparatus capable of improving the visibility from a small part to a large part.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray imaging apparatus of the present invention irradiates a subject with X-rays emitted from an X-ray source via an additional filter, and transmits transmitted X-rays that have passed through the subject to X-rays. In an X-ray imaging apparatus for imaging by imaging means, means for sequentially inserting at least two different additional filters between the X-ray source and the subject in one imaging, and imaging different depending on the additional filters An imaging condition memory for storing imaging conditions and an imaging condition setting for setting the imaging conditions so that the combined density of the imaging conditions by means of emitting X-rays under conditions and two or more different additional filters becomes an appropriate value It is characterized by having a vessel.
[0008]
The X-ray imaging apparatus of the present invention is configured as described above, and an additional filter is arranged on the radiation surface side of the X-ray tube that is an X-ray source, and at least two kinds of different additional filters can be obtained by one imaging. Sequentially inserted by means such as rotation of the motor, the X-ray energy spectrum is filtered, the position of the additional filter is detected by the position detector, and different imaging is performed according to the additional filter set in the X-ray controller. Under the condition, different high voltages are sequentially applied from the high voltage generator to the X-ray tube, and the X-rays are controlled to be radiated.
Therefore, the X-ray spectrum of the X-rays that pass through the additional filter from the X-ray source and are irradiated on the subject is controlled, and an X-ray image of the subject is captured by X-rays having a plurality of energy distributions.
The shooting conditions are set by the shooting condition setting unit from the shooting condition memory storing the data of the past shooting conditions so that the combined density shot under two or more different shooting conditions becomes an appropriate value. Then, control is performed so that the density of a composite image such as a photographed film becomes an easily viewable value.
Therefore, when performing general radiography of the lung field or the like as an imaging target, a lesion portion overlapping the ribs and the mediastinum portion has a small X-ray absorption difference while ensuring a sufficient gradation of the image of the imaging site. Can also be obtained.
In addition, X-ray transmission images of low-energy X-rays and high-energy X-rays can be obtained with a single imaging without interrupting the imaging operation. It is possible to improve the visibility from a small part to a large part.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the X-ray imaging apparatus of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the configuration of the X-ray imaging apparatus of the present invention. FIG. 2 is a view showing the additional filter disc 4 of the X-ray imaging apparatus.
The X-ray imaging apparatus includes an X-ray tube 3, an additional filter disk 4 provided between the X-ray tube 3 and the subject 7, provided with two different additional filters 4 a and 4 b, and rotated by a motor 5; An imaging condition memory in which data of imaging conditions photographed at an appropriate density is set and stored by a position detector 6 that detects the rotational position of the additional filters 4a and 4b of the additional filter disk 4 and different additional filters 4a and 4b. 16 and an imaging condition setting unit 11 that sets an imaging part of the subject 7 and selects an imaging condition from the data stored in the imaging condition memory 16 and sets the imaging condition in the X-ray controller 10, according to different additional filters 4 a and 4 b. The high voltage generator 2 that sequentially applies and supplies the tube voltage and tube current to the X-ray tube 3 in one imaging under the imaging conditions set in the X-ray controller 10 and the X-ray tube with different tube voltage and tube current. Radiated from 3 That X-rays are different additional filters 4a correspondingly, and a film 8 which X-rays transmitted through 4b different X-ray energy spectrum is to shoot the X-ray image transmitted through the patient 7.
[0010]
Next, the mechanism of the X-ray imaging apparatus will be described. The X-ray output from the X-ray tube 3 passes through the additional filter disc 4, passes through the subject 7, and is detected by the film 8. An additional filter disk 4 shown in FIG. 2 is inserted between the X-ray tube 3 and the subject 7, and when an X-ray switch (not shown) is pressed, the X-ray signal 12 is X-ray controlled. The additional filter disc 4 is rotated at a high speed by the motor 5 in response to the motor drive signal 13 from the X-ray controller 10. The additional filter disc 4 is composed of two types of additional filters 4a and 4b that are different from a circular substrate made of a material transparent to X-rays. The additional filters 4a and 4b are attached. The additional filter disc 4 is driven by a motor 5 and rotates at high speed, and the rotational position of the additional filter disc 4 is detected by a position detector 6. The filter detection signal 14 at the detected position is input to the X-ray controller 10, and the X-ray condition set in the imaging condition memory 16 of the X-ray controller 10 is read out by the filter detection signal 14, After a time, an X-ray radiation signal 15 is output, and a high voltage corresponding to the rotating additional filters 4a and 4b is applied to the X-ray tube 3 in response to the filter detection signal 14 from the position detector 6, and once. X-rays are emitted in sequence.
Further, the X-ray controller 10 is provided with an imaging condition memory 16 and an operation panel is provided with an imaging condition setting unit 11. The imaging condition memory 16 uses the additional filters 4 a and 4 b that are appropriate for each diagnostic region of the subject 7. Data on photographing conditions that can be photographed at various densities are stored. When the diagnostic condition setting unit 11 inputs the diagnostic part of the subject 7, the imaging condition data corresponding to the diagnostic part stored in the imaging condition memory 16 is selected, and the imaging condition is sent to the X-ray controller 10. Is set. Then, according to the filter detection signals 14 of the different additional filters 4 a and 4 b from the position detector 6, imaging is sequentially performed for one imaging under the imaging conditions set in the X-ray controller 10.
[0011]
Next, the imaging operation of the X-ray imaging apparatus will be described with reference to FIG. FIG. 3 is a diagram illustrating a timing chart of the imaging operation of the X-ray imaging apparatus.
First, when an X-ray switch (not shown) is pressed, the X-ray signal 12 is input to the X-ray controller 10. (Time point a in FIG. 3)
A motor drive signal 13 is sent from the X-ray controller 10 to the motor 5, and the additional filter disc 4 attached to the rotary shaft begins to rotate as the motor 5 begins to rotate. (Time point b in FIG. 3)
When the position detector 6 receives the filter detection signal 14 and detects the filter position “additional filter 4a” (no filter), the first imaging condition (60 kV) having the X-ray spectral distribution shown in FIG. , 300 mAs) is read from the imaging condition memory 16 of the X-ray controller 10. (Time point c in FIG. 3)
Then, after a predetermined time, an X-ray radiation signal 15 is output, and a high voltage of 60 kV of the first imaging condition is applied from the high voltage generator 2 to the X-ray tube 3. (Time point d in FIG. 3)
Then, it is applied only during the tube current time product of 300 mAs in the first imaging condition, the X-ray radiation signal 15 is stopped, and the first X-ray radiation is terminated. (Time point e in FIG. 3)
Subsequently, when the filter position “additional filter 4b” (Cu, 2 mm) is detected, the second imaging condition (140 kV, 100 mAs) having the X-ray spectrum distribution shown in FIG. It is. (Time point f in FIG. 3)
Similarly, after a predetermined time, the X-ray radiation signal 15 is output, and a high voltage of 140 kV of the second imaging condition is applied from the high voltage generator 2 to the X-ray tube 3. (Time point g in FIG. 3) Then, the X-ray radiation signal 15 is stopped and the second X-ray radiation is terminated by applying the tube current time product of 100 mAs in the second imaging condition. (Time point h in FIG. 3)
Then, the motor operation signal 13 stops and the motor stops. (Time point i in FIG. 3) Finally, the X-ray signal 12 is turned OFF. (Time point j in FIG. 3)
[0012]
The X-ray photograph obtained by the above-described series of first and second X-ray radiation imaging operations has an X-ray spectral distribution of FIG. 4C, which is a combination of FIGS. 4A and 4B. It was taken with a line. Thus, X-ray imaging having both high-energy X-rays and low-energy X-rays can be performed by performing imaging while changing the type of additional filter member and imaging conditions accordingly. And it becomes possible to improve the visibility from a site | part with a small X-ray absorption difference to a big site | part.
Furthermore, the combined density can be maintained at an appropriate value by combining the tube current time products of the photographing conditions. Therefore, when performing general radiography of the lung field or the like as an imaging target, imaging of other portions with small differences in X-ray absorption while securing sufficient radiographic images of lesions overlapping the ribs and mediastinum Images can also be obtained.
[0013]
The data of the first imaging condition and the second imaging condition stored in the imaging condition memory 16 are the material of the additional filters 4a and 4b, the tube voltage and the tube in the combination of the actual apparatus and the X-ray tube 3 using the chest phantom. The spectral distribution can be measured and obtained using the current-time product value as a parameter.
[0014]
In the above embodiment, the two types of additional filters are arranged on the additional filter disc 4. However, the present invention is not limited to this. For example, two or more different additional filters are arranged and X-rays are arranged. It is good also as composition which performs photography.
In this embodiment, the film 8 is used as the X-ray imaging means. I. -It can be similarly applied even when a TV system or an FPD (Flat Panel Detector) system is used.
[0015]
【The invention's effect】
The X-ray imaging apparatus of the present invention is configured as described above. At least two or more different additional filters are sequentially inserted between the X-ray source and the subject in one imaging operation, and accordingly Further, by emitting X-rays under different imaging conditions, a composite image of two or more different X-ray spectra can be obtained by one imaging. As a result, X-ray images can be captured by high-energy X-rays and low-energy X-rays in a single imaging.
Even in a composite image of two or more types of different X-ray spectra, the imaging data stored in the imaging condition memory is selected by the imaging condition setting device, and irradiation is performed under appropriate X-ray imaging conditions. X-ray images can be obtained, and the visibility from a portion having a small X-ray absorption difference to a portion having a large X-ray absorption can be improved, and the diagnostic efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an X-ray imaging apparatus according to the present invention.
FIG. 2 is a view showing an additional filter disk of the X-ray imaging apparatus of the present invention.
FIG. 3 is a timing chart illustrating the operation of the X-ray imaging apparatus of the present invention.
FIG. 4 is a diagram showing a transmission spectrum distribution imaged using an additional filter of the X-ray imaging apparatus of the present invention.
FIG. 5 is a diagram showing a transmission spectrum distribution at the time of conventional chest imaging.
[Explanation of symbols]
2 ... high pressure generator 3 ... X-ray tube 4 ... addition filter disks 4a, 4b ... addition filter 5 ... motor 6 ... position detector 7 ... subject 8 ... film 10 ... X-ray controller 11 ... imaging condition setting device 12 ... X-ray signal 13 ... Motor drive signal 14 ... Filter detection signal 15 ... X-ray radiation signal 16 ... Imaging condition memory

Claims (1)

X線源から放射されたX線を、付加フィルタを介して被検体に照射し、被検体を通過した透過X線をX線撮像手段により撮影するX線撮影装置において、X線源と前記被検体との間に少なくとも2種類以上の異なる付加フィルタを一回の撮影で順次に挿入する手段と、その付加フィルタに応じ異なる撮影条件でX線を放射する手段と、前記2種類以上の異なる付加フィルタによる撮影条件の合成濃度が適正値になるように、撮影条件を記憶した撮影条件メモリと、その撮影条件を設定する撮影条件設定器を備えたことを特徴とするX線撮影装置。In an X-ray imaging apparatus that irradiates a subject with X-rays emitted from an X-ray source through an additional filter and images transmitted X-rays that have passed through the subject with an X-ray imaging unit, the X-ray source and the subject Means for sequentially inserting at least two or more different additional filters between the specimens in one imaging, means for emitting X-rays under different imaging conditions according to the additional filters, and the two or more different additions An X-ray imaging apparatus comprising: an imaging condition memory for storing imaging conditions, and an imaging condition setting unit for setting the imaging conditions so that a combined density of imaging conditions by a filter becomes an appropriate value .
JP2002013634A 2002-01-23 2002-01-23 X-ray equipment Expired - Fee Related JP4161578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013634A JP4161578B2 (en) 2002-01-23 2002-01-23 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013634A JP4161578B2 (en) 2002-01-23 2002-01-23 X-ray equipment

Publications (2)

Publication Number Publication Date
JP2003210442A JP2003210442A (en) 2003-07-29
JP4161578B2 true JP4161578B2 (en) 2008-10-08

Family

ID=27650545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013634A Expired - Fee Related JP4161578B2 (en) 2002-01-23 2002-01-23 X-ray equipment

Country Status (1)

Country Link
JP (1) JP4161578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152197A (en) * 2010-01-26 2011-08-11 Shimadzu Corp X-ray equipment and x-ray photography method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000293A (en) * 2007-06-21 2009-01-08 Toshiba Corp Dual energy system and its image collection method
JP2011067333A (en) 2009-09-25 2011-04-07 Fujifilm Corp Radiation imaging apparatus and imaging control device
JP5875790B2 (en) * 2011-07-07 2016-03-02 株式会社東芝 Photon counting type image detector, X-ray diagnostic apparatus, and X-ray computed tomography apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152197A (en) * 2010-01-26 2011-08-11 Shimadzu Corp X-ray equipment and x-ray photography method

Also Published As

Publication number Publication date
JP2003210442A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
JP5468720B2 (en) Adaptive X-ray beam system and method in an X-ray system
JP5460318B2 (en) X-ray generator and X-ray CT apparatus using the same
EP3053525A2 (en) Panoramic imaging using multi-spectral x-ray source
US4780897A (en) Dual energy imaging with kinestatic charge detector
US3783288A (en) Pulsed vacuum arc operation of field emission x-ray tube without anode melting
US5008915A (en) Methods for forming a radiograph using slit radiography
US20070133747A1 (en) System and method for imaging using distributed X-ray sources
US20080063145A1 (en) Apparatus and method for rapidly switching the energy spectrum of diagnostic X-ray beams
JPH0260328B2 (en)
EP2309928B1 (en) Voltage modulated x-ray tube
EP3028636A1 (en) Computed tomographic apparatus and method for controlling the same
US20200069271A1 (en) X-ray system and method for generating x-ray image in color
WO2022076787A1 (en) Systems, devices, and methods for multisource volumetric spectral computed tomography
Dance et al. Diagnostic radiology with x-rays
EP0168090A1 (en) System for detecting two X-ray energies
US20100246921A1 (en) Radiographic image correction method and radiographic imaging apparatus
JP2003180669A (en) X-ray camera
JP4161578B2 (en) X-ray equipment
JP2019122772A (en) System and method to improve spatial resolution in computed tomography
Doi et al. Digital radiographic imaging system with multiple-slit scanning x-ray beam: preliminary report.
Arnold et al. Digital Radiography Overview
Cowen Cardiovascular X-ray Imaging: Physics, Equipment, and Techniques
JP4731704B2 (en) Medical photographing system and photographing display method
JP4208271B2 (en) Grid-controlled rotating anode X-ray tube
JP2004202119A (en) Mammographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees