JP4160659B2 - Manufacturing method and manufacturing apparatus for foam molded article - Google Patents

Manufacturing method and manufacturing apparatus for foam molded article Download PDF

Info

Publication number
JP4160659B2
JP4160659B2 JP19501698A JP19501698A JP4160659B2 JP 4160659 B2 JP4160659 B2 JP 4160659B2 JP 19501698 A JP19501698 A JP 19501698A JP 19501698 A JP19501698 A JP 19501698A JP 4160659 B2 JP4160659 B2 JP 4160659B2
Authority
JP
Japan
Prior art keywords
particles
foamed
passage
bulk density
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19501698A
Other languages
Japanese (ja)
Other versions
JP2000006253A (en
Inventor
良 菊澤
真人 内藤
圭吾 成田
卓 北浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP19501698A priority Critical patent/JP4160659B2/en
Publication of JP2000006253A publication Critical patent/JP2000006253A/en
Application granted granted Critical
Publication of JP4160659B2 publication Critical patent/JP4160659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は発泡成形体の製造方法及び製造装置に関する。
【0002】
【従来の技術】
従来、ポリオレフィン系樹脂発泡粒子を成形する方法としては、発泡粒子を金型内に充填し、スチームで加熱して発泡粒子を二次発泡させ粒子相互を融着させる方法(以下、このような成形方法をバッチ式成形方法と呼ぶ。)のみが採用されていた。一方、ポリスチレン系樹脂発泡粒子の場合には、発泡粒子を上下のベルト間に挟んで搬送しながら加熱領域を通過させて連続的に成形する方法(以下、このような成形方法を連続成形方法と呼ぶ。)も採用されており、スチームで加熱する方法を採用した特公昭52−2424号の方法、高周波で加熱する方法を採用した特公昭41−1632号の方法、熱風で加熱する方法を採用した特公昭47−42621号の方法等が知られている。連続成形方法はバッチ式成形方法に比べ、発泡粒子成形体を連続的に製造でき、しかも長尺な成形体を得ることができる利点がある。
【0003】
【発明が解決しようとする課題】
しかしながら、特公昭41−1632号に記載されているような高周波加熱による方法は、装置が大型で高価となるという問題や、高周波照射時にスパークを生じる危険等があり、更に加熱温度範囲を狭い範囲内に制御して加熱しなければならないポリオレフィン系樹脂発泡粒子の加熱手段としては不向きである。また特公昭47−42621号に記載されているような熱風加熱方法も、加熱温度の制御が難しく、且つスチームよりも熱容量が小さいために均一に加熱することが困難であり、やはりポリオレフィン系樹脂発泡粒子を連続成形するための加熱手段としては不向きであった。
【0004】
一方、スチーム加熱による方法は、ポリオレフィン系樹脂発泡粒子にも有効な方法であるが、ポリオレフィン系樹脂発泡粒子を、例えば特公昭52−2424号に記載されているようなスチーム加熱による連続成形方法で成形しようとすると、発泡粒子加熱用のスチームが発泡粒子供給側へ漏れ出し、加熱不足による粒子の融着不良や二次発泡不良等を生じたり、このスチーム漏れが激しくなると粒子が供給側に逆流してしまう等の問題があった。この理由はポリスチレン系樹脂発泡粒子と、ポリオレフィン系樹脂発泡粒子との二次発泡性能の違いによるものと考えられる。即ち、ポリスチレン系樹脂は非晶質であることや、発泡粒子製造の際に用いた発泡剤の保持性が良好で、発泡粒子中に発泡剤を数%程度は含有していること等により、比較的低い温度(通常100℃以下)で発泡粒子の二次発泡が生じる。このためポリスチレン系樹脂発泡粒子を連続成形する場合、発泡粒子が加熱領域に到達する前に緩やかな二次発泡が生じて粒子相互間の間隙を塞ぎ、しかもポリスチレン系樹脂発泡粒子は、1.0kg/cm2 G前後という比較的低圧のスチームで成形が可能であることと相俟って、スチームの粒子供給側への漏れ出しを容易に防止でき、この結果、確実な成形が行えるものと考えられる。
【0005】
これに対してポリオレフィン系樹脂は結晶性であり、しかも発泡粒子の製造の際に用いた発泡剤は、比較的短時間で粒子内から逃散してしまうため、ポリオレフィン系樹脂発泡粒子を二次発泡させるには、ポリスチレン系樹脂粒子発泡粒子の場合よりも高い温度とする必要がある。このため、スチームの漏れ出しを防止できる程度にポリオレフィン系樹脂発泡粒子を加熱領域前で二次発泡させることは容易ではないとともに、ポリオレフィン系樹脂発泡粒子を二次発泡させるためには高圧のスチームを供給する必要があるため、加熱領域前でポリオレフィン系樹脂発泡粒子をある程度二次発泡させ得たとしても、発泡粒子の二次発泡力のみでは高圧のスチームの漏れ出しを防止することが困難であったと考えられる。このように発泡粒子を二次発泡させて粒子相互を融着させて良好な成形体を得るために、ポリスチレン系樹脂発泡粒子の場合よりも高い圧力のスチームを必要とするポリオレフィン系樹脂発泡粒子の場合、加熱用スチームの漏れが生じ易く、この結果、加熱用スチームの圧力が低下して発泡粒子を十分に加熱することができなくなって良好な成形体が得られなくなるばかりでなく、スチームの漏れが激しくなると発泡粒子が供給側に逆流して成形不可能となるという問題があった。
【0006】
上記のような問題に鑑み、ポリオレフィン系樹脂発泡粒子を連続的に成形する方法として本出願人は、▲1▼発泡粒子を発泡粒子供給領域において、元の嵩体積の40〜70%の体積に圧縮してからスチームで加熱する方法(特開平9−104026号)、▲2▼内圧が高められた発泡粒子を、発泡粒子供給領域において徐々に圧縮してからスチームで加熱する方法(特開平9−104027号)を提案した。しかしながら、これらの方法も以下のような問題を未だ有していた。
【0007】
即ち、▲1▼の方法では発泡粒子が元の嵩体積の40〜70%の体積に圧縮された状態で加熱されるため、得られる成形体は元の発泡粒子の嵩密度に対して、大幅に密度が増加してしまうという問題、即ち、元の発泡粒子の見掛けの発泡倍率に対して大幅に発泡倍率が低下したものとなってしまうという問題があった。
【0008】
一方、▲2▼の方法では内圧が高められた発泡粒子を使用するため、▲1▼の方法で得られる成形体よりも高発泡倍率の成形体を得ることができるが、得られる成形体の密度を元の発泡粒子の嵩密度より小さくすることはできなかった。▲1▼の方法では、発泡粒子供給領域において発泡粒子を徐々に圧縮し、圧縮されたままの状態でスチーム加熱により粒子間を融着させるからである。
【0009】
以上説明したように、従来のポリオレフィン系樹脂発泡粒子の連続成形法におけるいずれの方法も、元の発泡粒子の嵩密度より成形体の密度を小さくすることが出来ない方法であった。従って、従来の方法では、目標とする成形体の密度より小さな嵩密度の発泡粒子を予め用意しなければならないので、発泡粒子の貯蔵のためのスペースを広くとらなければならないという問題を有していた。
【0010】
本発明は上記の点に鑑みなされたもので、ポリオレフィン系樹脂発泡粒子(以下、発泡粒子と呼ぶ。)を使用する連続成形において、発泡粒子の嵩密度より小さな密度の成形体を得ることができる発泡成形体の製造方法及び製造装置を提供することを目的とする。本発明を使用すれば、発泡粒子を予め必要以上に高発泡させなくても高発泡倍率の成形体(密度を小さくしなくても密度の小さい成形体)を得ることができるので、発泡粒子の貯蔵スペースを節約することができる。
【0011】
【課題を解決するための手段】
即ち本発明の発泡成形体の製造方法は、構造材にて囲まれて形成された断面が略矩形状をなす通路内の上下面に沿って、連続的に移動するベルト間にポリオレフィン系樹脂発泡粒子を供給し、次いで上記通路内の加熱領域及び冷却領域を順次通過させて連続的に発泡成形体を製造する方法において、発泡粒子の嵩密度を低下させる工程、及び発泡粒子間を融着させる工程を設け、該発泡粒子の嵩密度を低下させる工程の通路内の最大の横断面積を、発泡粒子供給領域の供給開始部の横断面積よりも大きくし、ポリオレフィン系樹脂発泡粒子の嵩密度を小さくするには十分であるが、ポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分な温度のスチームを通路内に供給することにより元の発泡粒子の嵩密度よりも密度が小さい発泡成形体を得ることを特徴とする。
【0012】
また本発明においては、供給するポリオレフィン系樹脂発泡粒子の内圧が2.0atm以上であることが好ましい。
【0014】
また本発明の発泡成形体の製造装置は、構造材にて囲まれて形成された断面が略矩形状をなす通路内の上下面に沿って、連続的に移動するベルト間にポリオレフィン系樹脂発泡粒子を供給し、次いで上記通路内の加熱領域及び冷却領域を順次通過させて連続的に元の発泡粒子の嵩密度よりも密度が小さい発泡成形体を製造するための製造装置であって、発泡粒子の嵩密度を低下させる手段及び発泡粒子間を融着させる手段が順次設けられており、該発泡粒子の嵩密度を低下させる手段が、発泡粒子の嵩密度を低下させる領域の通路内の最大の横断面積を、発泡粒子供給領域の供給開始部の横断面積よりも大きくしたこと、及びポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分な温度のスチームを通路内に供給するスチーム供給部を形成したことを特徴とする。
【0016】
【発明の実施の形態】
本発明において使用する発泡粒子の基材樹脂としては、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン、ポリプロピレン、ポリブチレン等のオレフィン系単独重合体、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−プロピレンブロック共重合体、エチレン−プロピレンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体等のオレフィン系共重合体、或いは上記ポリオレフィン系単独重合体やポリオレフィン系共重合体と、スチレン系樹脂及び/又はアクリル系樹脂とのグラフト重合体等のポリオレフィン系樹脂が挙げられ、これらは適宜混合して用いることもできる。これらの樹脂は無架橋のまま、或いは架橋した状態で使用される。
【0017】
本発明において用いる発泡粒子としては、嵩密度が0.009〜0.4g/cm3 のものが好ましく、また無架橋ポリプロピレン系樹脂或いは無架橋ポリエチレン系樹脂を基材樹脂とし、かつ発泡粒子の示差走査熱量測定で得られるDSC曲線に2つの吸熱ピーク(特公昭63−44779号、特公平7−39501号参照)を有するものが好ましい。上記DSC曲線とは、発泡粒子0.5〜4mgを示差走査熱量計によって、室温から10℃/分の昇温速度で210℃まで昇温して測定した際に得られるDSC曲線をいう。基材樹脂が無架橋ポリプロピレン系樹脂或いは無架橋ポリエチレン系樹脂であって、DSC曲線に2つの吸熱ピークを有する発泡粒子は、2つの吸熱ピークを有しないものに比べ、表面平滑性、寸法安定性及び機械的強度に優れた成形体が得られる効果がある。
【0018】
本発明における発泡粒子は、例えばポリオレフィン系樹脂と発泡剤とを密閉容器内で水に分散させて樹脂粒子の軟化点以上の温度に加熱して樹脂粒子に発泡剤を含浸させた後、容器内より低圧の雰囲気下に樹脂粒子と水とを放出して樹脂粒子を発泡させる等の方法で得られる。
【0019】
本発明方法において使用する発泡粒子は、空気等で加圧処理を施すことによって大気圧以上の内圧を付与する必要があり、2.0atm(絶対圧)以上の内圧を有するものが好ましく、2.5〜7.0atm(絶対圧)の内圧を有するものが特に好ましい。内圧が大気圧未満の場合は、得られる成形体の密度を発泡粒子の嵩密度以下にするのが困難である。内圧が大気圧以上であっても2.0atm未満の場合は、得られる成形体の密度を発泡粒子の嵩密度以下にすることはできるが、発泡力が落ちるため成形体の外観が若干劣ったものとなる。使用する発泡粒子の粒子重量等に特に制限はないが、通常、平均粒子重量0.5〜5mg程度のものが用いられる。
【0020】
図1は本発明の発泡粒子の連続成形方法を実施するための成形装置の一例を示し、図中Aは発泡粒子供給領域(以下、供給領域Aと呼ぶ。)、Bは成形体の冷却領域(以下、冷却領域Bと呼ぶ。)、Cは発泡粒子や成形体が移送される通路(以下、通路Cと呼ぶ。)、Dは通路Cを拡張すると共にスチーム加熱により発泡粒子の嵩密度を低下させる領域(以下、嵩密度低下領域Dと呼ぶ。)、Eはスチーム加熱して発泡粒子間を融着させる領域(以下、融着領域Eと呼ぶ。)、Fは発泡粒子供給領域における供給開始部(以下、供給開始部Fと呼ぶ。)である。この成形装置は、発泡粒子を蓄えたホッパー1と、上側ロール2a、2b間を無端走行するベルト3と、下側ロール4a、4b間を無端走行するベルト5を有し、ホッパー1から供給領域Aに供給された発泡粒子11を、無端走行する上下のベルト3、5間に挟んで通路Cを通過する間にスチーム加熱して発泡粒子の嵩密度を低下させてから、スチーム加熱して発泡粒子間を融着させ、成形体が得られるよう構成されている。尚、図中18は支柱である。
【0021】
上記本発明の成形装置において、上側ロール2a、下側ロール4aは駆動回転し、上側ロール2b、下側ロール4bは回転せずに、上側のベルト3、下側のベルト5は、それぞれロール2b、4bの周面を摺動するように構成されている。ロール2b、4bのベルトと接触する面には、ポリテトラフロロエチレン(テフロン)等からなる滑材が設けられ、当該面での滑り性が向上されるようになっている。上側ロール2bは図示しない駆動手段によって上下に位置を移動できるように構成され、上側ロール2bの位置を変えることにより、供給領域Aにおける上側のベルト3の傾斜角を可変できるように構成されている。6は補助板で、該補助板6は上側ロール2bを上下させて上側のベルト3の傾斜角を調節することにより、供給開始部Fの高さ(供給開始部Fの横断面積)を変え得るように構成されている。従って、例えば、上側ロール2bの位置を低くすることにより、嵩密度低下領域Dの通路C内の最大の横断面積を、供給開始部Fの横断面積よりも大きくすることができる。尚、供給開始部Fは上側ロール2bの中心20の真下に当たる。
【0022】
上記供給領域Aにおいて供給された発泡粒子は、次に、上下の厚さ規制板7、8と、該厚さ規制板7、8の両側部に設けられた幅規制板(特に図示せず。)とによって囲まれた、断面が略矩形状の空間部を有する通路Cに移送されるが、この通路C内において上側のベルト3の下側部3a、下側のベルト5の上側部5aは、厚さ規制板7、8間に挟まれて走行するように構成されている。厚さ規制板7、8、幅規制板及び前記補助板6はアルミ板の如き金属板等からなり、ベルト3、5と接する側の面には、ベルト3、5の滑り性が良くなるように、テフロン等からなる滑材が固定されている。尚、無端走行するベルトは上下のみに設ける場合に限らず、両側面側にも設けることができる。両側面側にも無端走行するベルトを設けておくと、成形体が幅規制板等の表面と擦れる等の虞れがなくなるため、得られる成形体の側面部の形状や外観を改善することができる。
【0023】
本発明においては、発泡粒子間融着領域Eの前に設けられた嵩密度低下領域Dにおいて、ポリオレフィン系樹脂発泡粒子の嵩密度を小さくするには十分であるが、ポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分な温度のスチームをスチーム供給部17aから通路内に噴出することが望ましい。スチームの温度が発泡粒子の嵩密度を小さくするのに十分な温度に達していなければ、発泡粒子の嵩密度を小さくすることができず、元の発泡粒子の見掛けの発泡倍率より成形体の発泡倍率を大きくするという本発明の目的を達成することができない。一方、スチームの温度が発泡粒子を互いに融着させるのに充分な温度に達していると、得られる成形体に密度の疎密が形成されたり、成形体の表面状態が悪化したりしてしまう。
【0024】
ポリオレフィン系樹脂発泡粒子の嵩密度を小さくするには十分であるが、ポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分なスチームの温度は、発泡粒子に付与された内圧の大小により多少異なるが、例えば、発泡粒子を構成する樹脂組成物が示す融点(以下、Mpと呼ぶ。)を基準とすると、通常、発泡粒子が無架橋ポリプロピレン系樹脂からなる場合は、Mp−35℃〜Mp−15℃、発泡粒子が無架橋ポリエチレン系樹脂からなる場合は、Mp−20℃〜Mp−10℃である。尚、上記Mpは、発泡粒子0.5〜4mgを示差走査熱量計によって、室温から210℃まで10℃/分の速度で昇温し、次いで40℃まで10℃/分の速度で降温し、再び210℃まで10℃/分の速度で昇温した時に得られる第二回目のDSC曲線における主融解ピークの頂点の温度をいう。
【0025】
スチーム供給部17aからスチームを通路内に噴出させるためには、ベルト3、5はスチーム透過性を有することが必要であり、通常は厚みが0.2〜1.0mm程度のステンレススチールベルトに、直径0.5〜3.0mmの貫通穴を、3〜50mm程度のピッチで多数穿設したものが使用される。
【0026】
スチーム供給部17aから供給された発泡粒子の嵩密度を小さくするための加熱用スチームは、厚み規制板7、8に貫通孔から、ベルト3、5に設けられた貫通孔を経て通路C内に供給されるようになっている。
【0027】
本発明においては、嵩密度低下領域Dの上流側において、発泡粒子を確実に圧縮するために、例えば、図1に示すように通路Cの上下に突起13を設けることができる。発泡粒子は、スチーム供給部17a又は/及びスチーム供給部17bから供給された加熱用スチームの影響を受けて、上記突起13上又はそのやや上流側の地点から熱膨張が始まる。その熱膨張は突起13と突起13の間では発泡粒子間の空隙を埋めるように作用し、その結果、加熱用スチームが発泡粒子供給側へ多量に漏れだすことによる発泡粒子の逆流を防止することができる。圧縮する程度は、突起13の突出高さを変えることにより、又は供給領域Aにおける上側ベルト3の傾斜角を変えることにより調整することができる。
【0028】
上記突起13は上下どちらか一方に設けてもよいし、上下両方に設けても良く、上部又は下部のいずれか一方のみに設けても、上下それぞれの位置をずらして配置しても良い。また突起13の形状は図示した如き台形状に限らず、任意の形状とすることができる。
なお、突起13とベルト3、5との滑り性を高めるために、突起13のベルト3、5と接する側の表面にテフロン等からなる滑材を設けるか、突起13全体をテフロン等によって形成することが好ましい。
【0029】
嵩密度が低下した発泡粒子は、次にベルト3、5間に挟まれた状態で発泡粒子間融着領域Eに送られる。発泡粒子は、この領域でスチーム供給部17bから通路C内に噴出されるスチームにより加熱され、発泡粒子間に空隙が存在しているならばその空隙を埋めるように膨張しつつ相互に融着する。発泡粒子間を融着させる領域Eには発泡粒子11をスチーム加熱して成形するためのスチーム供給部17bを有し、また発泡粒子間融着領域Eの上流側に加熱用スチームやスチームのドレインを真空吸引するための吸引部9を有している。吸引部9を設けて吸引を行うことにより、ドレイン(凝縮水)が通路内に溜まって発泡粒子の供給を阻害するのを防止することができる。吸引部は発泡粒子間融着領域Eの下流側に設けることもできる。下流側に吸引部を設けドレンを吸引することにより、ドレンを原因とする成形体の冷却効果の低下によって成形体に反りが生じる等の問題発生を防止できる。
【0030】
スチーム供給部17bから供給された発泡粒子間を融着させるための加熱用スチームは、厚み規制板7、8に貫通孔から、ベルト3、5に設けられた貫通孔を経て通路C内に供給されるようになっている。スチーム供給部17bから供給される加熱用スチームの温度は、前記Mpを基準とすると、通常、発泡粒子が無架橋ポリプロピレン系樹脂からなる場合は、Mp−15℃〜Mp+10℃、発泡粒子が無架橋ポリエチレン系樹脂からなる場合は、Mp−10℃〜Mp+10℃である。
【0031】
スチームにより加熱された発泡粒子は通路C内で粒子間空間を完全に埋めるように膨張し、かつ粒子相互で融着して成形体を形成し(この時点では完全な成形体とは言えない状態であるが、発泡粒子相互間の融着は生じているので、便宜上、成形体と呼ぶ。)、ひき続き冷却手段10を備えた冷却領域Bに移送されて冷却される。冷却手段10としては、例えば冷却水循環パイプを内挿した冷却板等が用いられる。以上の工程が連続的に繰り返し行われ、長尺な成形体12が得られる。尚、特に図示しないが、吸引部9、スチーム供給部17a,b及び冷却手段10は、厚み規制板7、8側に設けられているのみならず、幅規制板側にも設けられていても良い。
【0032】
本発明において、発泡粒子間融着領域Eの終了地点から成形体が充分に冷却されるまでの間、通路内の横断面積が実質的に一定となるようにしておくことが好ましい。成形体が充分冷却する迄の間に発泡粒子間融着領域Eの終了地点から下流側で成形体を圧縮すると(発泡粒子間融着領域E以降の通路内空間の横断面積を狭くすると)、得られた成形体12の表面に樹脂の流れ模様のような跡が残り、成形体12の表面状態が低下する。また逆に発泡粒子間を融着させる領域E以降の通路内空間の横断面積が広がるようにすると、冷却が充分に行えなくなる虞れがある。
【0033】
【実施例】
実施例1
図1に示す嵩密度低下領域D、発泡粒子間融着領域E及び台形の突起13を設けた装置を使用した。通路Cの上側ロール2b通過後から冷却領域Bの成形体出口までの幅は300mmで一定とした。従って、発泡粒子間融着領域Eの通路内高さと供給領域Aの供給開始部Fの高さの比が、嵩密度低下領域Dの通路内の最大の横断面積と供給領域Aの供給開始部Fの横断面積の比になる。又、突起13の終端から冷却領域Bの出口までの通路Cの高さは52mmで一定とし、突起13で狭められた通路Cの高さは20mmとした。供給開始部Fから突起13の始端までの長さは1.3m、突起13全体の長さは0.2m、突起13の終端から冷却領域Bの入口までの長さは0.8m、冷却領域Bの長さは6mとした。
【0034】
上記の装置に、無架橋エチレン−プロピレンランダム共重合体(エチレン成分4.1%、メルトフローインデックス8g/10分)を基材樹脂とした発泡粒子(内圧4.0atm、嵩密度0.05g/cm3 、Mp138℃)をホッパー1から供給し、ベルト3、5間に挟んで供給領域A、嵩密度低下領域D、融着領域E、冷却領域Bを順次移送して発泡成形体を製造した。融着領域Eの通路内高さ、供給開始部Fの高さ、スチーム供給部17a、17bから通路Cに導入した加熱用スチーム圧力、ラインスピード、得られた成形体の密度を表1にあわせて示す。尚、本実施例では、図1に示すように吸引部9において真空吸引を行った。
【0035】
【表1】

Figure 0004160659
【0036】
実施例2
発泡粒子の内圧を2.5atmとし、ラインスピードを1.5m/分とした以外は実施例1と同様な条件で発泡成形体を製造した。得られた成形体の密度を表1に示す。
【0037】
実施例3
無架橋直鎖状低密度ポリエチレン(α−オレフィン成分は4−メチルペンテン、密度0.925g/cm3 、メルトフローインデックス1.3g/10分)を基材樹脂とした発泡粒子(Mp124℃)を用い、嵩密度低下領域Dは設けたが、スチーム供給部17aからのスチームを供給しなかったこと以外は実施例1と同様な条件で発泡成形体を製造した。得られた成形体の密度を表1に示す。なお、実施例3においては、嵩密度の低下は下流の発泡粒子間融着領域Eから逆流して洩れてくるスチームで加熱することにより行った。
【0038】
発泡粒子の嵩密度の測定は、上部に開口部を有する容積1000cm3 の容器に、常温常圧下にて発泡粒子を充填し、次に、容器の開口部から溢れている発泡粒子を取り除いて、発泡粒子の嵩高さを容器の開口部と略一致させた場合の容器内の発泡粒子の重量を図り、該重量を容器の容積1000cm3 で割ることにより求めた。
【0039】
発泡成形体の密度の測定は、長さ50cmに切断した成形体について養生室(常圧、実施例1と2は60℃、実施例3は80℃)での24時間放置、常温・常圧での24時間放置を順次行った後、重量と体積を測定し、重量を体積で割ることにより求めた。尚、長尺の成形体の切断、養生室での放置は、製造後直ちに行った。
【0040】
実施例1〜3で得られた発泡成形体は、発泡粒子間に空隙が認められないまでに良く埋まっており、成形体表面に粒子間凹みがほとんど認められず、粒子間融着性も良好であった。
【0041】
【発明の効果】
以上説明したように本発明方法によれば、従来のポリオレフィン系樹脂発泡粒子を連続的に成型して発泡成形体を製造する方法と異なり、元の発泡粒子の嵩密度より密度が小さく、且つ外観の優れた発泡成形体を得ることができる。又、本発明方法によれば、同じ密度の発泡成形体を製造するのに、従来より高密度(低発泡倍率)の発泡粒子で足りるため、発泡粒子保管のスペースを節約できる。更に、本発明において発泡粒子に内圧を付与するには、発泡粒子を加圧無機ガス(通常は空気又は窒素)下に保持することにより行うが、かかる内圧の付与に際し、高密度(低発泡倍率)の発泡粒子の方が低密度(高発泡倍率)に比べ一般的に短時間で足りる。従って、本発明を使用すると製造時間の短縮化にも寄与することになる。
【0042】
【図面の簡単な説明】
【図1】本発明方法に使用する成形装置の一実施態様を示す略図である。
【符号の説明】
3、5 ベルト
11 ポリオレフィン系樹脂発泡粒子
12 成形体
13 突起
17a 嵩密度低下領域のスチーム供給部
17b 発泡粒子間融着領域Eのスチーム供給部
A 発泡粒子供給領域
B 冷却領域
C 通路
D 嵩密度低下領域
E 融着領域
F 供給開始部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing a foamed molded product.
[0002]
[Prior art]
Conventionally, as a method for molding polyolefin resin expanded particles, a method in which the expanded particles are filled in a mold and heated with steam to secondarily expand the expanded particles and fuse the particles together (hereinafter referred to as such molding). The method is called a batch molding method.) Only. On the other hand, in the case of polystyrene resin expanded particles, a method in which the expanded particles are continuously passed through a heating region while being conveyed between upper and lower belts (hereinafter referred to as a continuous forming method). The method of Japanese Patent Publication No. 52-2424 adopting the method of heating with steam, the method of Japanese Examined Patent Publication No. 41-1632 employing the method of heating at high frequency, and the method of heating with hot air are adopted. The method disclosed in Japanese Patent Publication No. 47-42621 is known. The continuous molding method has an advantage that a foamed particle molded body can be continuously produced and a long molded body can be obtained as compared with a batch type molding method.
[0003]
[Problems to be solved by the invention]
However, the method using high-frequency heating as described in Japanese Patent Publication No. 41-1632 has a problem that the apparatus is large and expensive, and there is a risk of generating sparks during high-frequency irradiation, and the heating temperature range is narrow. It is not suitable as a heating means for polyolefin resin foamed particles that must be heated inside. In addition, the hot air heating method described in Japanese Patent Publication No. 47-42621 is also difficult to control the heating temperature and is difficult to uniformly heat because the heat capacity is smaller than steam. It was unsuitable as a heating means for continuously forming particles.
[0004]
On the other hand, the method by steam heating is also an effective method for polyolefin resin expanded particles, but the polyolefin resin expanded particles can be obtained by a continuous molding method by steam heating as described in, for example, Japanese Patent Publication No. 52-2424. When trying to mold, steam for heating the foamed particles leaks to the foamed particle supply side, resulting in poor fusion of the particles due to insufficient heating, poor secondary foaming, etc., or when this steam leakage becomes severe, the particles flow back to the supply side. There was a problem such as. The reason for this is considered to be due to the difference in secondary foaming performance between the polystyrene-based resin expanded particles and the polyolefin-based resin expanded particles. That is, the polystyrene resin is amorphous, the retention of the foaming agent used in the production of the foamed particles is good, and the foamed particles contain a few percent of the foaming agent. Secondary foaming of the foamed particles occurs at a relatively low temperature (usually 100 ° C. or less). For this reason, when the polystyrene resin expanded particles are continuously formed, before the expanded particles reach the heating region, a moderate secondary expansion occurs to close the gap between the particles, and the polystyrene resin expanded particles are 1.0 kg. Combined with the ability to mold with steam at a relatively low pressure of around / cm 2 G, it is possible to easily prevent the steam from leaking to the particle supply side. It is done.
[0005]
In contrast, polyolefin resin is crystalline, and the foaming agent used in the production of foamed particles escapes from the particles in a relatively short time. In order to achieve this, the temperature needs to be higher than in the case of expanded polystyrene-based resin particles. For this reason, it is not easy to secondarily foam the polyolefin resin foamed particles before the heating region to such an extent that the leakage of steam can be prevented, and high pressure steam is used to secondarily foam the polyolefin resin foamed particles. Since it is necessary to supply the polyolefin resin expanded particles to some extent before the heating region, it is difficult to prevent high-pressure steam from leaking only with the secondary expansion force of the expanded particles. It is thought. In order to obtain a good molded product by secondarily foaming the foamed particles and fusing the particles together, the polyolefin resin foam particles that require higher pressure steam than the polystyrene resin foam particles are required. In this case, the steam for heating is likely to leak, and as a result, the pressure of the steam for heating is lowered and the foamed particles cannot be sufficiently heated to obtain a good molded product. However, when the temperature becomes intense, the foamed particles flow backward to the supply side, making it impossible to mold.
[0006]
In view of the above problems, as a method for continuously molding the polyolefin resin expanded particles, the present applicant: (1) In the expanded particle supply region, expand the expanded particles to 40 to 70% of the original bulk volume. A method of heating with steam after compression (Japanese Patent Laid-Open No. 9-104026), and a method of heating with steam after gradually compressing foamed particles with increased internal pressure in the foamed particle supply region (Japanese Patent Laid-Open No. 9-104026). -104027). However, these methods still have the following problems.
[0007]
That is, in the method (1), since the expanded particles are heated in a compressed state of 40 to 70% of the original bulk volume, the resulting molded product is greatly reduced in relation to the bulk density of the original expanded particles. There is a problem that the density increases, that is, a problem that the expansion ratio is significantly reduced with respect to the apparent expansion ratio of the original expanded particles.
[0008]
On the other hand, in the method (2), since foamed particles having an increased internal pressure are used, a molded body having a higher expansion ratio than that of the molded body obtained by the method (1) can be obtained. The density could not be made smaller than the bulk density of the original expanded particles. In the method (1), the expanded particles are gradually compressed in the expanded particle supply region, and the particles are fused by steam heating in the compressed state.
[0009]
As described above, any of the conventional methods for continuously forming polyolefin resin expanded particles is a method in which the density of the molded product cannot be made smaller than the bulk density of the original expanded particles. Therefore, in the conventional method, since it is necessary to prepare foamed particles having a bulk density smaller than the density of the target molded body in advance, there is a problem that a space for storing the foamed particles must be widened. It was.
[0010]
The present invention has been made in view of the above points, and in continuous molding using polyolefin resin expanded particles (hereinafter referred to as expanded particles), a molded product having a density smaller than the bulk density of the expanded particles can be obtained. It aims at providing the manufacturing method and manufacturing apparatus of a foaming molding. If the present invention is used, it is possible to obtain a molded article having a high expansion ratio (molded article having a low density without reducing the density) without previously expanding the foamed particles more than necessary. Storage space can be saved.
[0011]
[Means for Solving the Problems]
That is, the method for producing a foamed molded article of the present invention is a polyolefin resin foaming between belts that move continuously along the upper and lower surfaces in a passage formed in a substantially rectangular cross section surrounded by a structural material. In the method of supplying particles and then successively passing through the heating region and the cooling region in the passage to continuously produce a foamed molded article, a step of reducing the bulk density of the foamed particles, and fusing the foamed particles together Providing a process and reducing the bulk density of the polyolefin-based resin foamed particles by making the maximum cross-sectional area in the passage of the process of reducing the bulk density of the foamed particles larger than the cross-sectional area of the supply start portion of the foamed particle supply region However, it is sufficient for the foamed polyolefin resin particles to be fused to each other by supplying steam at a temperature insufficient to fuse the foamed polyolefin resin particles into the passage. Characterized in that to obtain a body.
[0012]
Moreover, in this invention, it is preferable that the internal pressure of the polyolefin-type resin foam particle to supply is 2.0 atm or more.
[0014]
In addition, the foam molded body manufacturing apparatus of the present invention is a polyolefin resin foam between belts that move continuously along the upper and lower surfaces in a passage having a substantially rectangular cross section surrounded by a structural material. particles supplied and then a manufacturing apparatus for manufacturing a heating area and density than the bulk density of the cooling region are sequentially passed through a continuously original foamed particles are smaller foamed molded in the passage, foamed Means for lowering the bulk density of the particles and means for fusing the foamed particles are sequentially provided, and means for reducing the bulk density of the foamed particles is the maximum in the passage in the region where the bulk density of the foamed particles is reduced. The steam supply section for supplying steam in the passage with a temperature insufficient to fuse the polyolefin resin foam particles to each other, and the cross-sectional area of the foamed particle supply area is larger than the cross-sectional area of the supply start section of the foam particle supply area Characterized in that the formed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the base resin for the expanded particles used in the present invention include high-density polyethylene, medium-density polyethylene, branched low-density polyethylene, polypropylene, polybutylene and other olefin homopolymers, linear low-density polyethylene, linear ultra-high density polyethylene, and the like. Olefin copolymers such as low density polyethylene, ethylene-propylene block copolymer, ethylene-propylene random copolymer, ethylene-propylene-butene random copolymer, or the above-mentioned polyolefin homopolymers and polyolefin copolymers And polyolefin resins such as a graft polymer of a styrene resin and / or an acrylic resin, and these may be used by appropriately mixing them. These resins are used uncrosslinked or in a crosslinked state.
[0017]
The expanded particles used in the present invention preferably have a bulk density of 0.009 to 0.4 g / cm 3, and a non-crosslinked polypropylene resin or a non-crosslinked polyethylene resin is used as a base resin, and the difference between the expanded particles A DSC curve obtained by scanning calorimetry preferably has two endothermic peaks (see Japanese Patent Publication No. 63-44779 and Japanese Patent Publication No. 7-39501). The DSC curve refers to a DSC curve obtained when 0.5 to 4 mg of expanded particles are measured with a differential scanning calorimeter by raising the temperature from room temperature to 210 ° C. at a rate of temperature increase of 10 ° C./min. The base resin is a non-crosslinked polypropylene resin or a non-crosslinked polyethylene resin, and the expanded particles having two endothermic peaks in the DSC curve have surface smoothness and dimensional stability compared to those having no two endothermic peaks. And there exists an effect from which the molded object excellent in mechanical strength is obtained.
[0018]
The foamed particles in the present invention are prepared by, for example, dispersing a polyolefin-based resin and a foaming agent in water in a sealed container, heating the resin particles to a temperature equal to or higher than the softening point of the resin particles, and impregnating the resin particles with the foaming agent. The resin particles and water are released under a lower pressure atmosphere to foam the resin particles.
[0019]
The foamed particles used in the method of the present invention need to be given an internal pressure of atmospheric pressure or higher by applying a pressure treatment with air or the like, and preferably have an internal pressure of 2.0 atm (absolute pressure) or higher. Those having an internal pressure of 5 to 7.0 atm (absolute pressure) are particularly preferable. When the internal pressure is less than atmospheric pressure, it is difficult to make the density of the obtained molded product equal to or less than the bulk density of the expanded particles. If the internal pressure is not less than 2.0 atm even if the internal pressure is higher than atmospheric pressure, the density of the resulting molded product can be reduced below the bulk density of the expanded particles, but the foaming power is reduced, so the appearance of the molded product is slightly inferior. It will be a thing. Although there is no restriction | limiting in particular in the particle weight etc. of the foaming particle to be used, Usually, a thing with an average particle weight of about 0.5-5 mg is used.
[0020]
FIG. 1 shows an example of a molding apparatus for carrying out the continuous molding method for foamed particles according to the present invention. In the figure, A is a foamed particle supply area (hereinafter referred to as supply area A), and B is a cooling area of a molded body. (Hereinafter referred to as a cooling region B), C is a passage (hereinafter referred to as passage C) through which foamed particles and a molded body are transferred, and D is an expansion of the passage C and the bulk density of the foamed particles by steam heating. An area to be reduced (hereinafter referred to as a bulk density reduction area D), E is an area in which the foam particles are fused by steam heating (hereinafter referred to as a fusion area E), and F is a supply in the foam particle supply area. It is a start part (hereinafter referred to as supply start part F). This forming apparatus has a hopper 1 that stores foam particles, a belt 3 that travels endlessly between upper rolls 2a and 2b, and a belt 5 that travels endlessly between lower rolls 4a and 4b. The foamed particles 11 supplied to A are sandwiched between the upper and lower belts 3 and 5 that run endlessly and steam heated while passing through the passage C to reduce the bulk density of the foamed particles. The particles are fused to obtain a molded body. In the figure, reference numeral 18 denotes a support.
[0021]
In the molding apparatus of the present invention, the upper roll 2a and the lower roll 4a are driven to rotate, the upper roll 2b and the lower roll 4b are not rotated, and the upper belt 3 and the lower belt 5 are respectively rolled into the roll 2b. 4b is configured to slide on the peripheral surface 4b. A surface made of polytetrafluoroethylene (Teflon) or the like is provided on the surface of the rolls 2b and 4b in contact with the belt, so that the slipperiness on the surface is improved. The upper roll 2b is configured such that its position can be moved up and down by a driving means (not shown), and the inclination angle of the upper belt 3 in the supply region A can be varied by changing the position of the upper roll 2b. . 6 is an auxiliary plate, and the auxiliary plate 6 can change the height of the supply start portion F (the cross-sectional area of the supply start portion F) by adjusting the inclination angle of the upper belt 3 by moving the upper roll 2b up and down. It is configured as follows. Therefore, for example, by reducing the position of the upper roll 2b, the maximum cross-sectional area in the passage C of the bulk density reduction region D can be made larger than the cross-sectional area of the supply start part F. In addition, the supply start part F hits directly under the center 20 of the upper side roll 2b.
[0022]
The expanded particles supplied in the supply region A are next to upper and lower thickness regulating plates 7 and 8 and width regulating plates (not particularly shown) provided on both sides of the thickness regulating plates 7 and 8. ), And the lower portion 3a of the upper belt 3 and the upper portion 5a of the lower belt 5 in the passage C. In addition, it is configured to travel between the thickness regulating plates 7 and 8. The thickness regulating plates 7 and 8, the width regulating plate and the auxiliary plate 6 are made of a metal plate such as an aluminum plate, and the slippage of the belts 3 and 5 is improved on the surface in contact with the belts 3 and 5. Further, a sliding material made of Teflon or the like is fixed. The endless running belt is not limited to being provided only on the top and bottom, but can be provided on both side surfaces. If belts that run endlessly are also provided on both side surfaces, there is no risk of the molded body rubbing against the surface of the width regulating plate or the like, so the shape and appearance of the side surface of the molded body obtained can be improved. it can.
[0023]
In the present invention, it is sufficient to reduce the bulk density of the polyolefin-based resin foam particles in the bulk density lowering region D provided before the inter-foamed particle fusion region E. It is desirable that steam having a temperature insufficient for fusing is ejected from the steam supply unit 17a into the passage. If the temperature of the steam does not reach a temperature sufficient to reduce the bulk density of the foamed particles, the bulk density of the foamed particles cannot be reduced. The object of the present invention to increase the magnification cannot be achieved. On the other hand, when the temperature of the steam reaches a temperature sufficient to fuse the foamed particles to each other, density density is formed in the obtained molded body, or the surface state of the molded body is deteriorated.
[0024]
Although it is sufficient to reduce the bulk density of the polyolefin resin expanded particles, the steam temperature insufficient to fuse the polyolefin resin expanded particles to each other is slightly different depending on the magnitude of the internal pressure applied to the expanded particles. However, on the basis of the melting point (hereinafter referred to as Mp) indicated by the resin composition constituting the expanded particles, for example, when the expanded particles are composed of a non-crosslinked polypropylene resin, Mp-35 ° C to Mp- When the expanded particles are made of an uncrosslinked polyethylene resin at 15 ° C, the temperature is Mp-20 ° C to Mp-10 ° C. In addition, the above Mp raises the foamed particles 0.5 to 4 mg by a differential scanning calorimeter from room temperature to 210 ° C. at a rate of 10 ° C./min, then to 40 ° C. at a rate of 10 ° C./min, The temperature at the top of the main melting peak in the second DSC curve obtained when the temperature is raised again to 210 ° C. at a rate of 10 ° C./min.
[0025]
In order to inject steam into the passage from the steam supply unit 17a, the belts 3 and 5 need to have steam permeability. Usually, a stainless steel belt having a thickness of about 0.2 to 1.0 mm is used. A material having a large number of through holes having a diameter of 0.5 to 3.0 mm and a pitch of about 3 to 50 mm is used.
[0026]
The steam for heating for reducing the bulk density of the expanded particles supplied from the steam supply unit 17a passes from the through holes in the thickness regulating plates 7 and 8 to the passage C through the through holes provided in the belts 3 and 5. It comes to be supplied.
[0027]
In the present invention, in order to reliably compress the foamed particles on the upstream side of the bulk density reduction region D, for example, protrusions 13 can be provided above and below the passage C as shown in FIG. The expanded particles are affected by the heating steam supplied from the steam supply unit 17a and / or the steam supply unit 17b, and thermal expansion starts on the protrusion 13 or a point slightly upstream thereof. The thermal expansion acts so as to fill the gap between the expanded particles between the protrusions 13 and the protrusions 13, and as a result, the backflow of the expanded particles due to a large amount of heating steam leaking to the expanded particle supply side is prevented. Can do. The degree of compression can be adjusted by changing the protrusion height of the protrusion 13 or by changing the inclination angle of the upper belt 3 in the supply region A.
[0028]
The protrusions 13 may be provided on either the upper or lower side, may be provided on both the upper and lower sides, or may be provided on only one of the upper part or the lower part, or may be arranged with the positions of the upper and lower parts shifted. Further, the shape of the protrusion 13 is not limited to the trapezoidal shape as illustrated, and may be an arbitrary shape.
In order to improve the slipperiness between the protrusion 13 and the belts 3 and 5, a sliding material made of Teflon or the like is provided on the surface of the protrusion 13 in contact with the belts 3 and 5, or the entire protrusion 13 is formed of Teflon or the like. It is preferable.
[0029]
The expanded particles having a reduced bulk density are then sent to the fused region E between the expanded particles while being sandwiched between the belts 3 and 5. In this region, the expanded particles are heated by the steam ejected from the steam supply unit 17b into the passage C, and if there are voids between the expanded particles, the expanded particles expand to fill the voids and are fused to each other. . The region E where the foam particles are fused is provided with a steam supply portion 17b for forming the foam particles 11 by steam heating, and the heating steam or steam drain is provided upstream of the foam particle fusion region E. Has a suction part 9 for vacuum suction. By providing the suction portion 9 and performing suction, it is possible to prevent the drain (condensed water) from collecting in the passage and inhibiting the supply of the foamed particles. The suction part can also be provided on the downstream side of the fusion region E between the expanded particles. By providing the suction portion on the downstream side and sucking the drain, it is possible to prevent the occurrence of problems such as warping of the molded body due to a decrease in the cooling effect of the molded body caused by the drain.
[0030]
Heating steam for fusing the foam particles supplied from the steam supply unit 17b is supplied from the through holes in the thickness regulating plates 7 and 8 to the passage C through the through holes provided in the belts 3 and 5. It has come to be. The temperature of the steam for heating supplied from the steam supply unit 17b is based on the above Mp. Usually, when the foamed particles are made of a non-crosslinked polypropylene resin, the foamed particles are not cross-linked. When it consists of a polyethylene-type resin, it is Mp-10 degreeC-Mp + 10 degreeC.
[0031]
The foamed particles heated by the steam expand so as to completely fill the space between the particles in the passage C, and are fused with each other to form a molded product (at this point, it cannot be said to be a complete molded product) However, since fusion between the expanded particles is generated, it is called a molded body for convenience.) Then, it is transferred to the cooling region B provided with the cooling means 10 and cooled. As the cooling means 10, for example, a cooling plate in which a cooling water circulation pipe is inserted is used. The above process is repeated continuously, and the long molded object 12 is obtained. Although not particularly illustrated, the suction unit 9, the steam supply units 17a and 17b, and the cooling means 10 are not only provided on the thickness regulating plates 7 and 8, but also on the width regulating plate side. good.
[0032]
In the present invention, it is preferable that the cross-sectional area in the passage is substantially constant from the end point of the fusion region E between the expanded particles until the molded body is sufficiently cooled. When the molded body is compressed on the downstream side from the end point of the inter-foamed particle fusion region E until the molded body is sufficiently cooled (when the cross-sectional area of the space in the passage after the inter-foamed particle fusion region E is narrowed), A trace such as a resin flow pattern remains on the surface of the obtained molded body 12, and the surface state of the molded body 12 is lowered. Conversely, if the cross-sectional area of the space in the passage after the region E in which the expanded particles are fused is increased, there is a possibility that cooling cannot be performed sufficiently.
[0033]
【Example】
Example 1
The apparatus provided with the bulk density reduction area | region D shown in FIG. 1, the fusion | melting area | region E between foaming particles, and the trapezoid protrusion 13 was used. The width from the passage C after passing the upper roll 2b to the molded body outlet in the cooling region B was constant at 300 mm. Accordingly, the ratio of the height in the passage of the inter-foamed particle fusion region E to the height of the supply start portion F in the supply region A is the maximum cross-sectional area in the passage in the bulk density reduction region D and the supply start portion in the supply region A. The ratio of the cross-sectional area of F. The height of the passage C from the end of the protrusion 13 to the outlet of the cooling region B is constant at 52 mm, and the height of the passage C narrowed by the protrusion 13 is 20 mm. The length from the supply start portion F to the start end of the protrusion 13 is 1.3 m, the entire length of the protrusion 13 is 0.2 m, the length from the end of the protrusion 13 to the inlet of the cooling region B is 0.8 m, and the cooling region The length of B was 6 m.
[0034]
Expanded particles (internal pressure of 4.0 atm, bulk density of 0.05 g / w) using uncrosslinked ethylene-propylene random copolymer (ethylene component 4.1%, melt flow index 8 g / 10 min) as a base resin in the above apparatus. cm 3 , Mp138 ° C.) from the hopper 1 and sandwiched between the belts 3 and 5, the supply area A, the bulk density reduction area D, the fusion area E, and the cooling area B are sequentially transferred to produce a foam molded article. . Table 1 shows the height of the fusion zone E in the passage, the height of the supply start portion F, the steam pressure for heating introduced into the passage C from the steam supply portions 17a and 17b, the line speed, and the density of the obtained molded body. Show. In this embodiment, vacuum suction was performed in the suction section 9 as shown in FIG.
[0035]
[Table 1]
Figure 0004160659
[0036]
Example 2
A foamed molded article was produced under the same conditions as in Example 1 except that the internal pressure of the foamed particles was 2.5 atm and the line speed was 1.5 m / min. Table 1 shows the density of the obtained molded body.
[0037]
Example 3
Expanded particles (Mp124 ° C.) using uncrosslinked linear low-density polyethylene (α-olefin component is 4-methylpentene, density 0.925 g / cm 3 , melt flow index 1.3 g / 10 min) as a base resin. Used, a bulk density reduction region D was provided, but a foamed molded article was produced under the same conditions as in Example 1 except that steam from the steam supply unit 17a was not supplied. Table 1 shows the density of the obtained molded body. In Example 3, the bulk density was lowered by heating with steam leaking backward from the fusion region E between the expanded foam particles downstream.
[0038]
For the measurement of the bulk density of the expanded particles, a container having a volume of 1000 cm 3 having an opening at the top is filled with the expanded particles under normal temperature and normal pressure, and then the expanded particles overflowing from the opening of the container are removed. The weight of the foamed particles in the container when the bulkiness of the foamed particles was made to substantially coincide with the opening of the container was determined by dividing the weight by the volume of the container of 1000 cm 3 .
[0039]
The measurement of the density of the foamed molded product was carried out for 24 hours in a curing room (normal pressure, 60 ° C. in Examples 1 and 2 and 80 ° C. in Example 3) for a molded product cut to a length of 50 cm. After standing for 24 hours, the weight and volume were measured, and the weight was divided by the volume. The long shaped body was cut and left in the curing room immediately after production.
[0040]
The foamed moldings obtained in Examples 1 to 3 were well embedded until no voids were observed between the foamed particles, almost no interparticle dents were observed on the surface of the molded body, and the interparticle fusion properties were also good. Met.
[0041]
【The invention's effect】
As described above, according to the method of the present invention, the density is smaller than the bulk density of the original foamed particles and the appearance is different from the conventional method of producing a foamed molded product by continuously molding the foamed polyolefin resin particles. Can be obtained. Further, according to the method of the present invention, foamed particles having a higher density (low expansion ratio) than before can be used to produce a foamed molded product having the same density, so that the space for storing the foamed particles can be saved. Furthermore, in the present invention, the internal pressure is applied to the expanded particles by holding the expanded particles under a pressurized inorganic gas (usually air or nitrogen). When applying the internal pressure, a high density (low expansion ratio) is applied. ) Foamed particles generally require less time than low density (high expansion ratio). Therefore, if this invention is used, it will also contribute to shortening of manufacturing time.
[0042]
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a molding apparatus used in the method of the present invention.
[Explanation of symbols]
3, 5 Belt 11 Polyolefin resin foamed particles 12 Molded body 13 Protrusion 17a Steam supply portion 17b in the bulk density lowering region Steam supply portion A in the interfoaming region fusion region A Foamed particle supply region B Cooling region C Passage D Bulk density lowering Area E Fusion area F Supply start section

Claims (3)

構造材にて囲まれて形成された断面が略矩形状をなす通路内の上下面に沿って、連続的に移動するベルト間にポリオレフィン系樹脂発泡粒子を供給し、次いで上記通路内の加熱領域及び冷却領域を順次通過させて連続的に発泡成形体を製造する方法において、発泡粒子の嵩密度を低下させる工程、及び発泡粒子間を融着させる工程を設け、該発泡粒子の嵩密度を低下させる工程の通路内の最大の横断面積を、発泡粒子供給領域の供給開始部の横断面積よりも大きくし、ポリオレフィン系樹脂発泡粒子の嵩密度を小さくするには十分であるが、ポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分な温度のスチームを通路内に供給することにより元の発泡粒子の嵩密度よりも密度が小さい発泡成形体を得ることを特徴とする発泡成形体の製造方法。A polyolefin-based resin foamed particle is supplied between belts that move continuously along the upper and lower surfaces in a passage having a substantially rectangular cross section surrounded by a structural material, and then a heating region in the passage In the method of continuously producing a foamed molded article by sequentially passing through the cooling region, a step of reducing the bulk density of the foamed particles and a step of fusing the foamed particles are provided to reduce the bulk density of the foamed particles. It is sufficient to make the maximum cross-sectional area in the passage of the process larger than the cross-sectional area of the supply start part of the foam particle supply region and to reduce the bulk density of the polyolefin resin foam particles. foamed molded body characterized by obtaining a molded foam product even density lower than the bulk density of the original expanded particles by a temperature steam insufficient to fusing the particles together is supplied into the passage Manufacturing method. 供給するポリオレフィン系樹脂発泡粒子の内圧が2.0atm以上であることを特徴とする請求項1記載の発泡成形体の製造方法。  The method for producing a foamed molded article according to claim 1, wherein the polyolefin resin foam particles to be supplied have an internal pressure of 2.0 atm or more. 構造材にて囲まれて形成された断面が略矩形状をなす通路内の上下面に沿って、連続的に移動するベルト間にポリオレフィン系樹脂発泡粒子を供給し、次いで上記通路内の加熱領域及び冷却領域を順次通過させて連続的に元の発泡粒子の嵩密度よりも密度が小さい発泡成形体を製造するための製造装置であって、発泡粒子の嵩密度を低下させる手段及び発泡粒子間を融着させる手段順次設けられており、該発泡粒子の嵩密度を低下させる手段が、発泡粒子の嵩密度を低下させる領域の通路内の最大の横断面積を、発泡粒子供給領域の供給開始部の横断面積よりも大きくしたこと、及びポリオレフィン系樹脂発泡粒子を互いに融着させるには不充分な温度のスチームを通路内に供給するスチーム供給部を形成したことを特徴とする発泡成形体の製造装置。A polyolefin-based resin foamed particle is supplied between belts that move continuously along the upper and lower surfaces in a passage having a substantially rectangular cross section surrounded by a structural material, and then a heating region in the passage And a manufacturing apparatus for successively producing a foamed molded article having a density lower than the bulk density of the original foamed particles by sequentially passing through the cooling region, between the foamed particles and the means for reducing the bulk density of the foamed particles and it is sequentially provided means for fusing the, means for reducing the bulk density of the expanded beads is the maximum of the cross-sectional area of the passage area to reduce the bulk density of the expanded beads, starting the supply of the foam particle supply region to be greater than the cross-sectional area of the parts, and foamed molded body characterized by forming the steam supply unit for supplying steam insufficient temperature in the passage to be mutually fused polyolefin resin expanded particles Manufacturing equipment.
JP19501698A 1998-06-25 1998-06-25 Manufacturing method and manufacturing apparatus for foam molded article Expired - Fee Related JP4160659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19501698A JP4160659B2 (en) 1998-06-25 1998-06-25 Manufacturing method and manufacturing apparatus for foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19501698A JP4160659B2 (en) 1998-06-25 1998-06-25 Manufacturing method and manufacturing apparatus for foam molded article

Publications (2)

Publication Number Publication Date
JP2000006253A JP2000006253A (en) 2000-01-11
JP4160659B2 true JP4160659B2 (en) 2008-10-01

Family

ID=16334139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19501698A Expired - Fee Related JP4160659B2 (en) 1998-06-25 1998-06-25 Manufacturing method and manufacturing apparatus for foam molded article

Country Status (1)

Country Link
JP (1) JP4160659B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198939A (en) 2000-01-21 2001-07-24 Jsp Corp Apparatus for manufacturing foamed molded object
JP2002240073A (en) * 2001-02-16 2002-08-28 Jsp Corp Method and apparatus for producing foamed polyolefin resin molding
ITMI20071281A1 (en) 2007-06-26 2008-12-27 Gilanberry Trading Ltd EQUIPMENT AND METHOD FOR THE CONTINUOUS FORMING OF A CONTINUOUS ELEMENT OF EXPANDED PLASTIC MATERIAL, A SYSTEM INCLUDING THIS EQUIPMENT AND CONSTRUCTION MATERIAL OF EXPANDED PLASTIC MATERIAL

Also Published As

Publication number Publication date
JP2000006253A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3775612B2 (en) Manufacturing method and manufacturing apparatus for foam molded article
JP2001198939A (en) Apparatus for manufacturing foamed molded object
JP3688031B2 (en) Continuous molding method for polyolefin resin expanded particles
JP3688032B2 (en) Continuous molding method for polyolefin resin expanded particles
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
JP4160659B2 (en) Manufacturing method and manufacturing apparatus for foam molded article
US3888608A (en) Apparatus for the continuous manufacture of endless foams
JP4160660B2 (en) Method for producing foam molded article
JP2002240073A (en) Method and apparatus for producing foamed polyolefin resin molding
US5409649A (en) Method of forming foam buns having no skin on a surface
JP3146004B2 (en) Method for producing olefin-based synthetic resin foam molded article
JPH04126733A (en) Production of crosslinked and expanded material
JPS6082333A (en) Non-crosslinked polypropylene based resin foam container and manufacture thereof
JP3859330B2 (en) Method for producing molded body having high density skin layer
JP3081722B2 (en) Method for producing foamed molded article in olefin resin mold
JPH06339998A (en) Polyofelin substrate particulate foam molded piece having compressed smooth outer layer and its production
JPH1058474A (en) Manufacture of foam molding in polyolefin resin mold
JP4201166B2 (en) Method for producing foamed particle molded body with skin material
JP2002308916A (en) Method for producing porous crosslinked polymer
JP3504042B2 (en) Method for producing expanded polypropylene resin particles, and method for molding in a mold using the same
JPH0367106B2 (en)
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold
JP3081723B2 (en) Manufacturing method of foamed molded products in olefin resin mold
JPH0757498B2 (en) Molding method of olefin resin foam particles
JPH0657431B2 (en) Method for producing foamed resin molded body of polyolefin resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees