JP4159013B2 - Material property evaluation method and apparatus - Google Patents

Material property evaluation method and apparatus Download PDF

Info

Publication number
JP4159013B2
JP4159013B2 JP2000088342A JP2000088342A JP4159013B2 JP 4159013 B2 JP4159013 B2 JP 4159013B2 JP 2000088342 A JP2000088342 A JP 2000088342A JP 2000088342 A JP2000088342 A JP 2000088342A JP 4159013 B2 JP4159013 B2 JP 4159013B2
Authority
JP
Japan
Prior art keywords
resistance value
magnetic field
test material
electrical resistance
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000088342A
Other languages
Japanese (ja)
Other versions
JP2001281186A (en
Inventor
興治 山田
仁博 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2000088342A priority Critical patent/JP4159013B2/en
Publication of JP2001281186A publication Critical patent/JP2001281186A/en
Application granted granted Critical
Publication of JP4159013B2 publication Critical patent/JP4159013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、材料の残留応力レベル、疲労損傷度、照射損傷度、熱脆化度等の特性を非破壊検査手法により評価する方法及び装置に関するものであり、特に被検材の磁気抵抗効果を利用した評価方法及び装置に関する。
【0002】
【従来の技術】
材料の特性、特に材料の加工時の残留応力レベルを非破壊測定する方法としては、従来からX線残留応力測定法や、磁気的手法としてのバルクハウゼン法が一般的に知られている。
【0003】
X線残留応力測定法は、材料の応力は結晶粒子の微少な変形に基づくことから、被検材にX線を透過して結晶の格子点の変位を測定することにより残留応力を算出する手法である。
【0004】
バルクハウゼン法は、強磁性体に磁化を与えた場合に磁壁の不連続的な移動によって磁化するために、二次コイルに雑音(バルクハウゼンノイズ)が生じる現象が起きるが、この雑音は残留応力等の状態を指示するものであるため、これを利用して被検材の応力場とその状態を診断するという手法である。
【0005】
【発明が解決しようとする課題】
X線残留応力測定法は測定結果に信頼性が高い点で優れており、X線残留応力測定法を利用した搬送可能な測定装置も一般に知られている。しかしながら、X線残留応力測定法、X線を放射させるために装置の寸法が過大となり、また重量も大きい。このため、測定場所が狭い等空間的に制限のある場所では測定装置を設置できない。また、重量も大きいのでたとえ広い場所でも搬送して設置することに過大な労力を要する。更には、このようなX線残留応力測定装置は水中では使用できない。
【0006】
一方、バルクハウゼン法を利用した測定装置の場合には、比較的狭い設置場所でも測定可能であるが、一般に強磁性体の材料を測定対象としているため、アルミ、銅、オースナイト系ステンレス鋼等の非磁性体の残留応力を測定することはできないという問題がある。
【0007】
本発明はこのような問題点に鑑みてなされたものであり、測定場所を選ばずにコンパクトな構成で、非磁性体、磁性体問わずに材料の特性を評価できる材料特性評価方法及び装置を提供することを主な目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成するため、請求項1に係る発明は、被検材に磁界を生じさせずに、被検材の電気抵抗値を測定する第1測定工程と、被検材に異なる強さの磁界を生じさせて、被検材の電気抵抗値を測定する第2測定工程と、前記第1測定工程で測定された電気抵抗値と前記第2測定工程で測定された電気抵抗値とから前記被検材に磁界を加えることにより変化する電気抵抗値の変化分を算出する算出工程と、前記算出された電気抵抗値の変化分と磁界の強さとの関係及び前記電気抵抗値の変化分と予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データとに基づいて、前記被検材の材料特性を評価する評価工程と、を含むことを特徴とする材料特性評価方法に係るものである。
【0009】
この請求項1に係る発明は、磁気抵抗効果を利用して被検材の材料特性を評価する方法である。磁気抵抗効果は、一定温度下で固有の電気抵抗を有する物質に、磁界を加えることにより電気抵抗値が変化する現象であり、その電気抵抗値の変化分、即ち電流の流れている導体を磁場中に置くことによって現れる電気抵抗を磁気抵抗という。磁気抵抗効果としては、電流の流れる方向と平行な方向に磁界を加えた場合に生じる縦磁気効果と、電流の流れる方向に対して直角に磁界を加えた場合に生じる横磁気効果がある。
【0010】
この磁界による電気抵抗値の変化分は、材料の特性と相関関係にある。一例として被検材に引張応力を加えた場合(680MPa)と加えない場合(0MPa)とにおける磁気抵抗と磁界の強さとの関係を示す説明図を図4に示す。横軸は被検材に加えた磁界の強さを示し、縦軸はΔρ/ρ1を示している。ここで、Δρは磁気抵抗であり、ρ1は磁界を生じていない状態での電気抵抗値である。また図4では、縦磁気効果と横磁気効果の両方を示している。図4からわかるように、引張応力を加えた材料(▲,●)には、引張応力を加えない材料(□,△)に比べて磁気抵抗が生じていることがわかる。
【0011】
従って、予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データを用意しておけば、被検材の磁界による電気抵抗値の変化分を求めることにより、被検材の材料特性を評価することが可能となる。例えば材料特性として残留応力レベルを測定する場合であれば、被検材となる材料に所定の引張応力を与えた場合の残留応力の絶対値及び方位等と磁界による電気抵抗値の変化分との相関関係を示す曲線を特性データとして求めておく。特性データで用いる磁界による電気抵抗値の変化分は本発明の第1測定工程、第2測定工程、及び算出工程により求めればよい。尚、本発明における材料特性とは、残留応力レベルの他、疲労損傷度、照射損傷度、熱脆化度、不純物含有量、ジルカロイの水素吸収量等も含まれる。
【0012】
本発明では、まず第1測定工程で被検材に磁界を生じさせない状態で被検材の電気抵抗値を測定して、第2測定工程で被検材に磁界を生じさせた状態で被検材の電気抵抗値を測定する。ここで、電気抵抗値を測定する方法としては、被検材に電流を流し、流した電流と電圧とを測定して電気抵抗値を求める公知の方法で行う。
【0013】
そして、算出工程で、この2つの測定工程で測定された2つ電気抵抗値から磁界による電気抵抗値の変化分を算出する。評価工程では、この電気抵抗値の変化分と先に求めた特性データとに基づいて被検材の材料特性を評価する。
【0014】
このように本発明では、磁気抵抗効果を利用して被検材の材料特性を評価するので、被検材が強磁性体である場合には勿論、非磁性体であっても材料特性の評価を行うことが可能となる。また、本発明では、被検材に磁界を発生させるための磁石等と、電気抵抗を測定するための簡単な回路とによって材料特性の評価ができるので、過大な設備を必要とするX線等放射線を利用した材料特性評価方法に比べて、小型で軽量な設備で材料特性の評価を行うことが可能となる。
【0015】
本発明では、縦磁気効果、横磁気効果のいずれも、あるいは縦磁気効果と横磁気効果の両方を算出して材料特性の評価に用いることができる。従って、縦磁気効果を利用する場合には、第2測定工程で電流の流れる方向と平行な方向に磁界を生じさせた上で電気抵抗値を測定し、横磁気効果を利用する場合には、第2測定工程で電流の流れる方向と直角の方向に磁界を生じさせた上で電気抵抗値を測定するように構成することは任意である。
【0016】
尚、本発明では、磁界の有無による電気抵抗の差から磁界による電気抵抗値の変化分を求めれば良いので、第1測定工程と第2測定工程はいずれを先に行っても良い。
【0017】
請求項2に係る発明は、被検材に対し磁界を生じさせる着脱可能な一対の磁石と、被検材の電気抵抗値を測定する測定手段と、被検材から前記磁石を外して測定した電気抵抗値と、被検材に前記磁石を取り付けて測定した電気抵抗値とから前記被検材に磁界を加えることにより変化する電気抵抗値の変化分を算出する算出手段と、を備え、前記算出された電気抵抗値の変化分と、予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データとに基づいて前記被検材の材料特性を評価することを特徴とする材料特性評価装置に係るものである。
【0018】
この請求項2に係る発明は、請求項1に係る材料特性評価方法を実施するための装置であり、本発明の作用効果は請求項1に係る発明と同様である。
【0019】
また、一対の磁石は被検材に対し磁界を発生させた状態で電気抵抗を測定できると共に、磁界を発生させない状態で電気抵抗を測定できるようにするために、着脱可能に構成されていれば良く、両方の磁石を着脱可能に構成する他、一方の磁石のみを着脱可能に構成してもよい。
【0020】
本発明の測定手段は、被検材の電気抵抗値を測定できるものであれば良く、2個の電流端子、2個の電圧端子、電流端子から被検材に電流を流す電源、電圧端子間の電圧を測定する電圧計等の簡易な構成を採用することができる。
【0021】
本発明では、このように一対の磁石と、測定手段と、算出手段とを設ければ、材料特性の評価が可能となるので、簡易な構成で評価を行うことができ、X線等の放射線を利用した従来の材料特性評価装置に比べて、装置の小型化及び軽量化が図りながら非磁性体、磁性体を問わず材料特性の評価が可能となる。
【0022】
本発明においても、縦磁気効果、横磁気効果のいずれも利用することができる。縦磁気効果を利用する場合には、一対の磁石を電流の流れる方向と平行な方向に磁界を生じさるように配置し、横磁気効果を利用する場合には、一対の磁石を電流の流れる方向と直角の方向に磁界を生じさせるように配置すれば良い。
【0023】
【発明の実施の形態】
本発明の好ましい実施形態について、以下図示例とともに説明する。本実施形態は、本発明の材料特性評価装置を材料の残留応力を非破壊評価する残留応力評価装置に適用したものであり、図1はその概略構成を示す模式図である。
【0024】
図1に示すとおり、本実施形態の残留応力評価装置1は、一対の磁石2a,2bと、2個の電流端子3と、2個の電圧端子4と、電圧端子4間の電圧を測定する電圧計Vと、電流端子3間に電流を供給する電池5と、磁界による電気抵抗値の変化分を算出する算出部6とを備えている。
【0025】
一対の磁石2a,2bは、被検材7に磁界を生じさせるものである。一対の磁石のうち、磁石2aは被検材7と着脱可能となっており、図1に示すように被検材7に取り付けた状態で被検材7に磁界を生じさせるようになっている。このときの磁界方向は図1のA方向となっている。一方、図2は磁石2aを被検材7から取り外した状態を示しており、このような状態では、当然被検材7に磁界は生じない。
【0026】
2個の電流端子3は、被検材7に所定間隔で取り付けられており、電池5からの電流の供給によって被検材7に電流を流すものである。電流方向は図1におけるB方向となっており、磁界方向Aと平行であるため、縦磁気効果が生じるようになっている。この電流端子3の間隔は被検材7のサイズ等によって任意に定めることができる。
【0027】
2個の電圧端子4も所定間隔で被検材7に取り付けられており、この電圧端子4間に電圧を電圧計Vで測定するようになっている。電圧端子4の間隔は、各電圧端子4が夫々電流端子3の近傍に取り付けるように構成する。
【0028】
2個の電流端子3、2個の電圧端子4、電圧計V、電池5は本発明の測定手段を構成するものであり、電圧計Vで測定された電圧値(2個の電圧端子4間の電圧)を2個の電流端子3に供給された電流値で除算することにより電気抵抗値が求められる。
【0029】
算出部6は、被検材7から磁石2aを外して測定した電気抵抗値と、被検材7に磁石2aを取り付けて測定した電気抵抗値とから磁界による電気抵抗値の変化分を算出し、更にこの電気抵抗値の変化分と磁界を生じていない状態での電気抵抗値との比を算出するものであり、本発明の算出手段を構成する。算出部6は、簡易な電子式卓上計算機等で構成することができる。
【0030】
ここで、被検材7から磁石2aを外して測定した電気抵抗値をρ、被検材7に磁石2aを取り付けて測定した電気抵抗値をρとすると、磁界による電気抵抗値の変化分Δρは数1式で示される。本実施形態では、この電気抵抗値の変化分Δρをρで除した評価値Δρ/ρを材料の残留応力レベルの評価に用いている。
【0031】
【数1】
Δρ=ρ−ρ
評価値Δρ/ρ
【0032】
尚、本実施形態では、被検材7の縦磁気効果を利用して残留応力の評価を行っているが、磁界方向Aが電流方向Bと直交するように一対の磁石2aを図3に示すように配置して、横磁気効果を利用して残留応力の評価を行うようにしても本発明の効果は達成される。
【0033】
以上のように構成された残留応力評価装置1を使用して、被検材としてのSUS304材7の残留応力(残留歪み)の評価を行う方法について説明する。本実施形態では、1100℃において溶体化熱処理を行った非磁性体であるSUS304材7に対して、680MPaの引張応力を加えた場合の残留応力の評価を行っている。図5は、本実施形態の残留応力の評価方法のフローチャートである。
【0034】
まず、図2のようにSUS304材7から磁石2aを取り外し(ステップ501)、この状態で電流端子3に流した電流値と、電圧計Vにより測定した電圧値とにより磁界が生じていない状態での電気抵抗値ρを測定する(ステップ502)。
【0035】
次に、図1のようにSUS304材7に磁石2aを取り付け(ステップ503)、この状態で電流端子3に流した電流値と、電圧計Vにより測定した電圧値とにより磁界が生じている状態での電気抵抗値ρを測定する(ステップ504)。
【0036】
次いで、電気抵抗値ρとρ1との差から磁界による電気抵抗値の変化分Δρを求め(ステップ505)、磁界による電気抵抗値の変化分Δρと電気抵抗値ρ1の比を評価値として算出する(ステップ506)。
【0037】
ここで、図4は、SUS304材7に680MPaの引張応力を加えた場合の磁界による電気抵抗値の変化分と磁界との関係(▲,●)と、引張応力を加えない場合(0MPa)の磁界による電気抵抗値の変化分と磁界との関係(□,△)とを示している。図4からわかるように、引張応力を加えた材料には、引張応力を加えない材料に比べて磁界による電気抵抗値の変化分が生じている。このような磁界による電気抵抗値の変化分が現れる理由としては、ステンレス鋼材の引張による歪みに伴うマルテンサイト変態及び磁化が挙げられる。このため、予め残留応力と、Δρ/ρ1との相関関係を残留応力特性データとして求めておく。このような特性データの一例を図6に示す。図6は、SUS304材の応力付加に伴う磁気抵抗効果の変化をグラフで示した説明図であり、横軸が付加応力(MPa)であり、縦軸がΔρ/ρ(%)となっている。尚、磁場の強さは0.4Tとしている。
【0038】
そして、この残留応力特性データを参照して(ステップ507)、評価値Δρ/ρ1の値から残留応力(残留歪み)の絶対値及び方位を非破壊的に評価する(ステップ508)。
【0039】
このように本実施形態の残留応力評価装置1及び方法では、被検材7の磁気抵抗効果を利用しているので、SUS304材7のような非磁性体に対しても残留応力の評価を行うことが可能となる。また、装置の構成も簡易なものとなり、過大な装置は必要としないので小型化及び軽量化を図ることができる。
【0040】
尚、本実施形態では被検材として非磁性体のSUS304材7を用いているが、他の非磁性体の材料を用いても良く、磁性体の材料の特性評価に適用できることはいうまでもない。
【0041】
また、本実施形態では残留応力の評価に本発明を適用しているが、この他疲労損傷度、照射損傷度、熱脆化度、不純物含有量、ジルカロイの水素吸収量等の特性の評価にも適用できる。
【0042】
【発明の効果】
以上説明したとおり、本発明は、被検材に磁界を生じさせずに被検材の電気抵抗値を測定し、被検材に磁界を生じさせて被検材の電気抵抗値を測定し、磁界を生じさせない状態における電気抵抗値と磁界を生じた状態における電気抵抗値とから磁界による電気抵抗値の変化分を算出し、この算出された電気抵抗値の変化分と、予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データとに基づいて、被検材の材料特性を評価するので、被検材が強磁性体、非磁性体を問わず、簡易な構成かつ小型で軽量な設備で材料特性の評価を行うことができるという効果を有する。このため、検査場所への材料特性評価装置の搬入が容易となり、また検査場所が狭い等空間的な制限がある場所の場合でも、容易に材料特性評価装置を設置して非磁性体の材料の特性評価を行えるという効果を有する。
【図面の簡単な説明】
【図1】 本実施形態の残留応力評価装置の概略構成を示す模式図である。
【図2】 本実施形態の残留応力評価装置において、一方の磁石を取り外した状態を示す説明図である。
【図3】 本実施形態の残留応力評価装置において、横磁気効果を利用する場合の磁石の配置を示す構成図である。
【図4】 本実施形態の残留応力評価装置において、被検材に引張応力を加えた場合と加えない場合とにおける磁界による電気抵抗値の変化分と磁界の強さとの関係を示す説明図である。
【図5】 本実施形態の残留応力評価方法のフローチャートである。
【図6】 本実施形態で用いる残留応力特性データの一例としてのSUS304材の応力付加に伴う磁気抵抗効果の変化をグラフで示した説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for evaluating characteristics such as residual stress level, fatigue damage degree, irradiation damage degree, thermal embrittlement degree, etc. of a material by a nondestructive inspection method, and in particular, the magnetoresistive effect of a test material. The present invention relates to an evaluation method and apparatus used.
[0002]
[Prior art]
Conventionally known methods for nondestructive measurement of material properties, particularly residual stress levels during processing of materials, are X-ray residual stress measurement methods and Barkhausen methods as magnetic methods.
[0003]
The X-ray residual stress measurement method is a method of calculating the residual stress by measuring the displacement of the lattice point of the crystal by transmitting the X-ray through the test material because the stress of the material is based on a slight deformation of the crystal grain. It is.
[0004]
In the Barkhausen method, when magnetization is applied to a ferromagnet, it is magnetized by the discontinuous movement of the domain wall, so that a phenomenon in which noise (Barkhausen noise) occurs in the secondary coil occurs. This is a method of diagnosing the stress field of the test material and its state using this.
[0005]
[Problems to be solved by the invention]
The X-ray residual stress measurement method is excellent in that the measurement result has high reliability, and a transportable measurement device using the X-ray residual stress measurement method is generally known. However, since the X-ray residual stress measurement method and X-ray emission are performed, the size of the apparatus becomes excessive and the weight is large. For this reason, a measuring apparatus cannot be installed in a place where space is limited, such as a narrow measurement place. Moreover, since the weight is large, excessive labor is required to transport and install even in a large place. Furthermore, such an X-ray residual stress measuring device cannot be used in water.
[0006]
On the other hand, in the case of a measuring apparatus using the Barkhausen method, it is possible to measure even in a relatively small installation place, but since the material of measurement is generally a ferromagnetic material, aluminum, copper, austenitic stainless steel, etc. There is a problem that the residual stress of the non-magnetic material cannot be measured.
[0007]
The present invention has been made in view of such problems, and a material characteristic evaluation method and apparatus capable of evaluating the characteristics of a material regardless of a non-magnetic material or a magnetic material with a compact configuration regardless of a measurement place. The main purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is different in strength from the first measurement step of measuring the electrical resistance value of the test material without generating a magnetic field in the test material. From the second measurement step of measuring the electrical resistance value of the test material, the electrical resistance value measured in the first measurement step, and the electrical resistance value measured in the second measurement step A calculation step of calculating a change in electrical resistance value that changes by applying a magnetic field to the test material, a relationship between the calculated change in electrical resistance value and the strength of the magnetic field, and a change in the electrical resistance value And an evaluation step for evaluating the material property of the test material based on the property data obtained by previously correlating the change in the electrical resistance value due to the magnetic field and the material property. It relates to the evaluation method.
[0009]
The invention according to claim 1 is a method for evaluating the material characteristics of a test material using the magnetoresistive effect. The magnetoresistive effect is a phenomenon in which an electric resistance value changes by applying a magnetic field to a substance having a specific electric resistance at a constant temperature. The change in the electric resistance value, that is, a conductor in which a current flows is applied to the magnetic field. The electrical resistance that appears when placed inside is called magnetoresistance. The magnetoresistive effect includes a longitudinal magnetic effect that occurs when a magnetic field is applied in a direction parallel to the direction of current flow, and a transverse magnetic effect that occurs when a magnetic field is applied perpendicular to the direction of current flow.
[0010]
The change in the electric resistance value due to the magnetic field is correlated with the characteristics of the material. As an example, FIG. 4 shows an explanatory diagram showing the relationship between the magnetic resistance and the strength of the magnetic field when tensile stress is applied to the test material (680 MPa) and when it is not applied (0 MPa). The horizontal axis indicates the strength of the magnetic field applied to the test material, and the vertical axis indicates Δρ / ρ 1 . Here, Δρ is a magnetic resistance, and ρ 1 is an electric resistance value in a state where no magnetic field is generated. FIG. 4 shows both the longitudinal magnetic effect and the transverse magnetic effect. As can be seen from FIG. 4, the magnetic resistance is generated in the material (▲, ●) to which tensile stress is applied compared to the material (□, Δ) to which tensile stress is not applied.
[0011]
Therefore, if the characteristic data for which the correlation between the change in the electrical resistance value due to the magnetic field and the material property is prepared in advance, the change in the electrical resistance value due to the magnetic field of the test material is obtained, thereby obtaining the test material. It becomes possible to evaluate the material characteristics of For example, if the residual stress level is measured as a material characteristic, the absolute value and orientation of the residual stress when the predetermined tensile stress is applied to the material to be tested and the change in the electrical resistance value due to the magnetic field . A curve indicating the correlation is obtained as characteristic data. What is necessary is just to obtain | require the change part of the electrical resistance value by the magnetic field used by characteristic data by the 1st measurement process of this invention, a 2nd measurement process, and a calculation process. The material properties in the present invention include the residual stress level, fatigue damage, irradiation damage, thermal embrittlement, impurity content, zircaloy hydrogen absorption, and the like.
[0012]
In the present invention, first, the electrical resistance value of the test material is measured in a state where no magnetic field is generated in the test material in the first measurement step, and the test is performed in the state where the magnetic field is generated in the test material in the second measurement step. Measure the electrical resistance of the material. Here, as a method of measuring the electric resistance value, a known method is used in which a current is passed through the test material, and the passed current and voltage are measured to obtain the electrical resistance value.
[0013]
In the calculation step, the change in the electric resistance value due to the magnetic field is calculated from the two electric resistance values measured in the two measurement steps. In the evaluation step, the material properties of the test material are evaluated based on the change in the electrical resistance value and the previously obtained property data.
[0014]
As described above, in the present invention, the material characteristics of the test material are evaluated using the magnetoresistive effect. Therefore, when the test material is a ferromagnetic material, the material characteristics can be evaluated even if it is a non-magnetic material. Can be performed. Further, in the present invention, since the material characteristics can be evaluated by a magnet or the like for generating a magnetic field in the test material and a simple circuit for measuring the electrical resistance, X-rays or the like that require excessive equipment Compared with the material property evaluation method using radiation, it is possible to evaluate the material property with a small and light facility.
[0015]
In the present invention, both the longitudinal magnetic effect and the transverse magnetic effect, or both the longitudinal magnetic effect and the transverse magnetic effect can be calculated and used for evaluation of material properties. Therefore, when using the longitudinal magnetic effect, the electrical resistance value is measured after generating a magnetic field in a direction parallel to the direction of current flow in the second measurement step, and when using the transverse magnetic effect, In the second measurement step, it is optional to measure the electric resistance value after generating a magnetic field in a direction perpendicular to the direction of current flow.
[0016]
In the present invention, since the amount of change in the electrical resistance value due to the magnetic field may be obtained from the difference in electrical resistance due to the presence or absence of the magnetic field, either the first measurement process or the second measurement process may be performed first.
[0017]
The invention according to claim 2 is measured by removing a pair of detachable magnets for generating a magnetic field on the test material, measuring means for measuring the electrical resistance value of the test material, and removing the magnet from the test material. A calculation means for calculating a change amount of an electric resistance value that is changed by applying a magnetic field to the test material from an electric resistance value and an electric resistance value measured by attaching the magnet to the test material; and Evaluating the material property of the test material based on the calculated change in electrical resistance value and the characteristic data obtained in advance by correlating the change in electrical resistance value due to the magnetic field and the material property This relates to a material property evaluation apparatus.
[0018]
The invention according to claim 2 is an apparatus for carrying out the material property evaluation method according to claim 1, and the function and effect of the present invention are the same as those of the invention according to claim 1.
[0019]
In addition, the pair of magnets can measure the electrical resistance in a state where a magnetic field is generated with respect to the specimen, and can be detachable so that the electrical resistance can be measured in a state where no magnetic field is generated. Alternatively, both magnets may be configured to be detachable, or only one magnet may be configured to be detachable.
[0020]
The measuring means of the present invention may be any means as long as it can measure the electrical resistance value of the test material. Two current terminals, two voltage terminals, a power source for passing a current from the current terminal to the test material, and between the voltage terminals A simple configuration such as a voltmeter for measuring the voltage can be adopted.
[0021]
In the present invention, if a pair of magnets, a measuring unit, and a calculating unit are provided in this way, the material characteristics can be evaluated. Therefore, the evaluation can be performed with a simple configuration, and radiation such as X-rays can be performed. Compared to a conventional material property evaluation apparatus using the material, it is possible to evaluate material properties regardless of whether it is a non-magnetic material or a magnetic material while reducing the size and weight of the device.
[0022]
In the present invention, either the longitudinal magnetic effect or the transverse magnetic effect can be used. When using the longitudinal magnetic effect, arrange a pair of magnets so that a magnetic field is generated in a direction parallel to the direction of current flow, and when using the transverse magnetic effect, set the pair of magnets in the direction of current flow. It may be arranged so as to generate a magnetic field in a direction perpendicular to the direction.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below together with illustrated examples. In the present embodiment, the material property evaluation apparatus of the present invention is applied to a residual stress evaluation apparatus that performs nondestructive evaluation of the residual stress of a material, and FIG. 1 is a schematic diagram showing a schematic configuration thereof.
[0024]
As shown in FIG. 1, the residual stress evaluation apparatus 1 according to this embodiment measures a voltage between a pair of magnets 2 a and 2 b, two current terminals 3, two voltage terminals 4, and a voltage terminal 4. A voltmeter V, a battery 5 that supplies a current between the current terminals 3, and a calculation unit 6 that calculates a change in electrical resistance value due to a magnetic field are provided.
[0025]
The pair of magnets 2 a and 2 b are for generating a magnetic field in the test material 7. Of the pair of magnets, the magnet 2a is detachably attached to the test material 7, and generates a magnetic field on the test material 7 in a state of being attached to the test material 7 as shown in FIG. . The magnetic field direction at this time is the A direction in FIG. On the other hand, FIG. 2 shows a state in which the magnet 2a is removed from the test material 7. In such a state, naturally, no magnetic field is generated in the test material 7.
[0026]
The two current terminals 3 are attached to the test material 7 at a predetermined interval, and current is supplied to the test material 7 by supplying current from the battery 5. The current direction is the B direction in FIG. 1 and is parallel to the magnetic field direction A, so that a longitudinal magnetic effect is generated. The interval between the current terminals 3 can be arbitrarily determined according to the size of the test material 7 or the like.
[0027]
Two voltage terminals 4 are also attached to the specimen 7 at a predetermined interval, and a voltage is measured between the voltage terminals 4 with a voltmeter V. The interval between the voltage terminals 4 is configured such that each voltage terminal 4 is attached in the vicinity of the current terminal 3.
[0028]
The two current terminals 3, the two voltage terminals 4, the voltmeter V and the battery 5 constitute the measuring means of the present invention, and the voltage value measured by the voltmeter V (between the two voltage terminals 4). Is divided by the current value supplied to the two current terminals 3 to obtain the electric resistance value.
[0029]
The calculation unit 6 calculates the amount of change in the electrical resistance value due to the magnetic field from the electrical resistance value measured by removing the magnet 2a from the test material 7 and the electrical resistance value measured by attaching the magnet 2a to the test material 7. Further, the ratio between the change in the electric resistance value and the electric resistance value in a state where no magnetic field is generated is calculated, and constitutes the calculating means of the present invention. The calculation unit 6 can be configured by a simple electronic desk calculator or the like.
[0030]
Here, assuming that the electrical resistance value measured by removing the magnet 2a from the test material 7 is ρ 1 , and the electrical resistance value measured by attaching the magnet 2a to the test material 7 is ρ 2 , the change in the electrical resistance value due to the magnetic field. The minute Δρ is expressed by Equation 1. In the present embodiment, an evaluation value Δρ / ρ 1 obtained by dividing the change Δρ of the electric resistance value by ρ 1 is used for evaluation of the residual stress level of the material.
[0031]
[Expression 1]
Δρ = ρ 2 −ρ 1
Evaluation value Δρ / ρ 1
[0032]
In the present embodiment, the residual stress is evaluated using the longitudinal magnetic effect of the test material 7, but the pair of magnets 2a is shown in FIG. 3 so that the magnetic field direction A is orthogonal to the current direction B. Even if it arrange | positions in this way and evaluation of a residual stress is performed using a transverse magnetic effect, the effect of this invention is achieved.
[0033]
A method for evaluating the residual stress (residual strain) of the SUS304 material 7 as the test material using the residual stress evaluation apparatus 1 configured as described above will be described. In this embodiment, the residual stress is evaluated when a tensile stress of 680 MPa is applied to the SUS304 material 7 that is a non-magnetic material that has undergone solution heat treatment at 1100 ° C. FIG. 5 is a flowchart of the residual stress evaluation method of this embodiment.
[0034]
First, as shown in FIG. 2, the magnet 2a is removed from the SUS304 material 7 (step 501), and a magnetic field is not generated by the current value passed through the current terminal 3 in this state and the voltage value measured by the voltmeter V. measuring the electrical resistance value [rho 1 of (step 502).
[0035]
Next, the magnet 2a is attached to the SUS304 material 7 as shown in FIG. 1 (step 503), and a magnetic field is generated by the current value passed through the current terminal 3 in this state and the voltage value measured by the voltmeter V. the electric resistance [rho 2 in measuring (step 504).
[0036]
Next, a change Δρ in the electric resistance value due to the magnetic field is obtained from the difference between the electric resistance values ρ 2 and ρ 1 (step 505), and the ratio between the change Δρ in the electric resistance value due to the magnetic field and the electric resistance value ρ 1 is evaluated. (Step 506).
[0037]
Here, FIG. 4 shows the relationship (▲, ●) between the change in the electrical resistance value due to the magnetic field when a tensile stress of 680 MPa is applied to the SUS304 material 7 and the magnetic field, and when the tensile stress is not applied (0 MPa). The relationship between the change in electrical resistance value due to the magnetic field and the magnetic field (□, Δ) is shown. As can be seen from FIG. 4, the material to which the tensile stress is applied has a change in the electric resistance value due to the magnetic field as compared with the material to which the tensile stress is not applied. The reason why such a change in the electric resistance value due to the magnetic field appears is the martensitic transformation and magnetization accompanying the strain caused by the tension of the stainless steel material. For this reason, the correlation between the residual stress and Δρ / ρ 1 is obtained in advance as residual stress characteristic data. An example of such characteristic data is shown in FIG. FIG. 6 is an explanatory diagram showing a change in magnetoresistive effect accompanying the stress applied to the SUS304 material, with the horizontal axis representing the applied stress (MPa) and the vertical axis representing Δρ / ρ (%). . The strength of the magnetic field is 0.4T.
[0038]
Then, with reference to the residual stress characteristic data (step 507), the absolute value and direction of the evaluation value [Delta] [rho] / [rho 1 value from the residual stress (residual strain) non-destructively evaluated (step 508).
[0039]
As described above, in the residual stress evaluation apparatus 1 and method of the present embodiment, since the magnetoresistive effect of the test material 7 is used, the residual stress is also evaluated for a nonmagnetic material such as the SUS304 material 7. It becomes possible. Further, the configuration of the apparatus is simplified, and an excessive apparatus is not required, so that the apparatus can be reduced in size and weight.
[0040]
In this embodiment, the non-magnetic SUS304 material 7 is used as the test material, but other non-magnetic materials may be used and can be applied to the evaluation of the characteristics of the magnetic material. Absent.
[0041]
In the present embodiment, the present invention is applied to the evaluation of residual stress. In addition, the present invention is used to evaluate characteristics such as fatigue damage, irradiation damage, thermal embrittlement, impurity content, and hydrogen absorption of zircaloy. Is also applicable.
[0042]
【The invention's effect】
As described above, the present invention measures the electrical resistance value of the test material without generating a magnetic field in the test material, generates the magnetic field in the test material, and measures the electrical resistance value of the test material, calculating a change in the electrical resistance due to a magnetic field and an electric resistance value in the state that caused the electric resistance and the magnetic field in a state not causing magnetic field, and the change amount of the calculated resistance value, advance the magnetic field electrical resistance due to Since the material properties of the test material are evaluated based on the characteristic data obtained by correlating the change in value with the material properties, a simple configuration is possible regardless of whether the test material is ferromagnetic or non-magnetic. In addition, the material properties can be evaluated with a small and light facility. For this reason, it is easy to carry the material property evaluation apparatus to the inspection place, and even in the case of a place where there is a spatial restriction such as a narrow inspection place, the material property evaluation apparatus can be easily installed to remove the non-magnetic material. It has the effect that characteristic evaluation can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a residual stress evaluation apparatus according to an embodiment.
FIG. 2 is an explanatory view showing a state where one magnet is removed in the residual stress evaluation apparatus of the present embodiment.
FIG. 3 is a configuration diagram showing the arrangement of magnets when utilizing the transverse magnetic effect in the residual stress evaluation apparatus of the present embodiment.
FIG. 4 is an explanatory diagram showing the relationship between the change in electrical resistance value due to the magnetic field and the strength of the magnetic field when the tensile stress is applied to the test material and when the tensile stress is not applied to the test material in the residual stress evaluation apparatus of the present embodiment. is there.
FIG. 5 is a flowchart of a residual stress evaluation method according to the present embodiment.
FIG. 6 is an explanatory diagram showing, in a graph, changes in the magnetoresistive effect accompanying stress application of SUS304 material as an example of residual stress characteristic data used in the present embodiment.

Claims (2)

被検材に磁界を生じさせずに、被検材の電気抵抗値を測定する第1測定工程と、
被検材に異なる強さの磁界を生じさせて、被検材の電気抵抗値を測定する第2測定工程と、
前記第1測定工程で測定された電気抵抗値と前記第2測定工程で測定された電気抵抗値とから前記被検材に磁界を加えることにより変化する電気抵抗値の変化分を算出する算出工程と、
前記算出された電気抵抗値の変化分と磁界の強さとの関係及び前記電気抵抗値の変化分と予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データとに基づいて、前記被検材の材料特性を評価する評価工程と、
を含むことを特徴とする材料特性評価方法。
A first measurement step of measuring the electrical resistance value of the test material without generating a magnetic field in the test material;
A second measurement step of measuring the electric resistance value of the test material by generating magnetic fields of different strengths on the test material;
A calculation step of calculating a change amount of the electric resistance value that is changed by applying a magnetic field to the test material from the electric resistance value measured in the first measurement step and the electric resistance value measured in the second measurement step. When,
Based on the relationship between the calculated change in electrical resistance value and the strength of the magnetic field, the change in electrical resistance value, and the characteristic data obtained in advance by correlating the change in electrical resistance value due to the magnetic field and the material properties. An evaluation step for evaluating the material characteristics of the test material,
A material property evaluation method comprising:
被検材に対し磁界を生じさせる着脱可能な一対の磁石と、
被検材の電気抵抗値を測定する測定手段と、
被検材から前記磁石を外して測定した電気抵抗値と、被検材に前記磁石を取り付けて測定した電気抵抗値とから前記被検材に磁界を加えることにより変化する電気抵抗値の変化分を算出する算出手段と、を備え、
前記算出された電気抵抗値の変化分と、予め磁界による電気抵抗値の変化分と材料特性との相関関係を求めた特性データとに基づいて前記被検材の材料特性を評価することを特徴とする材料特性評価装置。
A pair of detachable magnets that generate a magnetic field on the specimen, and
A measuring means for measuring the electrical resistance value of the test material;
Change in electrical resistance value that changes by applying a magnetic field to the test material from the electrical resistance value measured by removing the magnet from the test material and the electrical resistance value measured by attaching the magnet to the test material Calculating means for calculating
Evaluating the material characteristics of the test material based on the calculated change in electrical resistance value and the characteristic data obtained in advance by correlating the change in electrical resistance value due to the magnetic field and the material characteristics; Material characteristic evaluation device.
JP2000088342A 2000-03-28 2000-03-28 Material property evaluation method and apparatus Expired - Fee Related JP4159013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088342A JP4159013B2 (en) 2000-03-28 2000-03-28 Material property evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088342A JP4159013B2 (en) 2000-03-28 2000-03-28 Material property evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2001281186A JP2001281186A (en) 2001-10-10
JP4159013B2 true JP4159013B2 (en) 2008-10-01

Family

ID=18604234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088342A Expired - Fee Related JP4159013B2 (en) 2000-03-28 2000-03-28 Material property evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP4159013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712176B1 (en) * 2004-02-06 2011-04-06 Olympus Corporation Receiver

Also Published As

Publication number Publication date
JP2001281186A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
Suresh et al. Development of magnetic flux leakage measuring system for detection of defect in small diameter steam generator tube
CN103238064B (en) Depth of quenching assay method and depth of quenching determinator
US10931106B2 (en) Apparatus and method for altering the properties of materials by processing through the application of a magnetic field
CN111141436A (en) Method and device for reconstructing residual stress field of ferromagnetic component
Stashkov et al. Magnetic incremental permeability as indicator of compression stress in low-carbon steel
Kypris et al. Experimental verification of the linear relationship between stress and the reciprocal of the peak Barkhausen voltage in ASTM A36 steel
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
Wang et al. Electromagnetic sensors for assessing and monitoring civil infrastructures
Zhang et al. Identification of the ferromagnetic hysteresis simulation parameters using classic non-destructive testing equipment
Angelopoulos et al. Steel health monitoring device based on Hall sensors
JP4159013B2 (en) Material property evaluation method and apparatus
Todorov Measurement of electromagnetic properties of heat exchanger tubes
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP2013170910A (en) Carburization depth measuring method and device
Charubin et al. Mobile ferrograph system for ultrahigh permeability alloys
JP2002277442A (en) Non-destructive inspection method and apparatus
Wang et al. Quantitative characterization of tensile stress in electroplated nickel coatings with a magnetic incremental permeability sensor
Fryskowski Experimental evaluation of magnetic anisotropy in electrical steel sheets
Ogneva et al. Local determination of the field of induced magnetic anisotropy and the level of residual mechanical stresses in tensile-deformed bodies made of low-carbon steels
Alatawneh et al. Calibration of the tangential coil sensor for the measurement of core losses in electrical machine laminations
Gotoh et al. Analysis of electromagnetic inspection method of opposite side carburization depth in steel plate taking account of minor loop
Yue et al. Measurement and analysis of the non-symmetry of transverse magnetisation and resulting loss in grain-oriented steel using a modified RSST
KR20100003808A (en) Reversible magnetic permeability measurement apparatus
Rathod et al. Low field methods (GMR, Hall Probes, etc.)
Arpaia et al. On the use of fluxmetric methods for characterizing feebly magnetic materials

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees