JP4157090B2 - Hot metal supply method to converter - Google Patents

Hot metal supply method to converter Download PDF

Info

Publication number
JP4157090B2
JP4157090B2 JP2004304861A JP2004304861A JP4157090B2 JP 4157090 B2 JP4157090 B2 JP 4157090B2 JP 2004304861 A JP2004304861 A JP 2004304861A JP 2004304861 A JP2004304861 A JP 2004304861A JP 4157090 B2 JP4157090 B2 JP 4157090B2
Authority
JP
Japan
Prior art keywords
ladle
converter
hot metal
crane
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004304861A
Other languages
Japanese (ja)
Other versions
JP2006117971A (en
Inventor
正信 中村
康一郎 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004304861A priority Critical patent/JP4157090B2/en
Publication of JP2006117971A publication Critical patent/JP2006117971A/en
Application granted granted Critical
Publication of JP4157090B2 publication Critical patent/JP4157090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、転炉への溶銑供給方法に関するものである。   The present invention relates to a hot metal supply method to a converter.

周知のように、高炉で生産された溶銑は、混銑車(トーピートカー)に装入された上で、溶銑の成分調整を行う転炉工程へ移送される。また、該混銑車では、その中に装入されている溶銑に副原料を投入して脱りん、脱珪、脱硫を行い予備的に溶銑の成分調整処理を行うようにしている(溶銑予備処理工程)。
転炉工程では、溶銑を転炉に装入し、副原料添加と酸素吹込みを行うことで脱りん・脱炭を行って、りん濃度や炭素濃度が所定の値となっている溶鋼を生産するようにしている。転炉工程で得られた溶鋼は、その後、連続鋳造工程を経てスラブ等に成形され、このスラブが圧延されることで厚板や薄板等の鉄鋼製品が製造される(圧延工程)。
As is well known, the hot metal produced in the blast furnace is loaded into a kneading car (torpit car) and then transferred to a converter process for adjusting the components of the hot metal. Further, in the kneading vehicle, the auxiliary raw material is introduced into the hot metal charged therein, and dephosphorization, desiliconization, and desulfurization are performed to preliminarily perform hot metal component adjustment processing (hot metal preliminary processing). Process).
In the converter process, molten iron is charged into the converter, dephosphorization and decarburization are performed by adding auxiliary materials and blowing oxygen to produce molten steel with a predetermined phosphorus concentration and carbon concentration. Like to do. The molten steel obtained in the converter process is then formed into a slab or the like through a continuous casting process, and steel products such as thick plates and thin plates are manufactured by rolling the slab (rolling step).

鉄鋼製品の生産量を上げるためには、高炉工程に着目し、高炉からの溶銑の出鋼量を増やすことがもちろん重要であるが、他の工程、例えば、溶銑予備処理工程での生産能力を上げることも重要である。各工程の生産能力を向上させるための技術は、例えば、特許文献1〜3に開示されている。
特許文献1には、高炉工程に着目し、高炉・製鋼工場間における溶銑輸送容器の稼働状況(物流状況)を考慮することで、高炉・製鋼工場間の貯銑量のバランスを検証し、出鋼未達を防ぐ技術が開示されている。
In order to increase the production volume of steel products, it is important to pay attention to the blast furnace process and increase the amount of hot metal discharged from the blast furnace, but the production capacity in other processes, for example, the hot metal pretreatment process, is important. It is also important to raise. Techniques for improving the production capacity of each process are disclosed in Patent Documents 1 to 3, for example.
Patent Document 1 focuses on the blast furnace process and considers the operating status (distribution status) of the hot metal transport container between the blast furnace and the steelmaking factory to verify the balance of the storage amount between the blast furnace and the steelmaking factory. Techniques for preventing steel failure are disclosed.

特許文献2には、溶銑予備工程に着目し、ロット単位の処理対象物を処理する工程パターンを複数有し、この複数の工程パターンによる処理を並列的に実行する溶銑予備処理ラインにおいて、払出し工程での仕掛り量を適正値とすることが可能な物流シミュレーション方法が開示されている。
特許文献3には、圧延工程に着目し、加熱炉投入までの圧延材の流れ(物流)に着目して、スラブ圧延工程における生産量向上を考えた物流計画の技術が開示されている。
一方、転炉工程に関して考えると、その溶鋼生産能力に関与するのは、転炉自体の処理能力と転炉への溶銑供給能力である。もし、複数の転炉を同時に稼働させた際には、転炉の処理能力が転炉への溶銑供給能力を上回ることになり、転炉への溶銑供給能力が律速となる。つまり、転炉への溶銑供給をいかに効率的に迅速に行うかが、非常に重要となる。
Patent Document 2 pays attention to the hot metal preliminary process, and has a plurality of process patterns for processing an object to be processed in lot units, and in the hot metal preliminary process line that executes the processes according to the plurality of process patterns in parallel, the payout process A physical distribution simulation method capable of setting an in-process amount at a proper value is disclosed.
Patent Document 3 discloses a logistics planning technique that focuses on the rolling process and focuses on the flow (distribution) of the rolled material until the heating furnace is charged, and considers the improvement of the production amount in the slab rolling process.
On the other hand, regarding the converter process, it is the processing capacity of the converter itself and the hot metal supply capacity to the converter that are related to the molten steel production capacity. If a plurality of converters are operated simultaneously, the processing capacity of the converter exceeds the hot metal supply capacity to the converter, and the hot metal supply capacity to the converter becomes rate-limiting. In other words, how efficiently and quickly the hot metal supply to the converter is performed is very important.

特許文献4には、転炉への溶銑供給能力を向上させるべく、転炉工程の一部において取鍋を効率よく取り扱う物流技術が開示されている。この文献に開示された転炉設備は、2つの転炉間に、クレーン1基と、取鍋2基と、取鍋を搬送する運搬台車1台と、取鍋セット装置とを有しており、この取鍋セット装置は、走行レールを跨ぐように配置されていて、空の取鍋をクレーンから受けとった後当該取鍋を降下させて運搬台車に搭載する働きを備えている。
これにより、運搬台車1台に対して取鍋2基を交互に使用することができるようになり、一方の取鍋が脱炭用転炉への溶銑装入中であっても、他方の取鍋を速やかに脱燐用転炉の出銑口へ移動させることができるものとなっている。
特開2003−82407号公報(第4頁〜第8頁) 特開2002−62924号公報(第3頁〜第5頁) 特開平10−272505号公報(第3頁〜第7頁) 特許第3503938号公報(第4頁〜第5頁、図5)
Patent Document 4 discloses a distribution technology for efficiently handling a ladle in a part of the converter process in order to improve the hot metal supply capacity to the converter. The converter equipment disclosed in this document has one crane, two ladles, one transport cart for conveying the ladle, and a ladle set device between the two converters. The ladle set device is arranged so as to straddle the traveling rail, and has a function of lowering the ladle after receiving an empty ladle from a crane and mounting the ladle on a transport cart.
As a result, two ladles can be used alternately for one transport cart, and even if one ladle is being charged into the decarburization converter, the other ladle can be used. The pan can be quickly moved to the outlet of the dephosphorization converter.
JP 2003-82407 A (pages 4 to 8) JP 2002-62924 A (pages 3 to 5) JP-A-10-272505 (pages 3 to 7) Japanese Patent No. 3503938 (pages 4 to 5, FIG. 5)

通常、転炉施設は、複数の転炉と、これらの転炉へ溶銑を装入する複数の取鍋と、該取鍋に混銑車から溶銑を払い出す「払い出しステーション(払い出しのための場所)」等とを備えており、溶銑を装入された取鍋は、図3(a)に示すように、クレーンにより複数の転炉や各ステーション間を移送され、取鍋の動きに着目しただけでも複雑な物流形態を呈するものとなっている。
本願発明者は、転炉工程での溶鋼生産能力を向上させる方法を探るために、図3(a)のガントチャート等を基に、取鍋並びにクレーンの稼働状況を詳細に検討した。その結果、「取鍋103への溶銑の払い出しの際に、クレーン104Aは払い出しステーション106Aの上空で待ちの状態となる」といったクレーンの遊び時間・待ち時間が存在する上に、稼働中の取鍋の数が2本と少なく、かかる待ち時間中に他の取鍋を把持することができない状況となっていることが問題であることを突き止めた。
Usually, a converter facility has a plurality of converters, a plurality of ladle for charging molten iron into these converters, and a “dispensing station” (place for discharging) that discharges hot metal from the kneading car to the ladle. As shown in Fig. 3 (a), the ladle loaded with molten iron is transported between multiple converters and stations by a crane, and only pays attention to the movement of the ladle. However, it is a complicated logistics form.
The inventor of the present application examined in detail the operating conditions of the ladle and the crane on the basis of the Gantt chart of FIG. 3 (a) and the like in order to find a method for improving the molten steel production capacity in the converter process. As a result, there is a play time / waiting time of the crane such as “when the hot metal is discharged to the ladle 103, the crane 104A is in a waiting state over the discharge station 106A”, and the ladle in operation It has been found that there is a problem that the number of the ladle is as small as two and it is not possible to hold another ladle during the waiting time.

つまり、クレーンの稼働状況に応じた取鍋を使用することが、クレーンの稼働状況を良くし転炉への溶銑供給能力をあげることにつながることを明らかにした。
しかしながら、前述した特許文献4の技術は、転炉工程の一部にのみ着目したものであって、上記問題を解決し、転炉への溶銑供給能力を大幅に向上させることは難しい。転炉への溶銑供給を効率的に行うためには、転炉工程全体に亘って、取鍋を効率的に動かすことが重要であり、そのためにはクレーンの稼働状況を可能な限りよくすることが必要である。
In other words, it was clarified that the use of a ladle according to the operational status of the crane would improve the operational status of the crane and increase the hot metal supply capacity to the converter.
However, the technique of Patent Document 4 described above pays attention only to a part of the converter process, and it is difficult to solve the above problems and greatly improve the hot metal supply capacity to the converter. In order to efficiently supply hot metal to the converter, it is important to move the ladle efficiently throughout the converter process. To that end, the operating status of the crane should be as good as possible. is required.

一方、特許文献1〜特許文献3の物流技術を当該転炉設備に応用しようとしても非常に困難である。
そこで、本発明は、上記問題点に鑑み、クレーンの稼働状況に応じた取鍋を使用することにより、転炉への溶銑供給を効率的に行うことのできる転炉への溶銑供給方法を提供することを目的とする。
On the other hand, it is very difficult to apply the physical distribution technology of Patent Documents 1 to 3 to the converter equipment.
Then, this invention provides the hot metal supply method to the converter which can perform hot metal supply to a converter efficiently by using the ladle according to the operation condition of a crane in view of the said problem. The purpose is to do.

前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本発明における課題解決のための技術的手段は、転炉と、この転炉へ溶銑を装入する取鍋と、この取鍋へ溶銑払い出しが行われる払い出しステーションと、この払い出しステーションに対する取鍋の搬入又は搬出を行うべく取鍋を所定のサイクルでハンドリングするクレーンとを有する転炉設備で、前記クレーンが転炉へ溶銑を装入する時間間隔を溶銑装入ピッチPtとして、この溶銑装入ピッチPtに応じて、前記取鍋の稼働本数を設定し、該設定された稼働本数分の取鍋をクレーンでハンドリングして、転炉に溶銑を供給するに際し、前記取鍋の稼働本数を、溶銑装入ピッチPt及びクレーン正味サイクルタイムCnを含む次式を満たすように決定することを特徴とする。

ROUND_UP(Cn/R/Pt)≦ 取鍋の稼働本数 ≦ ROUND_UP(Tn/R/Pt)
・・・(1)
Pt ≧ Cn/R ・・・(2)
Cn:クレーン正味サイクルタイム
=クレーンの1周期内で実際にクレーンが稼働している時間(分/サイクル)
Tn:正味サイクルタイム
=溶銑払い出し、脱硫処理などの各工程にかかる時間の総和
+クレーン正味サイクルタイムCn(分/サイクル)
R :クレーン基数(基)
Pt:溶銑装入ピッチ (分/チャージ)
ROUND_UP(X):Xを切り上げる
転炉設備でのクレーンは、空の取鍋を払い出しステーションに載置→払い出しが完了した取鍋を転炉まで搬送→空になった取鍋を再度払い出しステーションまで移送、といった所定の動作を周期的、すなわち所定のサイクルで行っている。したがって、転炉への溶銑供給も所定サイクルで行われることになり、その時間間隔が溶銑装入ピッチPt(転炉から溶鋼が出鋼される時間間隔である溶鋼出鋼ピッチと略同じ)である。
In order to achieve the above object, the present invention takes the following technical means.
In other words, technical means for solving the problems in the present invention include a converter, a ladle for charging molten iron into the converter, a dispensing station for discharging molten iron to the ladle, and a removal for the dispensing station. This is a converter facility having a crane for handling the ladle in a predetermined cycle in order to carry in or out the pan, and the time interval at which the crane charges the hot metal into the converter is defined as a hot metal charging pitch Pt. In accordance with the input pitch Pt, the number of ladle operations is set, the ladle for the set operation number is handled with a crane, and when supplying hot metal to the converter, The hot metal charging pitch Pt and the net crane cycle time Cn are determined so as to satisfy the following equation.

ROUND_UP (Cn / R / Pt) ≤ Number of ladle operations ≤ ROUND_UP (Tn / R / Pt)
... (1)
Pt ≧ Cn / R (2)
Cn: Crane net cycle time
= Time that the crane is actually operating within one cycle of the crane (min / cycle)
Tn: Net cycle time
= Total time for each process such as hot metal discharge, desulfurization, etc.
+ Crane net cycle time Cn (min / cycle)
R: Number of crane bases (base)
Pt: Hot metal charging pitch (min / charge)
ROUND_UP (X): X is rounded up. The crane at the converter facility places an empty ladle on the discharge station → transports the completed ladle to the converter → returns the empty ladle to the discharge station again A predetermined operation such as transfer is performed periodically, that is, in a predetermined cycle. Accordingly, the hot metal supply to the converter is also performed in a predetermined cycle, and the time interval is a hot metal charging pitch Pt (substantially the same as the molten steel output steel pitch, which is the time interval at which the molten steel is extracted from the converter). is there.

かかる溶銑装入ピッチPtを短くすることで、転炉へ頻繁に溶銑が装入される状況となるものの、短くなった溶銑装入ピッチPtに対応するためには、取鍋の稼働本数を増やす必要がある。逆に、溶銑供給ピッチが長くなった場合、現状の取鍋稼働数を運用すると、待ち状態となる取鍋が増えるため、取鍋の数を減らす必要がある。
このことから判るように、取鍋の稼働本数は、溶銑装入ピッチPtとに密接な関係があるため、本技術的手段では、取鍋の稼働本数を溶銑装入ピッチPtを基に設定するようにしている。これにより、溶銑を転炉に運ぶ取鍋の稼働本数を適切なものにでき、溶銑を転炉への効率的に供給することが可能となる。
Although the hot metal charging pitch Pt is shortened, the hot metal is frequently charged into the converter, but in order to cope with the shortened hot metal charging pitch Pt, the number of ladle operations is increased. There is a need. On the other hand, when the hot metal supply pitch becomes long, if the current number of ladle operations is used, the number of ladles in a waiting state increases, so the number of ladles needs to be reduced.
As can be seen from this, since the number of ladle operations is closely related to the hot metal charging pitch Pt, the technical means sets the number of ladle operations based on the hot metal charging pitch Pt. I am doing so. Thereby, the operating number of the ladle which carries hot metal to a converter can be made appropriate, and it becomes possible to supply hot metal efficiently to a converter.

一方、図7(a)に示されるように、転炉の溶鋼生産量は、市場の需要動向や製鉄所内の関連施設の修理や点検トラブルなどによって左右されるため、転炉設備の稼働状況を常に一定にしておく必要はなく、柔軟に変更する必要がある。逆に、転炉設備の稼働状況を一定値に固定した状況で操業を継続すると、転炉からの出鋼量が過剰になったり、転炉工程の至る所で熱ロスが生じたり、取鍋や転炉内の耐火物の必要以上の劣化を招いたりすることになる。
転炉設備の稼働状況を変更するためには、前述の如く、溶銑装入ピッチPtの増減に応じて前記取鍋の稼働本数を変更するようにすればよい。加えて、クレーンの1周期内で実際にクレーンが稼働している時間をクレーン正味サイクルタイムCnとし、このCnを短くしたり長くしたりして、転炉への溶銑供給能力を調整するとよい。クレーン正味サイクルタイムCnが増減した場合にも、それに対応するように取鍋の稼働本数を変更する必要がある。
On the other hand, as shown in Fig. 7 (a), the molten steel production volume of the converter depends on the market demand trend and the repair and inspection troubles of related facilities in the steelworks. There is no need to keep it constant, and it is necessary to change it flexibly. Conversely, if the operation is continued with the converter equipment operating at a fixed value, the amount of steel output from the converter becomes excessive, heat loss occurs throughout the converter process, and the ladle Or refractories in the converter will be deteriorated more than necessary.
In order to change the operating status of the converter equipment, as described above, the operating number of the ladle may be changed according to the increase / decrease in the hot metal charging pitch Pt. In addition, the time during which the crane is actually operating within one cycle of the crane is the crane net cycle time Cn, and this Cn may be shortened or lengthened to adjust the hot metal supply capacity to the converter. Even when the crane net cycle time Cn increases or decreases, it is necessary to change the operating number of ladles to cope with it.

これらのことを鑑み、前記取鍋の稼働本数を、溶銑装入ピッチPt及びクレーン正味サイクルタイムCnを含む式(1)及び式(2)を満たすように決定している。

ROUND_UP(Cn/R/Pt)≦ 取鍋の稼働本数 ≦ ROUND_UP(Tn/R/Pt)
・・・(1)
Pt ≧ Cn/R ・・・(2)

Cn:クレーン正味サイクルタイム
=クレーンの1周期内で実際にクレーンが稼働している時間(分/サイクル)
Tn:正味サイクルタイム
=溶銑払い出し、脱硫処理などの各工程にかかる時間の総和
+クレーン正味サイクルタイムCn(分/サイクル)
R :クレーン基数(基)
Pt:溶銑装入ピッチ (分/チャージ)
ROUND_UP(X):Xを切り上げる

例えば、クレーン正味サイクルタイムCnが30分であるとすると、前回の転炉への溶銑装入完了から、次の溶銑装入完了(1つの取鍋で混銑車から溶銑を払い出してもらい、転炉に装入する)まで、30分かかることになる。一方、溶銑装入ピッチPtが15分であるとすると、この間隔では間に合わないため、取鍋を2つに設定すると、理論上、溶銑供給が間にあうことになる。すなわち、取鍋の稼働本数はクレーン正味サイクルタイムCnを溶銑装入ピッチPtで割る(Cn/Pt)ことにより求めることができる。
In view of these things, the operating number of the ladle is determined so as to satisfy the equations (1) and (2) including the hot metal charging pitch Pt and the crane net cycle time Cn.

ROUND_UP (Cn / R / Pt) ≤ Number of ladle operations ≤ ROUND_UP (Tn / R / Pt)
... (1)
Pt ≧ Cn / R (2)

Cn: Crane net cycle time
= Time that the crane is actually operating within one cycle of the crane (min / cycle)
Tn: Net cycle time
= Total time for each process such as hot metal discharge, desulfurization, etc.
+ Crane net cycle time Cn (min / cycle)
R: Number of crane bases (base)
Pt: Hot metal charging pitch (min / charge)
ROUND_UP (X): Rounds up X

For example, if the crane net cycle time Cn is 30 minutes, the hot metal charging to the next converter is completed, the next hot metal charging is completed (the hot metal is discharged from the kneading car with one ladle, the converter It will take 30 minutes to load. On the other hand, if the hot metal charging pitch Pt is 15 minutes, this interval will not be in time. If two ladles are set, theoretically, hot metal supply will be in time. That is, the operating number of ladles can be obtained by dividing the crane net cycle time Cn by the hot metal charging pitch Pt (Cn / Pt).

ここで、クレーン正味サイクルタイムCnが30分であったとしても、クレーン数Rが2基である場合には、仮想的にクレーン正味サイクルタイムは15分と考えて差し支えない。なお、取鍋数は整数である必要があるため、割り求めた値の切り上げ値(round up)を取鍋の稼働数とするとよい。
これらのことより、ROUND_UP(Cn/R/Pt)≦ 取鍋の稼働本数 によって取鍋の稼働本数の下限値を求めるとよいことがわかる(式(1)の左辺)。
Here, even if the crane net cycle time Cn is 30 minutes, if the number of cranes R is two, the crane net cycle time can be virtually considered to be 15 minutes. In addition, since the number of ladle needs to be an integer, it is good to use the rounded-up value (round up) of the calculated value as the operating number of ladle.
From these facts, it can be seen that the lower limit value of the number of ladle operations can be obtained from ROUND_UP (Cn / R / Pt) ≦ the number of ladle operations (left side of equation (1)).

一方、取鍋の稼働本数の上限値は、同様の考え方によって求められるが、クレーン正味サイクルタイムCnを用いるのではなく、クレーン正味サイクルタイムCnに、溶銑払い出し、脱硫などの各工程にかかる時間の総和を加えた「正味サイクルタイムTn」を用いて求めるようにしている。正味サイクルタイムTnは、溶銑に対して何らかのアクションを起こしている時間と考えることもできる。
例えば、正味サイクルタイムTnが45分であるとすると、1つの取鍋で混銑車から溶銑を払い出してもらい、脱硫等の溶銑処理を行った上で転炉に装入するまで、45分かかることになる。一方、溶銑装入ピッチPtが15分であるとすると、この間隔では間に合わないため、取鍋を3つに設定すると理論上、溶銑供給が間にあうことになる。すなわち、取鍋の稼働本数は正味サイクルタイムTnを溶銑装入ピッチPtで割ること(Tn/Pt)により求めることができる。
On the other hand, the upper limit value of the number of ladle operations is determined based on the same concept, but instead of using the crane net cycle time Cn, the crane net cycle time Cn is used for the time taken for each process such as hot metal discharge and desulfurization. It is determined using the “net cycle time Tn” with the sum added. The net cycle time Tn can also be considered as a time during which some action is taken on the hot metal.
For example, if the net cycle time Tn is 45 minutes, it takes 45 minutes for the ladle to be discharged from the kneading car with one ladle and to be charged into the converter after performing molten iron treatment such as desulfurization. become. On the other hand, if the hot metal charging pitch Pt is 15 minutes, this interval will not be in time. Therefore, if the number of ladles is set to three, the hot metal supply will theoretically be in time. That is, the operating number of ladles can be obtained by dividing the net cycle time Tn by the hot metal charging pitch Pt (Tn / Pt).

ここで、正味サイクルタイムTnが45分であったとしても、クレーン数Rが2基である場合には、仮想的に正味サイクルタイムTnは22.5分と考えて差し支えない。なお、取鍋数は整数である必要があるため、割り求めた値の切り上げ値(round up)を取鍋の稼働数とするとよい。
これらのことより、取鍋の稼働本数 ≦ ROUND_UP(Tn/R/Pt)によって取鍋の稼働本数の上限値を求めるとよいことがわかる(式(1)の右辺)。溶銑を転炉に装入するまでの時間としては、正味サイクルタイムTn以上かかることはないので、Tnを基にして算出された取鍋の稼働本数が上限値となる。
Here, even if the net cycle time Tn is 45 minutes, if the number of cranes R is two, the net cycle time Tn may be considered to be 22.5 minutes virtually. In addition, since the number of ladle needs to be an integer, it is good to use the rounded-up value (round up) of the calculated value as the operating number of ladle.
From these facts, it can be seen that the upper limit value of the number of ladle operations may be obtained from the number of ladle operations ≦ ROUND_UP (Tn / R / Pt) (the right side of equation (1)). Since it does not take more than net cycle time Tn as time until hot metal is charged into a converter, the number of ladle operation calculated based on Tn becomes an upper limit.

式(1)は独立変数としてPtを含んでいるため、上述の取鍋の稼働本数は、溶銑装入ピッチPtの増減に応じて変動するようになっている。
なお、仮想的に考えたクレーン正味サイクルタイムCn/Rより、溶銑装入ピッチPtが短い場合、 ROUND_UP(Cn/R/Pt)が大きな値(例えば、5や6)になり、それにしたがえば、多数の取鍋を用いる必要が生じてくる。このような状況は、取鍋の処理待ち時間の増大につながり非現実的であるため、式(2)の如く、溶銑装入ピッチPtを、仮想的に考えたクレーン正味サイクルタイムCn/Rと等しいか、それより大きいものとしている。これにより、取鍋稼働本数が極端に多くなることはなくなる。
Since equation (1) includes Pt as an independent variable, the number of operating ladles described above varies in accordance with the increase / decrease in the hot metal charging pitch Pt.
Note that when the hot metal charging pitch Pt is shorter than the virtually considered crane net cycle time Cn / R, ROUND_UP (Cn / R / Pt) becomes a large value (for example, 5 or 6). It becomes necessary to use a large number of ladles. Since such a situation leads to an increase in the processing waiting time of the ladle, it is unrealistic. Therefore, as shown in the equation (2), the hot metal charging pitch Pt is assumed to be a virtually considered crane net cycle time Cn / R. Equal to or greater than. As a result, the number of ladle operations does not become extremely large.

以上述べた式(1)及び式(2)を満たす稼働本数の取鍋を用いることで、溶銑を転炉への効率的に供給することができるようになる。
さらに好ましくは、前記転炉設備は、取鍋の補修や地金取り作業を行う待機ステーションを有し、前記技術的手段のいずれかで設定された取鍋の稼働本数+1の取鍋を稼働させた上で、該取鍋のいずれか1つを前記待機ステーションに配置するようにクレーンを操作するとよい。
転炉への溶銑供給能力を向上させるためには、溶銑供給を行う取鍋の数を増加させるとよい。しかしながら、取鍋の稼働本数が増えることにより、取鍋1本あたりのサイクルタイムが延長し、取鍋のスラグライン等に地金やスラグが付着生成するようになる。そこで、これに対応して転炉操業を円滑に操業を行うためには、稼働している取鍋をさらに1本増やして、増やした取鍋を載置する待機ステーションを設けるとよい。待機ステーションに配置された取鍋に関し、その地金やスラグを定期的に除去するようにすることで、地金やスラグが付着せずに安定して使用できる取鍋を確実に確保することができるようになる。
By using as many ladles that satisfy the equations (1) and (2) described above, the hot metal can be efficiently supplied to the converter.
More preferably, the converter facility has a standby station for repairing the ladle and collecting metal, and operates the ladle of the number of ladle operations + 1 set by any of the technical means. In addition, the crane may be operated to place any one of the ladle at the standby station.
In order to improve the hot metal supply capacity to the converter, it is preferable to increase the number of ladles that supply hot metal. However, when the number of ladle operations increases, the cycle time per ladle is extended, and metal and slag are deposited on the slag line of the ladle. Therefore, in order to perform the converter operation smoothly in response to this, it is preferable to further increase one operating ladle and provide a standby station for placing the increased ladle. With regard to the ladle placed at the standby station, by removing the bullion and slag regularly, it is possible to ensure a stable ladle that does not adhere to the bullion and slag. become able to.

加えて、前記待機ステーションにある取鍋に対して加熱を行うようにすることは、非常に好ましい。
待機ステーションにある取鍋は、内部に溶銑を受けていない空の溶銑鍋であり、空鍋の状態が長時間続くと取鍋内側の耐火物の温度が下がり、「次に溶銑を受けた際に地金付着が発生して安定操業が難しくなる」、「熱ロスが大きくなり、転炉に装入する溶銑の温度が低くなる」、「耐火物が装入された溶銑により熱膨張し剥離したりする」等の不都合が生じる。そこで、待機ステーションにある取鍋内にバーナー等を差し入れ火炎を発生させたりして、取鍋内を加熱するようにするとよい。
In addition, it is highly preferable to heat the ladle at the standby station.
The ladle at the standby station is an empty hot metal ladle that has not received hot metal inside. If the hot pot continues for a long period of time, the temperature of the refractory inside the ladle will drop. ”Stable operation becomes difficult due to metal adhesion”, “Heat loss increases, the temperature of the hot metal charged into the converter decreases”, “The hot metal charged with refractory expands and exfoliates. Inconveniences such as “doing” occur. Therefore, it is preferable to heat the inside of the ladle by inserting a burner or the like into the ladle in the standby station to generate a flame.

本発明によれば、転炉設備で、転炉への溶銑供給を効率的に行うことのできるようになる。   ADVANTAGE OF THE INVENTION According to this invention, hot metal supply to a converter can be efficiently performed with a converter equipment.

以下、本発明にかかる転炉への溶銑供給方法の実施形態を、図を基に説明する。
図1は、転炉設備1を正面から見た際の概略を示したものであり、図2には、転炉設備1の平面概略図が示されている。
図1に示すように、本実施形態の転炉設備1は、3基の転炉2と、これら転炉2に溶銑を供給する取鍋3(溶銑鍋)と、この取鍋3を搬送する2基のクレーン4とを有している。さらに、取鍋3を載置した上で、混銑車5あるいは高炉鍋から該取鍋3に溶銑を移し替える場所である「払い出しステーション6(払い出しピット)」を2つ備えている。
Hereinafter, an embodiment of a hot metal supply method to a converter according to the present invention will be described with reference to the drawings.
FIG. 1 shows an outline when the converter equipment 1 is viewed from the front, and FIG. 2 shows a schematic plan view of the converter equipment 1.
As shown in FIG. 1, the converter facility 1 of the present embodiment conveys the three converters 2, a ladle 3 (hot metal ladle) that supplies hot metal to these converters 2, and the ladle 3. And two cranes 4. Furthermore, after placing the ladle 3, two “dispensing stations 6 (dispensing pits)”, which are places where the hot metal is transferred from the kneading wheel 5 or the blast furnace pan to the ladle 3, are provided.

本発明は、このような転炉設備1で、転炉2への溶銑装入間隔(溶銑装入ピッチPt)とに応じて、前記取鍋3の稼働本数を設定し、該設定された稼働本数分の取鍋3をクレーン4でハンドリングして、転炉2に溶銑を供給するものである。
以下、本実施形態にかかる転炉設備1の詳細について述べる。
本転炉設備1の上方側には、該転炉設備1を縦断するように走行レール7が設けられており、この走行レール7上を後述するクレーン4が2基走行するようになっている。走行レール7の一方側(図2の左側)には、前記払い出しステーション6A,6Bが走行レール7方向に並ぶように設けられており、走行レール7の他方側(図2の右側)には3基の転炉(転炉2A〜転炉2C)が走行レール7方向に並ぶように配設されている。なお、以降の説明における上下方向は、図1の上下方向と一致するものとする。
The present invention sets the operation number of the ladle 3 according to the hot metal charging interval (hot metal charging pitch Pt) to the converter 2 in such a converter facility 1, and the set operation A number of ladles 3 are handled by a crane 4 to supply hot metal to the converter 2.
Hereinafter, the details of the converter facility 1 according to the present embodiment will be described.
A traveling rail 7 is provided on the upper side of the converter facility 1 so as to run through the converter facility 1, and two cranes 4 described later travel on the traveling rail 7. . The payout stations 6A and 6B are provided on one side of the traveling rail 7 (left side in FIG. 2) so as to be aligned in the direction of the traveling rail 7, and 3 on the other side of the traveling rail 7 (right side in FIG. 2). The basic converters (converter 2A to converter 2C) are arranged in the direction of the traveling rail 7. Note that the vertical direction in the following description is the same as the vertical direction in FIG.

図2に示すように、説明の便宜上、走行レール7を7つの区間に区切り番号を付している。区切り番号1,2に対応する走行レール7のほぼ下方側には払い出しステーション6A,6Bが対応するように設けられており、区切り番号4,5,6に対応する走行レール7の下側であって且つ走行レール7の側方側には、転炉2A,2B,2Cが設けられている。クレーン4Aは区切り番号0から6までを移動し、クレーン4Bは区切り番号1から7までを移動することになる。1つの区切り番号はクレーン1基の幅に対応している。
また、区切り番号0の位置であって、払い出しステーション6Aより上方側には、ノロカキ8A(スラグドラッガー)により取鍋3内の溶銑上面に浮かんでいるスラグを掻き出す場所である「除滓ステーション9A」が設けられている。同様に区切り番号3の場所にはノロカキ8Bが配置され除滓ステーション9Bとなっている。
As shown in FIG. 2, for the convenience of explanation, the traveling rail 7 is divided into seven sections. Dispensing stations 6A and 6B are provided so as to correspond to the lower side of the traveling rail 7 corresponding to the partition numbers 1 and 2, and below the traveling rail 7 corresponding to the partition numbers 4, 5, and 6. In addition, converters 2A, 2B, and 2C are provided on the side of the traveling rail 7. The crane 4A moves from the partition numbers 0 to 6, and the crane 4B moves from the partition numbers 1 to 7. One delimiter number corresponds to the width of one crane.
In addition, at the position of the partition number 0 and above the payout station 6A, the “scraping station 9A” is a place where the slag floating on the upper surface of the hot metal in the ladle 3 is scraped out by the sword 8A (slag dragger). Is provided. Similarly, a throat oyster 8B is arranged at the position of the delimiter number 3 to form a removal station 9B.

つまり、クレーン4の移動方向に沿って隣接する2つの払い出しステーション6が備えられ、これら払い出しステーション6の前記移動方向両側にはそれぞれ除滓ステーション9が備えられており、両ステーション6,9のそれぞれに2基のクレーン4A,4Bが同時に存在可能となっている。
走行レール7上には2基のクレーン4A,4Bが配備されている。詳しくは、走行レール7上をクレーン本体10が走行するものとなっており、このクレーン本体10からは、下方に吊り下げ索体11(ワイヤ)が延びており、該吊り下げ索体11の先端に設けられたフック12で取鍋3を吊り下げるようになっている。吊り下げ索体11をクレーン本体10へ巻き取ることで、取鍋3は上方へ引き上げられることになり、その上でクレーン本体10が走行レール7上を走行することで、取鍋3は、払い出しステーション6〜転炉2間を自在に移送される。
That is, two payout stations 6 that are adjacent to each other in the moving direction of the crane 4 are provided, and the removal stations 9 are provided on both sides in the moving direction of the payout stations 6, respectively. Two cranes 4A and 4B can exist simultaneously.
On the traveling rail 7, two cranes 4A and 4B are provided. Specifically, the crane body 10 travels on the traveling rail 7, and a suspended rope 11 (wire) extends downward from the crane body 10, and the tip of the suspended rope 11 The ladle 3 is suspended by a hook 12 provided on the top. The ladle 3 is lifted upward by winding the suspended rope 11 around the crane body 10, and the ladle 3 is paid out when the crane body 10 travels on the traveling rail 7. It is freely transferred between the station 6 and the converter 2.

本転炉設備1で使用する取鍋3の本数は、式(1)及び式(2)を満たすように決定する。

ROUND_UP(Cn/R/Pt)≦ 取鍋の稼働本数 ≦ ROUND_UP(Tn/R/Pt)
・・・(1)
Pt ≧ Cn/R ・・・(2)

Cn:クレーン正味サイクルタイム
=クレーンの1周期内で実際にクレーンが稼働している時間(分/サイクル)
Tn:正味サイクルタイム
=溶銑払い出し、脱硫処理などの各工程にかかる時間の総和
+クレーン正味サイクルタイムCn(分/サイクル)
R :クレーン基数(基)
Pt:溶銑装入ピッチ (分/チャージ)
ROUND_UP(X):Xを切り上げる

図8は、本実施形態の条件のもと、式(1),式(2)を計算した結果であり、溶銑装入ピッチPtに応じた最適な取鍋3の稼働本数を示したものである。図8の横軸は溶銑装入ピッチPtであり、縦軸は取鍋3の稼働本数である。
The number of ladles 3 used in the converter 1 is determined so as to satisfy the expressions (1) and (2).

ROUND_UP (Cn / R / Pt) ≤ Number of ladle operations ≤ ROUND_UP (Tn / R / Pt)
... (1)
Pt ≧ Cn / R (2)

Cn: Crane net cycle time
= Time that the crane is actually operating within one cycle of the crane (min / cycle)
Tn: Net cycle time
= Total time for each process such as hot metal discharge, desulfurization, etc.
+ Crane net cycle time Cn (min / cycle)
R: Number of crane bases (base)
Pt: Hot metal charging pitch (min / charge)
ROUND_UP (X): Rounds up X

FIG. 8 is a result of calculating the formulas (1) and (2) under the conditions of the present embodiment, and shows the optimum number of ladle 3 operating according to the hot metal charging pitch Pt. is there. The horizontal axis of FIG. 8 is the hot metal charging pitch Pt, and the vertical axis is the number of operating ladles 3.

計算条件は、クレーン正味サイクルタイムが22分/サイクル、正味サイクルタイムが31分/サイクルであり、クレーン基数は2基、払い出しピット数は2である。
式(1)の右辺は破線で示されており、式(1)の左辺は実線で示されている。かかる実線と破線とで示された領域が取鍋3の稼働本数を示している。例えば、溶銑装入ピッチPtが13分の場合、取鍋3を2本または3本稼働すればよく、Pt=20分の場合、取鍋の稼働本数は2本とするとよい。
式(2)で示される範囲は、図中の縦線Lより右側の領域であり、このことから、転炉設備1に実際に適用できる取鍋3の稼働本数は、3本以下であることが判る。
The calculation conditions are a crane net cycle time of 22 minutes / cycle and a net cycle time of 31 minutes / cycle, a crane base number of 2 and a payout pit number of 2.
The right side of Equation (1) is indicated by a broken line, and the left side of Equation (1) is indicated by a solid line. The area | region shown with this solid line and the broken line has shown the operating number of the ladle 3. For example, when the hot metal charging pitch Pt is 13 minutes, two or three ladles may be operated, and when Pt = 20 minutes, the number of ladle operations may be two.
The range shown by Formula (2) is the area | region on the right side from the vertical line L in a figure, From this, the operating number of the ladle 3 actually applicable to the converter equipment 1 is 3 or less. I understand.

図7(b)には、上記考え方に基づいて、取鍋3の稼働数を変更した結果が示してある。通常の高生産時には溶銑払い出しピッチが15.2分であって、取鍋稼働数は3本であるものの、下工程にある連続鋳造機の点検時であって低生産時には、溶銑装入ピッチが19.0分となるため、図8の結果に基づき、取鍋稼働数を2本に減少させている。従来技術1や従来技術2では、高生産時と全く同じ稼働数であり、熱ロス等が生じる状況となっていると思われる。
高炉休風時に伴う低生産状態では、溶銑装入ピッチが38.0分となるため、取鍋稼働数を、図8の結果に基づき1本に減少させている。従来技術1や従来技術2では、高生産時と全く同じ稼働数(=3本)となっている。
FIG. 7B shows the result of changing the operating number of the ladle 3 based on the above concept. During normal high production, the hot metal dispensing pitch is 15.2 minutes and the number of ladle operations is three. However, when the continuous casting machine in the lower process is inspected and at low production, the hot metal charging pitch is Since it is 19.0 minutes, the number of ladle operations is reduced to two based on the result of FIG. In the prior art 1 and the prior art 2, the number of operations is exactly the same as that in high production, and it seems that heat loss or the like occurs.
Since the hot metal charging pitch is 38.0 minutes in the low production state associated with the blast furnace off-air, the number of ladle operations is reduced to one based on the result of FIG. In the prior art 1 and the prior art 2, the number of operations (= 3) is exactly the same as in high production.

図10のケースKは、取鍋3の稼働数を3本とした場合の操業実績であり、従来(ケースFなど)のクレーンのサイクルタイムが45分/回に対して、取鍋3の数が適切であるため、クレーンサイクルが29分/回と短くなっている。
転炉設備1内での取鍋移動の概略は、次の通りである。
まず、混銑車5が転炉設備1に到着した後、該混銑車5から払い出しステーション6A,6Bに載置された取鍋3に溶銑が注ぎ込まれる。溶銑が装入された取鍋3は、クレーン4A,4Bにより引き上げられ、払い出しステーション6A,6Bの上方であって該払い出しステーション6A,6Bに隣接する除滓ステーション9A,9Bまで移動され、ノロカキ8A,8Bで溶銑の上面に浮いているスラグが掻き出されるものとなっている。
Case K in FIG. 10 is an operation result when the number of ladle operations 3 is three, and the number of ladles 3 is 45 minutes / time for a conventional crane (such as Case F) cycle time. Is appropriate, the crane cycle is shortened to 29 minutes / time.
The outline of ladle movement in the converter 1 is as follows.
First, after the kneading wheel 5 arrives at the converter 1, hot metal is poured from the kneading wheel 5 into the ladle 3 placed on the payout stations 6 </ b> A and 6 </ b> B. The ladle 3 charged with hot metal is lifted up by the cranes 4A and 4B, moved to the removal stations 9A and 9B above the discharge stations 6A and 6B and adjacent to the discharge stations 6A and 6B. 8B, the slag floating on the upper surface of the hot metal is scraped off.

スラグを掻き出された取鍋3は、クレーン4A,4Bにより3基の転炉2A,2B,2Cのいずれかの前に移送され、当該転炉2を傾動すると共に取鍋3を傾けることで、転炉2内に溶銑を装入する。
溶銑が装入された転炉2では、転炉2の炉口からランスを挿入し溶銑上面に近づけ、酸素ガスを吹き付けると同時に、炉底から吹き込みガスで溶銑を撹拌しつつ精錬(吹錬)を開始する。同時に、石灰CaO等の造滓材や酸化鉄Fexy等の冷却材、すなわち副原料を投入する。溶銑内のりんは投入された酸素と反応してスラグ相に移行し、溶銑の上方に浮いた状態で積層するようになり(脱りん)、さらに、溶銑内の炭素は酸素と反応し、COガスとして排出される(脱炭)。かかる吹錬処理により、所定のりん、炭素濃度の溶鋼を得ることができる。
The ladle 3 from which the slag has been scraped is transferred to one of the three converters 2A, 2B, 2C by the cranes 4A, 4B, tilting the converter 2, and tilting the ladle 3 The hot metal is charged into the converter 2.
In the converter 2 charged with hot metal, a lance is inserted from the furnace port of the converter 2 and brought close to the upper surface of the hot metal, and oxygen gas is blown at the same time. To start. At the same time, the slag forming and iron oxide Fe x O y or the like coolant such as lime CaO, i.e. the auxiliary raw material input. Phosphorus in the hot metal reacts with the charged oxygen and shifts to the slag phase, and starts laminating above the hot metal (dephosphorization). Furthermore, the carbon in the hot metal reacts with oxygen and CO. It is discharged as gas (decarburization). By this blowing process, molten steel having a predetermined phosphorus and carbon concentration can be obtained.

転炉2での吹錬処理が始まると、空になった取鍋3は、再び払い出しステーション6A,6Bにクレーン4A,4Bにより戻され、再度、溶銑を払い出し準備状態となる。
図3には、払い出しステーション6A,6Bに常時配置される取鍋3の数を1本とすると共に、取鍋3の総稼働数を3本(式(1)及び式(2)を満たす)とした場合の、クレーン4A,4Bの動きとそれに伴う取鍋3の動き(物流)を詳細に表したガントチャートが示してある。
図3(a)は、図11に示された従来の転炉設備101におけるガントチャートである。従来例の転炉設備101は、払い出しステーション106A,106Bの上方側に除滓ステーション109A,109Bが設けられており、平面視では、払い出しステーション106A,106Bと除滓ステーション109A,109Bとは同一の区切り番号位置に存在する点が、本転炉設備1とは大きく異なっている。加えて、従来例では取鍋103の稼働本数は2本である。
When the blowing process in the converter 2 starts, the empty ladle 3 is returned again to the discharge stations 6A and 6B by the cranes 4A and 4B, and the molten iron is again ready to be discharged.
In FIG. 3, the number of ladles 3 always disposed in the payout stations 6 </ b> A and 6 </ b> B is one, and the total number of ladles 3 is three (satisfies equation (1) and equation (2)). The Gantt chart showing in detail the movement of the cranes 4A and 4B and the movement (distribution) of the ladle 3 associated therewith is shown.
FIG. 3A is a Gantt chart in the conventional converter facility 101 shown in FIG. In the conventional converter apparatus 101, the removal stations 109A and 109B are provided above the discharge stations 106A and 106B, and the discharge stations 106A and 106B and the removal stations 109A and 109B are the same in plan view. The point existing at the partition number position is greatly different from the present converter facility 1. In addition, in the conventional example, the operating number of ladles 103 is two.

クレーン104A,104Bの動き関しては、まず、クレーン104Aが空の取鍋103を把持し、払い出しステーション106A(ピットA)に据え付ける。その後、この取鍋103には、混銑車105から溶銑が払い出され、成分測定や温度測定が行われる。そして、該取鍋103はクレーン104Aで吊り下げられて上方へ持ち上げられ、除滓ステーション109Aへ移送される。
このとき、クレーン104Bで吊り下げられたままの取鍋103は、除滓ステーション109Bに配置されて、当該取鍋103内のスラグがノロカキ108Bで掻き出されるものとなっている。その後、クレーン104Bの取鍋103は、転炉102Aの位置に移送され、溶銑が転炉102Aに装入されることになる。溶銑装入が完了し、空になった取鍋103は払い出しステーション106Bに搬送されて据え付けられ、溶銑の払い出しが始まる。このとき、クレーン104Bは払い出しステーション106Bの上空で待ちの状態となる。
Regarding the movement of the cranes 104A and 104B, first, the crane 104A grips the empty ladle 103 and installs it on the dispensing station 106A (pit A). Thereafter, hot metal is discharged from the kneading wheel 105 to the ladle 103, and component measurement and temperature measurement are performed. Then, the ladle 103 is suspended by the crane 104A, lifted upward, and transferred to the removal station 109A.
At this time, the ladle 103 that has been suspended by the crane 104B is arranged at the dehulling station 109B, and the slag in the ladle 103 is scraped out by the throat oyster 108B. Thereafter, the ladle 103 of the crane 104B is transferred to the position of the converter 102A, and the hot metal is charged into the converter 102A. After the hot metal charging is completed, the ladle 103 that has been emptied is transported and installed in the payout station 106B, and the hot metal discharge starts. At this time, the crane 104B is in a waiting state over the dispensing station 106B.

払い出しステーション106Bでの溶銑払い出しがある程度進んだ状況下で、クレーン104Aに吊り下げられている取鍋103の除滓が完了するため、クレーン104Aを転炉102Bまで移動させ、クレーン104Aに吊り下げられている取鍋103から転炉102Bに溶銑を装入するようにする。このとき、クレーン104Aの移動をスムーズに行うため、同時にクレーン104Bを転炉102Cの前まで移動する。
転炉102Bへの溶銑装入を終えた取鍋103は、クレーン104Aにより再度払い出しステーション106Aの位置まで移動させられ据え付けられることになり、クレーン104Aの1サイクルが終了することになる。
Under the situation where the hot metal discharge at the discharge station 106B has progressed to some extent, the removal of the ladle 103 suspended from the crane 104A is completed. The hot metal is charged into the converter 102B from the ladle 103. At this time, in order to smoothly move the crane 104A, the crane 104B is moved to the front of the converter 102C at the same time.
The ladle 103 that has been charged into the converter 102B is moved again to the position of the discharge station 106A by the crane 104A and installed, and one cycle of the crane 104A is completed.

このとき、転炉102C前(区切り番号6)に待避していたクレーン104Bは、払い出しステーション106Bの上方へ移動してきて、成分測定や温度測定が終了した取鍋103を再度吊り上げる。これによりクレーン104Bの1サイクルが終了する。
本実施形態の場合、取鍋103とクレーン104と払い出しステーション106とは常に対応しており、ある取鍋103を把持するのは常に決まったクレーン104であり、取鍋103は、常に同一払い出しステーション106に配置される。なお、クレーン104の1サイクルにかかる時間、すなわちサイクルタイムは、図3(a)から33分であることが判る。
At this time, the crane 104B that has been withdrawn before the converter 102C (separation number 6) moves to the upper side of the dispensing station 106B, and lifts the ladle 103 for which the component measurement and the temperature measurement are completed again. This completes one cycle of the crane 104B.
In the present embodiment, the ladle 103, the crane 104, and the payout station 106 always correspond to each other, and it is always the fixed crane 104 that holds a certain ladle 103, and the ladle 103 is always the same payout station. 106. It can be seen from FIG. 3A that the time required for one cycle of the crane 104, that is, the cycle time, is 33 minutes.

払い出しステーション6に常時載置されている取鍋数について考えると、図3(a)から判るように、常時配置取鍋数は0本又は1本であり、払い出しステーション6に全く取鍋3が配置されていない状況が存在している。
一方、図3(b)には、本実施形態のクレーン4の動きとそれに伴う取鍋3の動き(物流)が示してある。
クレーン4の動きに関しては、まず、クレーン4Aは、払い出しステーション6Bに空の取鍋3を据え付けるようにする。その後、払い出しステーション6Aに移動し、溶銑払い出しが終わると共に溶銑の成分測定や温度測定が完了した取鍋3を吊り上げ、除滓ステーション9Aへ移送する。この除滓ステーション9Aでは、取鍋3は吊り下げられた状態であって、取鍋3内のスラグがノロカキ8Aで掻き出されるものとなっている。
Considering the number of ladles that are always placed in the dispensing station 6, as can be seen from FIG. 3 (a), the number of ladles that are always placed is zero or one. There is an undeployed situation.
On the other hand, FIG. 3B shows the movement of the crane 4 of the present embodiment and the movement (distribution) of the ladle 3 associated therewith.
Regarding the movement of the crane 4, the crane 4 </ b> A first installs the empty ladle 3 on the dispensing station 6 </ b> B. Thereafter, the ladle moves to the dispensing station 6A, and the ladle 3 in which the hot metal component measurement and the temperature measurement are completed is lifted up and transferred to the demolition station 9A. In this removal station 9A, the ladle 3 is in a suspended state, and the slag in the ladle 3 is scraped out by the throat oyster 8A.

そのとき、クレーン4Bは別の取鍋3を吊り下げ中であり、その取鍋3は除滓ステーション9Bに配置され、ノロカキ8Bでスラグ除去が行われている。かかる除滓が完了すると、クレーン4Bは転炉2Aの前まで移動し、溶銑が取鍋3から転炉2Aに装入されることになる。溶銑装入が完了し空になった取鍋3は、クレーン4Bに吊られたまま、払い出しステーション6Aに搬送されて据え付けられ、溶銑の払い出しが始まる。
払い出しステーション6Aへ取鍋3が据え付けられる状況は、ガントチャート中のP部で示されており、これは、図3(a)のR’部がR部まで早まったことを意味している。P部の状況を別の観点で見ると、除滓ステーション9Aと払い出しステーション6Aとが平面視でクレーン1基分だけ離れているため、両ステーション同時にクレーン4が位置することが可能となっていることを意味し、除滓と溶銑払い出しがパラレルに行われて、溶銑供給処理を効率的に進めていることの現れとなっている。図10のケースCがこの状況に相当し、従来(ケースA)のクレーンのサイクルタイムが33分/回に対して、除滓ステーション9Aと払い出しステーション6Aとが離れているために差し合いが起こらず、クレーンサイクルが29分/回と短くなっている。
At that time, the crane 4B is suspending another ladle 3, and the ladle 3 is disposed in the dehulling station 9B, and the slag is removed by the blade 8B. When such removal is completed, the crane 4B moves to the front of the converter 2A, and the hot metal is charged from the ladle 3 into the converter 2A. The ladle 3 that has been emptied after the hot metal charging is completed is transported and installed in the discharge station 6A while being suspended by the crane 4B, and the discharge of the hot metal starts.
The situation where the ladle 3 is installed on the payout station 6A is indicated by the P part in the Gantt chart, which means that the R ′ part in FIG. Looking at the situation of part P from another point of view, the removal station 9A and the payout station 6A are separated by one crane in plan view, so that the crane 4 can be located at both stations simultaneously. This means that the removal of the hot metal and the discharge of the hot metal are performed in parallel, and the hot metal supply process is efficiently advanced. Case C in FIG. 10 corresponds to this situation. Since the crane time of the conventional (case A) is 33 minutes / time, the removal station 9A and the dispensing station 6A are separated from each other. The crane cycle is shortened to 29 minutes / time.

この後、クレーン4Bは、払い出しステーション6Aにある取鍋3の溶銑払い出し完了を待つのではなく、すぐ隣の払い出しステーション6Bにある、溶銑が満たされた取鍋3を吊り下げに行く。その間、クレーン4Aはこの吊り上げを待つため、除滓ステーション9Aの位置で待機することになる。
払い出しステーション6Bの取鍋3を吊り上げたクレーン4Bは、そのまま、除滓ステーション9Bに移動すればベストであるが、除滓ステーション9Aにある取鍋3を転炉2Aの前に移動させる必要があるため、一旦、転炉2Cの前まで移動するようになる(逃げる)。
Thereafter, the crane 4B does not wait for the hot metal discharge of the ladle 3 in the payout station 6A to be completed, but hangs the ladle 3 in the adjacent payout station 6B filled with hot metal. Meanwhile, the crane 4A waits at the position of the demolition station 9A in order to wait for this lifting.
The crane 4B that lifts the ladle 3 of the payout station 6B is best if it moves to the removal station 9B as it is, but it is necessary to move the ladle 3 in the removal station 9A before the converter 2A. Therefore, it once moves to the front of the converter 2C (escapes).

そのクレーン4Bに追従するようにクレーン4Aは転炉2Bの前まで移動し、転炉2Bへの溶銑装入が行われる。装入が終わり、空になった取鍋3は必ず1つが空き状態となっている払い出しステーション6(この場合、払い出しステーション6B)に据え付けられ、次の溶銑が装入されることになる(図3(b)のQ部)。その後すぐに、クレーン4Aは、取鍋3への溶銑装入の終了を待つことなく、払い出しステーション6Aに配置された溶銑装入完了後の取鍋3を吊り下げるようにする。これによりクレーン4Bの1サイクルが終了する。本実施形態の場合、クレーン4の1サイクルにかかる時間(サイクルタイム)は、図3(b)から29分であることが判る。なお、転炉2Bの前(区切り番号5)に逃げていたクレーン4Bは、クレーン4Aが払い出しステーション6Bに移動した際に、それに隣接する除滓ステーション9Bに移動し、スラグの除滓をノロカキ8Bで行う。   The crane 4A moves to the front of the converter 2B so as to follow the crane 4B, and the hot metal is charged into the converter 2B. The ladle 3 which has been emptied and is emptied is always installed in the dispensing station 6 (in this case, the dispensing station 6B) in which one ladle is empty, and the next hot metal is charged (Fig. 3 (b) Q part). Immediately thereafter, the crane 4 </ b> A hangs the ladle 3 after the completion of the hot metal charging disposed in the dispensing station 6 </ b> A without waiting for the hot metal charging to the ladle 3 to end. This completes one cycle of the crane 4B. In the case of the present embodiment, it can be seen that the time (cycle time) required for one cycle of the crane 4 is 29 minutes from FIG. The crane 4B that had escaped before the converter 2B (separation number 5) moved to the removal station 9B adjacent to the crane 4A when the crane 4A moved to the discharge station 6B. To do.

払い出しステーション6に常時載置されている取鍋数について考えると、図3(b)から判るように、転炉工程のどの部分をとっても、常時配置取鍋数は1本又は2本であり、払い出しステーション数−1=2−1=1以上となっている。
加えて、本実施形態では、さらなるクレーン4のサイクルタイム短縮のために、当該転炉設備1に、取鍋3の補修や地金取り作業を行う待機ステーション13を設けるようにしている。
併せて、取鍋3の稼働本数とは別に更に1本の取鍋3を用意し、両者を併せて稼働させ、該取鍋3のいずれか1つを前記待機ステーション13に配置するようにクレーン4を操作している。待機ステーション13に配置された取鍋3では、取鍋3に付着した地金やスラグを定期的に除去するようにする。
Considering the number of ladles that are always placed in the dispensing station 6, as can be seen from FIG. 3 (b), the number of ladles that are always placed is 1 or 2 regardless of the portion of the converter process. The number of payout stations-1 = 2-1 = 1 or more.
In addition, in this embodiment, in order to further reduce the cycle time of the crane 4, the converter facility 1 is provided with a standby station 13 for repairing the ladle 3 and collecting metal.
In addition, a crane is prepared so that one ladle 3 is prepared separately from the number of ladles 3 in operation, and both of them are operated together, and any one of the ladles 3 is arranged at the standby station 13. 4 is operated. In the ladle 3 arranged in the standby station 13, metal and slag adhering to the ladle 3 are periodically removed.

すなわち、転炉2への溶銑供給能力を向上させるためには、溶銑供給を行う取鍋3の数を増加させるとよい。しかしながら、取鍋3の稼働本数が増えることにより、取鍋1本あたりの循環時間が延長し、取鍋3のスラグライン等に地金やスラグが付着生成するようになる。そこで、これに対応して転炉操業を円滑に行うためには、稼働している取鍋3をさらに1本増やして、増やした取鍋3を載置する待機ステーション13を設けるとよい。待機ステーション13に配置された取鍋3に関し、その地金やスラグを定期的に除去するようにすることで、地金やスラグが付着せずに安定して使用できる取鍋3を確実に確保することができるようになる。   That is, in order to improve the hot metal supply capability to the converter 2, it is preferable to increase the number of ladles 3 that supply hot metal. However, by increasing the number of operating ladle 3, the circulation time per ladle is extended, and metal and slag are deposited on the slag line of ladle 3. Therefore, in order to perform the converter operation smoothly in response to this, it is preferable to further increase the number of ladles 3 in operation and provide a standby station 13 on which the increased ladle 3 is placed. With regard to the ladle 3 placed at the standby station 13, the bullion and slag are periodically removed, so that the ladles 3 that can be used stably without any bullion or slag are reliably secured. Will be able to.

しかしながら、待機ステーション13にある取鍋3は、内部に溶銑を受けていない空の取鍋であり、空鍋の状態が長時間続くと取鍋3の内側の耐火物の温度が下がり、「次に溶銑を受けた際に地金付着が発生して安定操業が難しくなる」、「熱ロスが大きくなり、転炉2に装入する溶銑の温度が低くなる」、「耐火物が装入された溶銑により熱膨張し剥離したりする」等の不都合が生じる。そこで、本実施形態の場合、待機ステーション13にある取鍋3内にバーナー等を差し入れ火炎を発生させることで、地金取り後などに取鍋3内を加熱し、上記の問題が発生することを防ぐようにしている。図10のケースDなどがこの状況に相当し、このケースでは、取鍋3の数を払い出しピット数+1とした上で、更にもう1本の取鍋3を用い、合計4本の取鍋3を使用している。   However, the ladle 3 in the standby station 13 is an empty ladle that has not received hot metal inside. If the state of the empty pan continues for a long time, the temperature of the refractory inside the ladle 3 decreases, When the hot metal is subjected to hot metal, metal adhesion will occur and stable operation will become difficult. ”“ Heat loss will increase and the temperature of the hot metal charged into the converter 2 will decrease. ”“ Refractory material will be charged. Inconveniences such as “thermal expansion and peeling due to hot metal” occur. Therefore, in the case of the present embodiment, by inserting a burner or the like into the ladle 3 in the standby station 13 to generate a flame, the ladle 3 is heated after taking the bullion and the above problem occurs. To prevent. Case D in FIG. 10 corresponds to this situation, and in this case, the number of ladles 3 is set to the number of payout pits + 1, and another ladle 3 is used, for a total of four ladles 3. Is used.

図4,図5には、転炉設備の第2実施形態が示してある。
本転炉設備1は、脱硫ステーション14A、脱硫ステーション14Bを有し、該脱硫ステーション14A、脱硫ステーション14Bは、走行レール7の番号1,2の場所で、走行レール7の側方側にそれぞれ配置されている。加えて、区切り番号0の位置に前ノロカキを配置し除滓ステーション9としていると共に、転炉2Aと転炉2Bの2基を備えるものとなっている。その他の構成は第1実施形態と略同様である。
図9は、本実施形態の条件下で、式(1),式(2)に基づいて、溶銑装入ピッチPtに応じた最適な取鍋3の稼働本数を示したものである。図9の横軸は溶銑装入ピッチPtであり、縦軸は取鍋3の稼働本数である。
4 and 5 show a second embodiment of the converter facility.
The converter equipment 1 has a desulfurization station 14A and a desulfurization station 14B, and the desulfurization station 14A and the desulfurization station 14B are respectively arranged on the side of the traveling rail 7 at the positions 1 and 2 of the traveling rail 7. Has been. In addition, the front blades are arranged at the position of the partition number 0 to form the removal station 9, and two converters 2A and 2B are provided. Other configurations are substantially the same as those in the first embodiment.
FIG. 9 shows the optimum number of ladle 3 in accordance with the hot metal charging pitch Pt based on the formulas (1) and (2) under the conditions of this embodiment. The horizontal axis of FIG. 9 is the hot metal charging pitch Pt, and the vertical axis is the number of operating ladles 3.

計算条件は、クレーン正味サイクルタイムが30分/サイクル、正味サイクルタイムが66分/サイクルであり、クレーン基数は2基、払い出しピット数は2、除滓ステーション数も2である。
式(1)の右辺は破線で示されており、式(1)の左辺は実線で示されている。かかる実線と破線とで示された領域が取鍋3の稼働本数を示している。例えば、溶銑装入ピッチPtが40分の場合、取鍋3を1本または2本稼働すればよく、Pt=20分の場合、取鍋の稼働本数は2本〜4本の中のいずれかとするとよい。
The calculation conditions are that the crane net cycle time is 30 minutes / cycle, the net cycle time is 66 minutes / cycle, the number of crane bases is 2, the number of payout pits is 2, and the number of removal stations is also 2.
The right side of Equation (1) is indicated by a broken line, and the left side of Equation (1) is indicated by a solid line. The area | region shown with this solid line and the broken line has shown the operating number of the ladle 3. For example, when the hot metal charging pitch Pt is 40 minutes, one or two ladles may be operated. When Pt = 20 minutes, the number of ladles operated is any of 2 to 4. Good.

式(2)で示される範囲は、図中の縦線Lより右側の領域であり、転炉設備1に実際に適用できるのは、取鍋3の稼働本数が5本以下の場合である。
図10のケースLは、取鍋3の稼働数を4本とした場合の操業実績であり、従来(ケースFなど)のクレーンのサイクルタイムが45分/回に対して、取鍋3の数が適切であるため、クレーンサイクルが33分/回と短くなっている。
本転炉設備1内での取鍋3の移動は、まず、混銑車5が転炉設備1に到着した後、払い出しステーション6A,6Bに載置された取鍋3に、混銑車5から溶銑が注ぎ込まれる。溶銑が装入された取鍋3は、脱硫ステーション14A,14Bに移送され、かかる脱硫ステーション14で、溶銑にCaO等の副原料を投入することで、溶銑内の硫黄Sをスラグ層へ移行し、溶銑内の硫黄成分(S)を所定のものとする。各脱硫ステーション14A,14Bには、脱硫処理で生じたスラグを掻き出すためのノロカキ8A,8Bが設置してあり、生じたスラグを掻き出すようにしている。
The range represented by the formula (2) is a region on the right side of the vertical line L in the figure, and can actually be applied to the converter facility 1 when the number of operating ladles 3 is 5 or less.
Case L in FIG. 10 is an operation result when the number of ladles 3 is four, and the number of ladles 3 is 45 minutes / cycle for a conventional crane case (such as Case F). Is appropriate, the crane cycle is shortened to 33 minutes / time.
The ladle 3 is moved in the converter facility 1 after the kneading vehicle 5 arrives at the converter facility 1 and then from the kneading vehicle 5 to the ladle 3 placed on the dispensing stations 6A and 6B. Is poured. The ladle 3 charged with hot metal is transferred to the desulfurization stations 14A and 14B, and by adding auxiliary materials such as CaO to the hot metal at the desulfurization station 14, the sulfur S in the hot metal is transferred to the slag layer. The sulfur component (S) in the hot metal is predetermined. In each of the desulfurization stations 14A and 14B, throat oysters 8A and 8B for scraping out the slag generated by the desulfurization process are installed, and the generated slag is scraped out.

脱硫処理の終わった溶銑が装入されている取鍋3は、クレーン4A,4Bにより転炉2A,2Bのいずれかの前に移送され、該転炉2を傾動すると共に取鍋3を傾けることで、転炉2内に溶銑を払い出すようにする。
本実施形態では、前記脱硫ステーション14A,14Bに常時配置されている取鍋3の本数が「脱硫ステーション総数−1」以上となるように、クレーン4A、4Bで取鍋3のハンドリングを行うこととしている。すなわち、払い出しステーション6に適用した、クレーン4をもっとも効率的に使用するための考え方を、脱硫ステーション14に適用したものである。
The ladle 3 in which the hot metal after the desulfurization treatment is charged is transferred by the cranes 4A and 4B to any one of the converters 2A and 2B, and the converter 2 is tilted and the ladle 3 is tilted. Then, the hot metal is discharged into the converter 2.
In the present embodiment, the ladle 3 is handled by the cranes 4A and 4B so that the number of ladles 3 always disposed in the desulfurization stations 14A and 14B is equal to or greater than “total number of desulfurization stations −1”. Yes. In other words, the idea for using the crane 4 most efficiently applied to the dispensing station 6 is applied to the desulfurization station 14.

詳しくは、2つの脱硫ステーション14A又は14Bの一方に取鍋3が常に1本配置され(脱硫ステーション数−1=2−1=1)、いかなる状況下でも、脱硫処理待ち状態か、脱硫処理が行われている状態としている。同時に他方の脱硫ステーション14B又は14Aをいつも空き状態としている。ゆえに、クレーン4A,4Bは、取鍋3を脱硫ステーション14A又は14Bのいずれかに設置した後、隣すなわち14B又は14Aにある取鍋3をすぐ把持することができるため、取鍋3の物流が非常に効率的に行われ、転炉2への溶銑供給を効率的に行うことができるようになる。   Specifically, one ladle 3 is always arranged at one of the two desulfurization stations 14A or 14B (the number of desulfurization stations is −1 = 2-1 = 1). It is assumed that it is being done. At the same time, the other desulfurization station 14B or 14A is always empty. Therefore, since the cranes 4A and 4B can immediately hold the ladle 3 adjacent to the ladle 14B or 14A after installing the ladle 3 in either the desulfurization station 14A or 14B, the logistics of the ladle 3 It is performed very efficiently, and the hot metal supply to the converter 2 can be performed efficiently.

図6には、以上述べた転炉設備1の脱硫処理を詳細に表したガントチャートが示してある。本ガントチャートでの取鍋3の稼働本数は3本(式(1)及び式(2)を満たす)である。
このガントチャート中、例えば、P部に着目すると、クレーン4Aは、脱硫ステーション14Bに溶銑が装入された取鍋3を載置した後に、待ち時間なくすぐに、払い出しステーション6Aへ移動し、払い出しの終わった取鍋3を吊り下げるようにしている。
また、Q部に着目すると、クレーン4Bは、払い出しステーション6Bに空の取鍋3を据え付けた後すぐに、脱硫ステーション14Bのノロカキ8が終わった取鍋3を吊り下げに行っている。R部に着目すると、クレーン4Bは、空の取鍋3を払い出しステーション6Bに据え付けた後、すぐに、脱硫ステーション14Aにある脱硫処理完了後の取鍋3を吊り上げるようにしている。
FIG. 6 shows a Gantt chart showing in detail the desulfurization process of the converter facility 1 described above. The operating number of the ladle 3 in this Gantt chart is three (Equation (1) and Equation (2) are satisfied).
In this Gantt chart, for example, paying attention to part P, the crane 4A moves to the dispensing station 6A immediately after placing the ladle 3 charged with hot metal in the desulfurization station 14B, without waiting, and dispenses. The ladle 3 that is finished is hung.
Further, paying attention to the portion Q, the crane 4B hangs the ladle 3 where the roasting 8 of the desulfurization station 14B has ended immediately after installing the empty ladle 3 in the dispensing station 6B. Paying attention to the R portion, the crane 4B lifts the ladle 3 after the completion of the desulfurization treatment in the desulfurization station 14A immediately after the empty ladle 3 is installed in the payout station 6B.

一方、ガントチャートのS部やT部に着目すると、取鍋3の稼働数を「払い出しステーション数+1=2+1=3」としていることにもなるため、脱硫ステーション14Aに第1の取鍋3が配置され、溶銑に対して処理が行われていると共に、第2の取鍋3から転炉2に溶銑装入が行われている際に、第3の取鍋3に対し前ノロカキ8Fで除滓処理が行われるようになっている。このように3つの取鍋3がパラレルに稼働しているため、非常に効率よく溶銑を転炉2に供給できるようになっている。図10のケースBがこの状況に相当し、取鍋3の数を払い出しピット数+1として、3本の取鍋3を使用している。これにより、従来(ケースA)のサイクルタイムが33分/回に対して、クレーンサイクルが31分/回と短くなっている。   On the other hand, paying attention to the S part and the T part of the Gantt chart, the number of operating ladles 3 is also set to “number of payout stations + 1 = 2 + 1 = 3”, so the first ladle 3 is placed in the desulfurization station 14A. When the molten iron is disposed and the hot metal is being processed from the second ladle 3 to the converter 2, it is removed from the third ladle 3 by the front blade 8F.滓 Processing is performed. Thus, since the three ladles 3 are operating in parallel, the hot metal can be supplied to the converter 2 very efficiently. Case B in FIG. 10 corresponds to this situation, and the number of ladles 3 is the number of payout pits + 1, and three ladles 3 are used. As a result, the crane cycle is shortened to 31 minutes / time while the conventional (case A) cycle time is 33 minutes / time.

本脱硫処理においても、第1実施形態と同様に、払い出しステーション6と除滓ステーション9とをクレーン4の移動方向にクレーン1基分以上離して設け、該払い出しステーション6及び除滓ステーション9への同時配置を許すように取鍋3をクレーン4でハンドリングすることは非常に好ましい。詳しくは、図4に示すように、払い出しステーション6A(区切り番号1)に隣接する区切り番号0の場所に前ノロカキ8Fを配置し、除滓ステーション9として、2つの取鍋に対して溶銑払い出しと除滓を同時に行うとよい。同時に行ったとしても、払い出しステーション6Aと除滓ステーション9とは平面視で重なり合う部分がないため、クレーン4の差し合いは起こらないものとなっている。   Also in the present desulfurization treatment, similarly to the first embodiment, the payout station 6 and the removal station 9 are provided apart from each other in the moving direction of the crane 4 by one crane or more. It is highly preferred to handle the ladle 3 with the crane 4 to allow simultaneous placement. Specifically, as shown in FIG. 4, the front blade 8F is placed at a position of the partition number 0 adjacent to the dispensing station 6A (separation number 1), and the hot metal dispensing to the two ladles is performed as the removal station 9. It is recommended to remove the hair simultaneously. Even if performed at the same time, the dispensation station 6A and the removal station 9 do not overlap with each other in plan view, so that the crane 4 does not come into contact.

なお、本発明の転炉への溶銑供給方法は、上記実施の形態に限定されるものではない。
すなわち、転炉は上吹き転炉、底吹き転炉、又は上底吹き転炉のいずれであってもよく、1つの転炉で脱りんと脱炭を行う、いわゆるダブルスラグ法を行っている転炉施設にも適用可能である。
In addition, the hot metal supply method to the converter of this invention is not limited to the said embodiment.
That is, the converter may be any one of a top blow converter, a bottom blow converter, and a top bottom blow converter. It can also be applied to furnace facilities.

第1実施形態にかかる転炉設備の正面概略図である。It is a front schematic diagram of the converter equipment concerning a 1st embodiment. 第1実施形態にかかる転炉設備の平面概略図である。It is a plane schematic diagram of the converter equipment concerning a 1st embodiment. 第1実施形態にかかる転炉設備でのガントチャートであり、(a)は従来例、(b)は第1実施形態のものである。It is the Gantt chart in the converter equipment concerning 1st Embodiment, (a) is a prior art example, (b) is a thing of 1st Embodiment. 第2実施形態にかかる転炉設備の平面概略図である。It is a plane schematic diagram of the converter equipment concerning a 2nd embodiment. 第2実施形態にかかる転炉設備の平面概略図である。It is a plane schematic diagram of the converter equipment concerning a 2nd embodiment. 第2実施形態の転炉設備における脱硫処理ガントチャートの一部である。It is a part of desulfurization process Gantt chart in the converter equipment of 2nd Embodiment. 溶鋼生産状況と取鍋の稼働本数との関係を示した図である。It is the figure which showed the relationship between a molten-steel production situation and the operating number of ladle. 第1実施形態における溶銑装入ピッチと取鍋の稼働本数との関係を示した図である。It is the figure which showed the relationship between the hot metal charging pitch in 1st Embodiment, and the operating number of ladle. 第2実施形態における溶銑装入ピッチと取鍋の稼働本数との関係を示した図である。It is the figure which showed the relationship between the hot metal charging pitch and operating number of ladle in 2nd Embodiment. 各実施形態における操業実績が示された図である。It is the figure by which the operation performance in each embodiment was shown. 従来例における転炉設備の平面概略図である。It is the plane schematic of the converter equipment in a prior art example.

符号の説明Explanation of symbols

1 転炉設備
2 転炉(2A〜2C)
3 取鍋
4 クレーン(4A,4B)
5 混銑車
6 払い出しステーション(6A,6B)
9 除滓ステーション(9A,9B)
14 脱硫ステーション(14A,14B)
1 Converter facilities 2 Converters (2A-2C)
3 Ladle 4 Crane (4A, 4B)
5 Chaos vehicle 6 Dispensing station (6A, 6B)
9 Removal station (9A, 9B)
14 Desulfurization station (14A, 14B)

Claims (3)

転炉と、この転炉へ溶銑を装入する取鍋と、この取鍋へ溶銑払い出しが行われる払い出しステーションと、この払い出しステーションに対する取鍋の搬入又は搬出を行うべく取鍋を所定のサイクルでハンドリングするクレーンとを有する転炉設備で、
前記クレーンが転炉へ溶銑を装入する時間間隔を溶銑装入ピッチPtとして、この溶銑装入ピッチPtに応じて、前記取鍋の稼働本数を設定し、該設定された稼働本数分の取鍋をクレーンでハンドリングして、転炉に溶銑を供給するに際し、
前記取鍋の稼働本数を、溶銑装入ピッチPt及びクレーン正味サイクルタイムCnを含む次式を満たすように決定することを特徴とする転炉への溶銑供給方法。

ROUND_UP(Cn/R/Pt)≦ 取鍋の稼働本数 ≦ ROUND_UP(Tn/R/Pt)
・・・(1)
Pt ≧ Cn/R ・・・(2)
Cn:クレーン正味サイクルタイム
=クレーンの1周期内で実際にクレーンが稼働している時間(分/サイクル)
Tn:正味サイクルタイム
=溶銑払い出し、脱硫処理などの各工程にかかる時間の総和
+クレーン正味サイクルタイムCn(分/サイクル)
R :クレーン基数(基)
Pt:溶銑装入ピッチ (分/チャージ)
ROUND_UP(X):Xを切り上げる
A converter, a ladle for charging hot metal into the converter, a discharge station where hot metal is discharged to the ladle, and a ladle in a predetermined cycle to carry the ladle into or out of the discharge station A converter facility with a handling crane,
The time interval at which the crane charges molten iron into the converter is defined as a molten metal charging pitch Pt, and the number of ladle operations is set according to the molten metal charging pitch Pt. When handling the pan with a crane and supplying hot metal to the converter,
The hot metal supply method to the converter, wherein the number of ladles operating is determined so as to satisfy the following formula including the hot metal charging pitch Pt and the crane net cycle time Cn.

ROUND_UP (Cn / R / Pt) ≤ Number of ladle operations ≤ ROUND_UP (Tn / R / Pt)
... (1)
Pt ≧ Cn / R (2)
Cn: Crane net cycle time
= Time that the crane is actually operating within one cycle of the crane (min / cycle)
Tn: Net cycle time
= Total time for each process such as hot metal discharge, desulfurization, etc.
+ Crane net cycle time Cn (min / cycle)
R: Number of crane bases (base)
Pt: Hot metal charging pitch (min / charge)
ROUND_UP (X): Rounds up X
前記転炉設備は取鍋の補修や地金取り作業を行う待機ステーションを有しており、請求項1で設定された取鍋の稼働本数+1の取鍋を稼働させ、該取鍋のいずれか1つを前記待機ステーションに配置するようにしていることを特徴とする転炉への溶銑供給方法。   The converter equipment has a standby station for repairing the ladle and collecting metal, and operates the ladle of the number of ladle operations set in claim 1 plus any of the ladle. A method of supplying hot metal to a converter, wherein one is arranged at the standby station. 前記待機ステーションにある取鍋に対して加熱を行うようにしていることを特徴とする請求項2に記載の転炉への溶銑供給方法。   The hot metal supply method for a converter according to claim 2, wherein the ladle at the standby station is heated.
JP2004304861A 2004-10-19 2004-10-19 Hot metal supply method to converter Expired - Fee Related JP4157090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304861A JP4157090B2 (en) 2004-10-19 2004-10-19 Hot metal supply method to converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304861A JP4157090B2 (en) 2004-10-19 2004-10-19 Hot metal supply method to converter

Publications (2)

Publication Number Publication Date
JP2006117971A JP2006117971A (en) 2006-05-11
JP4157090B2 true JP4157090B2 (en) 2008-09-24

Family

ID=36536125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304861A Expired - Fee Related JP4157090B2 (en) 2004-10-19 2004-10-19 Hot metal supply method to converter

Country Status (1)

Country Link
JP (1) JP4157090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037921B2 (en) * 2013-04-01 2016-12-07 株式会社神戸製鋼所 Operating method of hot metal processing plant

Also Published As

Publication number Publication date
JP2006117971A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP2008540832A (en) Continuous steelmaking process and continuous steelmaking equipment
JP4157090B2 (en) Hot metal supply method to converter
JP5230062B2 (en) Operation method of converter facilities
JP5219330B2 (en) Operation method of converter facilities
JP4109239B2 (en) Hot metal supply method to converter
JP5273898B2 (en) Operation method of converter facilities
JP4109240B2 (en) Hot metal supply method to converter
JP4157089B2 (en) Hot metal supply method to converter
JP5258149B2 (en) Operation method of converter facilities
JP5460393B2 (en) Operation method of converter facilities
JP6648365B2 (en) How to determine the start time of continuous casting
CA2164388C (en) Melt shop layout
JP5621507B2 (en) Method for allocating steel out of ladle and apparatus for allocating steel out of ladle
JP5164312B2 (en) Scrap charging method for converter facilities
US5902371A (en) Melt shop scheduling for continuous casting
JP6818979B2 (en) Method of deriving the replacement timing of the waste pot in the steelmaking process
JP5460392B2 (en) Operation method of converter facilities
JPH09263815A (en) Molten metal carrying system and molten metal carrying equipment
JP4651598B2 (en) Falling object collection method for converter equipment
JP5672047B2 (en) Method for allocating steel out of ladle and apparatus for allocating steel out of ladle
JP6066858B2 (en) Hot metal transport method in hot metal processing plant and converter plant equipped with one dephosphorization furnace
JP6780207B2 (en) Method of determining the number of molten steel pans used in the steelmaking process
JP6066857B2 (en) Hot metal transport method in hot metal processing plant and converter plant equipped with two dephosphorization furnaces
JP5283309B2 (en) Operation method of converter facilities
JP2008019454A (en) Method for treating molten steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees