JP4157580B2 - Phosphor regenerating method and fluorescent lamp - Google Patents

Phosphor regenerating method and fluorescent lamp Download PDF

Info

Publication number
JP4157580B2
JP4157580B2 JP2006541743A JP2006541743A JP4157580B2 JP 4157580 B2 JP4157580 B2 JP 4157580B2 JP 2006541743 A JP2006541743 A JP 2006541743A JP 2006541743 A JP2006541743 A JP 2006541743A JP 4157580 B2 JP4157580 B2 JP 4157580B2
Authority
JP
Japan
Prior art keywords
phosphor
liquid
solution
fluorescent lamp
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006541743A
Other languages
Japanese (ja)
Other versions
JPWO2006106641A1 (en
Inventor
由雄 真鍋
亨 東
政明 濱
栄司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2006106641A1 publication Critical patent/JPWO2006106641A1/en
Application granted granted Critical
Publication of JP4157580B2 publication Critical patent/JP4157580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/50Repairing or regenerating used or defective discharge tubes or lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/52Recovery of material from discharge tubes or lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Description

本発明は、蛍光体の再生方法及びその再生方法で再生した蛍光体を用いた蛍光ランプに関する。   The present invention relates to a method for regenerating a phosphor and a fluorescent lamp using the phosphor regenerated by the regeneration method.

近年、蛍光ランプがオフィス照明や一般家庭の照明として広く普及している。その蛍光ランプの蛍光膜を形成する方法としては、蛍光体と増粘剤、結着剤などを水に分散させた蛍光体塗布液を、地面に対して垂直に設置したガラス管の内部に流し込み、ガラス管上部又は下部からガラス管の内部へ温風を吹き込み乾燥させ(塗布工程)、その後、400℃以上の温度で焼成して蛍光体をガラス管の内面に焼付ける(熱処理工程)方法などが採用されている。   In recent years, fluorescent lamps have been widely used as office lighting and general household lighting. As a method of forming the fluorescent film of the fluorescent lamp, a phosphor coating solution in which a phosphor, a thickener and a binder are dispersed in water is poured into a glass tube installed perpendicular to the ground. A method in which hot air is blown into the glass tube from the top or bottom of the glass tube and dried (coating process), and then the phosphor is baked at a temperature of 400 ° C. or higher to burn the phosphor on the inner surface of the glass tube (heat treatment process) Is adopted.

一方、蛍光体は一般に高価な材料であるため、その蛍光膜の形成工程で発生する使用済みの蛍光体塗布液又は熱処理後の蛍光体を再利用することが熱望されている。即ち、蛍光体の塗布工程では、ガラス管から排出された使用済みの蛍光体塗布液が大量に発生する。この使用済み蛍光体塗布液は、ある程度は塗布機にリターンして再度使用することは可能である。しかし、これを繰り返すと蛍光体塗布液中の蛍光体以外の成分の濃度が上昇し、蛍光体が凝集して塗布できなくなる場合がある。また、蛍光膜を焼付けた熱処理工程後のガラス管は、口金などを取りつけるために、ガラス管の両端部に形成された蛍光膜を削り取る作業が必要であり、この削り取られた蛍光体も再利用できればより経済的である。   On the other hand, since the phosphor is generally an expensive material, it is desired to reuse the used phosphor coating liquid generated in the phosphor film forming step or the phosphor after the heat treatment. That is, in the phosphor coating process, a large amount of used phosphor coating liquid discharged from the glass tube is generated. This used phosphor coating solution can be returned to the coating machine to some extent and used again. However, if this is repeated, the concentration of components other than the phosphor in the phosphor coating solution may increase, and the phosphor may aggregate and be unable to be coated. In addition, the glass tube after the heat treatment process that baked the fluorescent film needs to scrape off the fluorescent film formed on both ends of the glass tube in order to attach the base and the like. It is more economical if possible.

従来、このような蛍光体の再生方法としては、例えば、回収された蛍光体を純水に分散させる工程と、純水に分散された蛍光体をアルカリ水溶液で洗浄する工程と、アルカリで洗浄された蛍光体を静置させ排水する工程と、この蛍光体を純水で洗浄する工程と、洗浄された蛍光体を表面処理する工程と、表面処理された蛍光体を乾燥する工程と、乾燥された蛍光体をメッシュにより篩分粒して再加工蛍光体を得る工程とを含むものが提案されている(特許文献1参照。)。   Conventionally, as a method for regenerating such a phosphor, for example, a step of dispersing the collected phosphor in pure water, a step of washing the phosphor dispersed in pure water with an alkaline aqueous solution, and a step of washing with alkali. A step of allowing the phosphor to stand and drain, a step of washing the phosphor with pure water, a step of surface-treating the washed phosphor, a step of drying the surface-treated phosphor, and a step of drying And a step of obtaining a reprocessed phosphor by sieving the obtained phosphor with a mesh (see Patent Document 1).

また、蛍光膜形成工程で回収した蛍光体をオゾンを含有する水溶液、必要に応じてアルカリ剤、酸化剤及びキレート剤の少なくとも1種を含有させた水溶液を用いて処理する回収蛍光体の再生処理方法が提案されている(特許文献2参照。)。   In addition, the phosphor recovered in the phosphor film forming step is treated with an aqueous solution containing ozone, and if necessary, an aqueous solution containing at least one of an alkali agent, an oxidizing agent and a chelating agent. A method has been proposed (see Patent Document 2).

さらに、スラリー中の乾燥固形分に対して0.5wt%〜5.0wt%の酸化剤と、スラリー溶液に対して0.01N〜0.1Nの範囲のアルカリを添加して温水中にて処理する第1工程、蛍光体スラリーを水洗の後、pHを1.0〜3.0に保持しながら処理する第2工程、及び蛍光体スラリーを水洗の後、スラリー中の乾燥固形分に対して0.000
01wt%〜10wt%の範囲でキレート剤を添加してpH5以上の温水中にて処理する第3工程を含む回収蛍光体スラリーの再生方法が提案されている(特許文献3参照。)。
特開平7−34064号公報 特開平8−295879号公報 特開平9−176632号公報
Further, 0.5 wt% to 5.0 wt% oxidizing agent is added to the dry solid content in the slurry, and an alkali in the range of 0.01 N to 0.1 N is added to the slurry solution and treated in warm water. The first step, after washing the phosphor slurry with water, after the second step of processing while maintaining the pH at 1.0 to 3.0, and after washing the phosphor slurry with water, with respect to the dry solid content in the slurry 0.000
A method for regenerating a recovered phosphor slurry including a third step of adding a chelating agent in the range of 01 wt% to 10 wt% and treating in warm water having a pH of 5 or higher has been proposed (see Patent Document 3).
JP 7-34064 A JP-A-8-295879 JP-A-9-176632

しかし、上記特許文献1〜3に記載の蛍光体の再生方法では、蛍光体の再生をある程度は行うことはできるが、蛍光体に添加された蛍光体以外の成分、即ち増粘剤や結着剤を完全には除去できない。この増粘剤や結着剤が残存した再生蛍光体を用いて、あるいはこの再生蛍光体と新品の蛍光体とを混合して、蛍光ランプの蛍光膜を形成すると輝度が10%程度低下する問題がある。   However, in the phosphor regeneration methods described in Patent Documents 1 to 3, the phosphor can be regenerated to some extent, but components other than the phosphor added to the phosphor, that is, a thickener or a binder. The agent cannot be completely removed. Using this regenerated phosphor with the thickener or binder remaining, or mixing this regenerated phosphor with a new phosphor to form a fluorescent film of a fluorescent lamp has a problem that the luminance decreases by about 10%. There is.

本発明は、上記問題を解決するもので、蛍光体に添加された増粘剤や結着剤をほぼ完全に除去することができる蛍光体の再生方法を提供する。   The present invention solves the above-described problems and provides a method for regenerating a phosphor that can almost completely remove a thickener and a binder added to the phosphor.

本発明の第1の蛍光体の再生方法は、蛍光体を含有する液及び前記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程と、前記回収した蛍光体を含有する液及び/又は前記蛍光体を含む固化物に、水を加えて蛍光体液を調製する工程と、前記蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程と、前記pHを調整した蛍光体液に酸化剤を加える工程とを含むことを特徴とする
The first phosphor regenerating method of the present invention includes a step of recovering at least one selected from a liquid containing a phosphor and a solidified material containing the phosphor, a liquid containing the recovered phosphor, and / or Alternatively, a step of preparing a phosphor solution by adding water to the solidified product containing the phosphor, a step of adjusting the pH to 4 or more and 6 or less by adding an organic acid to the phosphor solution, and a fluorescence having the pH adjusted. Adding an oxidizing agent to the body fluid .

また、本発明の第2の蛍光体の再生方法は、(A)蛍光体を含有する液及び前記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程と、(B)前記回収した蛍光体を含有する液及び/又は前記蛍光体を含む固化物に、水を加えて攪拌して蛍光体液を調製する工程と、(C)前記蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程と、(D)前記pHを調整した蛍光体液に酸化剤を加える工程と、(E)前記酸化剤を加えた蛍光体液を静置する工程と、(F)前記静置した蛍光体液の上澄み液を除去する工程と、(G)前記上澄み液を除去した蛍光体液に水を加えて攪拌する工程と、(H)前記攪拌した蛍光体液を静置する工程と、(I)前記静置した蛍光体液の上澄み液を除去する工程と、(J)前記(G)工程から前記(I)工程を繰り返す工程と、(K)前記上澄み液を除去した蛍光体液を乾燥して蛍光体粉末を得る工程とを含むことを特徴とする。
The second phosphor regenerating method of the present invention includes (A) a step of recovering at least one selected from a phosphor-containing liquid and a solidified material containing the phosphor, and (B) the recovering step. Adding a liquid to the phosphor-containing liquid and / or the solidified product containing the phosphor and stirring the mixture to prepare a phosphor liquid; and (C) adding an organic acid to the phosphor liquid to adjust the pH to 4 or more. A step of adjusting to 6 or less, (D) a step of adding an oxidizing agent to the phosphor solution adjusted to pH, (E) a step of standing the phosphor solution to which the oxidizing agent is added, and (F) the standing A step of removing the supernatant solution of the phosphor solution, (G) a step of adding water to the phosphor solution from which the supernatant solution has been stirred and stirring, (H) a step of allowing the stirred phosphor solution to stand, and (I ) Removing the supernatant of the phosphor solution that has been allowed to stand; and (J) the step (G) A step of repeating said step (I), characterized in that it comprises a step of obtaining a phosphor powder by drying a fluorescent body fluid was removed (K) the supernatant.

また、本発明の蛍光ランプは、上記蛍光体の再生方法で再生した蛍光体を用いたことを特徴とする。   The fluorescent lamp of the present invention is characterized by using a phosphor regenerated by the above-described phosphor regenerating method.

本発明の蛍光体の再生方法は、蛍光体に添加された増粘剤や結着剤をほぼ完全に除去することができる。また、本発明の蛍光体の再生方法により再生した蛍光体を用いた蛍光ランプは、新品の蛍光体を用いた蛍光ランプと同等の輝度又はそれに近い輝度を発揮できる。   The method for regenerating a phosphor according to the present invention can almost completely remove the thickener and the binder added to the phosphor. In addition, a fluorescent lamp using a phosphor regenerated by the method for regenerating a phosphor of the present invention can exhibit a luminance equivalent to or close to that of a fluorescent lamp using a new phosphor.

本発明の第1の蛍光体の再生方法の一例は、蛍光ランプの蛍光膜の形成に用いた蛍光体を含有する液及び上記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程と、回収した蛍光体を含有する液及び/又は上記蛍光体を含む固化物に、水を加えて蛍光体液を調製する工程と、蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程と、pHを調整した蛍光体液に酸化剤を加える工程とを含む。
An example of the first phosphor regeneration method of the present invention includes a step of recovering at least one selected from a liquid containing a phosphor used for forming a fluorescent film of a fluorescent lamp and a solidified substance containing the phosphor. The step of preparing the phosphor liquid by adding water to the liquid containing the collected phosphor and / or the solidified product containing the phosphor, and adding the organic acid to the phosphor liquid to adjust the pH to 4 or more and 6 or less And a step of adding an oxidizing agent to the phosphor liquid whose pH has been adjusted.

これにより、蛍光体に添加された増粘剤や結着剤をほぼ完全に除去することができる。この理由の詳細は明らかではないが、蛍光体粒子のゼータ電位が関係していると考えられる。ここで、ゼータ電位とは、異相界面に生じる界面電位であり、微粒子分散系の安定性の解析にしばしば用いられる。また、ゼータ電位は、粒子液のpHによって変化することが分かっている。即ち、再生前の蛍光体液のpHを4以上6以下にすることにより、蛍光体粒子のゼータ電位が高くなり、蛍光体粒子の静電反発力が大きくなり、蛍光体粒子は高分散状態を維持できると考えられる。この高分散状態の蛍光体粒子に酸化剤を加えることにより、蛍光体粒子の表面に効率的に酸化剤が作用して、蛍光体粒子から増粘剤や結着剤をほぼ完全に除去することができると考えられる。   Thereby, the thickener and binder added to the phosphor can be almost completely removed. Although the details of this reason are not clear, it is considered that the zeta potential of the phosphor particles is related. Here, the zeta potential is an interfacial potential generated at the heterophasic interface and is often used for analysis of the stability of the fine particle dispersion. Further, it has been found that the zeta potential varies depending on the pH of the particle liquid. That is, by setting the pH of the phosphor liquid before regeneration to 4 or more and 6 or less, the zeta potential of the phosphor particles is increased, the electrostatic repulsion force of the phosphor particles is increased, and the phosphor particles maintain a highly dispersed state. It is considered possible. By adding an oxidant to the highly dispersed phosphor particles, the oxidant efficiently acts on the surface of the phosphor particles, thereby removing the thickener and binder from the phosphor particles almost completely. It is thought that you can.

一方、前述の特許文献1〜3に記載の蛍光体の再生方法では、蛍光体液をアルカリ処理しているが、蛍光体液のpHをアルカリ領域にすると、何らかの原因で蛍光体粒子のゼータ電位が低くなり、蛍光体粒子の静電反発力が小さくなり、蛍光体粒子が凝集したものと考えられる。この原因は明らかではないが、次のように推測できる。即ち、通常、蛍光ランプに用いる蛍光体は、赤色蛍光体、緑色蛍光体、青色蛍光体を混合した三波長型蛍光体が用いられる。しかし、この三波長型蛍光体を含む溶液のpHをアルカリ領域にしても、三種類の全ての蛍光体粒子のゼータ電位を高くすることができず、又はpHによってはその中の二種類の蛍光体のゼータ電位の符号が逆となり、相互に打ち消しあったものと考えられる。   On the other hand, in the phosphor regeneration methods described in Patent Documents 1 to 3, the phosphor liquid is alkali-treated. However, when the pH of the phosphor liquid is set to the alkaline region, the zeta potential of the phosphor particles is lowered for some reason. Therefore, it is considered that the electrostatic repulsion force of the phosphor particles is reduced and the phosphor particles are aggregated. The cause of this is not clear, but can be estimated as follows. That is, usually, a phosphor used in a fluorescent lamp is a three-wavelength phosphor in which a red phosphor, a green phosphor, and a blue phosphor are mixed. However, even if the pH of the solution containing this three-wavelength phosphor is set to the alkaline range, the zeta potential of all three types of phosphor particles cannot be increased, or depending on the pH, the two types of phosphor It is thought that the signs of the zeta potentials of the body were reversed and canceled each other.

また、本発明の第2の蛍光体の再生方法の一例は、蛍光ランプの蛍光膜の形成に用いた蛍光体を含有する液及び上記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程(A)と、回収した蛍光体を含有する液及び/又は上記蛍光体を含む固化物に、水を加えて攪拌して蛍光体液を調製する工程(B)と、蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程(C)と、pHを調整した蛍光体液に酸化剤を加える工程(D)と、酸化剤を加えた蛍光体液を静置する工程(E)と、静置した蛍光体液の上澄み液を除去する工程(F)と、上澄み液を除去した蛍光体液に水を加えて攪拌する工程(G)と、攪拌した蛍光体液を静置する工程(H)と、静置した蛍光体液の上澄み液を除去する工程(I)と、上記(G)工程から上記(I)工程を繰り返す工程(J)と、上澄み液を除去した蛍光体液を乾燥して蛍光体粉末を得る工程(K)とを含む。 An example of the second phosphor regeneration method of the present invention collects at least one selected from the phosphor-containing liquid used for forming the phosphor film of the fluorescent lamp and the solidified material containing the phosphor. Step (A), Step (B) in which water is added to the liquid containing the collected phosphor and / or the solidified product containing the phosphor and stirred to prepare the phosphor solution, and an organic acid is added to the phosphor solution. In addition, a step (C) of adjusting the pH to 4 or more, 6 or less, a step (D) of adding an oxidizing agent to the phosphor solution adjusted in pH, and a step (E) of standing the phosphor solution added with the oxidizing agent And a step (F) of removing the supernatant of the phosphor solution that has been allowed to stand, a step (G) of adding and stirring the phosphor solution from which the supernatant has been removed, and a step of leaving the phosphor solution that has been stirred (H) ), The step (I) of removing the supernatant of the phosphor solution that has been allowed to stand, and the step (G) above. Including the (I) and repeating steps (J), and a step (K) of the fluorescent body fluid supernatant was removed to obtain a phosphor powder and dried.

また、上記第2の蛍光体の再生方法において、上記(B)工程から上記(F)工程を繰り返す工程をさらに含むことができる。   The second phosphor regeneration method may further include a step of repeating the step (B) to the step (F).

上記蛍光ランプの蛍光膜の形成に用いた蛍光体を含有する液としては、蛍光体塗布液を地面に対して垂直に設置したガラス管の内部に流し込み、ガラス管から排出された使用済みの蛍光体塗布液を回収したものが該当する。また、上記蛍光体を含む固化物としては、第1に、回収した蛍光体塗布液に含まれる蛍光体、増粘剤、結着剤などが凝集して固化したものが該当し、第2に、ガラス管に塗布された蛍光体塗布液を蛍光膜として焼付けた熱処理工程後において、口金などを取りつけるために、ガラス管の両端部に形成された蛍光膜を削り取ることにより回収した蛍光膜粉が該当する。   As a liquid containing the phosphor used for forming the fluorescent film of the fluorescent lamp, the phosphor coating liquid is poured into a glass tube installed perpendicular to the ground, and the used fluorescent material discharged from the glass tube is discharged. Applicable to the body coating liquid recovered. Moreover, as the solidified product containing the phosphor, firstly, a substance obtained by agglomerating and solidifying a phosphor, a thickener, a binder, and the like contained in the collected phosphor coating solution corresponds to the second. After the heat treatment process in which the phosphor coating solution applied to the glass tube is baked as a fluorescent film, the fluorescent film powder recovered by scraping off the fluorescent film formed on both ends of the glass tube to attach a die or the like Applicable.

上記酸としては、有機酸が好ましい。有機酸を用いることにより、蛍光体液のpHを4以上6以下に合理的に調整できるからである。有機酸としては、例えば、酢酸(C242)、プロピオン酸(C362)、酪酸(C482)、吉草酸(C5102)、ヘキサ
ン酸(C6122)、安息香酸(C762)、アクリル酸(C342)、シュウ酸(C224)、マレイン酸(C444)、フマル酸(C444)、オクタン酸(C8162)、デカン酸(C10202)、ドデカン酸(C12242)、テトラデカン酸(C14282)、ヘキサデカン酸(C16322)及びオクタデカン酸(C18362)などを使用
できる。この中では酢酸が最も好ましい。酢酸は最もpHを安定させることができるからである。
As the acid, an organic acid is preferable. This is because the pH of the phosphor liquid can be rationally adjusted to 4 or more and 6 or less by using an organic acid. Examples of the organic acid include acetic acid (C 2 H 4 O 2 ), propionic acid (C 3 H 6 O 2 ), butyric acid (C 4 H 8 O 2 ), valeric acid (C 5 H 10 O 2 ), and hexane. Acid (C 6 H 12 O 2 ), benzoic acid (C 7 H 6 O 2 ), acrylic acid (C 3 H 4 O 2 ), oxalic acid (C 2 H 2 O 4 ), maleic acid (C 4 H 4) O 4 ), fumaric acid (C 4 H 4 O 4 ), octanoic acid (C 8 H 16 O 2 ), decanoic acid (C 10 H 20 O 2 ), dodecanoic acid (C 12 H 24 O 2 ), tetradecanoic acid (C 14 H 28 O 2 ), hexadecanoic acid (C 16 H 32 O 2 ), octadecanoic acid (C 18 H 36 O 2 ) and the like can be used. Of these, acetic acid is most preferred. This is because acetic acid can stabilize the pH most.

上記酸化剤としては、例えば、過酸化水素、次亜塩素酸ナトリウム、過ヨウ素酸ナトリウム、亜臭素酸ナトリウムなどの少なくとも1種を用いることができる。その他に、HClO、HBrO、HIO、NaClOなどのジアハロゲン酸及びその塩、HClO3、H
BrO3、HIO3、NaClO3、KClO3などのハロゲン酸素酸及びその塩、HClO4、KClO4、NaIO4などのハロゲン酸及びその塩、重クロム酸カリウム、Na22
、K22などの過酸化物などからなる群から選択された少なくとも1種を用いることができる。この中では過酸化水素が最も好ましい。過酸化水素であれば、蛍光体を再生した後に蛍光体に対して不要な元素が残留しないからである。
As the oxidizing agent, for example, at least one of hydrogen peroxide, sodium hypochlorite, sodium periodate, sodium bromate and the like can be used. In addition, dihalogen acids such as HClO, HBrO, HIO, NaClO and their salts, HClO 3 , H
Halogen oxyacids and salts thereof such as BrO 3 , HIO 3 , NaClO 3 and KClO 3 , halogen acids and salts thereof such as HClO 4 , KClO 4 and NaIO 4 , potassium dichromate, Na 2 O 2
, At least one selected from the group consisting of peroxides such as K 2 O 2 can be used. Of these, hydrogen peroxide is most preferred. This is because hydrogen peroxide does not leave unnecessary elements in the phosphor after the phosphor is regenerated.

また、本発明の蛍光ランプの一例は、上記蛍光体の再生方法で再生した蛍光体を用いた蛍光ランプである。本実施形態の蛍光体は、上記蛍光体の再生方法で再生した蛍光体を用いているので、新品の蛍光体を用いた蛍光ランプと同等の輝度又はそれ近い輝度を発揮できる。   An example of the fluorescent lamp of the present invention is a fluorescent lamp using a phosphor regenerated by the above-described phosphor regenerating method. Since the phosphor of this embodiment uses the phosphor regenerated by the above-described phosphor regenerating method, it can exhibit a luminance equivalent to or close to that of a fluorescent lamp using a new phosphor.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本発明の蛍光体の再生方法の一例を示す工程フロー図である。本実施形態では、蛍光体の塗布工程において、ガラス管から排出された使用済みの蛍光体塗布液から回収した蛍光体の再生を行う例を示す。
(Embodiment 1)
FIG. 1 is a process flow diagram showing an example of a method for regenerating a phosphor according to the present invention. In the present embodiment, an example is shown in which the phosphor recovered from the used phosphor coating solution discharged from the glass tube is regenerated in the phosphor coating step.

本実施形態の再生方法では、先ず蛍光ランプの蛍光膜の形成に用いた蛍光体を含有する液及びその蛍光体を含む固化物を回収し、タンクに投入する(工程(a):前記工程(A)に対応)。即ち、蛍光体塗布液を地面に対して垂直に設置したガラス管の内部に流し込み、ガラス管から排出された使用済みの蛍光体を含有する蛍光体塗布液及びその蛍光体塗布液が固化した固化物を回収する。なお、場合によっては、蛍光体塗布液が固化しない場合があるが、この場合には蛍光体塗布液のみを回収する。これらに含まれる蛍光体は熱処理工程を経ていないものである。また、本実施形態の蛍光体塗布液は、その溶媒として水系溶媒を用いたものである。   In the regeneration method of the present embodiment, first, the liquid containing the phosphor used for forming the fluorescent film of the fluorescent lamp and the solidified product containing the phosphor are collected and put into a tank (step (a): the above step ( Corresponding to A)). That is, the phosphor coating solution is poured into a glass tube installed perpendicular to the ground, and the phosphor coating solution containing the used phosphor discharged from the glass tube and the phosphor coating solution solidified. Collect items. In some cases, the phosphor coating solution may not be solidified. In this case, only the phosphor coating solution is recovered. The phosphor contained in these has not undergone a heat treatment step. Moreover, the phosphor coating liquid of the present embodiment uses an aqueous solvent as the solvent.

次に、投入した蛍光体塗布液及びその固化物に水を加えて攪拌して蛍光体液を調製する(工程(b):前記工程(B)に対応)。調製した蛍光体液の固形分濃度は、0.3kg/L〜0.5kg/Lとすることができ、より好ましくは0.35kg/L〜0.45kg/Lである。なお、蛍光体液の固形分には、蛍光体及び/又は蛍光体を含む固化物が含まれる。   Next, water is added to the charged phosphor coating solution and the solidified product and stirred to prepare a phosphor solution (step (b): corresponding to step (B)). The solid content concentration of the prepared phosphor liquid can be 0.3 kg / L to 0.5 kg / L, and more preferably 0.35 kg / L to 0.45 kg / L. Note that the solid content of the phosphor liquid includes a phosphor and / or a solidified material containing the phosphor.

次に、蛍光体液に酸を加えて、pHを4以上6以下に調整する(工程(c):前記工程(C)に対応)。加える酸としては酢酸が好ましい。次に、pHを調整した蛍光体液に酸化剤を加える(工程(d):前記工程(D)に対応)。酸化剤を添加した蛍光体液の酸化剤濃度は、2g/L〜25g/Lとすることができ、より好ましくは4g/L〜10g/Lである。酸化剤としては、過酸化水素が好ましい。なお、上記工程(c)と工程(d)とは同時に行ってもよい。   Next, an acid is added to the phosphor solution to adjust the pH to 4 or more and 6 or less (step (c): corresponding to the step (C)). Acetic acid is preferred as the acid to be added. Next, an oxidizing agent is added to the phosphor liquid whose pH has been adjusted (step (d): corresponding to step (D)). The oxidant concentration of the phosphor liquid to which the oxidant is added can be 2 g / L to 25 g / L, and more preferably 4 g / L to 10 g / L. As the oxidizing agent, hydrogen peroxide is preferable. In addition, you may perform the said process (c) and process (d) simultaneously.

次に、酸化剤を加えた蛍光体液を静置する(工程(e):前記工程(E)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(f):前記工程(F)に対応)。次に、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(g):前記工程(G)に対応)。   Next, the phosphor liquid added with the oxidizing agent is allowed to stand (step (e): corresponding to the step (E)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (f): corresponding to step (F)). Next, water is added to the phosphor liquid from which the supernatant liquid has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (g): corresponding to step (G)).

次に、水を加えた蛍光体液を篩に通す(工程(h):前記工程に対応工程なし)。この工程(h)は、蛍光体を回収する際に混入されるゴミや凝集粒などを除去する目的で行われるもので、本発明の本来の目的である回収蛍光体の輝度の回復とは直接関係するものではないが、工程(h)を行うことにより、再生された蛍光体の取り扱い性を向上できるので、工程(h)を行うことが好ましい。   Next, the phosphor liquid added with water is passed through a sieve (step (h): no step corresponding to the above step). This step (h) is performed for the purpose of removing dusts and aggregated particles mixed when the phosphor is recovered, and is directly related to the recovery of the brightness of the recovered phosphor, which is the original purpose of the present invention. Although not related, since the handleability of the regenerated phosphor can be improved by performing the step (h), it is preferable to perform the step (h).

次に、篩を通した蛍光体液を静置する(工程(i):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(j):前記工程(I)に対応)。次に、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(k):前記工程(G)に対応)。次に、攪拌した蛍光体液を静置する(工程(l):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(m):前記工程(I)に対応)。さらに、上記工程(k)から上記工程(m)を1回以上繰り返す(工程(n):前記工程(J)に対応)。なお、繰り返す回数が多いほど不純物除去の効果はあるが、3回以上では差は生じなかった。最後に、上澄み液を除去した蛍光体液を乾燥して再生蛍光体粉末を得る(工程(o):前記工程(K)に対応)。   Next, the phosphor solution passed through the sieve is allowed to stand (step (i): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (j): corresponding to step (I)). Next, water is added to the phosphor solution from which the supernatant has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (k): corresponding to step (G)). Next, the stirred phosphor liquid is allowed to stand (step (l): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (m): corresponding to step (I)). Furthermore, the said process (m) is repeated 1 or more times from the said process (k) (process (n): corresponding to the said process (J)). It should be noted that the greater the number of repetitions, the more effective the impurity removal, but no difference was observed at three or more times. Finally, the phosphor liquid from which the supernatant liquid has been removed is dried to obtain a regenerated phosphor powder (step (o): corresponding to step (K)).

本実施形態の再生方法によれば、水系溶媒を用いた蛍光体塗布液から合理的に蛍光体を再生できる。   According to the regeneration method of the present embodiment, the phosphor can be rationally regenerated from the phosphor coating solution using an aqueous solvent.

(実施形態2)
次に、蛍光体の塗布工程において、ガラス管から排出された使用済みの蛍光体塗布液から回収した蛍光体の再生を行う他の例を図1を用いて説明する。
(Embodiment 2)
Next, another example of regenerating the phosphor recovered from the used phosphor coating solution discharged from the glass tube in the phosphor coating process will be described with reference to FIG.

本実施形態の再生方法では、先ず蛍光ランプの蛍光膜の形成に用いた蛍光体を含有する液及びその蛍光体を含む固化物を回収し、タンクに投入する(工程(a):前記工程(A)に対応)。即ち、蛍光体塗布液を地面に対して垂直に設置したガラス管の内部に流し込み、ガラス管から排出された使用済みの蛍光体を含有する蛍光体塗布液及びその蛍光体塗布液が固化した固化物を回収する。なお、場合によっては、蛍光体塗布液が固化しない場合があるが、この場合には蛍光体塗布液のみを回収する。これらに含まれる蛍光体は熱処理工程を経ていないものである。また、本実施形態の蛍光体塗布液は、その溶媒として酢酸ブチルなどの有機溶媒を用いたものである。   In the regeneration method of the present embodiment, first, the liquid containing the phosphor used for forming the fluorescent film of the fluorescent lamp and the solidified product containing the phosphor are collected and put into a tank (step (a): the above step ( Corresponding to A)). That is, the phosphor coating solution is poured into a glass tube installed perpendicular to the ground, and the phosphor coating solution containing the used phosphor discharged from the glass tube and the phosphor coating solution solidified. Collect items. In some cases, the phosphor coating solution may not be solidified. In this case, only the phosphor coating solution is recovered. The phosphor contained in these has not undergone a heat treatment step. Moreover, the phosphor coating liquid of the present embodiment uses an organic solvent such as butyl acetate as the solvent.

次に、回収した蛍光体塗布液から有機溶媒を除去するために十分な水を蛍光体塗布液及びその固化物に加えて水洗する(図示せず。)。   Next, sufficient water for removing the organic solvent from the collected phosphor coating solution is added to the phosphor coating solution and its solidified product and washed with water (not shown).

その後の工程は、実施形態1と同様に操作できる。即ち、次に、水洗した蛍光体塗布液及びその固化物に水を加えて攪拌して蛍光体液を調製する(工程(b):前記工程(B)に対応)。調製した蛍光体液の固形分濃度は、0.3kg/L〜0.5kg/Lとすることができ、より好ましくは0.35kg/L〜0.45kg/Lである。   The subsequent steps can be operated in the same manner as in the first embodiment. That is, next, water is added to the washed phosphor coating solution and its solidified product and stirred to prepare a phosphor solution (step (b): corresponding to step (B)). The solid content concentration of the prepared phosphor liquid can be 0.3 kg / L to 0.5 kg / L, and more preferably 0.35 kg / L to 0.45 kg / L.

次に、蛍光体液に酸を加えて、pHを4以上6以下に調整する(工程(c):前記工程(C)に対応)。加える酸としては酢酸が好ましい。次に、pHを調整した蛍光体液に酸化剤を加える(工程(d):前記工程(D)に対応)。酸化剤を添加した蛍光体液の酸化剤濃度は、2g/L〜25g/Lとすることができ、より好ましくは4g/L〜10g/Lである。酸化剤としては、過酸化水素が好ましい。なお、上記工程(c)と工程(d)とは同時に行ってもよい。   Next, an acid is added to the phosphor solution to adjust the pH to 4 or more and 6 or less (step (c): corresponding to the step (C)). Acetic acid is preferred as the acid to be added. Next, an oxidizing agent is added to the phosphor liquid whose pH has been adjusted (step (d): corresponding to step (D)). The oxidant concentration of the phosphor liquid to which the oxidant is added can be 2 g / L to 25 g / L, and more preferably 4 g / L to 10 g / L. As the oxidizing agent, hydrogen peroxide is preferable. In addition, you may perform the said process (c) and process (d) simultaneously.

次に、酸化剤を加えた蛍光体液を静置する(工程(e):前記工程(E)に対応)。次
に、静置した蛍光体液の上澄み液を除去する(工程(f):前記工程(F)に対応)。次に、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(g):前記工程(G)に対応)。
Next, the phosphor liquid added with the oxidizing agent is allowed to stand (step (e): corresponding to the step (E)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (f): corresponding to step (F)). Next, water is added to the phosphor liquid from which the supernatant liquid has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (g): corresponding to step (G)).

次に、水を加えた蛍光体液を篩に通す(工程(h):前記工程に対応工程なし)。なお、この工程(h)は、実施形態1と同様の目的で行う。次に、篩を通した蛍光体液を静置する(工程(i):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(j):前記工程(I)に対応)。次に、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(k):前記工程(G)に対応)。次に、攪拌した蛍光体液を静置する(工程(l):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(m):前記工程(I)に対応)。さらに、上記工程(k)から上記工程(m)を1回以上繰り返す(工程(n):前記工程(J)に対応)。なお、実施形態1と同様に上記工程(n)を3回以上繰り返しても差はなかった。最後に、上澄み液を除去した蛍光体液を乾燥して再生蛍光体粉末を得る(工程(o):前記工程(K)に対応)。   Next, the phosphor liquid added with water is passed through a sieve (step (h): no step corresponding to the above step). This step (h) is performed for the same purpose as in the first embodiment. Next, the phosphor solution passed through the sieve is allowed to stand (step (i): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (j): corresponding to step (I)). Next, water is added to the phosphor solution from which the supernatant has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (k): corresponding to step (G)). Next, the stirred phosphor liquid is allowed to stand (step (l): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (m): corresponding to step (I)). Furthermore, the said process (m) is repeated 1 or more times from the said process (k) (process (n): corresponding to the said process (J)). In addition, there was no difference even if the said process (n) was repeated 3 times or more similarly to Embodiment 1. Finally, the phosphor liquid from which the supernatant liquid has been removed is dried to obtain a regenerated phosphor powder (step (o): corresponding to step (K)).

本実施形態の再生方法によれば、有機溶媒を用いた蛍光体塗布液から合理的に蛍光体を再生できる。   According to the regeneration method of the present embodiment, the phosphor can be rationally regenerated from the phosphor coating solution using an organic solvent.

(実施形態3)
図2は、本発明の蛍光体の再生方法の他の一例を示す工程フロー図である。本実施形態では、ガラス管に蛍光膜を焼付けた熱処理工程後において、口金などを取りつけるために、ガラス管の両端部に形成された蛍光膜を削り取ることにより回収した蛍光体の再生を行う例を示す。
(Embodiment 3)
FIG. 2 is a process flow diagram showing another example of the method for regenerating a phosphor according to the present invention. In this embodiment, after the heat treatment process in which the fluorescent film is baked on the glass tube, in order to attach the cap, etc., the recovered phosphor is recovered by scraping off the fluorescent film formed on both ends of the glass tube. Show.

本実施形態の再生方法では、先ず蛍光ランプの蛍光膜の形成に用いた蛍光体を含む固化物を回収し、タンクに投入する(工程(a):前記工程(A)に対応)。即ち、ガラス管から削り取った蛍光体を含む固化物を回収する。この蛍光体を含む固化物は熱処理工程を経たものである。   In the regeneration method of this embodiment, first, the solidified material containing the phosphor used for forming the fluorescent film of the fluorescent lamp is recovered and put into a tank (step (a): corresponding to step (A)). That is, the solidified material containing the phosphor shaved from the glass tube is recovered. The solidified material containing this phosphor has undergone a heat treatment step.

次に、投入した蛍光体を含む固化物に水を加えて攪拌して蛍光体液を調製する(工程(b):前記工程(B)に対応)。調製した蛍光体液の固形分濃度は、0.3kg/L〜0.5kg/Lとすることができ、より好ましくは0.35kg/L〜0.45kg/Lである。   Next, water is added to the solidified material containing the phosphor that has been added and stirred to prepare a phosphor solution (step (b): corresponding to step (B)). The solid content concentration of the prepared phosphor liquid can be 0.3 kg / L to 0.5 kg / L, and more preferably 0.35 kg / L to 0.45 kg / L.

次に、蛍光体液に酸を加えて、pHを4以上6以下に調整する(工程(c):前記工程(C)に対応)。加える酸としては酢酸が好ましい。次に、pHを調整した蛍光体液に酸化剤を加える(工程(d):前記工程(D)に対応)。酸化剤を添加した蛍光体液の酸化剤濃度は、5g/L〜50g/Lとすることができ、より好ましくは8g/L〜20g/Lである。酸化剤としては、過酸化水素が好ましい。なお、上記工程(c)と工程(d)とは同時に行ってもよい。   Next, an acid is added to the phosphor solution to adjust the pH to 4 or more and 6 or less (step (c): corresponding to the step (C)). Acetic acid is preferred as the acid to be added. Next, an oxidizing agent is added to the phosphor liquid whose pH has been adjusted (step (d): corresponding to step (D)). The oxidant concentration of the phosphor liquid to which the oxidant is added can be 5 g / L to 50 g / L, and more preferably 8 g / L to 20 g / L. As the oxidizing agent, hydrogen peroxide is preferable. In addition, you may perform the said process (c) and process (d) simultaneously.

次に、酸化剤を加えた蛍光体液を静置する(工程(e):前記工程(E)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(f):前記工程(F)に対応)。さらに、上記工程(b)から上記工程(f)を1回以上繰り返す。続いて、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(g):前記工程(G)に対応)。   Next, the phosphor liquid added with the oxidizing agent is allowed to stand (step (e): corresponding to the step (E)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (f): corresponding to step (F)). Further, the steps (b) to (f) are repeated one or more times. Subsequently, water is added to the phosphor liquid from which the supernatant liquid has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (g): corresponding to step (G)).

次に、水を加えた蛍光体液を篩に通す(工程(h):前記工程に対応工程なし)。なお、この工程(h)は、実施形態1と同様の目的で行う。次に、篩を通した蛍光体液を静置
する(工程(i):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(j):前記工程(I)に対応)。次に、上澄み液を除去した蛍光体液に水を加えて固形分濃度を0.3kg/L〜0.5kg/Lとして攪拌する(工程(k):前記工程(G)に対応)。次に、攪拌した蛍光体液を静置する(工程(l):前記工程(H)に対応)。次に、静置した蛍光体液の上澄み液を除去する(工程(m):前記工程(I)に対応)。さらに、上記工程(k)から上記工程(m)を1回以上繰り返す(工程(n):前記工程(J)に対応)。なお、実施形態1と同様に上記工程(n)を3回以上繰り返しても差はなかった。最後に、上澄み液を除去した蛍光体液を乾燥して再生蛍光体粉末を得る(工程(o):前記工程(K)に対応)。
Next, the phosphor liquid added with water is passed through a sieve (step (h): no step corresponding to the above step). This step (h) is performed for the same purpose as in the first embodiment. Next, the phosphor solution passed through the sieve is allowed to stand (step (i): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (j): corresponding to step (I)). Next, water is added to the phosphor solution from which the supernatant has been removed, and the solid content concentration is stirred at 0.3 kg / L to 0.5 kg / L (step (k): corresponding to step (G)). Next, the stirred phosphor liquid is allowed to stand (step (l): corresponding to step (H)). Next, the supernatant liquid of the phosphor solution that has been allowed to stand is removed (step (m): corresponding to step (I)). Furthermore, the said process (m) is repeated 1 or more times from the said process (k) (process (n): corresponding to the said process (J)). In addition, there was no difference even if the said process (n) was repeated 3 times or more similarly to Embodiment 1. Finally, the phosphor liquid from which the supernatant liquid has been removed is dried to obtain a regenerated phosphor powder (step (o): corresponding to step (K)).

本実施形態の再生方法によれば、熱処理工程を経た蛍光体を含む固化物から合理的に蛍光体を再生できる。   According to the regeneration method of the present embodiment, the phosphor can be rationally regenerated from the solidified material containing the phosphor that has undergone the heat treatment step.

(実施形態4)
次に、本発明の蛍光ランプの実施の形態を図面に基づき説明する。図3は、本発明の蛍光ランプの一例を示す一部破断図である。図3において、ガラス管1はステム2により両端を封止されており、内部にはネオン、アルゴン、クリプトンなどの希ガスと水銀が封入されている。ガラス管1の内面には、実施形態1〜3で再生した蛍光体を含む蛍光体塗布液を用いて形成された蛍光膜3が被着されている。ステム2には2本のリード線4によってフィラメント電極5が取り付けられている。ガラス管1の両端には電極端子6を備えた口金7が接着され、電極端子6とリード線4とが接続されている。
(Embodiment 4)
Next, an embodiment of the fluorescent lamp of the present invention will be described with reference to the drawings. FIG. 3 is a partially broken view showing an example of the fluorescent lamp of the present invention. In FIG. 3, the glass tube 1 is sealed at both ends by a stem 2, and a rare gas such as neon, argon, krypton, and mercury are sealed inside. On the inner surface of the glass tube 1, a phosphor film 3 formed by using a phosphor coating solution containing the phosphor regenerated in the first to third embodiments is attached. A filament electrode 5 is attached to the stem 2 by two lead wires 4. A base 7 having an electrode terminal 6 is bonded to both ends of the glass tube 1, and the electrode terminal 6 and the lead wire 4 are connected.

本実施形態の蛍光ランプは、実施形態1〜3で再生した蛍光体を含む蛍光体塗布液を用いて蛍光膜3を形成しているので、安定した発光特性を有する。   The fluorescent lamp of the present embodiment has a stable emission characteristic because the fluorescent film 3 is formed using the phosphor coating liquid containing the phosphor regenerated in the first to third embodiments.

上記蛍光体塗布液の蛍光体以外の他の成分としては、増粘剤と、結着剤とを含む。蛍光体塗布液に用いられる溶媒としては水が用いられており、例えばイオン交換水、蒸留水などが好ましく用いられる。水に不純物が含まれていると蛍光膜の発光特性が低下するからである。   Components other than the phosphor in the phosphor coating solution include a thickener and a binder. Water is used as a solvent used in the phosphor coating solution, and for example, ion exchange water, distilled water, and the like are preferably used. This is because if the water contains impurities, the light emission characteristics of the phosphor film deteriorate.

また、上記蛍光体としては、ユーロピウム付活酸化イットリウム蛍光体、セリウムテルビウム付活燐酸ランタン蛍光体、ユーロピウム付活ハロ燐酸ストロンチウム蛍光体、ユーロピウム付活バリウムマグネシウムアルミネート蛍光体、ユーロピウムマンガン付活バリウムマグネシウムアルミネート蛍光体、テルビウム付活セリウムアルミネート蛍光体、テルビウム付活セリウムマグネシウムアルミネート蛍光体、アンチモン付活ハロ燐酸カルシウム蛍光体などを単独又は混合して使用できる。   Examples of the phosphor include europium-activated yttrium oxide phosphor, cerium terbium-activated lanthanum phosphate phosphor, europium-activated strontium halophosphate phosphor, europium-activated barium magnesium aluminate phosphor, and europium manganese-activated barium magnesium. An aluminate phosphor, a terbium-activated cerium aluminate phosphor, a terbium-activated cerium magnesium aluminate phosphor, an antimony-activated calcium halophosphate phosphor, or the like can be used alone or in combination.

上記増粘剤は、蛍光体塗布液のガラス面への付着性を向上させるために用いられ、例えば、ポリエチレンオキシド、ヒドロキシプロピルセルロース、ヒドロキシメチルプロピルセルロース、カルボキシメチルセルロース、ポリビニルアルコールなどが好ましく、この中で特にポリエチレンオキシドが好ましい。ポリエチレンオキシドは燃焼性が高いため、蛍光体の焼成時に除去が容易だからである。増粘剤の量は、蛍光体1kgあたり1g以上50g以下が好ましく、10g以上20g以下がより好ましい。この範囲内であれば、蛍光体の塗布膜の均質性がより高くなるからである。   The above thickener is used for improving the adhesion of the phosphor coating solution to the glass surface, and for example, polyethylene oxide, hydroxypropylcellulose, hydroxymethylpropylcellulose, carboxymethylcellulose, polyvinyl alcohol and the like are preferable. In particular, polyethylene oxide is preferred. This is because polyethylene oxide is highly combustible and can be easily removed when the phosphor is fired. The amount of the thickening agent is preferably 1 g or more and 50 g or less, more preferably 10 g or more and 20 g or less, per 1 kg of the phosphor. This is because within this range, the uniformity of the phosphor coating film becomes higher.

上記結着剤は、蛍光体粒子相互間を結合して蛍光膜の強度を向上させるために用いられ、例えば、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化亜鉛などが使用でき、この中で特に酸化アルミニウムが好ましい。酸化アルミニウムは、結着力が大きいからである。結着剤の平均粒径は、0.01μm〜2μmが好ましい。この範囲内であれば、蛍光体粒子の間に均一に分散し、蛍光体粒子間を確実に結着できるからである。なお、本明細書
では、結着剤の平均粒径は、蛍光ランプ製造前の結着剤であれば粒度分布計により求め、蛍光ランプ製造後であれば蛍光ランプを破壊して結着剤の粒子を電子顕微鏡で観察して求めるものとする。また、結着剤の量は、上記蛍光体1kgあたり5g以上60g以下が好ましく、20g以上30g以下がより好ましい。この範囲内であれば、十分に結着力を発揮できるからである。
The binder is used to bond phosphor particles and improve the strength of the phosphor film. For example, aluminum oxide, silicon oxide, titanium oxide, zinc oxide, etc. can be used, and among these, oxidation is particularly preferred. Aluminum is preferred. This is because aluminum oxide has a large binding force. The average particle size of the binder is preferably 0.01 μm to 2 μm. This is because within this range, the phosphor particles can be uniformly dispersed and the phosphor particles can be reliably bound. In the present specification, the average particle diameter of the binder is determined by a particle size distribution meter if the binder is before the production of the fluorescent lamp, and the fluorescent lamp is broken after the fluorescent lamp is produced. The particles are obtained by observing them with an electron microscope. Further, the amount of the binder is preferably 5 g or more and 60 g or less, more preferably 20 g or more and 30 g or less, per 1 kg of the phosphor. This is because the binding force can be sufficiently exhibited within this range.

また、ガラス管1と蛍光膜3との間に、さらに導電膜を被着させることもできる。これにより、本実施形態の蛍光ランプを始動時間が短いラピッドスタート形にすることができる。なお、上記導電膜の材料としては、アンチモンを添加した酸化スズなどが用いられる。   Further, a conductive film can be further deposited between the glass tube 1 and the fluorescent film 3. Thereby, the fluorescent lamp of this embodiment can be made into a rapid start type with a short start time. Note that tin oxide to which antimony is added is used as a material for the conductive film.

本実施形態の蛍光ランプは、その形状、サイズ、ワット数、及び蛍光ランプが放つ光色、演色性などについては特に限定されるものではない。形状については、本実施形態の直管に限らず、例えば、丸形、二重環形、ツイン形、コンパクト形、U字形、電球形などがあり、液晶バックライト用の細管なども含まれる。サイズについては、例えば4形〜110形などがある。ワット数については、例えば数ワット〜百数十ワットなどがある。光色については、例えば、昼光色、昼白色、白色、温白色、電球色などがある。   The fluorescent lamp of the present embodiment is not particularly limited in its shape, size, wattage, light color, color rendering, etc. emitted from the fluorescent lamp. The shape is not limited to the straight tube of the present embodiment, but includes, for example, a round shape, a double ring shape, a twin shape, a compact shape, a U shape, a light bulb shape, and a thin tube for a liquid crystal backlight. As for the size, for example, there are 4 types to 110 types. As for the wattage, for example, there are several watts to hundreds tens of watts. Examples of the light color include daylight color, daylight white color, white color, warm white color, and light bulb color.

次に、実施例に基づき本発明を説明する。   Next, this invention is demonstrated based on an Example.

(実施例1)
実施形態1で説明した蛍光体の再生方法に従って、蛍光体塗布液から回収した蛍光体を再生した。
(Example 1)
The phosphor recovered from the phosphor coating solution was regenerated according to the phosphor regeneration method described in the first embodiment.

蛍光体としては、赤色蛍光体:ユーロピウム付活酸化イットリウム蛍光体(Y23:Eu3+)(通称:YOX)、緑色蛍光体:セリウムテルビウム付活燐酸ストロンチウム蛍光体(LaPO4:Ce3+,Tb3+)(通称:LAP)、青色蛍光体:ユーロピウム付活ア
ルミン酸バリウムマグネシウム蛍光体((Sr,Ca,Ba)10(PO46Cl2:Eu2+)(通称:SCA)からなる三波長型蛍光体を用いた。各蛍光体の混合割合は、YOX
:35重量%、LAP:35重量%、SCA:30重量%とした。蛍光体塗布液の他の成分としては、溶媒:水、増粘剤:蛍光体1kgに対して15gのポリエチレンオキシド(重量平均分子量:約100万)、結着剤:蛍光体1kgに対して10gのアルミナ(平均粒径:50nm)を用いた。
As phosphors, red phosphor: europium activated yttrium oxide phosphor (Y 2 O 3 : Eu 3+ ) (common name: YOX), green phosphor: cerium terbium activated strontium phosphate phosphor (LaPO 4 : Ce 3 + , Tb 3+ ) (common name: LAP), blue phosphor: europium activated barium magnesium aluminate phosphor ((Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu 2+ ) (common name: SCA) ) Was used. The mixing ratio of each phosphor is YOX
: 35 wt%, LAP: 35 wt%, SCA: 30 wt%. As other components of the phosphor coating solution, solvent: water, thickener: 15 g of polyethylene oxide (weight average molecular weight: about 1 million) per kg of phosphor, binder: 10 g per kg of phosphor Alumina (average particle size: 50 nm) was used.

以下、具体的な操作について説明する。先ず、再生作業に用いたタンクの容量は、200Lとした。このタンクに回収した蛍光体塗布液50L(固形分換算で50kg)を投入した。この蛍光体塗布液に80℃の脱イオン水を給水して全体の液量を120Lとし、攪拌機を用いて400rpmで15分間攪拌して蛍光体液を調製した。次に、この蛍光体液に、濃度99.5%の氷酢酸0.5Lと濃度35%の過酸化水素2Lとを加えてpHを5.0に調整した。pHは、氷酢酸を加えて10分間攪拌した後の値を測定した。pHの調整は、氷酢酸の添加量を増減して調整した。その後、20時間静置して、上澄み液を除去した。   Specific operations will be described below. First, the capacity of the tank used for the regeneration work was 200L. The phosphor coating solution 50 L (50 kg in terms of solid content) collected in this tank was charged. The phosphor coating solution was supplied with 80 ° C. deionized water to a total liquid volume of 120 L, and stirred at 400 rpm for 15 minutes using a stirrer to prepare a phosphor solution. Next, to this phosphor liquid, 0.5 L of glacial acetic acid having a concentration of 99.5% and 2 L of hydrogen peroxide having a concentration of 35% were added to adjust the pH to 5.0. The pH was measured after adding glacial acetic acid and stirring for 10 minutes. The pH was adjusted by increasing or decreasing the amount of glacial acetic acid added. Then, it left still for 20 hours and removed the supernatant liquid.

次に、上澄み液を除去した蛍光体液に80℃の脱イオン水を120L給水して、攪拌機を用いて400rpmで15分間攪拌した。これを300メッシュの篩に通し、さらに20時間静置し、上澄み液を除去した。その後、上澄み液を除去した蛍光体液に室温の脱イオン水を160L給水して、攪拌機を用いて400rpmで15分間攪拌し、20時間静置して上澄み液を除去する操作を2回繰り返した。最後に、上澄み液を除去した蛍光体液を140℃で24時間乾燥して、再生蛍光体粉末を得た。   Next, 120 L of deionized water at 80 ° C. was supplied to the phosphor liquid from which the supernatant was removed, and the mixture was stirred for 15 minutes at 400 rpm using a stirrer. This was passed through a 300-mesh sieve and allowed to stand for an additional 20 hours to remove the supernatant. Thereafter, 160 L of deionized water at room temperature was supplied to the phosphor liquid from which the supernatant liquid had been removed, and the mixture was stirred for 15 minutes at 400 rpm using a stirrer and allowed to stand for 20 hours to remove the supernatant liquid twice. Finally, the phosphor solution from which the supernatant was removed was dried at 140 ° C. for 24 hours to obtain a regenerated phosphor powder.

次に、pHを4.0、4.5、5.5、6.0及び6.5に調整した以外は、上記と同様にして蛍光体をそれぞれ再生した。また、上記氷酢酸に代えて、塩酸を用いてpHを2.0及び3.0に調整した以外は、上記と同様にして蛍光体をそれぞれ再生した。さらに、上記氷酢酸に代えて、アンモニアを用いてpHを7.0、8.0及び9.0に調整した以外は、上記と同様にして蛍光体をそれぞれ再生した。   Next, phosphors were regenerated in the same manner as above except that the pH was adjusted to 4.0, 4.5, 5.5, 6.0, and 6.5. Further, phosphors were regenerated in the same manner as above except that the pH was adjusted to 2.0 and 3.0 using hydrochloric acid instead of glacial acetic acid. Further, phosphors were regenerated in the same manner as described above except that ammonia was used instead of the glacial acetic acid and the pH was adjusted to 7.0, 8.0, and 9.0.

図4は、本実施例で用いた蛍光体塗布液から回収した再生前の蛍光体の電子顕微鏡写真である。また、図5は、本実施例で蛍光体液をpH5.0で処理して再生した後の蛍光体の電子顕微鏡写真である。図4から、再生前の蛍光体の表面には増粘剤や結着剤が多く存在することが分かる。一方、図5から、再生後の蛍光体の表面には添加物はほとんど存在せず、ほぼ新品の蛍光体に近い状態であることが分かる。   FIG. 4 is an electron micrograph of the phosphor before recovery recovered from the phosphor coating solution used in this example. FIG. 5 is an electron micrograph of the phosphor after the phosphor liquid was treated and regenerated at pH 5.0 in this example. FIG. 4 shows that there are many thickeners and binders on the surface of the phosphor before regeneration. On the other hand, it can be seen from FIG. 5 that almost no additives are present on the surface of the regenerated phosphor, which is almost a new phosphor.

次に、上記蛍光体液のpHを変化させて得た各蛍光体を用いてそれぞれ蛍光ランプを作製した。   Next, a fluorescent lamp was produced using each phosphor obtained by changing the pH of the phosphor solution.

<蛍光体塗布液の作製>
先ず、蛍光体塗布液の材料として以下のものを準備した。
(1) 溶媒:蒸留水
(2) 蛍光体:上記再生蛍光体
(3) 増粘剤:蛍光体1kgあたり15gのポリエチレンオキシド(重量平均分子量:約100万)
(4) 結着剤:蛍光体1kgあたり30gのアルミナ(平均粒径:30nm)
<Preparation of phosphor coating liquid>
First, the following were prepared as materials for the phosphor coating solution.
(1) Solvent: distilled water
(2) Phosphor: The above regenerated phosphor
(3) Thickener: 15 g of polyethylene oxide per kg of phosphor (weight average molecular weight: about 1 million)
(4) Binder: 30 g of alumina per 1 kg of phosphor (average particle size: 30 nm)

次に、攪拌装置を用いて蒸留水に上記ポリエチレンオキシドを溶解させた。その後、上記蛍光体、アルミナをこの順に添加して攪拌した。   Next, the said polyethylene oxide was dissolved in distilled water using the stirring apparatus. Thereafter, the phosphor and alumina were added in this order and stirred.

<蛍光ランプの作製>
上記蛍光体塗布液を用いて蛍光ランプ(20W直管タイプ)を次のようにして作製した。先ず、鉛直方向が長手方向になるように設置したガラス管の中に、上記蛍光体塗布液を上部から流し込み、自然流下させてガラス管の内側に蛍光体塗布液を付着させた。その後、付着した蛍光体塗布液を約60℃程度の温風にて約10分乾燥した。乾燥後、ガラス管全体をガス炉に入れて、空気中において約550℃の温度にて約3分間加熱し、蛍光膜をガラス管に焼付けて固着させた。続いて、ガラス管の管端部に、電極と水銀を封入したカプセルを有した排気管付きガラスを融着し、排気管からガラス管内部の空気をロータリーポンプにて真空排気した。次に、アルゴンガスを封入し、電極を取り付けて蛍光ランプを作製した。
<Production of fluorescent lamp>
Using the phosphor coating solution, a fluorescent lamp (20 W straight tube type) was produced as follows. First, the phosphor coating solution was poured from above into a glass tube installed so that the vertical direction was the longitudinal direction, and allowed to flow naturally to adhere the phosphor coating solution to the inside of the glass tube. Thereafter, the adhered phosphor coating solution was dried with hot air of about 60 ° C. for about 10 minutes. After drying, the entire glass tube was placed in a gas furnace and heated in air at a temperature of about 550 ° C. for about 3 minutes, and the phosphor film was baked and fixed on the glass tube. Subsequently, a glass with an exhaust pipe having an electrode and a capsule enclosing mercury was fused to the end of the glass pipe, and the air inside the glass pipe was evacuated by a rotary pump from the exhaust pipe. Next, argon gas was sealed and an electrode was attached to produce a fluorescent lamp.

(実施例2)
実施形態2で説明した蛍光体の再生方法に従って、蛍光体塗布液から回収した蛍光体を再生した。
(Example 2)
The phosphor recovered from the phosphor coating solution was regenerated in accordance with the phosphor regeneration method described in the second embodiment.

蛍光体としては、実施例1のSCAに代えて、ユーロピウム付活ハロ燐酸ストロンチウム(BaMgAl1017:Eu2+)(通称:BAM)を用いた以外は、実施例1と同様にYOX35重量%、LAP35重量%、BAM30重量%からなる三波長型蛍光体を用いた。蛍光体塗布液の他の成分としては、溶媒:酢酸ブチル、増粘剤:蛍光体1kgに対して40gのエチルセルロース、結着剤:蛍光体1kgに対して30gの混合セラミック(60質量%のCaO0.7BaO1.623と、40質量%のCaP27の混合物、粒径0.5μm〜1μm)を用いた。 35% by weight of YOX was used in the same manner as in Example 1 except that europium-activated strontium halophosphate (BaMgAl 10 O 17 : Eu 2+ ) (common name: BAM) was used instead of the SCA of Example 1. A three-wavelength phosphor comprising 35% by weight of LAP and 30% by weight of BAM was used. As other components of the phosphor coating solution, solvent: butyl acetate, thickener: 40 g of ethylcellulose per 1 kg of phosphor, binder: 30 g of mixed ceramic (60 mass% CaO per 1 kg of phosphor) A mixture of 0.7 BaO 1.6 B 2 O 3 and 40% by mass of CaP 2 O 7 (particle size: 0.5 μm to 1 μm) was used.

具体的には、再生作業に用いたタンクの容量は、実施例1と同様に200Lとした。こ
のタンクに回収した蛍光体塗布液50L(固形分換算で50kg)を投入した。その後、十分な水を蛍光体塗布液に加えて水洗し、酢酸ブチルを除去した。その後は、実施例1と同様にして再生処理のpHが異なる再生蛍光体をそれぞれ得た。また、この再生蛍光体を用いて実施例1と同様にして蛍光ランプ(32W丸管タイプ)をそれぞれ作製した。但し、再生蛍光体塗布液の溶媒としては、実施例1の蒸留水に代えて、本実施例では酢酸ブチルを用いた。
Specifically, the capacity of the tank used for the regeneration work was set to 200 L as in Example 1. The phosphor coating solution 50 L (50 kg in terms of solid content) collected in this tank was charged. Thereafter, sufficient water was added to the phosphor coating solution and washed with water to remove butyl acetate. Thereafter, in the same manner as in Example 1, regenerated phosphors having different pH values for the regenerating treatment were obtained. In addition, a fluorescent lamp (32 W round tube type) was produced using this regenerated phosphor in the same manner as in Example 1. However, as a solvent for the regenerated phosphor coating solution, butyl acetate was used in this example instead of the distilled water of Example 1.

(実施例3)
実施形態3で説明した蛍光体の再生方法に従って、熱処理工程後の蛍光ランプから回収した蛍光体を再生した。
(Example 3)
The phosphor recovered from the fluorescent lamp after the heat treatment step was regenerated according to the method for regenerating phosphor described in the third embodiment.

蛍光体としては、実施例2と同様にYOX:35重量%、LAP:35重量%、BAM:30重量%からなる三波長型蛍光体を用いた。熱処理前の蛍光体塗布液の他の成分は、実施例2と同様とした。   As the phosphor, a three-wavelength phosphor composed of YOX: 35 wt%, LAP: 35 wt%, and BAM: 30 wt% was used in the same manner as in Example 2. Other components of the phosphor coating solution before the heat treatment were the same as in Example 2.

以下、具体的な操作について説明する。先ず、再生作業に用いたタンクの容量は、200Lとした。このタンクに回収した蛍光体を含む固化物50kgを投入した。これに、80℃の脱イオン水を120L給水して、攪拌機を用いて400rpmで15分間攪拌して蛍光体液を調製した。次に、この蛍光体液に、濃度99.5%の氷酢酸0.5Lと濃度35%の過酸化水素2Lとを加えてpHを5.0に調整した。pHは、氷酢酸を加えて10分間攪拌した後の値を測定した。pHの調整は、氷酢酸の添加量を増減して調整した。その後、20時間静置して、上澄み液を除去した。上記操作は、2回繰り返した。   Specific operations will be described below. First, the capacity of the tank used for the regeneration work was 200L. 50 kg of solidified material containing the collected phosphor was put into this tank. To this, 120 L of deionized water at 80 ° C. was supplied and stirred for 15 minutes at 400 rpm using a stirrer to prepare a phosphor solution. Next, to this phosphor liquid, 0.5 L of glacial acetic acid having a concentration of 99.5% and 2 L of hydrogen peroxide having a concentration of 35% were added to adjust the pH to 5.0. The pH was measured after adding glacial acetic acid and stirring for 10 minutes. The pH was adjusted by increasing or decreasing the amount of glacial acetic acid added. Then, it left still for 20 hours and removed the supernatant liquid. The above operation was repeated twice.

次に、上澄み液を除去した蛍光体液に80℃の脱イオン水を120L給水して、攪拌機を用いて400rpmで15分間攪拌した。これを300メッシュの篩に通し、さらに20時間静置し、上澄み液を除去した。その後、上澄み液を除去した蛍光体液に室温の脱イオン水を160L給水して、攪拌機を用いて400rpmで15分間攪拌し、20時間静置して上澄み液を除去する操作を2回繰り返した。最後に、上澄み液を除去した蛍光体液を140℃で24時間乾燥して、再生蛍光体粉末を得た。   Next, 120 L of deionized water at 80 ° C. was supplied to the phosphor liquid from which the supernatant was removed, and the mixture was stirred for 15 minutes at 400 rpm using a stirrer. This was passed through a 300-mesh sieve and allowed to stand for an additional 20 hours to remove the supernatant. Thereafter, 160 L of deionized water at room temperature was supplied to the phosphor liquid from which the supernatant liquid had been removed, and the mixture was stirred for 15 minutes at 400 rpm using a stirrer and allowed to stand for 20 hours to remove the supernatant liquid twice. Finally, the phosphor solution from which the supernatant was removed was dried at 140 ° C. for 24 hours to obtain a regenerated phosphor powder.

次に、上記以外は、実施例1と同様にして再生処理のpHが異なる再生蛍光体を得た。また、この再生蛍光体を用いて実施例1と同様にして蛍光ランプ(30W丸管タイプ)を作製した。但し、再生蛍光体塗布液の溶媒としては、実施例1の蒸留水に代えて、本実施例では酢酸ブチルを用いた。   Next, a regenerated phosphor having a different regenerating pH was obtained in the same manner as in Example 1 except for the above. In addition, a fluorescent lamp (30 W round tube type) was produced using this regenerated phosphor in the same manner as in Example 1. However, as a solvent for the regenerated phosphor coating solution, butyl acetate was used in this example instead of the distilled water of Example 1.

(比較例1)
実施例1と同一成分の新品の蛍光体を用いた以外は、実施例1と同様にして蛍光ランプを作製した。
(Comparative Example 1)
A fluorescent lamp was produced in the same manner as in Example 1 except that a new phosphor having the same components as in Example 1 was used.

(比較例2)
実施例2と同一成分の新品の蛍光体を用いた以外は、実施例2と同様にして蛍光ランプを作製した。
(Comparative Example 2)
A fluorescent lamp was produced in the same manner as in Example 2 except that a new phosphor having the same components as in Example 2 was used.

(比較例3)
実施例3と同一成分の新品の蛍光体を用いた以外は、実施例3と同様にして蛍光ランプを作製した。
(Comparative Example 3)
A fluorescent lamp was produced in the same manner as in Example 3 except that a new phosphor having the same components as in Example 3 was used.

次に、実施例1〜3及び比較例1〜3の蛍光ランプの輝度を測定した。その結果を図6〜図8に示す。図6では、実施例1の輝度を、比較例1の輝度を100とした相対値で示した。また、図7では、実施例2の輝度を、比較例2の輝度を100とした相対値で示し
た。さらに、図8では、実施例3の輝度を、比較例3の輝度を100とした相対値で示した。
Next, the brightness | luminance of the fluorescent lamp of Examples 1-3 and Comparative Examples 1-3 was measured. The results are shown in FIGS. In FIG. 6, the luminance of Example 1 is shown as a relative value with the luminance of Comparative Example 1 as 100. In FIG. 7, the luminance of Example 2 is shown as a relative value with the luminance of Comparative Example 2 as 100. Further, in FIG. 8, the luminance of Example 3 is shown as a relative value with the luminance of Comparative Example 3 as 100.

図6及び図7から、再生処理のpHが4.0〜6.0の非加熱蛍光体を用いた蛍光ランプの輝度は、新品の蛍光体を用いた蛍光ランプの輝度と同レベルまで回復していることが分かる。また、図8から、再生処理のpHが4.0〜6.0の加熱蛍光体を用いた蛍光ランプの輝度は、新品の蛍光体を用いた蛍光ランプの輝度の95%レベルまで回復していることが分かる。   From FIG. 6 and FIG. 7, the brightness of the fluorescent lamp using the non-heated phosphor with a regeneration treatment pH of 4.0 to 6.0 is restored to the same level as the brightness of the fluorescent lamp using the new phosphor. I understand that Further, from FIG. 8, the luminance of the fluorescent lamp using the heating phosphor having a regeneration treatment pH of 4.0 to 6.0 is restored to 95% level of the luminance of the fluorescent lamp using the new phosphor. I understand that.

本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。   The present invention can be implemented in forms other than the above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.

以上説明したように本発明は、蛍光体に添加された増粘剤や結着剤をほぼ完全に除去することができる蛍光体の再生方法を提供できる。また、この再生方法で再生した蛍光体を用いた蛍光ランプは、新品の蛍光体を用いた蛍光ランプと同等の輝度又はそれに近い輝度を発揮できる。   As described above, the present invention can provide a method for regenerating a phosphor that can remove the thickener and the binder added to the phosphor almost completely. In addition, a fluorescent lamp using a phosphor regenerated by this regeneration method can exhibit a luminance equivalent to or close to that of a fluorescent lamp using a new phosphor.

本発明の蛍光体の再生方法の一例を示す工程フロー図である。It is a process flow figure showing an example of the reproduction method of the fluorescent substance of the present invention. 本発明の蛍光体の再生方法の他の一例を示す工程フロー図である。It is a process flowchart which shows another example of the reproduction | regenerating method of the fluorescent substance of this invention. 本発明の蛍光ランプの一例を示す一部破断図である。It is a partially broken figure which shows an example of the fluorescent lamp of this invention. 実施例1で用いた蛍光体塗布液から回収した再生前の蛍光体の電子顕微鏡写真である。2 is an electron micrograph of a phosphor before regeneration recovered from the phosphor coating solution used in Example 1. FIG. 実施例1で蛍光体液をpH5.0で処理した再生後の蛍光体の電子顕微鏡写真である。2 is an electron micrograph of a phosphor after regeneration in which the phosphor liquid was treated at pH 5.0 in Example 1. FIG. 実施例1の蛍光ランプの輝度を示した図である。It is the figure which showed the brightness | luminance of the fluorescent lamp of Example 1. FIG. 実施例2の蛍光ランプの輝度を示した図である。It is the figure which showed the brightness | luminance of the fluorescent lamp of Example 2. FIG. 実施例3の蛍光ランプの輝度を示した図である。It is the figure which showed the brightness | luminance of the fluorescent lamp of Example 3. FIG.

符号の説明Explanation of symbols

1 ガラス管
2 ステム
3 蛍光膜
4 リード線
5 フィラメント電極
6 電極端子
7 口金
1 Glass tube 2 Stem 3 Fluorescent film 4 Lead wire 5 Filament electrode 6 Electrode terminal 7 Base

Claims (5)

蛍光体を含有する液及び前記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程と、
前記回収した蛍光体を含有する液及び/又は前記蛍光体を含む固化物に、水を加えて蛍光体液を調製する工程と、
前記蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程と、
前記pHを調整した蛍光体液に酸化剤を加える工程と、
を含むことを特徴とする蛍光体の再生方法。
Recovering at least one selected from a liquid containing a phosphor and a solidified product containing the phosphor;
A step of preparing a phosphor solution by adding water to the liquid containing the collected phosphor and / or the solidified product containing the phosphor;
Adding an organic acid to the phosphor solution to adjust the pH to 4 or more and 6 or less;
Adding an oxidizing agent to the phosphor solution adjusted in pH;
A method for regenerating a phosphor, comprising:
(A)蛍光体を含有する液及び前記蛍光体を含む固化物から選ばれる少なくとも一つを回収する工程と、
(B)前記回収した蛍光体を含有する液及び/又は前記蛍光体を含む固化物に、水を加えて攪拌して蛍光体液を調製する工程と、
(C)前記蛍光体液に有機酸を加えて、pHを4以上6以下に調整する工程と、
(D)前記pHを調整した蛍光体液に酸化剤を加える工程と、
(E)前記酸化剤を加えた蛍光体液を静置する工程と、
(F)前記静置した蛍光体液の上澄み液を除去する工程と、
(G)前記上澄み液を除去した蛍光体液に水を加えて攪拌する工程と、
(H)前記攪拌した蛍光体液を静置する工程と、
(I)前記静置した蛍光体液の上澄み液を除去する工程と、
(J)前記(G)工程から前記(I)工程を繰り返す工程と、
(K)前記上澄み液を除去した蛍光体液を乾燥して蛍光体粉末を得る工程と、
を含むことを特徴とする蛍光体の再生方法。
(A) recovering at least one selected from a liquid containing a phosphor and a solidified product containing the phosphor;
(B) a step of preparing a phosphor liquid by adding water and stirring to the liquid containing the collected phosphor and / or the solidified product containing the phosphor;
(C) adding an organic acid to the phosphor solution to adjust the pH to 4 or more and 6 or less;
(D) adding an oxidizing agent to the phosphor liquid adjusted in pH;
(E) a step of allowing the phosphor liquid added with the oxidizing agent to stand;
(F) removing the supernatant of the phosphor solution that has been allowed to stand;
(G) adding water to the phosphor liquid from which the supernatant liquid has been removed and stirring,
(H) leaving the stirred phosphor liquid stationary;
(I) removing the supernatant of the phosphor solution that has been allowed to stand;
(J) repeating the step (I) from the step (G),
(K) drying the phosphor liquid from which the supernatant has been removed to obtain a phosphor powder;
A method for regenerating a phosphor, comprising:
前記(B)工程から前記(F)工程を繰り返す工程をさらに含む請求項に記載の蛍光体の再生方法。The method for regenerating a phosphor according to claim 2 , further comprising a step of repeating the step (F) from the step (B). 前記有機酸は、酢酸である請求項に記載の蛍光体の再生方法。The organic acid, phosphor reproducing method according to claim 1 which is acetic acid. 前記酸化剤は、過酸化水素である請求項1または2に記載の蛍光体の再生方法。The method for regenerating a phosphor according to claim 1 or 2 , wherein the oxidizing agent is hydrogen peroxide.
JP2006541743A 2005-04-01 2006-03-28 Phosphor regenerating method and fluorescent lamp Expired - Fee Related JP4157580B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005106683 2005-04-01
JP2005106683 2005-04-01
PCT/JP2006/306208 WO2006106641A1 (en) 2005-04-01 2006-03-28 Method for regenerating fluorescent material and fluorescent lamp

Publications (2)

Publication Number Publication Date
JPWO2006106641A1 JPWO2006106641A1 (en) 2008-09-11
JP4157580B2 true JP4157580B2 (en) 2008-10-01

Family

ID=37073207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006541743A Expired - Fee Related JP4157580B2 (en) 2005-04-01 2006-03-28 Phosphor regenerating method and fluorescent lamp

Country Status (4)

Country Link
JP (1) JP4157580B2 (en)
CN (1) CN100558846C (en)
TW (1) TW200714688A (en)
WO (1) WO2006106641A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102502A (en) * 2007-10-23 2009-05-14 Hitachi Displays Ltd Fluorescent lamp and liquid crystal display device using the same
CN101200638B (en) * 2007-11-30 2010-06-09 彩虹集团电子股份有限公司 Regeneration method of phosphor for rear earth three primary colors lamp
CN101649197B (en) * 2009-09-01 2013-12-11 四川九洲光电科技股份有限公司 Method for recovering fluorescent powders of light emitting diode
US8137645B2 (en) 2010-02-23 2012-03-20 General Electric Company Rare earth recovery from fluorescent material and associated method
CN101985694A (en) * 2010-10-26 2011-03-16 赣县金鹰稀土实业有限公司 Preparation method for recovering high-purity yttrium europium from fluorescent powder scrap
CN102618256A (en) * 2012-03-01 2012-08-01 广东顺祥节能照明科技有限公司 High frequency electronic discharge lamp water coating powder for machine spray coating and preparation and spray coating method thereof
CN105694843A (en) * 2014-11-25 2016-06-22 广东雪莱特光电科技股份有限公司 Phosphor recovering treatment technology

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815770B1 (en) * 1966-06-03 1973-05-17
JPS6012382B2 (en) * 1977-08-10 1985-04-01 株式会社日立製作所 Method for regenerating pigmented phosphors
FR2630585B1 (en) * 1988-04-22 1990-08-17 Videocolor METHOD FOR RECOVERING PHOSPHORES FROM COLORED TELEVISION TUBES
FR2630857A1 (en) * 1988-04-29 1989-11-03 Videocolor PROCESS FOR RECOVERING UNCULPTED PHOSPHORUS FROM TRICHROMOUS CATHODE RAY TUBES
CN1057286A (en) * 1990-06-11 1991-12-25 三星电管株式会社 The method of system again that is used for the green emitting phosphor of chromoscope
JPH09176632A (en) * 1995-12-26 1997-07-08 Kasei Optonix Co Ltd Method for recycling recovered phosphor slurry
JPH10261364A (en) * 1997-03-18 1998-09-29 Toshiba Corp Recovery method and device for phosphor
JP4275461B2 (en) * 2003-05-30 2009-06-10 化成オプトニクス株式会社 Method for collecting and regenerating phosphor for fluorescent lamp and fluorescent lamp

Also Published As

Publication number Publication date
WO2006106641A1 (en) 2006-10-12
CN100558846C (en) 2009-11-11
JPWO2006106641A1 (en) 2008-09-11
TWI316538B (en) 2009-11-01
TW200714688A (en) 2007-04-16
CN101018840A (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP4157580B2 (en) Phosphor regenerating method and fluorescent lamp
CA1124315A (en) Method for improving the performance of low pressure fluorescent discharge lamp which utilizes zinc silicate as a phosphor blend constituent
TWI274073B (en) Method for preparing blue-emitting barium magnesium aluminate (BAM) phosphor for backlight unit lamp, and blue-emitting BAM phosphor prepared by the method
JP4421672B2 (en) Fluorescent lamp, manufacturing method thereof, and lighting device
CN101362945B (en) Blue irradiance fluorophor
JP3805513B2 (en) Method for chemically modifying composition on outer surface of phosphor particles, method for improving lamp light flux maintenance, phosphor powder, and phosphor coating composition
CN101565617A (en) Method for regenerating UV excitation rare-earth phosphor
CN1288705C (en) Method for manufacturing fluorescent lamp and phosphor suspension
JP4199530B2 (en) Fluorescent substance for mercury vapor discharge lamp and mercury vapor discharge lamp
JP2007305422A (en) Electrode for discharge lamp, and fluorescent lamp using it
JP4275461B2 (en) Method for collecting and regenerating phosphor for fluorescent lamp and fluorescent lamp
JP2007519198A (en) Low pressure mercury discharge lamp and method for its preparation
JP3779409B2 (en) Phosphor particles and fluorescent lamp
JP2002038147A (en) Green phosphor and light-emitting device using the same
JP2000285860A (en) Fluorescent lamp
JP3739964B2 (en) Phosphor coating liquid and fluorescent lamp
JPH09217059A (en) Blue color generating fluorescent material, production of the same and fluorescent lamp
JP2005264119A (en) Liquid for applying phosphor and fluorescent lamp using the same
JP3006181B2 (en) Fluorescent body and fluorescent lamp using the same
JP3755285B2 (en) Iron-activated lithium aluminate phosphor and its fluorescent lamp
JP3189853B2 (en) Phosphor for fluorescent lamp
JP2000156202A (en) Fluorescent lamp
JP2003193047A (en) Phosphor for compact type fluorescent lamp and compact type fluorescent lamp using the same
TW200804562A (en) Complex oxide, phosphor, phosphor paste and light-emitting device
JP2004227783A (en) Fluorescent lamp and lighting equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees