US3783288A - Pulsed vacuum arc operation of field emission x-ray tube without anode melting - Google Patents

Pulsed vacuum arc operation of field emission x-ray tube without anode melting Download PDF

Info

Publication number
US3783288A
US3783288A US00266218A US3783288DA US3783288A US 3783288 A US3783288 A US 3783288A US 00266218 A US00266218 A US 00266218A US 3783288D A US3783288D A US 3783288DA US 3783288 A US3783288 A US 3783288A
Authority
US
United States
Prior art keywords
anode
pulses
pulse
ray
kilovolts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00266218A
Inventor
J Barbour
F Charbonnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Field Emission Corp
Original Assignee
Field Emission Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Field Emission Corp filed Critical Field Emission Corp
Application granted granted Critical
Publication of US3783288A publication Critical patent/US3783288A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/60Circuit arrangements for obtaining a series of X-ray photographs or for X-ray cinematography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/22X-ray tubes specially designed for passing a very high current for a very short time, e.g. for flash operation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains

Definitions

  • ABSTRACT A field emission x-ray apparatus and pulsed vacuum arc method of operation is described in which a plurality of extremely high voltage pulses of short duration and high repetition rate are applied between the anode and cathode of the x-ray tube to provide anelectron discharge of low energy density below about 20 joules per square centimeter to prevent anode melting, which greatly increases the useful lifetime of such tube.
  • a repetition rate of 1,000 pulses per second can be employed with an energy of 10.5 joules per pulse to provide the tube with a useful life .in excess of 200,000 pulses.
  • This increased tube life results from recognition and exploitation of the fact that, at higher pulse voltages, the anode temperature rise per pulse is reduced due to the fact that the electrons penetrate through a thicker surface layer of the anode.
  • the high voltage, greater than about 250 kilovolts, of the pulses also give improved results in radiographic apparatus, :such as is employed for x-raying the human chest, since the resulting film radiographs are of better contrast and contain more useful diagnostic information.
  • PATENTED 1 74 25J0 MAX. ANODE TEMF. IN K SHEET 2 0F 3 J/CM2 ENERGY DENSITY PULSE VOLTAGE
  • FIG 4 I00 200 300 400 50o (KV) PULSE VOLTAGE PATEHTEBJAN I I874 SHEET 3 BF 3 ANODE TEMP RISE ATIN OK 50 (LOG) f I 76 I H l I q I I I I I I I END OF [0' 0 Ici I0 I6 I62 t FIRST PULSE TIME AFTER START OF ISIL-PULSE 2nd. 5% EO -IS IN SECONDS (LOG) 80 3640 MELT'ING POINT 6 TUNGSTEN f ANODE SURFACE TEMP? T. MA
  • the subject matter of the present invention relates generally to pulsed field emission x-ray apparatus, and in particular to such apparatus employing high voltage vacuum arc operation without melting of the anode in order to increase the useful lifetime of the x-ray tube.
  • the x-ray apparatus of the present invention is especially useful as a radiographic apparatus for making radiographs of human chests at high overall voltages of about 300 kilovolts to form radiographs of higher contrast and greater diagnostic information content.
  • the present x-ray apparatus may also be employed for industrial x-ray inspection purposes.
  • ner is severely limited.
  • a 300 kilovolt x-ray apparatus manufactured by the assignee of the present invention had a useful x-ray tube lifetime of approximately 1,000 pulses for vacuum arc operation with pulse energies of 70 joules per pulse.
  • pulsed x-ray apparatus of the present invention operated with pulses of 350 kilovolts and 1,000 amperes, a pulse width of 30 nanoseconds energy per pulse of 10.5 joules, and a pulse repetition rate of 1,000 pulses per second which results in a useful lifetime of the tube of greater than 200,000 pulses and in chest radiographs of excellent overall contrast and high diagnostic information content.
  • Another object of the invention is to provide such an x-ray apparatus in which electrical pulses having a peak voltage of at least 250 kilovolts and an energy of less than 20 joules per square centimeter are applied to the x-ray tube to prevent its anode from being heated above the melting point of the anode material.
  • a further object of the invention is to provide such an x-ray apparatus as part of an improved high voltage radiographic apparatus for making x-ray radiographs of higher overall contrast and greater diagnostic information content.
  • Still another object of the invention is to provide such a radiographic apparatus in which each exposure is formed by a plurality of x-ray pulses whose number and repetition rate are such that the exposure time is short enough to prevent motion blur in the radiograph and the maximum anode temperature at the end of the exposure does not exceed the melting point of such anode.
  • FIG. 1 is a schematic diagram of one embodiment of a pulsed field emission x-ray apparatus in accordance with the present invention with one suitable x-ray tube shown in cross section;
  • FIG. 2 is a perspective view of another embodiment of an x-ray tube which can be employed in the apparatus of FIG. 1 with parts broken away to show internal structure;
  • FIG. 3 is a curve showing the maximum anode temperature rise per pulse as a function of pulse voltage, pulse energy and target area being held constant;
  • FIG. 4 is a graph showing the energy density per pulse required to raise the surface of a tungsten anode to its melting point at different pulse voltages
  • FIG. 5 is a curve of anode temperature rise versus time after the start of the first pulse for different pulse voltages and pulse energies.
  • FIG. 6 is a curve of the anode surface temperature produced by a plurality of pulses in an exposure pulse train containing pulses identical to those producing the middle curve in FIG. 5.
  • one embodiment of the x-ray apparatus of the present invention includes a field emission x-ray tube 10 including an anode 12 of a conical shape and a field emission cathode 14 in the form of a plurality of spaced sharpened needle shaped emitter elements.
  • the field emission cathode needles 14 are supported in four radially spaced groups on a metal support sleeve 16 so that such needles project inward toward the anode.
  • the support sleeve 16 is attached to a metal cup member 18 enclosing one end of the tube envelope and sealed to a tubular glass envelope portion 20 by a suitable glass to metal seal to provide the x-ray tube with an evacuated envelope.
  • a thin x-ray transparent window portion 22 is provided in the bottom of cup 18 in alignment with the anode 12 so that x-rays 24 emitted from such anode are transmitted through such window.
  • these x-rays 24 are transmitted through the object under investigation, such as a human chest, to expose a film within a cassette 25.
  • the anode 12 of the x-ray tube is mounted on a stem 26 of reduced diameter which is attached to a support rod 28 extending through another glass to metal seal formed between envelope portion 20 and a metal seal member 30 provided at the other end of the envelope to enable electrical pulses to be applied thereto through lead 32.
  • X-ray tubes of this construction are known and have been described in the abovediscussed U.S. Pat. No. 3,309,523 and 3,256,439 of Dyke et al.
  • the cathode support cup 18 is grounded and the anode 12 is connected through lead 32 to the output of a high voltage pulser 34 which may be a Marx surge generator but may also be of the Blumlein field reversal type or other high voltage pulser containing storage capacitances.
  • the storage capacitors of the Marx surge generator are charged in parallel and discharged in series through spark gaps.
  • the pulser 34 is connected to the output of a DC. charging current source 36 of lower voltage of, for example, about kilovolts.
  • a trigger generator oscillator 38 whose repetition rate is set by the adjustment of a variable resistor 40 is connected at its output to the high voltage pulser 34 for triggering such pulser by trigger pulses 41 which cause the first spark gap to break down.
  • An exposure control circuit 44 including a variable resistor 46 of variable resistance is connected at its output to the trigger oscillator 38 to control the number of trigger pulses 41 and the corresponding number of high voltage output pulses 42 per exposure.
  • the control circuit 44 applies an enabling signal 48 to the trigger oscillator 38 to cause it to produce trigger pulses so that the duration of the enabling signal 48 determines the total exposure time, and such duration is adjusted by the setting of variable resistor 46.
  • the x-ray tube 10 of the apparatus of FIG. 1 can be replaced by modified tube 10 which is similar, but is provided with. a different field emission cathode means 14.
  • the cathode 14' is in the form of three or more annular rings 50 having their inner edges 52 provided as sharpened emitting elements which surround the conical anode 12 extending coaxially through such rings.
  • the cathode rings 50 are mounted in a modified support sleeve 16 so that they project inward and are longitudinally spaced along the anode.
  • Both the tube 10 of FIG. 1 and the modified tube 10 of FIG. 2 are provided with a vacuum arc field emission operation in which the electrical pulses 42 applied to the anode cause the field emission of electrons from the sharpened emitter elements of the cathode. These elctrons are accelerated by the high pulse voltage to the anode where they bombard the anode surface and cause x-rays to be emitted therefrom.
  • the anode 12 may be made of tungsten or tungsten containing alloy, as well as other refractory metals including molybdenum, and the cathode emitting elements may be made of a similar material.
  • a curve 54 of the maximum anode temperature rise in degrees Kelvin for different pulse voltages in kilovolts shows that as the voltage increases the anode temperature rise decreases. This is surprising, because one would ordinarily think that the increase in electron energy due to the greater pulse voltage would cause a corresponding increase in anode temperature. However, it has been found that this increase in beam voltage causes the electrons to penetrate through a thicker surface layer of the anode, thereby increasing the effective volume of anode material in which the heat energy is dissipated during each pulse.
  • the effective depth of penetration of the electrons in a tungsten anode is approximately 17.6 microns, while the effective depth of penetration of electrons at kilovolts is only about 4.4 microns.
  • the thickness of the anode surface layer in which the heat is dissipated for the 350 kilovolt electron beam is four times that of the 135 kilovolt beam, while the increase in electron energy is only 2.6 times that of the I35 kilovolt electrons.
  • the result is a net decrease in anode temperature with increases'in pulse voltage and this decrease in temperature follows along the curve 54 for a pulse energy of 5 joules per square centimeter. This effect is more fully discussed hereafter with respect to FIG. 5.
  • FIG. 4 shows a curve 56 of the energy density in joules per square centimeter per pulse at different pulse voltages in kilovolts required to increase the temperature of the tungsten anode surface to its melting point. While the values used in FIG. 4 are calculated values and the actual energy density is lower because of the finite rise time and fall time of the pulse, it can be seen that for a beam of 150 kilovolts, the energy density is about 5 joules per square centimeter to cause anode melting, while at a higher voltage of 350 kilovolts approximately 18 joules per square centimeter are required for melting.
  • Previous chest x-ray radiographic apparatus have operated at approximately 150 kilovolts and because of the low contrast several radiographs must be taken from different angles to obtain the same information which can be obtained in a single radiograph taken by a multiple pulse exposure at the high voltage level of, for example, 350 kilovolts in the manner of the present invention.
  • the energy density per pulse should be less than 20 joules per square centi-' meter, and preferably is about 8 joules per square centimeter or less at 350 kilovolts fora typical multiple pulse exposure of 15 pulses or more.
  • the pulses should have a pulse width less than 100 nanoseconds, or preferably about 30 nanoseconds, and a pulse repetition rate greater than 500 pulses per second, or preferably 1,000 pulses per second to give satisfactory exposure time and total energy per exposure without anode melting.
  • the exposure time must beless than about one-fiftieth of a second to prevent motion blur in the radiograph due to, among other things, heart and lung movement.
  • a pulse train of approximately 20 pulses of the preferred values given above is sufficient for a proper exposure of about 20 millirads for a patient six feet from the x-ray source when the x-ray cassette 25 contains Kodak RP54 film and two fluorescent intensifier screens on opposite sides of such film.
  • a curve 58 of anode temperature rise in degrees Kelvin versus time after the start of the first pulse for 135 kilovolt pulses shows that the temperature rise is a maximum of 2,.l50 K at peak point 60 corresponding to the end of the first pulse.
  • the temperature rise gradually reduces by heat diffusion into the anode material below the bombarded surface layer to an equilibrium temperature of about 22 K.
  • This curve 58 is for pulses of 135 kilovolts and 4 joules energy with a pulse width of 30 nanoseconds and an effective anode area of one square centimeter.
  • a second curve 62 of anode temperature rise versus time for a 350 kilovolt pulse of the same energy and other characteristics shows a peak temperature rise 64 at the end of the first pulse of only about 600 K.
  • the maximum temperature rise for the 350 kilovolt pulse is over 1,500" less than the temperature rise produced by the 135 kilovolt pulse. This dramatically illustrates the reduction in anode temperature rise resulting from increased pulse voltage that was previously referred to in FIG. v3.
  • the curve 62 closely follows the curve 58 after the time of 10 second, since the total energy for both of the corresponding pulses is the same;
  • a third curve 66 results which has a peak temperature rise 68 at the end of the first pulse of about l,050 K.
  • This peak temperature rise 68 for the 350 kilovolts, 10.5 joule pulse is still much lower than the peak temperature 60 of the 135 kilovolt curve 58, even though the third curve 64 is produced by a pulse of over twice the energy.
  • the anode when a plurality of 350 kilovolt, 10.5 joule pulses having a repetition rate of 1,000 pulses per second are applied to the x-ray tube, the anode is progressively heated along a minimum anode temperature line 70 corresponding to the envelope of the residual temperature rise at the endof each pulse and along the maximum anode temperature line 72 corresponding to the envelope of the peak temperature 68 of each pulse.
  • the vertical axis of the curve of FIG. 6 is in terms of total temperature in degrees Kelvin
  • the vertical axis of FIG. 5 is in terms of temperature rise or change in temperature per pulse in degrees Kelvin.
  • the minimum anode temperature envelope of FIG. 6 starts at room temperature which is approximately 300 K and the maximum anode temperature envelope 72 starts at 1,050 +300, or l,350 K.
  • the maximum temperature line 70 does not exceed the 3,640 K melting point 74 of the tungsten anode until after 1 milliseconds.
  • the maximum exposure time without anode melting is l 10 milliseconds which corresponds to l 10 pulses at a repetition rate of 1,000 pulses per second.
  • the second pulse indicated by arrow 76 occurs one millisecond after the first pulse at a point 78 on the temperature curve 66 which corresponds to a temperature rise of approximately 60 K.
  • the tube anode on which the temperature curve 66 was calculated had an effective area of 1.8 square centimeters which corresponds to a conical targethaving a maximum base diameter of 0.2 inch and a cone half-angle of approximately 7 measured between the axis and the side surface of such cone. This provides a small x-ray source having an effective diameter of approximately 3 millimeters which is important for x-ray radiography for good image resolution of small objects.
  • the short duration, high intensity x-ray pulses produced are also particularly useful in high speed cineradiographic systems using either a high speed pin registered framing camera and an x-ray image intensifier with the pulses synchronized with the camera shutter or a high speed film drum.
  • the individual x-ray pulses are preferably less than 50 nanoseconds long so that the system has exceptional stopmotion characteristics for high speed events and pulse rates up to 1,000 frames per second provide excellent slow motion effects.
  • Applications include studies of crash injuries, rocket motors, vibrations, fast moving internal parts, etc.
  • Pulsed x-ray apparatus comprising:
  • an x-ray tube including an evacuated envelope containing field emission cathode means and an anode which emits x-rays;
  • a high voltage pulse generator having its output connected to said x-ray tube
  • exposure control means for triggering said pulse generator and causing it to apply a pulse train containing a plurality of electrical pulses between said cathode and said anode to produce a corresponding number of x-ray pulses during one exposure time period whose duration is determined by said control means, said electrical pulses causing the field emission of electrons from said cathode and the formation of a vacuum arc of vaporized cathode material so that for each electrical pulse said anode is bombarded with an electron discharge of extremely high voltage and high current and emits a corresponding x-ray pulse; and
  • said electrical pulses having a peak voltage of at least 250 kilovolts and a narrow width so that the anode is bombarded with electron discharge pulses each having an energy density below that causing anode melting and the total number of pulses per exposure and the pulse repetition rate of said pulse train is such as to prevent the anode from being heated to a final maximum temperature above the melting point of the anode material at the end of said exposure period.
  • An x-ray apparatus in accordance with claim 1 in which the electrical pulses have a peak voltage between 250 and 600 kilovolts and the electron discharge pulses bombarding the anode have an energy density below 20 joules per square centimeter.
  • An x-ray apparatus in accordance with claim 3 in which the energy density is between 5 and l5 joules per square centimeter.
  • An x-ray apparatus in accordance with claim 1 in which the anode is made of tungsten, the peak voltage is between 300 and 450 kilovolts, the peak current is 1,000 amperes or more, the energy density of the electron discharge pulses bombarding the anode is 15 joules per square centimeter or less, and the pulse width is 50 nanoseconds or less.
  • a pulsed radiograph method comprising:
  • pulse train containing a predetermined number of electrical pulses during one x-ray exposure time period, said pulses being of high current of at least 500 amperes and high voltage of at least uum arc electron discharge operation during said exposure time period;
  • a radiography method in accordance with claim 10 in which the x-ray exposure is formed by at least 10 pulses having a pulse width of less than nanoseconds and a repetition rate of at least 500 pulses per second.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

A field emission x-ray apparatus and pulsed vacuum arc method of operation is described in which a plurality of extremely high voltage pulses of short duration and high repetition rate are applied between the anode and cathode of the x-ray tube to provide an electron discharge of low energy density below about 20 joules per square centimeter to prevent anode melting, which greatly increases the useful lifetime of such tube. For example, with a tube having a conical anode of tungsten having a surface area of 1.8 square centimeter, pulses of 350 kilovolts and 1,000 amperes with a width of 30 nanoseconds, a repetition rate of 1,000 pulses per second can be employed with an energy of 10.5 joules per pulse to provide the tube with a useful life in excess of 200,000 pulses. This increased tube life results from recognition and exploitation of the fact that, at higher pulse voltages, the anode temperature rise per pulse is reduced due to the fact that the electrons penetrate through a thicker surface layer of the anode. The high voltage, greater than about 250 kilovolts, of the pulses also give improved results in radiographic apparatus, such as is employed for x-raying the human chest, since the resulting film radiographs are of better contrast and contain more useful diagnostic information.

Description

221 Filed:
Assistant Examiner-B. C. Anderson V United States Patent [191 Barbour et al.
[ PULSED VACUUM ARC OPERATION OF FIELD EMISSION X-RAY TUBE WITHOUT ANODE MELTING [75] Inventors: John PQBarbour; Francis M.
Charbonnier, both of McMinnville, Oreg.
[73] Assignee: Field Emission Corporation,
McMinnville, Oreg.
June 26, 1972 [21] Appl. No.1 266,218
OTHER PUBLlCATlONS A 50 Millimicrosec. Flash x-ray Phot. System for Hyervel. Research" Grundhause'r et al. Oct. 18, 1960, Fexitron Field Emission Corp. Oct. 18, 1960,
Primary Examiner-James W. Lawrence Attorney-Stephen W. Blore et al.
[ Jan. 1, 1974 [5 7] ABSTRACT A field emission x-ray apparatus and pulsed vacuum arc method of operation is described in which a plurality of extremely high voltage pulses of short duration and high repetition rate are applied between the anode and cathode of the x-ray tube to provide anelectron discharge of low energy density below about 20 joules per square centimeter to prevent anode melting, which greatly increases the useful lifetime of such tube. For example, with a tube having a conical anode of tungsten having a surface area of 1.8 square centimeter, pulses of 350 kilovolts and 1,000 amperes with a width of 30 nanoseconds, a repetition rate of 1,000 pulses per second can be employed with an energy of 10.5 joules per pulse to provide the tube with a useful life .in excess of 200,000 pulses. This increased tube life results from recognition and exploitation of the fact that, at higher pulse voltages, the anode temperature rise per pulse is reduced due to the fact that the electrons penetrate through a thicker surface layer of the anode. The high voltage, greater than about 250 kilovolts, of the pulses also give improved results in radiographic apparatus, :such as is employed for x-raying the human chest, since the resulting film radiographs are of better contrast and contain more useful diagnostic information.
. 1. 53121% @Pr wins Fi ur -5..
D.C CHARGING 36 SOURCE 42 41 Q 5} n n n HlGH VOLTAGE f 1 TRIGGER GEN.
PULSER J EXPOSURE 05c CONTROL J 34 g a.
PATENTED 1 74 25J0 MAX. ANODE TEMF. IN K SHEET 2 0F 3 J/CM2 ENERGY DENSITY PULSE VOLTAGE FIG 4 I00 200 300 400 50o (KV) PULSE VOLTAGE PATEHTEBJAN I I874 SHEET 3 BF 3 ANODE TEMP RISE ATIN OK 50 (LOG) f I 76 I H l I q I I I I I I END OF [0' 0 Ici I0 I6 I62 t FIRST PULSE TIME AFTER START OF ISIL-PULSE 2nd. 5% EO -IS IN SECONDS (LOG) 80 3640 MELT'ING POINT 6 TUNGSTEN f ANODE SURFACE TEMP? T. MA
IN 0K ENVELOPE TI MIN.' lENvELoPE TIME IN MILLISECONDS IOO PULSED VACUUM ARC OPERATION OF FIELD EMISSION X-RAY TUBE WITHOUT ANODE MELTING BACKGROUND OF THE INVENTION The subject matter of the present invention relates generally to pulsed field emission x-ray apparatus, and in particular to such apparatus employing high voltage vacuum arc operation without melting of the anode in order to increase the useful lifetime of the x-ray tube. The x-ray apparatus of the present invention is especially useful as a radiographic apparatus for making radiographs of human chests at high overall voltages of about 300 kilovolts to form radiographs of higher contrast and greater diagnostic information content. However, the present x-ray apparatus may also be employed for industrial x-ray inspection purposes.
Previously, when using pulsed vacuum arc field emission xray tubes, high energy electrical pulses on the order of 40 joules per square centimeter have been employed which heat the tungsten anode of such tube above its melting point and causes evaporated cooling of such anode, as described in US. Pat. No. 3,309,523 of W. P. Dyke et al., granted Mar. 14, 1967. However, the useful lifetime of x-ray tubes operated in this manenergy for a 350 kilovolts pulse is only 2.6 times that of a 135 kilovolts pulse. As a result, the maximum anode temperature rise is much less for the 350 kilovolts pulse than for the 135 kilovolts pulse. For example, when employing pulses of 135 kilovolts and 4 l5 joules energy with a pulse width of 30 nanoseconds, the
ner is severely limited. For example, a 300 kilovolt x-ray apparatus manufactured by the assignee of the present invention had a useful x-ray tube lifetime of approximately 1,000 pulses for vacuum arc operation with pulse energies of 70 joules per pulse. In addition, it has previously been proposed to provide a radiographic x-ray apparatus employing a pulsed field emission x-ray tube in which each x-ray exposure is formed by a plurality of short pulses, as disclosed in'U.S. Pat. No. 3,256,439 of W. P. Dyke et al. granted June 14, 1966. However, in this prior radiographic apparatus, electrical pulses of lower voltage and lower energy per pulse were employed of, for example, 135 kilovolts and 4 joules in order to prevent destruction of the tube anode, which are not fully satisfactory for chest x-ray surveys since the limited energy-per pulse leads to undesirably long exposure time while at the same time the limited voltage leads to excessive'x-ray absorption in bony structures, hence to an underexposed low contrast radiograph in several areas, particularly the mediastinum. As a result, several radiographs must be taken from different directions in order to obtain all of the necessary diagnostc information.
It has been found that both of these problems of short tube life and low local contrast radiographs can be solved by increasing the pulse voltage to a value greater than about 250 kilovolts and reducing the energy density per pulse to a value below about 20 joules per centimeter while also controlling the total number of pulses per exposure so that the anode is not heated above its melting point. Thus, one embodiment of the pulsed x-ray apparatus of the present invention operated with pulses of 350 kilovolts and 1,000 amperes, a pulse width of 30 nanoseconds energy per pulse of 10.5 joules, and a pulse repetition rate of 1,000 pulses per second which results in a useful lifetime of the tube of greater than 200,000 pulses and in chest radiographs of excellent overall contrast and high diagnostic information content.
These improved results are achieved. in part, because of the discovery that there is a reduction of anode tem perature rise when a higher pulse voltage is used. This maximum anode temperature rise per pulse is approximately 2,l50 Kelvin, compared with a temperature rise of only 600 Kelvin for purposes of 350 kilovolts, but otherwise of similar characteristics.
As a result of the reduction in temperature rise, it is possible to increase the energy per pulse to 10.5 joules for the 350 kilovolt pulses and still produce a maximum anode temperature rise of approximately l,050 K per pulse which is still lower than that for pulses of kilovolts and 4 joules. The maximum temperature at the end of a 50 pulse exposure is still under 3,000 K or well below the melting point of tungsten of 3,640 K even when the temperature rises of such pulses are added to the initial room temperature value of approximately 300 K to determine the final temperature of the anode. Of course, by increasing the energy per pulse, the total number of pulses to provide an adequate exposure is reduced, which is extremely important in chest x-rays to prevent movement of the heart and other organs from blurring the radiograph.
It is, therefore, one object of the present invention to provide an improved pulsed field emission vacuum arc x-ray apparatus of longer useful tube life.
Another object of the invention is to provide such an x-ray apparatus in which electrical pulses having a peak voltage of at least 250 kilovolts and an energy of less than 20 joules per square centimeter are applied to the x-ray tube to prevent its anode from being heated above the melting point of the anode material.
A further object of the invention is to provide such an x-ray apparatus as part of an improved high voltage radiographic apparatus for making x-ray radiographs of higher overall contrast and greater diagnostic information content.
Still another object of the invention is to provide such a radiographic apparatus in which each exposure is formed by a plurality of x-ray pulses whose number and repetition rate are such that the exposure time is short enough to prevent motion blur in the radiograph and the maximum anode temperature at the end of the exposure does not exceed the melting point of such anode.
BRIEF DESCRIPTION OF DRAWINGS Other objects and advantages of the present invention will be apparent from the following description of a preferred embodiment thereof and from the attached drawings of which:
FIG. 1 is a schematic diagram of one embodiment of a pulsed field emission x-ray apparatus in accordance with the present invention with one suitable x-ray tube shown in cross section;
FIG. 2 is a perspective view of another embodiment of an x-ray tube which can be employed in the apparatus of FIG. 1 with parts broken away to show internal structure;
FIG. 3 is a curve showing the maximum anode temperature rise per pulse as a function of pulse voltage, pulse energy and target area being held constant;
FIG. 4 is a graph showing the energy density per pulse required to raise the surface of a tungsten anode to its melting point at different pulse voltages;
FIG. 5 is a curve of anode temperature rise versus time after the start of the first pulse for different pulse voltages and pulse energies; and
FIG. 6 is a curve of the anode surface temperature produced by a plurality of pulses in an exposure pulse train containing pulses identical to those producing the middle curve in FIG. 5.
DESCRIPTION OF PREFERRED EMBODIMENTS As shown in FIG. 1, one embodiment of the x-ray apparatus of the present invention includes a field emission x-ray tube 10 including an anode 12 of a conical shape and a field emission cathode 14 in the form of a plurality of spaced sharpened needle shaped emitter elements. The field emission cathode needles 14 are supported in four radially spaced groups on a metal support sleeve 16 so that such needles project inward toward the anode. The support sleeve 16 is attached to a metal cup member 18 enclosing one end of the tube envelope and sealed to a tubular glass envelope portion 20 by a suitable glass to metal seal to provide the x-ray tube with an evacuated envelope. A thin x-ray transparent window portion 22 is provided in the bottom of cup 18 in alignment with the anode 12 so that x-rays 24 emitted from such anode are transmitted through such window. When used as a radiographic apparatus, these x-rays 24 are transmitted through the object under investigation, such as a human chest, to expose a film within a cassette 25. The anode 12 of the x-ray tube is mounted on a stem 26 of reduced diameter which is attached to a support rod 28 extending through another glass to metal seal formed between envelope portion 20 and a metal seal member 30 provided at the other end of the envelope to enable electrical pulses to be applied thereto through lead 32. X-ray tubes of this construction are known and have been described in the abovediscussed U.S. Pat. No. 3,309,523 and 3,256,439 of Dyke et al.
The cathode support cup 18 is grounded and the anode 12 is connected through lead 32 to the output of a high voltage pulser 34 which may be a Marx surge generator but may also be of the Blumlein field reversal type or other high voltage pulser containing storage capacitances. The storage capacitors of the Marx surge generator are charged in parallel and discharged in series through spark gaps. Thus, the pulser 34 is connected to the output of a DC. charging current source 36 of lower voltage of, for example, about kilovolts. A trigger generator oscillator 38 whose repetition rate is set by the adjustment of a variable resistor 40 is connected at its output to the high voltage pulser 34 for triggering such pulser by trigger pulses 41 which cause the first spark gap to break down. This causes the pulser'to produce corresponding high voltage output pulses 42 on conductor 32 of, for example, 350 kilovolts peak voltage and 1,000 amperes peak current with a pulse width of about 30 nanoseconds and a repetition rate of about l,000 pulses per second. This repetition rate may be varied between about 500 and 4,000 pulses per second, depending upon the setting of resistor 40. An exposure control circuit 44 including a variable resistor 46 of variable resistance is connected at its output to the trigger oscillator 38 to control the number of trigger pulses 41 and the corresponding number of high voltage output pulses 42 per exposure. Thus, the control circuit 44 applies an enabling signal 48 to the trigger oscillator 38 to cause it to produce trigger pulses so that the duration of the enabling signal 48 determines the total exposure time, and such duration is adjusted by the setting of variable resistor 46.
As shown in FIG. 2, the x-ray tube 10 of the apparatus of FIG. 1 can be replaced by modified tube 10 which is similar, but is provided with. a different field emission cathode means 14. The cathode 14' is in the form of three or more annular rings 50 having their inner edges 52 provided as sharpened emitting elements which surround the conical anode 12 extending coaxially through such rings. The cathode rings 50 are mounted in a modified support sleeve 16 so that they project inward and are longitudinally spaced along the anode.
Both the tube 10 of FIG. 1 and the modified tube 10 of FIG. 2 are provided with a vacuum arc field emission operation in which the electrical pulses 42 applied to the anode cause the field emission of electrons from the sharpened emitter elements of the cathode. These elctrons are accelerated by the high pulse voltage to the anode where they bombard the anode surface and cause x-rays to be emitted therefrom. The anode 12 may be made of tungsten or tungsten containing alloy, as well as other refractory metals including molybdenum, and the cathode emitting elements may be made of a similar material. During vacuum arc operation, a portion of the cathode material is vaporized to produce positive ions of cathode material which neutralize the negative space charge ordinarily surrounding the cathode and thereby greatly increase the electron discharge current to provide a current on the order of 1,000 amperes during the brief time period of pulses 42. This vacuum arc field emission operation produces an intense x-ray pulse of short duration for each electrical pulse 42, as described in the above-mentioned patents.
As shown in FIG. 3, a curve 54 of the maximum anode temperature rise in degrees Kelvin for different pulse voltages in kilovolts shows that as the voltage increases the anode temperature rise decreases. This is surprising, because one would ordinarily think that the increase in electron energy due to the greater pulse voltage would cause a corresponding increase in anode temperature. However, it has been found that this increase in beam voltage causes the electrons to penetrate through a thicker surface layer of the anode, thereby increasing the effective volume of anode material in which the heat energy is dissipated during each pulse. For example, at 350 kilovolts, the effective depth of penetration of the electrons in a tungsten anode is approximately 17.6 microns, while the effective depth of penetration of electrons at kilovolts is only about 4.4 microns. Thus, it can be seen that the thickness of the anode surface layer in which the heat is dissipated for the 350 kilovolt electron beam is four times that of the 135 kilovolt beam, while the increase in electron energy is only 2.6 times that of the I35 kilovolt electrons. The result is a net decrease in anode temperature with increases'in pulse voltage and this decrease in temperature follows along the curve 54 for a pulse energy of 5 joules per square centimeter. This effect is more fully discussed hereafter with respect to FIG. 5.
FIG. 4 shows a curve 56 of the energy density in joules per square centimeter per pulse at different pulse voltages in kilovolts required to increase the temperature of the tungsten anode surface to its melting point. While the values used in FIG. 4 are calculated values and the actual energy density is lower because of the finite rise time and fall time of the pulse, it can be seen that for a beam of 150 kilovolts, the energy density is about 5 joules per square centimeter to cause anode melting, while at a higher voltage of 350 kilovolts approximately 18 joules per square centimeter are required for melting. Here again, the greater energy density required for anode melting with higher voltage pulses is a result of the increased surface penetration of the electrons which increasesthe effective volume of anode material available for heat dissipation during each pulse, Thus, the energy density required for melting actually increases with increases in beam voltage.
It has been found that high voltage pulses in the range of 250 to 600 kilovolts, and preferably between about 300 and 450 kilovolts, give greatly improved x-ray radiographs of higher overall contrast and greater diagnostic information content, especially when employed for human chest x-rays. Thus, the x-ray pulses produced at these higher voltages penetrate through the spine and rib bones in the chest to expose organs positioned behind such bones, which is extremely advantageous, especially in the study of the lungs whose outer periphery is frequently hidden in radiograph by the x-ray image of the ribs. It should be noted that at extremely high voltages, greater than 600 kilovolts, x-ray scattering becomes a problem which cannot be solved by conventional Bucky grid type collimators. Previous chest x-ray radiographic apparatus have operated at approximately 150 kilovolts and because of the low contrast several radiographs must be taken from different angles to obtain the same information which can be obtained in a single radiograph taken by a multiple pulse exposure at the high voltage level of, for example, 350 kilovolts in the manner of the present invention.
When a pulsed vacuum are field emission x-ray tube is operated at this high voltage of about 350 kilovolts and high current of about 1,000 amperes, the tube life is ordinarily severely limited due to melting of the an ode. Thus, in one such apparatus manufactured by the assignee of the present application, the tube life was only about 50 pulses. This problem has been overcome in the x-ray apparatus of the present invention by reducing the energy per pulse and increasing the number of pulses per exposure. Thus, it has been found that for voltages greater than 250 kilovolts, the energy density per pulse should be less than 20 joules per square centi-' meter, and preferably is about 8 joules per square centimeter or less at 350 kilovolts fora typical multiple pulse exposure of 15 pulses or more. Also, the pulses should have a pulse width less than 100 nanoseconds, or preferably about 30 nanoseconds, and a pulse repetition rate greater than 500 pulses per second, or preferably 1,000 pulses per second to give satisfactory exposure time and total energy per exposure without anode melting. Thus, for chest x-rays, the exposure time must beless than about one-fiftieth of a second to prevent motion blur in the radiograph due to, among other things, heart and lung movement. Also, for a normal chest x-ray, a pulse train of approximately 20 pulses of the preferred values given above is sufficient for a proper exposure of about 20 millirads for a patient six feet from the x-ray source when the x-ray cassette 25 contains Kodak RP54 film and two fluorescent intensifier screens on opposite sides of such film.
As shown in FIG. 5, a curve 58 of anode temperature rise in degrees Kelvin versus time after the start of the first pulse for 135 kilovolt pulses, shows that the temperature rise is a maximum of 2,.l50 K at peak point 60 corresponding to the end of the first pulse. After the pulse terminates, the temperature rise gradually reduces by heat diffusion into the anode material below the bombarded surface layer to an equilibrium temperature of about 22 K. This curve 58 is for pulses of 135 kilovolts and 4 joules energy with a pulse width of 30 nanoseconds and an effective anode area of one square centimeter. However, a second curve 62 of anode temperature rise versus time for a 350 kilovolt pulse of the same energy and other characteristics shows a peak temperature rise 64 at the end of the first pulse of only about 600 K. Thus, the maximum temperature rise for the 350 kilovolt pulse is over 1,500" less than the temperature rise produced by the 135 kilovolt pulse. This dramatically illustrates the reduction in anode temperature rise resulting from increased pulse voltage that was previously referred to in FIG. v3. It should be noted that the curve 62 closely follows the curve 58 after the time of 10 second, since the total energy for both of the corresponding pulses is the same; However, by increasing the amount of pulse energy to 10.5 joules for the 350 kilovolt pulse, a third curve 66 results which has a peak temperature rise 68 at the end of the first pulse of about l,050 K. This peak temperature rise 68 for the 350 kilovolts, 10.5 joule pulse is still much lower than the peak temperature 60 of the 135 kilovolt curve 58, even though the third curve 64 is produced by a pulse of over twice the energy. Thus, as a result of the reduction in temperature, it is possible to greatly increase the energy of the 350 kilovolt pulse without causing anode melting, which reduces the number of pulses required for the necessary total exposureenergys As shown in FIG. 6, when a plur-alityof 350 kilovolt, 10.5 joule pulses corresponding to curve 66 of FIG. 5 are applied to the x-ray tube at a repetition rate of 1,000 pulses per second as part of a pulse train, the anode surface temperature increases with each pulse due to the fact that the anode is at some higher temperature and does not cool down to its initial temperature at the beginning of each successive pulse. Thus, when a plurality of 350 kilovolt, 10.5 joule pulses having a repetition rate of 1,000 pulses per second are applied to the x-ray tube, the anode is progressively heated along a minimum anode temperature line 70 corresponding to the envelope of the residual temperature rise at the endof each pulse and along the maximum anode temperature line 72 corresponding to the envelope of the peak temperature 68 of each pulse. It should be noted that the vertical axis of the curve of FIG. 6 is in terms of total temperature in degrees Kelvin, while the vertical axis of FIG. 5 is in terms of temperature rise or change in temperature per pulse in degrees Kelvin. Thus, the minimum anode temperature envelope of FIG. 6 starts at room temperature which is approximately 300 K and the maximum anode temperature envelope 72 starts at 1,050 +300, or l,350 K.
An important thing to note in FIG. 6 is that the maximum temperature line 70 does not exceed the 3,640 K melting point 74 of the tungsten anode until after 1 milliseconds. Thus, for the 350 killovolt, 10.5 joule pulses producing the temperature curves 66, the maximum exposure time without anode melting is l 10 milliseconds which corresponds to l 10 pulses at a repetition rate of 1,000 pulses per second. As shown in FIG. 5, on the logarithmic time scale at this repetition rate, the second pulse indicated by arrow 76 occurs one millisecond after the first pulse at a point 78 on the temperature curve 66 which corresponds to a temperature rise of approximately 60 K. Thus, there is a minimum anode temperature increase along curve 70 of approxi mately 60 K per pulse and a corresponding increase in a maximum temperature curve 72 of a similar amount per pulse. Of course, this is only an approximation because by the time the fiftieth pulse occurs, as indicated by arrow 80, the temperature curve 56 of the first pulse has decreased to a point 82 of about 24 K. From the above, it can be seen that in order to prevent anode melting which greatly reduces tube life, the total number of pulses per exposure and the pulse repetition rate must be such that the maximum anode temperature line 72 does not cross the-melting point 74 of the anode before termination of the exposure. For most chest xrays, 50 pulses or less will be employed so that there is no danger of this happening when using 350 kilovolt pulses of 10.5 joules energy with a pulse repetition rate of 1,000 pulses per second and a pulse width of 30 nanoseconds in accordance with the preferred embodiment of the invention.
It should be noted that the tube anode on which the temperature curve 66 was calculated had an effective area of 1.8 square centimeters which corresponds to a conical targethaving a maximum base diameter of 0.2 inch and a cone half-angle of approximately 7 measured between the axis and the side surface of such cone. This provides a small x-ray source having an effective diameter of approximately 3 millimeters which is important for x-ray radiography for good image resolution of small objects.
While the invention has been described with particular reference to medical applications such as x-raying the human chest employing a plurality of high intensity pulses of xrays, the short duration, high intensity x-ray pulses produced are also particularly useful in high speed cineradiographic systems using either a high speed pin registered framing camera and an x-ray image intensifier with the pulses synchronized with the camera shutter or a high speed film drum. The individual x-ray pulses are preferably less than 50 nanoseconds long so that the system has exceptional stopmotion characteristics for high speed events and pulse rates up to 1,000 frames per second provide excellent slow motion effects. Applications include studies of crash injuries, rocket motors, vibrations, fast moving internal parts, etc.
It will be obvious to those having ordinary skill in the art that many changes may be made in the details of the above-described preferred embodiments of the present invention without departing from the spirit of the invention. Therefore, the scope of the present invention should only be determined by the following claims.
We claim:
l. Pulsed x-ray apparatus comprising:
an x-ray tube including an evacuated envelope containing field emission cathode means and an anode which emits x-rays;
a high voltage pulse generator having its output connected to said x-ray tube;
exposure control means for triggering said pulse generator and causing it to apply a pulse train containing a plurality of electrical pulses between said cathode and said anode to produce a corresponding number of x-ray pulses during one exposure time period whose duration is determined by said control means, said electrical pulses causing the field emission of electrons from said cathode and the formation of a vacuum arc of vaporized cathode material so that for each electrical pulse said anode is bombarded with an electron discharge of extremely high voltage and high current and emits a corresponding x-ray pulse; and
said electrical pulses having a peak voltage of at least 250 kilovolts and a narrow width so that the anode is bombarded with electron discharge pulses each having an energy density below that causing anode melting and the total number of pulses per exposure and the pulse repetition rate of said pulse train is such as to prevent the anode from being heated to a final maximum temperature above the melting point of the anode material at the end of said exposure period.
2. An x-ray apparatus in accordance with claim 1 in which the anode material contains tungsten.
3. An x-ray apparatus in accordance with claim 1 in which the electrical pulses have a peak voltage between 250 and 600 kilovolts and the electron discharge pulses bombarding the anode have an energy density below 20 joules per square centimeter.
4. An x-ray apparatus in accordance with claim 3 in which the energy density is between 5 and l5 joules per square centimeter.
5. An x-ray apparatus in accordance with claim I in which the field emission cathode means includes a plurality of separate spaced sharp emitting elements. I
6. An x-ray apparatus in accordance with claim 5 in which the emitting elements are needles.
7. An x-ray apparatus in accordance with claim 5 in which the emitting elements are rings having sharpened inner edges surrounding a conical anode.
8. An x-ray apparatus in accordance with claim 1 in which the pulse rate is at least 500 pulses per second and the pulse width is less than 200 nanoseconds.
9. An x-ray apparatus in accordance with claim 1 in which the anode is made of tungsten, the peak voltage is between 300 and 450 kilovolts, the peak current is 1,000 amperes or more, the energy density of the electron discharge pulses bombarding the anode is 15 joules per square centimeter or less, and the pulse width is 50 nanoseconds or less. I
10. A pulsed radiograph method comprising:
producing a pulse train containing a predetermined number of electrical pulses during one x-ray exposure time period, said pulses being of high current of at least 500 amperes and high voltage of at least uum arc electron discharge operation during said exposure time period;
transmitting said x-ray pulses through an object to 10 its melting point. 11. A radiography method in accordance with claim 10 in which saidobject is an adult human chest, the peak voltage is between 300 and 450 kilovolts and the 5 energy density is between 5 and joules per square centimeter. r
12. A radiography method in accordance with claim 10 in which the x-ray exposure is formed by at least 10 pulses having a pulse width of less than nanoseconds and a repetition rate of at least 500 pulses per second.

Claims (12)

1. Pulsed x-ray apparatus comprising: an x-ray tube including an evacuated envelope containing field emission cathode means and an anode which emits x-rays; a high voltage pulse generator having its output connected to said x-ray tube; exposure control means for triggering said pulse generator and causing it to apply a pulse train containing a plurality of electrical pulses between said cathode and said anode to produce a corresponding number of x-ray pulses during one exposure time period whose duration is determined by said control means, said electrical pulses causing the field emission of electrons from said cathode and the formation of a vacuum arc of vaporized cathode materIal so that for each electrical pulse said anode is bombarded with an electron discharge of extremely high voltage and high current and emits a corresponding x-ray pulse; and said electrical pulses having a peak voltage of at least 250 kilovolts and a narrow width so that the anode is bombarded with electron discharge pulses each having an energy density below that causing anode melting and the total number of pulses per exposure and the pulse repetition rate of said pulse train is such as to prevent the anode from being heated to a final maximum temperature above the melting point of the anode material at the end of said exposure period.
2. An x-ray apparatus in accordance with claim 1 in which the anode material contains tungsten.
3. An x-ray apparatus in accordance with claim 1 in which the electrical pulses have a peak voltage between 250 and 600 kilovolts and the electron discharge pulses bombarding the anode have an energy density below 20 joules per square centimeter.
4. An x-ray apparatus in accordance with claim 3 in which the energy density is between 5 and 15 joules per square centimeter.
5. An x-ray apparatus in accordance with claim 1 in which the field emission cathode means includes a plurality of separate spaced sharp emitting elements.
6. An x-ray apparatus in accordance with claim 5 in which the emitting elements are needles.
7. An x-ray apparatus in accordance with claim 5 in which the emitting elements are rings having sharpened inner edges surrounding a conical anode.
8. An x-ray apparatus in accordance with claim 1 in which the pulse rate is at least 500 pulses per second and the pulse width is less than 200 nanoseconds.
9. An x-ray apparatus in accordance with claim 1 in which the anode is made of tungsten, the peak voltage is between 300 and 450 kilovolts, the peak current is 1,000 amperes or more, the energy density of the electron discharge pulses bombarding the anode is 15 joules per square centimeter or less, and the pulse width is 50 nanoseconds or less.
10. A pulsed radiograph method comprising: producing a pulse train containing a predetermined number of electrical pulses during one x-ray exposure time period, said pulses being of high current of at least 500 amperes and high voltage of at least 250 kilovolts peak voltage; applying said electrical pulses between a field emission cathode means and an anode of tungsten in an x-ray tube, to cause a plurality of x-ray pulses to be emitted from said anode by a field emission vacuum arc electron discharge operation during said exposure time period; transmitting said x-ray pulses through an object to form a plurality of x-ray images of said object; exposing a radiographic film with multiple images corresponding to the x-ray images of said object within said exposure time period; and controlling the number of pulses in said pulse train, the pulse repetition rate and pulse width so that the anode is bombarded with electron discharge pulses having an energy density less than 20 joules per square centimeter for each pulse and the tungsten anode is heated to a maximum temperature below its melting point.
11. A radiography method in accordance with claim 10 in which said object is an adult human chest, the peak voltage is between 300 and 450 kilovolts and the energy density is between 5 and 15 joules per square centimeter.
12. A radiography method in accordance with claim 10 in which the x-ray exposure is formed by at least 10 pulses having a pulse width of less than 100 nanoseconds and a repetition rate of at least 500 pulses per second.
US00266218A 1972-06-26 1972-06-26 Pulsed vacuum arc operation of field emission x-ray tube without anode melting Expired - Lifetime US3783288A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26621872A 1972-06-26 1972-06-26

Publications (1)

Publication Number Publication Date
US3783288A true US3783288A (en) 1974-01-01

Family

ID=23013665

Family Applications (1)

Application Number Title Priority Date Filing Date
US00266218A Expired - Lifetime US3783288A (en) 1972-06-26 1972-06-26 Pulsed vacuum arc operation of field emission x-ray tube without anode melting

Country Status (4)

Country Link
US (1) US3783288A (en)
DE (1) DE2331642A1 (en)
FR (1) FR2191398A1 (en)
GB (1) GB1390575A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051378A (en) * 1975-11-28 1977-09-27 Artronix, Inc. High speed x-ray pulsing device
US4947415A (en) * 1986-05-09 1990-08-07 Board Of Regents, The University Of Texas System Flash x-ray apparatus
US5044004A (en) * 1986-05-09 1991-08-27 Board Of Regents, The University Of Texas System Flash X-ray apparatus
US5202910A (en) * 1990-08-28 1993-04-13 North American Philips Corporation Anode for arc discharge devices
WO1998057349A1 (en) * 1997-06-13 1998-12-17 Commissariat A L'energie Atomique X-ray tube comprising an electron source with microtips and magnetic guiding means
US6064718A (en) * 1998-09-29 2000-05-16 The United States Of America As Represented By The Secretary Of The Navy Field emission tube for a mobile X-ray unit
US6464136B2 (en) 1999-12-28 2002-10-15 Christopher S. Walsh Record and verification method, apparatus and system
US6495002B1 (en) * 2000-04-07 2002-12-17 Hy-Tech Research Corporation Method and apparatus for depositing ceramic films by vacuum arc deposition
US6497358B1 (en) 1999-09-13 2002-12-24 Christopher S. Walsh Record and verification method and system for radiation therapy
EP1476889A1 (en) * 2002-01-22 2004-11-17 The University of North Carolina at Chapel Hill Large-area individually addressable multi-beam x-ray system
US20050031069A1 (en) * 2003-08-07 2005-02-10 General Electric Company System and method for detecting an object by dynamically adjusting computational load
US20050180542A1 (en) * 2004-02-17 2005-08-18 General Electric Company CT-Guided system and method for analyzing regions of interest for contraband detection
US20050226361A1 (en) * 2000-10-06 2005-10-13 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
US20050226360A1 (en) * 2004-04-06 2005-10-13 General Electric Company System and method for detecting objects with differential operators
US20050249416A1 (en) * 2004-05-07 2005-11-10 General Electric Company Contraband detection system and method using variance data
US20060274889A1 (en) * 2000-10-06 2006-12-07 University Of North Carolina At Chapel Hill Method and apparatus for controlling electron beam current
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US20080069420A1 (en) * 2006-05-19 2008-03-20 Jian Zhang Methods, systems, and computer porgram products for binary multiplexing x-ray radiography
US20090022264A1 (en) * 2007-07-19 2009-01-22 Zhou Otto Z Stationary x-ray digital breast tomosynthesis systems and related methods
US7492855B2 (en) 2003-08-07 2009-02-17 General Electric Company System and method for detecting an object
US7624027B1 (en) 2002-10-29 2009-11-24 Practice Velocity, LLC Method and system for automated medical records processing
US20100239064A1 (en) * 2005-04-25 2010-09-23 Unc-Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
US20100329413A1 (en) * 2009-01-16 2010-12-30 Zhou Otto Z Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8358739B2 (en) 2010-09-03 2013-01-22 The University Of North Carolina At Chapel Hill Systems and methods for temporal multiplexing X-ray imaging
US8606594B2 (en) 2002-10-29 2013-12-10 Practice Velocity, LLC Method and system for automated medical records processing
US9782136B2 (en) 2014-06-17 2017-10-10 The University Of North Carolina At Chapel Hill Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging
US9842188B2 (en) 2002-10-29 2017-12-12 Practice Velocity, LLC Method and system for automated medical records processing with cloud computing
US10714213B2 (en) 2002-10-29 2020-07-14 Practice Velocity, LLC Method and system for automated medical records processing with patient tracking
US10835199B2 (en) 2016-02-01 2020-11-17 The University Of North Carolina At Chapel Hill Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging
US11361853B2 (en) 2002-10-29 2022-06-14 Practice Velocity, LLC Method and system for automated medical records processing with telemedicine
US11558950B2 (en) * 2017-09-02 2023-01-17 Cetteen Gmbh Control device for an x-ray tube and method for operating an x-ray tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700992C2 (en) * 1997-01-14 1999-10-07 Siemens Ag X-ray tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309523A (en) * 1963-06-24 1967-03-14 Field Emission Corp X-ray tube having field emission cathode and evaporative anode in combination with electrical pulser means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309523A (en) * 1963-06-24 1967-03-14 Field Emission Corp X-ray tube having field emission cathode and evaporative anode in combination with electrical pulser means

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A 50 Millimicrosec. Flash x ray Phot. System for Hyervel. Research Grundhauser et al. Oct. 18, 1960, *
Fexitron Field Emission Corp. Oct. 18, 1960, *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051378A (en) * 1975-11-28 1977-09-27 Artronix, Inc. High speed x-ray pulsing device
US4947415A (en) * 1986-05-09 1990-08-07 Board Of Regents, The University Of Texas System Flash x-ray apparatus
US5044004A (en) * 1986-05-09 1991-08-27 Board Of Regents, The University Of Texas System Flash X-ray apparatus
US5202910A (en) * 1990-08-28 1993-04-13 North American Philips Corporation Anode for arc discharge devices
WO1998057349A1 (en) * 1997-06-13 1998-12-17 Commissariat A L'energie Atomique X-ray tube comprising an electron source with microtips and magnetic guiding means
FR2764731A1 (en) * 1997-06-13 1998-12-18 Commissariat Energie Atomique X-RAY TUBE COMPRISING A MICROPOINT ELECTRON SOURCE AND MAGNETIC FOCUSING MEANS
US6259765B1 (en) * 1997-06-13 2001-07-10 Commissariat A L'energie Atomique X-ray tube comprising an electron source with microtips and magnetic guiding means
US6064718A (en) * 1998-09-29 2000-05-16 The United States Of America As Represented By The Secretary Of The Navy Field emission tube for a mobile X-ray unit
US6497358B1 (en) 1999-09-13 2002-12-24 Christopher S. Walsh Record and verification method and system for radiation therapy
US6464136B2 (en) 1999-12-28 2002-10-15 Christopher S. Walsh Record and verification method, apparatus and system
US6495002B1 (en) * 2000-04-07 2002-12-17 Hy-Tech Research Corporation Method and apparatus for depositing ceramic films by vacuum arc deposition
US20060018432A1 (en) * 2000-10-06 2006-01-26 The University Of North Carolina At Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US7227924B2 (en) 2000-10-06 2007-06-05 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US20050226361A1 (en) * 2000-10-06 2005-10-13 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
US20060274889A1 (en) * 2000-10-06 2006-12-07 University Of North Carolina At Chapel Hill Method and apparatus for controlling electron beam current
EP1476889A1 (en) * 2002-01-22 2004-11-17 The University of North Carolina at Chapel Hill Large-area individually addressable multi-beam x-ray system
EP1476889A4 (en) * 2002-01-22 2007-02-28 Univ North Carolina Large-area individually addressable multi-beam x-ray system
US7624027B1 (en) 2002-10-29 2009-11-24 Practice Velocity, LLC Method and system for automated medical records processing
US8606594B2 (en) 2002-10-29 2013-12-10 Practice Velocity, LLC Method and system for automated medical records processing
US10714213B2 (en) 2002-10-29 2020-07-14 Practice Velocity, LLC Method and system for automated medical records processing with patient tracking
US11361853B2 (en) 2002-10-29 2022-06-14 Practice Velocity, LLC Method and system for automated medical records processing with telemedicine
US9842188B2 (en) 2002-10-29 2017-12-12 Practice Velocity, LLC Method and system for automated medical records processing with cloud computing
US7889835B2 (en) 2003-08-07 2011-02-15 Morpho Detection, Inc. System and method for detecting an object by dynamically adjusting computational load
US20050031069A1 (en) * 2003-08-07 2005-02-10 General Electric Company System and method for detecting an object by dynamically adjusting computational load
US7492855B2 (en) 2003-08-07 2009-02-17 General Electric Company System and method for detecting an object
US7609807B2 (en) 2004-02-17 2009-10-27 General Electric Company CT-Guided system and method for analyzing regions of interest for contraband detection
US20050180542A1 (en) * 2004-02-17 2005-08-18 General Electric Company CT-Guided system and method for analyzing regions of interest for contraband detection
US7031430B2 (en) 2004-04-06 2006-04-18 General Electric Company System and method for detecting objects with differential operators
US20050226360A1 (en) * 2004-04-06 2005-10-13 General Electric Company System and method for detecting objects with differential operators
US7356174B2 (en) 2004-05-07 2008-04-08 General Electric Company Contraband detection system and method using variance data
US20050249416A1 (en) * 2004-05-07 2005-11-10 General Electric Company Contraband detection system and method using variance data
US20100239064A1 (en) * 2005-04-25 2010-09-23 Unc-Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
US8155262B2 (en) 2005-04-25 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
US8189893B2 (en) 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
US20080069420A1 (en) * 2006-05-19 2008-03-20 Jian Zhang Methods, systems, and computer porgram products for binary multiplexing x-ray radiography
US7751528B2 (en) 2007-07-19 2010-07-06 The University Of North Carolina Stationary x-ray digital breast tomosynthesis systems and related methods
US20090022264A1 (en) * 2007-07-19 2009-01-22 Zhou Otto Z Stationary x-ray digital breast tomosynthesis systems and related methods
US20100329413A1 (en) * 2009-01-16 2010-12-30 Zhou Otto Z Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8995608B2 (en) 2009-01-16 2015-03-31 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8358739B2 (en) 2010-09-03 2013-01-22 The University Of North Carolina At Chapel Hill Systems and methods for temporal multiplexing X-ray imaging
US9782136B2 (en) 2014-06-17 2017-10-10 The University Of North Carolina At Chapel Hill Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging
US9907520B2 (en) 2014-06-17 2018-03-06 The University Of North Carolina At Chapel Hill Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging
US10835199B2 (en) 2016-02-01 2020-11-17 The University Of North Carolina At Chapel Hill Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging
US11558950B2 (en) * 2017-09-02 2023-01-17 Cetteen Gmbh Control device for an x-ray tube and method for operating an x-ray tube

Also Published As

Publication number Publication date
GB1390575A (en) 1975-04-16
DE2331642A1 (en) 1974-01-17
FR2191398A1 (en) 1974-02-01

Similar Documents

Publication Publication Date Title
US3783288A (en) Pulsed vacuum arc operation of field emission x-ray tube without anode melting
US2837657A (en) Radiographic method and apparatus
US4287420A (en) Stereoscopic X-ray device
US3860817A (en) Reducing patient X-ray dose during fluoroscopy with an image system
JPH02174836A (en) Selectively imaging apparatus for human body
GB1043456A (en) Stereo x-ray device
DE10334782A1 (en) Electron source and cable for X-ray tubes
US3149257A (en) X-ray devices for use on the human body
Sato et al. 10 kHz microsecond pulsed X-ray generator utilising a hot-cathode triode with variable durations for biomedical radiography
Sato et al. High-speed soft x-ray generators in biomedicine
Komarskiy et al. The pulsed X-ray radiation source based on a semiconductor opening switch with the focal point diameter of 0.5 mm and its application
US3198947A (en) Apparatus for producing visual images of x-rayed objects
EP0116622B1 (en) Apparatus for producing a tomographic x-ray image
JP2022516156A (en) Systems and methods for providing digitally switchable X-ray sources
US4228356A (en) Optimum contrast panoramic dental radiography and methods of providing therefor
Sato et al. Flash x-ray techniques for biomedical radiography
Sato et al. Diagnostic soft flash x-ray techniques
US4109151A (en) Dual filament x-ray tube used in production of fluoroscopic images
US3428803A (en) Apparatus for simultaneously producing x-ray and electron radiographs of the same object
Charbonnier Proposed Flash X-Ray System for X-Ray Diffraction with Submicrosecond Exposure Time
Barty et al. Time-gated medical imaging with ultrafast laser-plasma x rays
Greatorex Image intensification using a flying-spot X-ray tube
JP7007319B2 (en) Radiographing device, operation method of radiography device, operation program of radiography device
Isobe et al. Flash x-ray apparatus with spectrum control functions for medical use and Fuji Computed Radiography
Dantzig et al. Flash X-ray diffraction systems