JP4158400B2 - Manufacturing method of strength member for automobile - Google Patents

Manufacturing method of strength member for automobile Download PDF

Info

Publication number
JP4158400B2
JP4158400B2 JP2002106311A JP2002106311A JP4158400B2 JP 4158400 B2 JP4158400 B2 JP 4158400B2 JP 2002106311 A JP2002106311 A JP 2002106311A JP 2002106311 A JP2002106311 A JP 2002106311A JP 4158400 B2 JP4158400 B2 JP 4158400B2
Authority
JP
Japan
Prior art keywords
tubular structure
strength member
joining
manufacturing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002106311A
Other languages
Japanese (ja)
Other versions
JP2003300479A (en
Inventor
宏規 坂元
寛 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002106311A priority Critical patent/JP4158400B2/en
Publication of JP2003300479A publication Critical patent/JP2003300479A/en
Application granted granted Critical
Publication of JP4158400B2 publication Critical patent/JP4158400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衝突時に形状を保持して乗員や燃料タンク部分を保護する高剛性部分と、圧潰して衝突エネルギーを吸収する低剛性部分を備えた自動車用強度部材に係わり、さらに詳しくは、強度や板厚の傾斜分布を有する部分を一体的に備えた自動車用強度部材に関するものである。
【0002】
【発明が解決しようとする課題】
強度や板厚の異なる部分を一体的に備えた自動車用強度部材としては、従来、テーラード管が知られているが、板厚や強度の異なる板材同士を接合して自動車用部材としたものであるから、板厚や強度の変化は段階的なものとなり、連続的な傾斜構造とはならない。一方、強度や板厚に傾斜を与える手段としては、スピニングあるいはスウェージングが考えられるが、大型の管材の一部、例えば先端部にスピニングやスウェージングを行う場合には、管材を回転させるために大規模な設備が必要となる。
【0003】
また、管材同士を突合せ溶接するに際しては、MIG溶接を始めとするアーク溶接やレーザ溶接が考えられるが、アーク溶接を用いた場合には、接合端面の形状によらず安定した品質で接合ができるものの、溶接変形が大きく自動車用強度部材として十分な精度を得ることが困難である。一方、レーザ溶接においては、溶接変形は少ないものの、溶接品質が突合せ部の形状に大きく依存し、例えば突合せ部の隙間が大きい場合には、十分な接合強度が得られないという問題があり、これらの問題点を解消することが従来の自動車用強度部材における課題となっていた。
【0004】
【発明の目的】
本発明は、従来の自動車用強度部材の溶接構造部材における上記課題に着目してなされたものであって、大規模な設備を必要とすることなく、強度や板厚の傾斜分布を有する部分を一体的に備え、しかも寸法精度や強度において優れた品質を有する自動車用強度部材を得ることができる強度部材の製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明に係わる自動車用強度部材の製造方法は、歪時効性を有する鋼材からなり軸方向に歪及び板厚の勾配を備えた第1の筒状構造体と、第2の筒状構造体とを接合した状態で成形し、さらに焼き付け硬化処理を施ことを特徴としており、自動車用強度部材の製造方法におけるこのような構成を前述した従来の課題を解決するための手段としている。
【0006】
また、本発明の製造方法においては、第1の筒状構造体に歪及び板厚の勾配を付与するに際して、スピニングあるいはスウェージングを施したり、第1及び第2の筒状構造体の接合に際しては、第1の筒状構造体の接合端における板厚をT、外径をDとし、第2の筒状構造体の接合端における外径をDとするとき、DはDよりもTの5〜20%大きく形成すると共に、内側に向けて傾斜させた第1の筒状構造体の接合端面に、第2の筒状構造体の接合端を突合せた状態で溶接したりすることが望ましい
【0007】
【発明の実施の形態】
本発明に係わる自動車用強度部材の製造方法においては、歪時効性を有する鋼材からなり軸方向に歪及び板厚の勾配を備えた第1の筒状構造体と、第2の筒状構造体とを接合した状態で成形し、さらに焼き付け硬化処理を施すようにしたから、大規模な設備によらずに、強度や板厚の傾斜(勾配)部分を一体的に備え、当該部分で潰れ変形する自動車用強度部材が低コストで得られることになる。
【0008】
このとき、傾斜構造を有する第1の筒状構造体の厚肉側又は高歪側に、第2の筒状構造体を接合したものとし、さらに望ましくは第1の筒状構造体をエネルギーの入力側に位置させることによって、当該自動車用強度部材は、万一の衝突に際して、部材の先端側から優先的に圧潰するようになり、衝突時の安全性が向上することになる。
【0009】
このとき、両筒状構造体の接合部において、第1の筒状構造体側における板厚×耐力の値が第2の筒状構造体側における板厚×耐力の値に対して1.07倍以上となるようにすることができ、これによって当該部材の軸方向に対して、例えば30度の角度を持った方向の荷重に対しても、当該強度部材の傾斜構造部分が優先的に潰れ変形することになる。このような軸方向からずれた荷重入力に対して傾斜構造部分を優先的に潰れるという効果は、第2の筒状構造体側における板厚×耐力の値に対する第1の筒状構造体側の値が1.07倍を割ると得難くなり、傾斜構造部分の座屈変形が傾斜構造部分以外、すなわち第2の筒状構造体側にも伝播する傾向がある。
【0010】
本発明に係わる自動車用強度部材の製造方法においては、スピニングあるいはスウェージングを施すことによって、第1の筒状構造体に歪及び板厚の勾配を付与するようにしており、大規模な設備を用いることなく、板厚や強度の傾斜構造を備えた第1の筒状構造体が容易に得られることになる。
【0011】
また、第1と第2の筒状構造体の接合に際しては、図1(a)に示すように、第1の筒状構造体P1の接合端部における板厚をT、外径をDとし、第2の筒状構造体P2の接合端における外径をDとするとき、DはDよりもTの5〜20%大きく形成し、望ましくは外周面とのなす角度θが30〜80度となるように内側に向けて傾斜させた第1の筒状構造体P1の接合端面Fに、第2の筒状構造体P2の接合端Eを突合せた状態で溶接するようになすことができ、これによって十分な溶け込みと段差のない良好な形状を備えた溶接部が得られ、十分な接合強度を有する自動車用強度部材が得られることになる。すなわち、第2の筒状構造体P2の接合端部における外径をDが第1の筒状構造体P1の接合端部外径Dよりも大きかったり、Dの方が小さくても、図1(b)に示すように、DとDの間にほとんど差がなかったりした場合(すなわち、D−DがTの5%よりも小さい場合)には、あるいは筒状構造体P1の接合端面Fと外周面のなす角度θが80度を超えてほぼ直角になった場合には、筒状構造体P1およびP2の突合わ部分に隙間が発生し易く、溶接に際してレーザ光のような熱源が抜けてしまうために、良好な接合ができなくなる。また、図1(c)に示すように、第2の筒状構造体P2の接合端部外径Dに対して、第1の筒状構造体P1の端部外形Dが大きすぎても(すなわち、D−DがTの20%よりも大きい場合)、段差が大きくなりすぎてしまい、所望の溶け込みが得られず、良好な接合ができなくなる。
【0012】
なお、第1の筒状構造体P1の接合端面の傾斜角度θが30〜80度の範囲が望ましいのは、θが30度に満たない場合には、溶接時における溶融金属の体積が不十分となって溶接部に穴が発生し易くなり、十分な強度が得られなくなる傾向があり、逆に80度を超えると、上記したようにほぼ垂直となって突き合わせ部に隙間ができたときに穴が発生し、同様に強度が十分に得られなくなる傾向があることによる。
【0013】
そして、第1の筒状構造体の接合端に内側に向けた傾斜面を形成するに際しては、筒状構造体のスピニングあるいはスウェージング後、直線偏光のレーザ光を切断進行方向に対して所定の角度に傾けて照射するようになすことができ、これによって切断後に特別の加工を施すことなく、切断しながら傾斜した接合端面が形成されることになる。すなわち、図2(a)及び(b)に示すように、切断方向Cに対してレーザ光Lの偏光方向Pを変えることによって、被切断材料に対するレーザ光の吸収率が異なることから、傾斜方向の異なる切断が可能になる。
【0014】
また、第1の筒状構造体の接合端に傾斜面を形成するには、上記レーザ切断の他に、接合端に塑性加工を施すようにすることもできる。さらに、本発明に係わる自動車用強度部材の製造方法においては、第1と第2の筒状構造体の接合に際して、レーザ溶接を適用することが望ましく、これによって溶接変形の少ない、寸法精度に優れた高品質の自動車用強度部材が得られることになる。
【0015】
なお、歪時効性を有する鋼材とは、一般的に降伏点が上昇する鋼材であるが、より好ましくは引張強度も上昇する鋼材を言う。また、焼き付け硬化処理は、例えば電着塗装の焼き付け処理(170℃×20分)を利用してもよい。
【0016】
【実施例】
以下に、本発明を実施例に基づいてさらに具体的に説明する。
【0017】
(実施例1)
歪時効性を有し、440MPa級の素材引張り強度を備えた板厚1.6mmの鋼板を丸めて、長さ400mmのテーパー状の筒形に成形し、シーム溶接することによって、図3(a)に示すように、前端の直径が100mm、後端の直径が120mmと変化するテーパ状の管材P0を得た。次いで、図3(b)および(c)に示すように、スピニングローラR1を用いて前記管材P0に、その長さ方向の縮管率が直線的に変化するようにスピニング成形を施し、後端の直径が前端とほぼ等しい100mmとなるように縮管加工した。
【0018】
次に、図3(d)に示すように、直線偏光を有する3kWの炭酸ガスレーザを焦点距離100mmのレンズで集光したレーザ光Lによって、炭酸ガスを吹き付けながら管材P0の図中右側の不要部分を速度7m/min.で切断し、軸方向に歪および板厚の勾配を有する長さ300mm、後端の直径が100.2mmの第1の筒状構造体P1を得た。なお、切断に際して、図2(a)に示したように、レーザ光Lの偏光方向Pを切断方向Cに対して前端に向かって斜め45度に傾けて照射したことから、当該筒状構造体P1の接合端面Fと外周面とのなす角度θ(図1参照)が約70°となった。また、上記のスピニング成形によって、外径が120mmから100.2mm(=D)に縮管加工を施した後端側では、板厚が当初の1.6mmから1.9mm(=T)に増加しており、前端から後端に向けて、板厚が1.6mmから1.9mmに連続的に変化していることが確認された。
【0019】
そして、図3(e)に示すように、上記工程によって得られた第1の筒状構造体P1の後端側(厚肉側)に、590MPa級の引張り強度を有する板厚3.0mmの高張力鋼板からなる直径100mm(=D)の筒状構造体P2(第2の筒状構造体)を突き合わせ、出力3kWの炭酸ガスレーザを焦点距離250mmのレンズで集光し、溶接速度5m/min.で第1および第2の筒状構造体P1,P2を接合し、図3(f)に示すような接合管材P3が得られた。
【0020】
このようにして溶接された接合管材P3は、プレス成形や液圧成形によって自動車用部品に加工することができる。当該実施例においては、液圧成形を適用して成形を行った。すなわち、初期気圧を10MPa程度とし、ポンチストロークの押し込みに伴って上昇する液圧をリークバルブにより調節しながら成形し、一辺が80mm、コーナRが8mmの中空四角形断面の部材を成形し、次いで170℃×20分の焼き付け硬化処理を施すことにより、図3(g)に示す自動車用強度部材1を得た。
【0021】
焼き付け硬化処理によって、歪時効性を有する鋼材に与えた歪の傾斜に応じて、耐力と引張り強度の傾斜が付与され、この実施例では、レーザ溶接部を境にして、第1の筒状構造体P1における耐力と板厚の積が、これに接合された第2の筒状構造体P2における耐力と板厚の積に対して1.1倍となっており、健全な溶接部を備えた、軽量で高強度の自動車用強度部材1が得られた。なお、第1の筒状構造体P1における耐力は、縮管率と板厚より相当歪量を計算し、耐力を歪量より換算したものである。
【0022】
このようにして得られた自動車用強度部材1を用いて、図4(a)に示すように、部材の軸方向からずれた荷重に対する圧潰試験を実施したところ、図4(b)に示すように、当該強度部材1の軸方向に対して30度のずれを持った荷重入力に対しても、先端側に位置する強度傾斜部分、すなわち第1の筒状構造体P1の部分が優先的に変形することが確認された。
【0023】
(実施例2)
上記実施例1と同じく、引張り強度440MPa級、板厚1.6mmの歪時効性鋼板からなり、前端の直径が100mm、後端の直径が120mm、長さが400mmのテーパー状管材P0にスピニング成形を施し、後端の直径が前端とほぼ等しい100mmとなるように縮管加工した(図3(a)〜(c)参照)。
【0024】
次に、図5(a)に示すように、管材P0を回転させながら、切断用ローラR2を用いて、当該管材P0の不要部分を切断することにより、上記実施例と同様に、約100mmの外径と、前端から後端に向けて1.6mmから1.9mmに連続的に変化する板厚を備えた長さ300mm、後端の直径が100.2mmの第1の筒状構造体P1を得た。そして、図5(b)に示すように、切断端部を別のスピニングローラR3によって接合端面Fの角度θ(図1参照)が45度となるように塑性加工を行った。
【0025】
一方、590MPa級の引張り強度を有する板厚3.0mmの高張力鋼板から作成した直径100mmの管材をベンド成形して第2の筒状構造体P2とし、これに前記第1の筒状構造体P1の厚肉側を突き合わせ、上記実施例1と同様の条件でレーザ溶接を行って第1および第2の筒状構造体P1,P2を接合し、図5(c)に示すような接合管材P3を得た。次いで、実施例1と同様の条件のもとに液圧成形を施し、一辺が80mm、コーナRが8mmの中空四角形断面の部材を成形し、さらに、170℃×20分の焼き付け硬化処理を施すことにより、図5(d)に示すようにベンド部を備えた自動車用強度部材1が得られた。
【0026】
当該自動車用強度部材1においては、焼き付け硬化処理によって、歪時効性を有する鋼材に与えた歪の傾斜に応じて耐力と引張り強度の傾斜が付与され、レーザ溶接部を境にして、第1の筒状構造体P1における耐力と板厚の積が、これに接合された第2の筒状構造体P2における耐力と板厚の積に対して1.1倍となっていた。
【0027】
(実施例3)
引張り強度440MPa級、板厚1.6mmの歪時効性鋼板からなり、前端の直径が100mm、後端の直径が150mm、長さが400mmのテーパー状管材P0にスピニング成形を施し、後端の直径が120mmとなるように縮管加工した。
【0028】
次に、前記実施例1と同様の条件で管材P0の不要部分をレーザ切断することによって、前端の外径が100mm、後端の外径が120.2mm、板厚が前端から後端に向けて1.6mmから1.9mmに連続的に変化するテーパ状をなし、長さ300mmの第1の筒状構造体P1を得た。なお、接合端面の傾斜角度θは約70°である。
【0029】
次いで、590MPa級の引張り強度を有する板厚3.0mmの高張力鋼板から作成した直径120mmの管材をベンド成形して第2の筒状構造体P2とし、これに上記工程によって得られた第1の筒状構造体P1の後端側(厚肉、大径側)を突き合わせ、出力3kWの炭酸ガスレーザを焦点距離250mmのレンズで集光し、溶接速度5m/min.で第1および第2の筒状構造体P1,P2を接合し、図6(a)に示すような接合管材P3を得た。
【0030】
そして、実施例1と同様の条件のもとに液圧成形を施すことによって、図5(b)に示すように、第1の筒状構造体P1の前端側は初期の直径100mmの円形断面とし、後端側および第2の筒状構造体P2の側では一辺が85mm、コーナRが8mmの四角形断面の部材を成形し、この後170℃×20分の焼き付け硬化処理を施すことにより、図6(b)に示すようにベンド部を備えた自動車用強度部材1が得られた。
【0031】
このようにして得られた自動車用強度部材1においては、焼き付け硬化処理によって、歪時効性を有する鋼材に与えた歪の傾斜に応じて耐力と引張り強度の勾配が付与され、第1の筒状構造体P1における耐力と板厚の積が、これに接合された第2の筒状構造体P2における耐力と板厚の積に対して1.1倍となっていた。
【0032】
【発明の効果】
以上説明してきたように、本発明に係わる自動車用強度部材の製造方法においては、歪時効性を有する鋼材からなり軸方向に歪及び板厚の勾配を備えた第1の筒状構造体と、第2の筒状構造体とを接合した状態で成形し、さらに焼き付け硬化処理を施すようにしたから、大規模な設備を使用することなく、潰れ変形する車体骨格の一部に強度や板厚の傾斜構造を一体的に備え、軽量高強度の自動車用強度部材を低コストで得ることができるという極めて優れた効果をもたらすものである。
【0033】
また、当該製造方法の好適形態においては、第1の筒状構造体に歪及び板厚の勾配を付与するに際して、スピニングあるいはスウェージングを施すようになすことによって、板厚や強度の傾斜構造を備えた第1の筒状構造体が容易に得られるようになる。また、第1及び第2の筒状構造体の接合に際しては、例えばレーザ溶接によって、第1および第2の筒状構造体の接合端における板厚および外径寸法を所定の数値範囲とて突合せ溶接するようになすことによって、溶け落ちや融合不良のない高品質の溶接部を得ることができ、寸法精度に優れ、小さな質量で高い強度を有する自動車用強度部材を製造することができるという極めて優れた効果がもたらされる。
【図面の簡単な説明】
【図1】(a) 本発明に係わる自動車用強度部材における第1および第2の筒状構造体の接合端の形状および寸法を示す断面説明図である。
(b) 接合端における第1および第2の筒状構造体の外径差が過小の場合を例示する断面説明図である。
(c) 接合端における第1および第2の筒状構造体の外径差が過大の場合を例示する断面説明図である。
【図2】(a)および(b)は直線偏光のレーザ光による切断要領を示す説明図である。
【図3】(a)ないし(g)は本発明の実施例1に係わる自動車用強度部材の製造手順を順次示す工程図である。
【図4】(a)および(b)は自動車用強度部材の圧潰試験要領およびその結果を示す概略説明図である。
【図5】(a)ないし(d)は本発明の実施例2に係わる自動車用強度部材の製造手順を示す工程図である。
【図6】(a)および(b)は本発明の実施例3に係わる自動車用強度部材の製造手順を示す工程図である。
【符号の説明】
1 自動車用強度部材
P1 第1の筒状構造体
P2 第2の筒状構造体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automotive strength member having a high-rigidity portion that retains its shape during a collision and protects an occupant and a fuel tank portion, and a low-rigidity portion that is crushed and absorbs collision energy. Further, the present invention relates to an automotive strength member that is integrally provided with a portion having an inclined distribution of plate thickness.
[0002]
[Problems to be solved by the invention]
Conventionally, tailored pipes are known as automotive strength members that are integrally provided with parts having different strengths and thicknesses. However, they are made by joining together plate materials having different thicknesses and strengths. Therefore, changes in thickness and strength are gradual and do not result in a continuous inclined structure. On the other hand, spinning or swaging can be considered as a means for inclining the strength and thickness, but in order to rotate the pipe when spinning or swaging is performed on a part of a large-sized pipe, for example, the tip. Large-scale equipment is required.
[0003]
Moreover, when butt welding pipes together, arc welding such as MIG welding and laser welding are conceivable, but when arc welding is used, joining can be performed with stable quality regardless of the shape of the joining end face. However, welding deformation is large and it is difficult to obtain sufficient accuracy as a strength member for automobiles. On the other hand, in laser welding, although welding deformation is small, the welding quality largely depends on the shape of the butt portion.For example, when the gap of the butt portion is large, there is a problem that sufficient joint strength cannot be obtained. It has been a problem in conventional strength members for automobiles to eliminate this problem.
[0004]
OBJECT OF THE INVENTION
The present invention has been made by paying attention to the above-mentioned problems in conventional welded structural members of automobile strength members, and has a portion having a gradient distribution of strength and thickness without requiring large-scale equipment. An object of the present invention is to provide a manufacturing method of a strength member that is integrally provided and that can provide a strength member for automobiles having excellent quality in terms of dimensional accuracy and strength.
[0005]
[Means for Solving the Problems]
The manufacturing method of the strength member for automobiles according to the present invention includes a first cylindrical structure made of a steel material having strain aging, and having a strain and a gradient of plate thickness in the axial direction, and a second cylindrical structure, molded in a state of joining, it is characterized in that to facilities the hardening process further baking, and a means for solving the conventional problems described above such a configuration in a method of manufacturing an automobile strength member.
[0006]
Further, in the manufacturing method of the present invention, when imparting the strain and thickness of the gradient to the first tubular structure, or facilities for spinning or swaging, bonding of the first and second tubular structures at the time of the plate thickness at the joint end of the first tubular structure T, the outer diameter D 1, when the outer diameter at the joint end of the second tubular structure and D 2, D 1 is D while 5-20% larger in T than 2, the joining end face of the first tubular structure is inclined toward the inside, and welding abutted the joining end of the second tubular structure Is desirable .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the manufacturing method of the strength member for automobiles according to the present invention, the first cylindrical structure and the second cylindrical structure which are made of a steel material having strain aging and have a strain and a gradient of plate thickness in the axial direction. molded in a state of joining the door, because I was further bake hardening treatment facilities Suyo, without depending on a large-scale equipment, the strength and thickness of the tilt (gradient) portion integrally provided, collapse in the portion A deformable automotive strength member can be obtained at low cost.
[0008]
At this time, it is assumed that the second cylindrical structure is joined to the thick side or the high strain side of the first cylindrical structure having the inclined structure, and more preferably, the first cylindrical structure is made of energy. By positioning it on the input side, the strength member for automobiles is preferentially crushed from the front end side of the member in the event of a collision, and the safety at the time of the collision is improved.
[0009]
At this time , at the joint portion of both cylindrical structures, the value of plate thickness x proof stress on the first cylindrical structure side is 1.07 times or more than the value of plate thickness x proof stress on the second cylindrical structure side. As a result, the inclined structure portion of the strength member is preferentially crushed and deformed even with respect to a load in a direction having an angle of, for example, 30 degrees with respect to the axial direction of the member. It will be. The effect of preferentially collapsing the inclined structure portion with respect to such a load input deviating from the axial direction is that the value on the first cylindrical structure side relative to the value of plate thickness x proof stress on the second cylindrical structure side is If it is divided by 1.07, it becomes difficult to obtain, and the buckling deformation of the inclined structure portion tends to propagate to other than the inclined structure portion, that is, the second cylindrical structure side.
[0010]
In the manufacturing method of the strength member for automobiles according to the present invention, by applying spinning or swaging, a strain and a thickness gradient are imparted to the first tubular structure, and a large-scale facility is provided. Without using it, the first cylindrical structure having an inclined structure with thickness and strength can be easily obtained.
[0011]
In joining the first and second cylindrical structures, as shown in FIG. 1A, the plate thickness at the joining end of the first cylindrical structure P1 is T, and the outer diameter is D 1. and then, when the outer diameter at the joint end of the second tubular structure P2 and D 2, D 1 is 5-20% larger in T than D 2, preferably the angle θ between the outer peripheral surface Welding is performed in a state where the joint end E2 of the second tubular structure P2 is abutted against the joint end face F1 of the first tubular structure P1 inclined inward so as to be 30 to 80 degrees. As a result, a welded portion having a satisfactory shape with sufficient penetration and no level difference can be obtained, and an automotive strength member having sufficient joint strength can be obtained. That, or greater than the joint end outer diameter D 1 of the outer diameter D 2 first tubular structure P1 at the junction end of the second tubular structure P2, even with a small towards D 2 As shown in FIG. 1B, when there is almost no difference between D 1 and D 2 (that is, when D 1 -D 2 is smaller than 5% of T), or cylindrical when the angle θ of the joining end face F 1 and the outer peripheral surface of the structure P1 is almost a right angle more than 80 degrees, easy gap is generated in the butt I portion of the tubular structure P1 and P2, when welding Since a heat source such as laser light is lost, good bonding cannot be performed. Further, as shown in FIG. 1 (c), the end outer shape D1 of the first cylindrical structure P1 is too large with respect to the joining end portion outer diameter D2 of the second cylindrical structure P2. (That is, when D 1 -D 2 is larger than 20% of T), the step becomes too large, the desired penetration cannot be obtained, and good bonding cannot be performed.
[0012]
The inclination angle θ of the joining end face of the first tubular structure P1 is preferably in the range of 30 to 80 degrees. When θ is less than 30 degrees, the volume of the molten metal at the time of welding is insufficient. Tends to generate holes in the welded portion, and there is a tendency that sufficient strength cannot be obtained. On the contrary, when it exceeds 80 degrees, as described above, when a gap is formed in the butted portion, it is almost vertical. This is because holes tend to occur, and similarly, sufficient strength cannot be obtained.
[0013]
When forming an inclined surface directed inward at the joint end of the first cylindrical structure, linearly polarized laser light is irradiated in a predetermined direction with respect to the cutting progress direction after spinning or swaging of the cylindrical structure. Irradiation can be performed at an angle, thereby forming a joint end surface that is inclined while being cut without special processing after cutting. That is, as shown in FIGS. 2 (a) and 2 (b), by changing the polarization direction P of the laser light L with respect to the cutting direction C, the absorptance of the laser light with respect to the material to be cut differs, so that the inclination direction Different cuttings are possible.
[0014]
In addition, in order to form the inclined surface at the joint end of the first cylindrical structure, it is possible to perform plastic working on the joint end in addition to the laser cutting. Furthermore, in the manufacturing method of the strength member for automobiles according to the present invention, it is desirable to apply laser welding at the time of joining the first and second cylindrical structures, thereby reducing welding deformation and excellent dimensional accuracy. Thus, a high-quality automotive strength member can be obtained.
[0015]
The steel material having strain aging generally refers to a steel material having an increased yield point, but more preferably a steel material having an increased tensile strength. Moreover, the baking hardening process may use, for example, an electrodeposition coating baking process (170 ° C. × 20 minutes).
[0016]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0017]
(Example 1)
A steel plate having a thickness of 1.6 mm having strain aging properties and a material tensile strength of 440 MPa is rolled, formed into a tapered cylindrical shape having a length of 400 mm, and seam-welded. ), A tapered tube material P0 having a front end diameter of 100 mm and a rear end diameter of 120 mm was obtained. Next, as shown in FIGS. 3 (b) and 3 (c), using the spinning roller R1, the pipe material P0 is subjected to spinning molding so that the tube contraction rate in the length direction changes linearly, and the rear end The diameter of the tube was reduced so that the diameter would be 100 mm, which is almost equal to the front end.
[0018]
Next, as shown in FIG. 3D, an unnecessary portion on the right side of the pipe P0 in the drawing while blowing carbon dioxide with a laser beam L obtained by condensing a 3 kW carbon dioxide laser having linear polarization with a lens having a focal length of 100 mm. At a speed of 7 m / min. To obtain a first cylindrical structure P1 having a length of 300 mm having a strain and a thickness gradient in the axial direction and a rear end diameter of 100.2 mm. At the time of cutting, as shown in FIG. 2 (a), the polarization direction P of the laser light L was irradiated at an angle of 45 degrees toward the front end with respect to the cutting direction C. angle between P1 joining end face F 1 and the outer circumferential surface of the theta (see Figure 1) was about 70 °. Further, by the above spinning molding, the plate thickness is changed from the original 1.6 mm to 1.9 mm (= T) on the rear end side where the outer diameter is reduced from 120 mm to 100.2 mm (= D 1 ). It was confirmed that the plate thickness continuously changed from 1.6 mm to 1.9 mm from the front end to the rear end.
[0019]
And as shown in FIG.3 (e), plate | board thickness of 3.0 mm which has a 590 MPa class tensile strength in the rear-end side (thickness side) of the 1st cylindrical structure P1 obtained by the said process. A cylindrical structure P2 (second cylindrical structure) made of a high-tensile steel plate and having a diameter of 100 mm (= D 2 ) is abutted, and a carbon dioxide laser with an output of 3 kW is condensed by a lens with a focal length of 250 mm, and a welding speed of 5 m / min. The first and second cylindrical structures P1 and P2 were joined together to obtain a joined pipe material P3 as shown in FIG.
[0020]
The joining pipe material P3 welded in this way can be processed into automotive parts by press molding or hydraulic molding. In this example, molding was performed by applying hydraulic molding. That is, the initial atmospheric pressure is set to about 10 MPa, the hydraulic pressure that rises as the punch stroke is pushed in is adjusted by a leak valve, and a hollow rectangular cross-section member having a side of 80 mm and a corner R of 8 mm is formed. By applying a baking and curing treatment at 20 ° C. for 20 minutes, an automotive strength member 1 shown in FIG. 3G was obtained.
[0021]
In accordance with the inclination of the strain applied to the steel material having strain aging by the bake hardening process, the inclination of the proof stress and the tensile strength is imparted. In this embodiment, the first cylindrical structure with the laser welded portion as a boundary. The product of the proof stress and the plate thickness in the body P1 is 1.1 times the product of the proof stress and the plate thickness in the second tubular structure P2 joined thereto, and a sound welded portion is provided. Thus, a lightweight and high-strength automotive strength member 1 was obtained. In addition, the yield strength in the first cylindrical structure P1 is obtained by calculating the equivalent strain amount from the contraction rate and the plate thickness, and converting the yield strength from the strain amount.
[0022]
Using the thus obtained automotive strength member 1, as shown in FIG. 4 (a), a crushing test was performed on a load shifted from the axial direction of the member, as shown in FIG. 4 (b). Even with respect to a load input having a deviation of 30 degrees with respect to the axial direction of the strength member 1, the strength inclined portion located on the distal end side, that is, the portion of the first cylindrical structure P1 is preferentially used. It was confirmed to be deformed.
[0023]
(Example 2)
As in Example 1 above, it is made of a strain-aged steel sheet having a tensile strength of 440 MPa and a thickness of 1.6 mm, and is formed by spinning into a tapered tubular material P0 having a front end diameter of 100 mm, a rear end diameter of 120 mm, and a length of 400 mm. And the tube was reduced so that the rear end had a diameter of 100 mm, which was substantially equal to the front end (see FIGS. 3A to 3C).
[0024]
Next, as shown in FIG. 5 (a), by cutting the unnecessary portion of the tube material P0 using the cutting roller R2 while rotating the tube material P0, as in the above-described embodiment, about 100 mm. A first cylindrical structure P1 having an outer diameter, a length of 300 mm having a plate thickness continuously changing from 1.6 mm to 1.9 mm from the front end to the rear end, and a rear end diameter of 100.2 mm Got. Then, as shown in FIG. 5 (b), it was subjected to plastic working so that the angle of the joining end face F 1 theta (see FIG. 1) is 45 ° cut end by another spinning roller R3.
[0025]
On the other hand, a tube material having a diameter of 100 mm made from a high-tensile steel plate having a thickness of 3.0 mm having a tensile strength of 590 MPa is bend-formed to form a second cylindrical structure P2, and the first cylindrical structure is added thereto. The thick tube side of P1 is butted and laser welding is performed under the same conditions as in the first embodiment to join the first and second cylindrical structures P1 and P2, and a joined pipe material as shown in FIG. P3 was obtained. Next, hydroforming is performed under the same conditions as in Example 1, forming a member having a hollow square cross section with a side of 80 mm and a corner R of 8 mm, and further subjected to a baking and curing treatment at 170 ° C. for 20 minutes. Thereby, as shown in FIG.5 (d), the automotive strength member 1 provided with the bend part was obtained.
[0026]
In the automotive strength member 1, the proof stress and the tensile strength gradient are imparted according to the strain gradient applied to the steel having strain aging by the bake hardening process, and the first portion is formed with the laser welded portion as the boundary. The product of the proof stress and the plate thickness in the cylindrical structure P1 was 1.1 times the product of the proof stress and the plate thickness in the second cylindrical structure P2 joined thereto.
[0027]
(Example 3)
It consists of a strain-aged steel sheet with a tensile strength of 440 MPa and a plate thickness of 1.6 mm. Spinning is applied to the tapered tube P0 having a front end diameter of 100 mm, a rear end diameter of 150 mm, and a length of 400 mm. The tube was shrunk so as to be 120 mm.
[0028]
Next, the unnecessary part of the tube material P0 is laser-cut under the same conditions as in Example 1, so that the outer diameter of the front end is 100 mm, the outer diameter of the rear end is 120.2 mm, and the plate thickness is from the front end toward the rear end. Thus, a tapered shape continuously changing from 1.6 mm to 1.9 mm was obtained, and a first tubular structure P1 having a length of 300 mm was obtained. In addition, the inclination angle θ of the joining end face is about 70 °.
[0029]
Next, a tubular material having a diameter of 120 mm prepared from a high-tensile steel plate having a thickness of 3.0 mm and having a tensile strength of 590 MPa is bent to form a second cylindrical structure P2, which is obtained by the above process. The cylindrical structure P1 of the cylindrical structure P1 is abutted against the rear end side (thick wall, large diameter side), and a carbon dioxide laser with an output of 3 kW is condensed with a lens having a focal length of 250 mm, and a welding speed of 5 m / min. The first and second cylindrical structures P1 and P2 were joined together to obtain a joined pipe material P3 as shown in FIG.
[0030]
Then, by performing hydraulic forming under the same conditions as in Example 1, as shown in FIG. 5B, the front end side of the first cylindrical structure P1 has a circular cross section with an initial diameter of 100 mm. Then, on the rear end side and the second cylindrical structure P2 side, a member having a square cross section with a side of 85 mm and a corner R of 8 mm is formed, and then subjected to a baking hardening treatment at 170 ° C. for 20 minutes. As shown in FIG. 6B, an automotive strength member 1 having a bend portion was obtained.
[0031]
In the automotive strength member 1 obtained in this way, the gradient of the proof stress and the tensile strength is given according to the inclination of the strain applied to the steel material having strain aging by the bake hardening process, and the first tubular shape The product of the proof stress and the plate thickness in the structure P1 was 1.1 times the product of the proof stress and the plate thickness in the second cylindrical structure P2 bonded thereto.
[0032]
【The invention's effect】
As described above, in the method for manufacturing a strength member for an automobile according to the present invention, the first tubular structure made of a steel material having strain aging and having a strain and a gradient of thickness in the axial direction; molded in a state of bonding the second tubular structure, because the further baking facilities curing treatment Suyo, without using a large-scale equipment, the strength in a part of the vehicle body frame to collapse deformation and plate A thick inclined structure is integrally provided, and an extremely excellent effect that a lightweight and high-strength automotive strength member can be obtained at low cost is brought about.
[0033]
In the preferred embodiment of the manufacturing method, when the strain and thickness gradient are applied to the first cylindrical structure, spinning or swaging is applied to provide an inclined structure with thickness or strength. The provided first cylindrical structure can be easily obtained. When joining the first and second tubular structures, the thickness and outer diameter of the joining ends of the first and second tubular structures are matched within a predetermined numerical range by laser welding, for example. By welding, it is possible to obtain a high-quality welded part that does not melt or have poor fusion, and to produce an automotive strength member having excellent dimensional accuracy and high strength with a small mass. Excellent effect.
[Brief description of the drawings]
FIG. 1A is a cross-sectional explanatory view showing the shape and dimensions of the joining ends of first and second tubular structures in an automotive strength member according to the present invention.
(B) It is sectional explanatory drawing which illustrates the case where the outer diameter difference of the 1st and 2nd cylindrical structure in a junction end is too small.
(C) It is sectional explanatory drawing which illustrates the case where the outer diameter difference of the 1st and 2nd cylindrical structure in a junction end is excessive.
FIGS. 2A and 2B are explanatory views showing a cutting procedure using linearly polarized laser light. FIGS.
FIGS. 3A to 3G are process diagrams sequentially showing a manufacturing procedure of a strength member for an automobile according to Embodiment 1 of the present invention.
FIGS. 4A and 4B are schematic explanatory views showing a crush test procedure and results of a strength member for automobiles. FIGS.
FIGS. 5A to 5D are process diagrams showing a manufacturing procedure of a strength member for an automobile according to Embodiment 2 of the present invention.
FIGS. 6A and 6B are process diagrams showing a manufacturing procedure of a strength member for an automobile according to Embodiment 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automotive strength member P1 1st cylindrical structure P2 2nd cylindrical structure

Claims (9)

歪時効性を有する鋼材からなり軸方向に歪及び板厚の勾配を備えた第1の筒状構造体(P1)と、第2の筒状構造体(P2)とを接合したのち、この状態で成形し、さらに焼き付け硬化処理を施ことを特徴とする自動車用強度部材の製造方法 This state after joining the first tubular structure (P1) and the second tubular structure (P2) , which are made of a steel material having strain aging and have a strain and thickness gradient in the axial direction. in molding method for an automobile strength member, characterized in that to facilities the hardening process further baking. 第1の筒状構造体(P1)の厚肉側又は高歪側に第2の筒状構造体(P2)を接合することを特徴とする請求項1記載の自動車用強度部材の製造方法The method for producing a strength member for an automobile according to claim 1, wherein the second tubular structure (P2) is joined to the thick wall side or the high strain side of the first tubular structure (P1) . 第1の筒状構造体(P1)をエネルギー入力側に接合することを特徴とする請求項2記載の自動車用強度部材の製造方法 Method for producing automobile strength member according to claim 2, wherein the joining the first tubular structure and (P1) to the energy input. 第1の筒状構造体(P1)に歪及び板厚の勾配を付与するに際して、スピニングあるいはスウェージングを施すことを特徴とする請求項1〜のいずれか1つの項に記載の自動車用強度部材の製造方法。The strength for automobiles according to any one of claims 1 to 3 , wherein spinning or swaging is applied to the first tubular structure (P1) to impart a strain and a gradient of plate thickness. Manufacturing method of member. 第1の筒状構造体(P1)と第2の筒状構造体(P2)を接合するに際して、第1の筒状構造体(P1)の接合端における板厚をT、外径をDとし、第2の筒状構造体(P2)の接合端における外径をDとするとき、DはDよりもTの5〜20%大きく形成すると共に、内側に向けて傾斜させた第1の筒状構造体(P1)の接合端面に、第2の筒状構造体(P2)の接合端を突合せた状態で溶接することを特徴とする請求項1〜4のいずれか1つの項に記載の自動車用強度部材の製造方法。 When joining the first tubular structure (P1) and the second tubular structure (P2), the plate thickness at the joining end of the first tubular structure (P1) is T, and the outer diameter is D 1. and then, when the outer diameter at the joint end of the second tubular structure (P2) and D 2, D 1 together with 5 to 20% larger formation of T than D 2, is inclined toward the inside The welding according to any one of claims 1 to 4, wherein welding is performed in a state where the joining end of the second tubular structure (P2) is abutted against the joining end surface of the first tubular structure (P1) . The manufacturing method of the strength member for motor vehicles described in claim | item. 第1の筒状構造体(P1)の接合端面と外周面とのなす角度が30〜80度の範囲であることを特徴とする請求項5に記載の自動車用強度部材の製造方法。6. The method for manufacturing a strength member for an automobile according to claim 5, wherein an angle formed between the joining end face of the first tubular structure (P1) and the outer peripheral face is in a range of 30 to 80 degrees. スピニングあるいはスウェージング後、直線偏光のレーザ光を切断進行方向に対して斜めに傾けた状態で照射して切断し、第1の筒状構造体(P1)の接合端に傾斜を設けることを特徴とする請求項又は6に記載の自動車用強度部材の製造方法。After spinning or swaging, the linearly polarized laser beam is irradiated and cut in a state inclined obliquely with respect to the cutting progress direction, and an inclination is provided at the joint end of the first cylindrical structure (P1). The manufacturing method of the strength member for motor vehicles of Claim 5 or 6 . スピニングあるいはスウェージング後、引き続いて接合端に塑性加工を施して第1の筒状構造体(P1)の接合端に傾斜を設けることを特徴とする請求項又は6に記載の自動車用強度部材の製造方法。The strength member for an automobile according to claim 5 or 6, wherein after the spinning or swaging, the joining end is subjected to plastic working to provide an inclination at the joining end of the first cylindrical structure (P1). Manufacturing method. 上記接合をレーザ溶接により行うことを特徴とする請求項5〜8のいずれか1つの項に記載の自動車用強度部材の製造方法。 The method for manufacturing a strength member for an automobile according to any one of claims 5 to 8, wherein the joining is performed by laser welding.
JP2002106311A 2002-04-09 2002-04-09 Manufacturing method of strength member for automobile Expired - Fee Related JP4158400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106311A JP4158400B2 (en) 2002-04-09 2002-04-09 Manufacturing method of strength member for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106311A JP4158400B2 (en) 2002-04-09 2002-04-09 Manufacturing method of strength member for automobile

Publications (2)

Publication Number Publication Date
JP2003300479A JP2003300479A (en) 2003-10-21
JP4158400B2 true JP4158400B2 (en) 2008-10-01

Family

ID=29390664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106311A Expired - Fee Related JP4158400B2 (en) 2002-04-09 2002-04-09 Manufacturing method of strength member for automobile

Country Status (1)

Country Link
JP (1) JP4158400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222912B2 (en) * 2004-11-23 2007-05-29 Ford Global Technologies, Llc Automotive vehicle body with hydroformed cowl
JP4807201B2 (en) * 2006-09-14 2011-11-02 山里産業株式会社 Sheath thermocouple and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003300479A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
US9033398B2 (en) Multi-thickness tube for hydroformed members
US6842957B2 (en) Process for producing a tubular component
US6394335B2 (en) Method for producing a molded part and a molded part produced according to said method
JP3925370B2 (en) Method and apparatus for manufacturing deformed element pipe for hydraulic bulge processing
KR20100097055A (en) Method for manufacturing of an automove part in the form of torsion profile
US20140068945A1 (en) Method Of Producing Tailored Tubes
JP7043496B2 (en) Methods and Semi-Products for Producing At least Partially Hardened Variant Components
JP4158400B2 (en) Manufacturing method of strength member for automobile
JP4395964B2 (en) Impact energy absorbing structure
JP2001334316A (en) Tubular product of special form and its manufacturing method
JP5000578B2 (en) Laser welding method for thin steel sheets
KR20140132764A (en) Device and method for producing flangeless closed-cross-section-structure component having curved shape
DE19802685A1 (en) Process for producing an elongated hollow body and its use
EP1586391A1 (en) Tubular blank and process for producing a tubular blank
JP2005279684A (en) Flanged welding metal tube and its production method
JP3409945B2 (en) Method for producing metal strip having thick part
KR102512336B1 (en) Method of manufacturing a torsion beam for a vehicle suspension and torsion beam for a vehicle suspension
JPH0478720A (en) Steel pipe for reinforcing vehicle body
JP7234639B2 (en) Flanged plate-wound laser-welded steel pipe and method for producing plate-wound laser-welded steel pipe with flange
JP2000167673A (en) Tailored blank, and its manufacture
JP2004009067A (en) Front-side member for car
JP5395233B2 (en) Bumper structure manufacturing method
CN115151476B (en) Multi-thickness welded type vehicle steel tubular structure and preparation method thereof
JP2004314102A (en) Tailored tube, and method for manufacturing the same
JP3817669B2 (en) Method of welding structural members and welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees