JP4156118B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4156118B2
JP4156118B2 JP00125399A JP125399A JP4156118B2 JP 4156118 B2 JP4156118 B2 JP 4156118B2 JP 00125399 A JP00125399 A JP 00125399A JP 125399 A JP125399 A JP 125399A JP 4156118 B2 JP4156118 B2 JP 4156118B2
Authority
JP
Japan
Prior art keywords
air
reaction tank
room
zeolite reaction
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00125399A
Other languages
Japanese (ja)
Other versions
JP2000205607A (en
Inventor
正佳 臼井
洋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP00125399A priority Critical patent/JP4156118B2/en
Publication of JP2000205607A publication Critical patent/JP2000205607A/en
Application granted granted Critical
Publication of JP4156118B2 publication Critical patent/JP4156118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は室内の空気状態を調整する空調装置に関するものである。
【0002】
【従来の技術】
室内の空気状態を調整する空調装置は、フロンなどの冷媒を圧縮するコンプレッサ、ガス状の冷媒を凝縮して液状の冷媒にする凝縮器、液状の冷媒を急激に膨張させる膨張器、ガス状の冷媒を蒸発させる蒸発器を備えており、冷房動作時には、コンプレッサで生成されたガス状の圧縮された冷媒が凝縮器で凝縮されて液体の冷媒となり、膨張器で急激に膨張された後、蒸発器で室内に流入する空気と熱交換され、該空気から気化熱を奪って該空気の温度を低下させ、温度が低下した空気が室内に導入され、また、暖房動作時には、コンプレッサで生成されたガス状の圧縮された冷媒が、凝縮器で室内に流入する空気と熱交換され、該空気に凝縮熱を与えて該空気の温度が上昇し、温度が上昇した空気が室内に導入される仕組みとなっている。
【0003】
しかるにこのような空調装置は、コンプレッサ、凝縮器、膨張器及び蒸発器を必要とし、また冷媒ガスの漏れを防止する密封構造が必要で、構成が複雑となり製造コスト上で問題が生じるとともに、運転にかなりの電力が消費され、維持稼働コストが高くつくこと、さらにコンプレッサの駆動に際しての騒音や振動が大きく、冷媒ガス(フロンガス)による地球環境の汚染の問題も有することから、改善が望まれていた。
【0004】
そこで本出願人は、前記したような空調装置の問題点を解決するため、冷媒を使用せず構造簡単にして製造コストおよび維持運転コストを低減でき、かつ低騒音で冷媒ガスによる環境汚染もない空調装置を先に提案した(特開平7−145963号公報参照)。この空調装置は、室内に流入する空気を吸湿加熱して放出するゼオライト反応槽と、該ゼオライト反応槽から放出される低湿高温の空気と前記室内から放出される空気との熱交換を行う熱交換器と、前記ゼオライト反応槽から放出され前記熱交換により温度が低下した低湿の空気を低温の空気にする加湿装置と、冷房動作時には前記加湿装置から放出される空気を、暖房作動時には前記室内から放出され、前記熱交換により温度が上昇した空気をそれぞれ選択して前記室内に流入させる流入空気選択手段と、前記室内から放出される空気を前記熱交換器に流入させる空気送出手段と、冷房動作時には前記室内から放出される空気を、暖房作動時には前記加湿装置から放出される空気をそれぞれ選択して前記ゼオライト反応槽に流入させる返還選択手段と、前記ゼオライト反応槽を加熱する再生手段(電熱ヒーター)とを有する構成となしたもので、ゼオライト反応槽から放出される低湿高温の空気が、熱交換器において室内から放出される空気と熱交換され、さらに加湿装置で気化熱が奪われた低温空気とされ、一方、室内から放出される空気は前記熱交換で高温空気とされ、前記低温空気により冷房動作が行われ、前記高温空気により暖房動作が行われるので、冷媒を使用せず、コンプレッサ、凝縮器、膨張器、蒸発器が不要となり、構造が簡単になり製造コストを低減できるとともに、冷暖房動作時の電力消費が大幅に削減され、稼働コストの低減がはかられ、またコンプレッサからの騒音公害の問題や冷媒による環境汚染の問題もないという特徴を有する。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の空調装置では、ゼオライト反応槽を加熱する再生手段と暖房作動時における室内の空気加熱手段に電熱ヒーターを用いているため、以下に記載する欠点がある。
すなわち、▲1▼電熱ヒーターは湿気に弱いため耐熱性、耐久性が劣る、▲2▼ヒーターの絶縁を必要としコストが高くつく、▲3▼別途ブロワなどを必要とするためコンパクト化できないなどの欠点がある。
【0006】
本発明はこのような従来技術の欠点を解消するためになされたもので、耐熱性、耐久性に優れ、かつ維持運転コストを低減でき、装置のコンパクト化をはかることができる加熱手段を用いた空調装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る空調装置は、室内に流入する空気を吸湿加熱して放出するゼオライト反応槽と、該ゼオライト反応槽から放出される低湿高温の空気と前記室内から放出される空気との熱交換を行う熱交換器と、前記ゼオライト反応槽から放出され前記熱交換により温度が低下した低湿の空気を低温の空気にする加湿装置と、冷房動作時には前記加湿装置から放出される空気を、暖房作動時には前記室内から放出され、前記熱交換により温度が上昇した空気をそれぞれ選択して前記室内に流入させる流入空気選択手段と、前記室内から放出される空気を前記熱交換器に流入させる空気送出手段と、冷房動作時には前記室内から放出される空気を、暖房作動時には前記加湿装置から放出される空気をそれぞれ選択して前記ゼオライト反応槽に流入させる返還選択手段と、前記ゼオライト反応槽を加熱する再生手段とを有する空調装置において、前記ゼオライト反応槽の再生手段と、暖房作動時における室内の空気加熱手段にマグネット式ヒーターを用いたことを特徴とするものである。
【0008】
本発明におけるマグネット式ヒーターは、磁石と導体間に形成される磁路をせん断することにより導体側に発生するスリップ発熱を熱媒体用流体に熱交換する方式であり、具体的には磁石と導体を僅かなギャップを隔てて対向配置し、該磁石と導体を相対的に回転させることによって導体に生じるスリップ発熱で熱媒体用流体を加熱する方式である。このマグネット式ヒーターは熱媒体用流体の温度を短時間に高温まで上昇させることができ、かつ耐熱性に優れるという特徴を有する。
【0009】
【発明の実施の形態】
図1〜図3は本発明に係る空調装置の一実施例を示す動作の説明図で、図1は冷房動作を説明するブロック図、図2は暖房動作を説明するブロック図、図3はゼオライトの再生動作を説明するブロック図である。また、図4〜図7は同上実施例におけるマグネット式ヒーターを例示したもので、図4は遠心ファンを用いたマグネット式ヒーターを示す縦断側面図、図5は多翼ファンを用いたマグネット式ヒーターを示す縦断側面図、図6は軸流ファンを用いたマグネット式ヒーターを示す縦断側面図、図7は斜流ファンを用いたマグネット式ヒーターを示す縦断側面図である。図中、1は空気調整が行われる室、2a〜2hは切換弁、3は仕切弁、5a、5b、5cはブロワ、6はゼオライト反応槽、7は熱交換器、8は加湿装置、9はマグネット式ヒーター、9−1、19−1、29−1、39−1はポンプ本体、S1〜S3は流入口、P1〜P3は放出口である。
【0010】
空気調整が行われる室1には、空気が流入される流入口S1、S2と空気が放出される放出口P1、P2が設けられ、流入口S1は切換弁2dを介して加湿装置8の出力側に接続され、流入口S2は切換弁2fを介して熱交換器7の第2の出力側に接続されている。同様に、放出口P1は切換弁2aを介して切換弁2bに接続され、切換弁2a、2b間が互いに接続されている。切換弁2bにはブロワ5aの入力側が接続され、ブロワ5aの出力側は仕切弁3を介して吸湿発熱動作を行うゼオライト反応槽6の入力側に接続され、ゼオライト反応槽6には切換弁2g、2hおよびブロワ5cを介してマグネット式ヒーター9が接続され、該マグネット式ヒーター9の切換弁2g、2hはそれぞれ室1の放出口P3、流入口S3に接続されている。ゼオライト反応槽6の出力側には切換弁2cを介して熱交換器7の第1の入力側が接続され、熱交換器7の第2の入力側には切換弁2eに接続されたプロワ5bが接続され、熱交換器7の第1の出力側には加湿装置8の入力側が接続されている。室1の空気調整を行う前の待機状態にあっては、仕切弁3は閉じられ、切換弁2cはゼオライト反応槽6側には閉じ、熱交換器7の入力側は大気側に開放し、ゼオライト反応槽6は乾燥状態を保っている。
【0011】
まず、上記待機状態にある室1を冷房する際の動作を図1に基づいて説明すると、まずゼオライト反応槽6の加熱手段に用いているマグネット式ヒーター9をOFFにし、切換弁2g、2hを切換えて室1の放出口P3、流入口S3との連通を遮断する。そして、仕切弁3を開くとともに、切換弁2cを切換えてゼオライト反応槽6の出力側を熱交換器7の入力側に開き、切換弁2eを切換えてブロワ5bの入力側を大気側に開き、切換弁2fを切換えて熱交換器7の第2の出力側に開く。さらに、切換弁2dを切換えて加湿装置8の出力側を流入口S1に開き、切換弁2aと切換弁2dを切換えて、放出口P1をブロワ5aの入力側に開く。
【0012】
このようにすると、室1内の空気は放出口P1から放出され、切換弁2a、2b、ブロワ5a、仕切弁3を介してゼオライト反応槽6に流れ込み、ゼオライト反応槽6内のゼオライトの吸湿作用によって乾燥され、吸湿時のゼオライト反応槽6からの発熱によって、該ゼオライト反応槽6からは低湿度で乾燥しかつ温度の高い空気が放出される。この低湿度で温度の高い空気は、熱交換器7の第1の入力側に供給されて、ブロワ5bによって熱交換器7の第2の入力側から供給される外気と熱交換され、熱交換器7の第1の出力側からは温度がやや低下した乾燥空気が放出される。この温度がやや低下した乾燥空気は、加湿装置8に供給され、該加湿装置8の水を気化するための気化熱を放出してさらに温度が低下し、低温度で適当な湿度を有する空気が切換弁2dを介して流入口S1から室1内へ流入し、室1の快適な冷房が行われる。
【0013】
次に、室1を暖房する際の動作を図2に基づいて説明すると、まずゼオライト反応槽6に接続しているマグネット式ヒーター9をONにし、仕切弁3を開き、切換弁2cを切換えてゼオライト反応槽6の出力側を熱交換器7の入力側に開き、切換弁2eを切換えてブロワ5bの入力側を放出口P2側に開き、切換弁2fを切換えて熱交換器7の第2の出力側を流入口S2側に開く。そして、切換弁2d、2aを切換えて加湿装置8の出力側を前記切換弁2d、2aと2bを介してブロワ5aの入力側に開くととともに、マグネット式ヒーター9側の切換弁2gを切換えて放出口P3側に開き、他方の切換弁2hを切換えて流入口S3側に開く。
【0014】
このようにすると、室1の空気は放出口P2およびP3から放出され、このうち放出口P2から放出された空気は切換弁2eおよびブロワ5bを介して熱交換器7の第2の入力側に供給され、該熱交換器7でゼオライト反応槽6の出力側から供給される乾燥した高温度の空気と熱交換され、温度が上昇して暖かくなった空気が該熱交換器の第2の出力側から流出し、切換弁2fを介して流入口S2から室1内に流入する。また、放出口P3から放出された空気は切換弁2gおよびブロワ5cを介してON状態にあるマグネット式ヒーター9に供給され、ここで加熱されて切換弁2hを介して流入口S3から室1内に流入する。したがって、室1内は前記流入口S2および流入口S3から流入する暖かい空気により急速に暖まり、程よい暖房が施される。一方、熱交換器7の第1の出力側から放出される温度が低下し暖かく乾燥した空気は、加湿装置8に供給されて該加湿装置の水に気化熱を与えてより温度が低下するとともに、適度に加湿され、切換弁2d、2a、2b、ブロワ5aおよび仕切弁3を介して再びゼオライト反応槽6に供給される。
【0015】
そして、室1の冷房動作あるいは暖房動作によりゼオライト反応槽6が過度の吸湿状態になると、図3に示すごとく、切換弁2bが大気側とブロワ5a側に開き、仕切弁3が開いて切換え弁2cが大気側に開くととともに、マグネット式ヒーター9側の切換え弁2g、2hが切換えられて室1側の放出口P3および流入口S3と遮断されると同時にゼオライト反応槽6側に開いた状態に設定される。この状態でマグネット式ヒーター9がONにされ、ゼオライト反応槽6が間接的に加熱再生される。
【0016】
なお、ゼオライト反応槽6を複数設置することにより、現在冷房動作あるいは暖房動作を行っていないゼオライト反応槽を再生動作し、現在使用中のゼオライト反応槽6が過度の吸湿状態になった場合に再生動作を完了しているゼオライト反応槽に切換えて使用することも可能である。また、ゼオライト反応槽6の再生動作時に得られた水蒸気を凝縮水として回収し、加湿装置8に戻す事も可能である。
【0017】
次に、本発明におけるマグネット式ヒーターの具体的構造例を図4〜図7に基づいて説明する。
図4は遠心ファンを用いたマグネット式ヒーターを例示したもので、このマグネット式ヒーターは、流体ポンプのポンプホイールに導体を取付けるか、またはポンプホイールを導体製とし、前記導体または導体製のポンプホイールと僅かなギャップを隔てて対向配置する永久磁石を当該ポンプ本体に組込み、前記ポンプホイールの回転により導体に生じるスリップ発熱により当該ポンプ内の流体が加熱される構造となしたもので、ここに例示したものはポンプ本体9−1内に駆動モーター9−2の回転軸9−3に取付けられたポンプホイール9−4のバックプレート9−5を導体製とし、この導体製のバックプレート9−5と僅かなギャップを隔てて対向する環状の永久磁石支持体9−6がポンプ本体9−1に取付けられ、該永久磁石支持体9−6の背面に前記駆動モーター9−2が取付けられている。前記永久磁石支持体9−6にはドーナツ状の永久磁石9−7がヨーク9−7aを介して装着されている。なお、前記導体製のポンプホイールはヒステリシス材あるいは鉄板などの基材の永久磁石9−7側の表面にエディカレント材または磁性材を貼着して構成されている。
【0018】
上記構成のマグネット式ヒーターにおいて、駆動モーター9−2を起動させると、当該ポンプ本体9−1内に流入した流体が矢印で示すように流れると同時に、導体製のバックプレート9−5とポンプ本体1に取付けられた永久磁石支持体9−6の永久磁石9−7との間に形成されている磁路がせん断されて導体製のバックプレート9−5にスリップ発熱が生じる。この導体製のバックプレート9−5に生じた発熱は、ポンプ本体9−1内を流れる流体に熱交換されて加熱され、前記ゼオライト反応槽6の加熱再生や、室1の暖房に供されることとなる。
【0019】
図5に示す多翼ファンを用いたマグネット式ヒーターは、ポンプ本体19−1の背面側に設置した駆動モーター19−2の回転軸19−3に取付けられた筒形の多翼ファン19−4を導体製とし、この筒形多翼ファン19−4の中に該ファンと僅かなギャップを隔てて対向する複数個の永久磁石支持体19−6がポンプ本体19−1の流体入口側内壁に突設されている。前記永久磁石支持体19−6には板状の永久磁石19−7が貼着されている。なお、前記導体製の多翼ファン19−4も図4に示すものと同様、ヒステリシス材あるいは鉄板などの基材の永久磁石9−7側の表面にエディカレント材または磁性材を貼着して構成されている。
【0020】
上記構成のマグネット式ヒーターにおいて、駆動モーター19−2を起動させると、当該ポンプ本体19−1内に流入した流体が矢印で示すように流れると同時に、導体製の筒形多翼ファン19−4とポンプ本体19−1に取付けられた永久磁石支持体19−6の永久磁石19−7との間に形成されている磁路がせん断されて導体製の筒形多翼ファン19−4にスリップ発熱が生じる。この導体製の筒形多翼ファン19−4に生じた発熱は、ポンプ本体19−1内を流れる流体に熱交換されて加熱され、前記ゼオライト反応槽6の加熱再生や、室1の暖房に供されることとなる。
【0021】
また、図6に示す軸流ファンを用いたマグネット式ヒーターは、ポンプ本体29−1の背面側に設置した駆動モーター29−2の回転軸29−3に取付けられた軸流ファン29−4を導体製とし、この軸流ファン29−4と僅かなギャップを隔てて対向する複数個の永久磁石支持体29−6が前記駆動モーター29−2の外周に固定され、永久磁石支持体29−6に永久磁石29−7が取付けられた構造となしている。なお、前記導体製の軸流ファン29−4も図4に示すものと同様、ヒステリシス材あるいは鉄板などの基材の永久磁石側の表面にエディカレント材または磁性材を貼着して構成されている。
【0022】
上記構成のマグネット式ヒーターにおいて、駆動モーター29−2を起動させると、当該ポンプ本体29−1内に流入した流体が矢印で示すように流れると同時に、導体製の軸流ファン29−4とポンプ本体29−1に取付けられた永久磁石支持体29−6の永久磁石29−7との間に形成されている磁路がせん断されて導体製の軸流ファン29−4にスリップ発熱が生じる。この導体製の軸流ファン29−4に生じた発熱は、ポンプ本体29−1内を流れる流体に熱交換されて加熱され、前記ゼオライト反応槽6の加熱再生や、室1の暖房に供されることとなる。
【0023】
さらに、図7に示す斜流ファンを用いたマグネット式ヒーターは、構造的には前記図6に示す軸流ファンを用いたマグネット式ヒーターと同様であり、ポンプ本体39−1の背面側に設置した駆動モーター39−2の回転軸39−3に取付けられた斜流ファン39−4を導体製とし、この斜流ファン39−4と僅かなギャップを隔てて対向する複数個の永久磁石支持体39−6が前記駆動モーター39−2の外周に斜流ファン39−4の傾斜に対応するごとく斜めに固定され、永久磁石支持体39−6に永久磁石39−7が取付けられた構造となしている。なお、前記導体製の軸流ファン39−4も図4に示すものと同様、ヒステリシス材あるいは鉄板などの基材の永久磁石側の表面にエディカレント材または磁性材を貼着して構成されている。
【0024】
上記構成のマグネット式ヒーターの作用も前記図6に示す軸流ファンを用いたマグネット式ヒーターと同様、駆動モーター39−2を起動させると、当該ポンプ本体39−1内に流入した流体が矢印で示すように流れると同時に、導体製の斜流ファン39−4とポンプ本体39−1に取付けられた永久磁石支持体39−6の永久磁石39−7との間に形成されている磁路がせん断されて導体製の斜流ファン39−4にスリップ発熱が生じる。この導体製の斜流ファン39−4に生じた発熱は、ポンプ本体39−1内を流れる流体に熱交換されて加熱され、前記ゼオライト反応槽6の加熱再生や、室1の暖房に供されることとなる。
【0025】
なおブロア5cが設けられていれば、マグネット式ヒーターとして既に本出願人より提案された特願平10−114218号、特願平10−132663号、特願平10−132664号、特願平10−146552号、特願平10−146553号、特願平10−153728号、特願平10−167723号などに記載されたマグネット式ヒーターを用いることもできる。
【0026】
【発明の効果】
以上説明したごとく、本発明によると、以下に記載する効果を奏する。
(1)熱源のマグネット式ヒーターは、電熱ヒーターと異なり湿気に強いので、ヒーターの絶縁が不要となり製造コストが安くつく。
(2)マグネット式ヒーターは、ファン自体を発熱体として用いることができるので、別途ブロワ等が不要となりコンパクト化できる。
(3)熱源にマグネット式ヒーターを用いたことにより、メンテナンスフリー、耐熱性、耐久性が抜群である。
(4)空調装置の冷暖房機能を著しく向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る空調装置の一実施例を示す動作の説明図で、冷房動作を説明するブロック図である。
【図2】同上実施例の暖房動作を説明するブロック図である。
【図3】同上実施例のゼオライトの再生動作を説明するブロック図である。
【図4】同上実施例における遠心ファンを用いたマグネット式ヒーターを示す縦断側面図である。
【図5】同上実施例における多翼ファンを用いたマグネット式ヒーターを示す縦断側面図である。
【図6】同上実施例における軸流ファンを用いたマグネット式ヒーターを示す縦断側面図である。
【図7】同上実施例における斜流ファンを用いたマグネット式ヒーターを示す縦断側面図である。
【符号の説明】
1 空気調整が行われる室
2a〜2h 切換弁
3 仕切弁
5a、5b ブロワ
6 ゼオライト反応槽
7 熱交換器
8 加湿装置
9 マグネット式ヒーター
9−1、19−1、29−1、39−1 ポンプ本体
S1〜S3 流入口
P1〜P3 放出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that adjusts an indoor air condition.
[0002]
[Prior art]
Air conditioners that adjust the indoor air condition are compressors that compress refrigerants such as CFCs, condensers that condense gaseous refrigerants into liquid refrigerants, expanders that rapidly expand liquid refrigerants, An evaporator that evaporates the refrigerant is provided, and during the cooling operation, the gaseous compressed refrigerant generated by the compressor is condensed by the condenser to become a liquid refrigerant, and is rapidly expanded by the expander and then evaporated. Heat is exchanged with the air flowing into the room in the chamber, taking heat of vaporization from the air to lower the temperature of the air, and the air with the lowered temperature is introduced into the room, and also generated by the compressor during the heating operation A mechanism in which gaseous compressed refrigerant is heat-exchanged with air flowing into the room by a condenser, the heat of condensation is given to the air, the temperature of the air rises, and the heated air is introduced into the room It has become.
[0003]
However, such an air conditioner requires a compressor, a condenser, an expander, and an evaporator, and requires a sealed structure that prevents leakage of refrigerant gas. In addition, considerable power is consumed, the maintenance and operation costs are high, noise and vibration during driving of the compressor are large, and there is a problem of pollution of the global environment by refrigerant gas (Freon gas). It was.
[0004]
In order to solve the problems of the air conditioner as described above, the applicant of the present invention can reduce the manufacturing cost and the maintenance operation cost by using a simple structure without using a refrigerant, and can reduce noise and environmental pollution due to refrigerant gas. An air conditioner was previously proposed (see Japanese Patent Application Laid-Open No. 7-145963). This air conditioner has a zeolite reaction tank that absorbs and heats the air flowing into the room and releases it, and heat exchange that exchanges heat between the low-humidity and high-temperature air released from the zeolite reaction tank and the air released from the room. A humidifier that converts the low-humidity air released from the zeolite reaction tank and whose temperature has decreased due to the heat exchange into low-temperature air, and the air released from the humidifier during cooling operation from the room during heating operation. Inflow air selection means for selecting air that has been released and whose temperature has been raised by heat exchange and allowing it to flow into the room; air sending means for causing air discharged from the room to flow into the heat exchanger; and cooling operation Returning air that is sometimes released from the room, and air that is released from the humidifier during heating operation is selected to flow into the zeolite reaction tank. And a regenerating means (electric heater) for heating the zeolite reaction tank, and the low-humidity high-temperature air released from the zeolite reaction tank is released from the room in the heat exchanger. The heat is exchanged with heat, and the heat is removed from the air by the humidifier. On the other hand, the air discharged from the room is converted into high-temperature air by the heat exchange, and the cooling operation is performed by the low-temperature air. Since heating operation is performed by air, no refrigerant is used, compressors, condensers, expanders, and evaporators are unnecessary, the structure is simplified, manufacturing costs can be reduced, and power consumption during air conditioning operations is greatly increased. The operation cost can be reduced, and there is no problem of noise pollution from the compressor or environmental pollution by the refrigerant.
[0005]
[Problems to be solved by the invention]
However, the conventional air conditioner has the following drawbacks because an electric heater is used for the regeneration means for heating the zeolite reaction tank and the indoor air heating means for heating operation.
(1) Electric heaters are not resistant to moisture, so heat resistance and durability are inferior, (2) Heater insulation is required and cost is high, and (3) Additional blower is required, so compaction is not possible. There are drawbacks.
[0006]
The present invention has been made in order to eliminate such drawbacks of the prior art, and uses a heating means that is excellent in heat resistance and durability, can reduce maintenance operation costs, and can reduce the size of the apparatus. It is intended to provide an air conditioner.
[0007]
[Means for Solving the Problems]
An air conditioner according to the present invention performs a heat exchange between a zeolite reaction tank that absorbs and heats air flowing into a room and releases it, and low-humidity and high-temperature air that is discharged from the zeolite reaction tank and air that is discharged from the room. A heat exchanger to perform, a humidifier that converts low-humidity air that has been released from the zeolite reaction tank and whose temperature has decreased due to the heat exchange into low-temperature air, and air that is released from the humidifier during cooling operation, during heating operation Inflow air selection means for selecting air that has been discharged from the room and whose temperature has increased due to the heat exchange and flowing into the room, and air sending means for flowing air discharged from the room into the heat exchanger; The air discharged from the room during the cooling operation and the air discharged from the humidifier during the heating operation are selected and flowed into the zeolite reaction tank. In the air conditioner having the return selection means and the regeneration means for heating the zeolite reaction tank, a magnet heater is used as the regeneration means for the zeolite reaction tank and the indoor air heating means during heating operation. It is what.
[0008]
The magnet heater according to the present invention is a system in which slip heat generated on the conductor side is exchanged with the heat medium fluid by shearing a magnetic path formed between the magnet and the conductor. Are disposed opposite to each other with a slight gap, and the heating medium fluid is heated by slip heat generated in the conductor by relatively rotating the magnet and the conductor. This magnet type heater is characterized in that the temperature of the heat medium fluid can be raised to a high temperature in a short time and has excellent heat resistance.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 are explanatory views of an operation showing an embodiment of an air conditioner according to the present invention. FIG. 1 is a block diagram for explaining a cooling operation, FIG. 2 is a block diagram for explaining a heating operation, and FIG. 3 is a zeolite. FIG. 4 to 7 exemplify the magnet heater in the embodiment, FIG. 4 is a longitudinal side view showing a magnet heater using a centrifugal fan, and FIG. 5 is a magnet heater using a multiblade fan. FIG. 6 is a longitudinal side view showing a magnet heater using an axial flow fan, and FIG. 7 is a longitudinal side view showing a magnet heater using a mixed flow fan. In the figure, 1 is a chamber in which air conditioning is performed, 2a to 2h are switching valves, 3 is gate valves, 5a, 5b and 5c are blowers, 6 is a zeolite reaction tank, 7 is a heat exchanger, 8 is a humidifier, 9 Is a magnet heater, 9-1, 19-1, 29-1, and 39-1 are pump bodies, S1 to S3 are inlets, and P1 to P3 are outlets.
[0010]
The chamber 1 in which air conditioning is performed is provided with inlets S1 and S2 into which air is introduced and outlets P1 and P2 through which air is released. The inlet S1 is output from the humidifier 8 via the switching valve 2d. The inlet S2 is connected to the second output side of the heat exchanger 7 via the switching valve 2f. Similarly, the discharge port P1 is connected to the switching valve 2b via the switching valve 2a, and the switching valves 2a and 2b are connected to each other. The input side of the blower 5a is connected to the switching valve 2b, the output side of the blower 5a is connected to the input side of the zeolite reaction tank 6 that performs a hygroscopic heat generation operation via the gate valve 3, and the switching valve 2g is connected to the zeolite reaction tank 6. 2h and a blower 5c are connected to a magnet heater 9, and the switching valves 2g and 2h of the magnet heater 9 are connected to a discharge port P3 and an inlet S3 of the chamber 1, respectively. A first input side of the heat exchanger 7 is connected to the output side of the zeolite reaction tank 6 via the switching valve 2c, and a prower 5b connected to the switching valve 2e is connected to the second input side of the heat exchanger 7. The input side of the humidifier 8 is connected to the first output side of the heat exchanger 7. In the standby state before the air adjustment of the chamber 1 is performed, the gate valve 3 is closed, the switching valve 2c is closed on the zeolite reaction tank 6 side, and the input side of the heat exchanger 7 is opened to the atmosphere side. The zeolite reaction tank 6 is kept dry.
[0011]
First, the operation when the chamber 1 in the standby state is cooled will be described with reference to FIG. 1. First, the magnet heater 9 used as the heating means of the zeolite reaction tank 6 is turned off, and the switching valves 2g and 2h are turned on. By switching, the communication with the discharge port P3 and the inlet S3 of the chamber 1 is blocked. Then, the gate valve 3 is opened, the switching valve 2c is switched to open the output side of the zeolite reaction tank 6 to the input side of the heat exchanger 7, the switching valve 2e is switched to open the input side of the blower 5b to the atmosphere side, The switching valve 2f is switched and opened to the second output side of the heat exchanger 7. Further, the switching valve 2d is switched to open the output side of the humidifier 8 to the inlet S1, and the switching valve 2a and the switching valve 2d are switched to open the discharge port P1 to the input side of the blower 5a.
[0012]
If it does in this way, the air in the chamber 1 will be discharge | released from the discharge port P1, and will flow into the zeolite reaction tank 6 via the switching valves 2a and 2b, the blower 5a, and the gate valve 3, and the hygroscopic action of the zeolite in the zeolite reaction tank 6 Due to the heat generated from the zeolite reaction tank 6 during moisture absorption, the zeolite reaction tank 6 is dried at a low humidity and air having a high temperature is released. This low-humidity and high-temperature air is supplied to the first input side of the heat exchanger 7 and is heat-exchanged with the outside air supplied from the second input side of the heat exchanger 7 by the blower 5b. From the first output side of the vessel 7, dry air having a slightly lowered temperature is released. The dry air whose temperature has been slightly lowered is supplied to the humidifier 8, and the heat of vaporization for vaporizing the water in the humidifier 8 is released to further reduce the temperature. The air flows into the chamber 1 from the inlet S1 via the switching valve 2d, and the chamber 1 is comfortably cooled.
[0013]
Next, the operation when the chamber 1 is heated will be described with reference to FIG. 2. First, the magnet heater 9 connected to the zeolite reaction tank 6 is turned on, the gate valve 3 is opened, and the switching valve 2c is switched. The output side of the zeolite reaction tank 6 is opened to the input side of the heat exchanger 7, the switching valve 2e is switched, the input side of the blower 5b is opened to the discharge port P2, and the switching valve 2f is switched to switch the second side of the heat exchanger 7. Is opened to the inlet S2 side. Then, the switching valve 2d, 2a is switched to open the output side of the humidifier 8 to the input side of the blower 5a through the switching valve 2d, 2a, 2b, and the switching valve 2g on the magnet heater 9 side is switched. It opens to the discharge port P3 side, and the other switching valve 2h is switched and opened to the inlet S3 side.
[0014]
In this way, the air in the chamber 1 is discharged from the discharge ports P2 and P3, and the air discharged from the discharge port P2 is transferred to the second input side of the heat exchanger 7 via the switching valve 2e and the blower 5b. Heat is exchanged with the dry high-temperature air supplied from the output side of the zeolite reaction tank 6 in the heat exchanger 7, and the air that has been warmed as the temperature rises is the second output of the heat exchanger. It flows out from the side and flows into the chamber 1 from the inlet S2 through the switching valve 2f. The air discharged from the discharge port P3 is supplied to the magnet heater 9 in the ON state via the switching valve 2g and the blower 5c, and is heated and heated from the inlet S3 to the interior of the chamber 1 via the switching valve 2h. Flow into. Therefore, the inside of the chamber 1 is rapidly warmed by the warm air flowing in from the inlet S2 and the inlet S3, and is moderately heated. On the other hand, the temperature discharged from the first output side of the heat exchanger 7 is lowered and the warm and dry air is supplied to the humidifier 8 to give vaporization heat to the water of the humidifier and the temperature is further lowered. Then, it is appropriately humidified and supplied again to the zeolite reaction tank 6 through the switching valves 2d, 2a, 2b, the blower 5a and the gate valve 3.
[0015]
When the zeolite reaction tank 6 becomes excessively hygroscopic due to the cooling operation or heating operation of the chamber 1, as shown in FIG. 3, the switching valve 2b opens to the atmosphere side and the blower 5a side, and the gate valve 3 opens to switch the switching valve. 2c is opened to the atmosphere side, and the switching valves 2g and 2h on the magnet heater 9 side are switched to shut off the discharge port P3 and the inlet S3 on the chamber 1 side and simultaneously open to the zeolite reaction vessel 6 side Set to In this state, the magnet heater 9 is turned on, and the zeolite reaction tank 6 is indirectly heated and regenerated.
[0016]
It should be noted that by installing a plurality of zeolite reaction tanks 6, the zeolite reaction tank that is not currently being cooled or heated is regenerated and regenerated when the currently used zeolite reaction tank 6 becomes excessively hygroscopic. It is also possible to switch to a zeolite reactor that has completed its operation. It is also possible to collect the water vapor obtained during the regeneration operation of the zeolite reaction tank 6 as condensed water and return it to the humidifier 8.
[0017]
Next, a specific structural example of the magnet heater according to the present invention will be described with reference to FIGS.
FIG. 4 shows an example of a magnet heater using a centrifugal fan. The magnet heater has a conductor attached to a pump wheel of a fluid pump, or the pump wheel is made of a conductor, and the conductor or the pump wheel made of a conductor. In this example, a permanent magnet that is placed opposite to the pump body with a slight gap is incorporated in the pump body, and the fluid in the pump is heated by slip heat generated in the conductor by the rotation of the pump wheel. In the pump body 9-1, the back plate 9-5 of the pump wheel 9-4 attached to the rotating shaft 9-3 of the drive motor 9-2 is made of a conductor, and the back plate 9-5 made of this conductor is made. An annular permanent magnet support 9-6 that is opposed to the pump body 9-1 with a slight gap therebetween is attached to the pump body 9-1. The driving motor 9-2 is attached to the back of -6. On the permanent magnet support 9-6, a donut-shaped permanent magnet 9-7 is mounted via a yoke 9-7a. The conductive pump wheel is configured by adhering an eddy current material or a magnetic material to the surface of the base material such as a hysteresis material or an iron plate on the permanent magnet 9-7 side.
[0018]
In the magnet heater having the above-described configuration, when the drive motor 9-2 is activated, the fluid flowing into the pump body 9-1 flows as indicated by an arrow, and at the same time, the conductor back plate 9-5 and the pump body The magnetic path formed between the permanent magnet support 9-6 attached to the permanent magnet 9-7 and the permanent magnet 9-7 is sheared, and slip heat is generated in the conductor back plate 9-5. The heat generated in the conductor back plate 9-5 is heated by exchanging heat with the fluid flowing in the pump body 9-1 and used for heating regeneration of the zeolite reaction tank 6 and heating of the chamber 1. It will be.
[0019]
The magnet heater using the multiblade fan shown in FIG. 5 is a cylindrical multiblade fan 19-4 attached to a rotating shaft 19-3 of a drive motor 19-2 installed on the back side of the pump body 19-1. In the cylindrical multiblade fan 19-4, a plurality of permanent magnet supports 19-6 facing the fan with a slight gap are formed on the fluid inlet side inner wall of the pump body 19-1. Projected. A plate-like permanent magnet 19-7 is attached to the permanent magnet support 19-6. In addition, the multi-blade fan 19-4 made of the conductor is attached with an eddy current material or a magnetic material on the surface of the permanent magnet 9-7 side of a base material such as a hysteresis material or an iron plate as shown in FIG. It is configured.
[0020]
In the magnet heater having the above-described configuration, when the drive motor 19-2 is activated, the fluid flowing into the pump body 19-1 flows as indicated by an arrow, and at the same time, a cylindrical tubular blade 19-4 made of a conductor. And the permanent magnet 19-7 of the permanent magnet support 19-6 attached to the pump main body 19-1 is sheared and slips to the conductive cylindrical multiblade fan 19-4. An exotherm occurs. The heat generated in the cylindrical multi-blade fan 19-4 made of conductor is heated by heat exchange with the fluid flowing in the pump body 19-1, and is used for heating regeneration of the zeolite reaction tank 6 and heating of the chamber 1. Will be served.
[0021]
In addition, the magnet heater using the axial fan shown in FIG. 6 includes an axial fan 29-4 attached to a rotating shaft 29-3 of a drive motor 29-2 installed on the back side of the pump body 29-1. A plurality of permanent magnet supports 29-6 made of a conductor and opposed to the axial fan 29-4 with a slight gap are fixed to the outer periphery of the drive motor 29-2, and the permanent magnet supports 29-6. The permanent magnet 29-7 is attached to the structure. The axial fan 29-4 made of a conductor is also formed by adhering an eddy current material or a magnetic material to the surface of a permanent magnet side of a base material such as a hysteresis material or an iron plate, as shown in FIG. Yes.
[0022]
In the magnet heater having the above-described configuration, when the drive motor 29-2 is activated, the fluid flowing into the pump body 29-1 flows as indicated by an arrow, and at the same time, the conductor axial flow fan 29-4 and the pump A magnetic path formed between the permanent magnet support 29-6 attached to the main body 29-1 and the permanent magnet 29-7 is sheared, and slip heat is generated in the conductive axial fan 29-4. The heat generated in the axial fan 29-4 made of conductor is heated by exchanging heat with the fluid flowing in the pump body 29-1, and is used for heating regeneration of the zeolite reaction tank 6 and heating of the chamber 1. The Rukoto.
[0023]
Further, the magnet heater using the mixed flow fan shown in FIG. 7 is structurally the same as the magnet heater using the axial fan shown in FIG. 6, and is installed on the back side of the pump body 39-1. The mixed flow fan 39-4 attached to the rotating shaft 39-3 of the drive motor 39-2 is made of a conductor, and a plurality of permanent magnet supports opposed to the mixed flow fan 39-4 with a slight gap therebetween. 39-6 is fixed to the outer periphery of the drive motor 39-2 at an angle corresponding to the inclination of the mixed flow fan 39-4, and the permanent magnet 39-7 is attached to the permanent magnet support 39-6. ing. In addition, the conductor axial flow fan 39-4 is configured by adhering an eddy current material or a magnetic material to the surface of the permanent magnet side of a base material such as a hysteresis material or an iron plate, as shown in FIG. Yes.
[0024]
When the drive motor 39-2 is activated as in the case of the magnet heater using the axial fan shown in FIG. 6 as to the action of the magnet heater configured as described above, the fluid flowing into the pump body 39-1 is indicated by an arrow. At the same time as shown, a magnetic path formed between a conductor mixed flow fan 39-4 and a permanent magnet 39-7 of a permanent magnet support 39-6 attached to the pump body 39-1. Shearing generates slip heat in the conductor mixed flow fan 39-4. The heat generated in the conductor mixed flow fan 39-4 is heated by exchanging heat with the fluid flowing in the pump body 39-1, and is used for heating regeneration of the zeolite reaction tank 6 and heating of the chamber 1. The Rukoto.
[0025]
If the blower 5c is provided, Japanese Patent Application No. 10-114218, Japanese Patent Application No. 10-132663, Japanese Patent Application No. 10-132664, and Japanese Patent Application No. 10 which have already been proposed by the present applicant as magnetic heaters. Magnetic heaters described in Japanese Patent Application No. 146552, Japanese Patent Application No. 10-146553, Japanese Patent Application No. 10-153728, Japanese Patent Application No. 10-167723 can also be used.
[0026]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) Unlike the electric heater, the magnet type heater as the heat source is resistant to moisture, so that insulation of the heater is unnecessary and the manufacturing cost is low.
(2) Since the magnet heater can use the fan itself as a heating element, a separate blower or the like is not required and can be made compact.
(3) By using a magnet heater as the heat source, maintenance-free, heat resistance and durability are outstanding.
(4) The air conditioning function of the air conditioner can be significantly improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an operation showing an embodiment of an air conditioner according to the present invention and is a block diagram for explaining a cooling operation;
FIG. 2 is a block diagram for explaining the heating operation of the embodiment.
FIG. 3 is a block diagram for explaining the regeneration operation of the zeolite of the embodiment.
FIG. 4 is a longitudinal side view showing a magnet heater using a centrifugal fan in the embodiment.
FIG. 5 is a longitudinal side view showing a magnet heater using the multiblade fan in the embodiment.
FIG. 6 is a longitudinal side view showing a magnet heater using an axial fan in the embodiment.
FIG. 7 is a longitudinal side view showing a magnet heater using a mixed flow fan in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chamber 2a-2h in which air adjustment is performed Switching valve 3 Gate valve 5a, 5b Blower 6 Zeolite reaction tank 7 Heat exchanger 8 Humidifier 9 Magnet type heaters 9-1, 19-1, 29-1, 39-1 Pump Body S1-S3 Inlet P1-P3 Outlet

Claims (1)

室内に流入する空気を吸湿加熱して放出するゼオライト反応槽と、該ゼオライト反応槽から放出される低湿高温の空気と前記室内から放出される空気との熱交換を行う熱交換器と、前記ゼオライト反応槽から放出され前記熱交換により温度が低下した低湿の空気を低温の空気にする加湿装置と、冷房動作時には前記加湿装置から放出される空気を、暖房作動時には前記室内から放出され、前記熱交換により温度が上昇した空気をそれぞれ選択して前記室内に流入させる流入空気選択手段と、前記室内から放出される空気を前記熱交換器に流入させる空気送出手段と、冷房動作時には前記室内から放出される空気を、暖房作動時には前記加湿装置から放出される空気をそれぞれ選択して前記ゼオライト反応槽に流入させる返還選択手段と、前記ゼオライト反応槽を加熱する再生手段とを有する空調装置において、前記ゼオライト反応槽の再生手段と、暖房作動時における室内の空気加熱手段にマグネット式ヒーターを用いたことを特徴とする空調装置。A zeolite reaction tank that absorbs and heats air flowing into the room by absorbing and heating, a heat exchanger that performs heat exchange between the low-humidity and high-temperature air discharged from the zeolite reaction tank and the air discharged from the room, and the zeolite A humidifier that converts low-humidity air that has been released from the reaction tank and whose temperature has decreased due to the heat exchange into low-temperature air, and air that is released from the humidifier during cooling operation is released from the room during heating operation, and the heat Inflow air selection means for selecting each of the air whose temperature has increased due to the exchange and flowing into the room; air sending means for flowing air released from the room into the heat exchanger; and discharge from the room during cooling operation Return selection means for selecting the air discharged from the humidifier during heating operation and flowing into the zeolite reaction tank, In the air conditioning apparatus having a reproducing means for heating the zeolite reaction vessel, air conditioning system, wherein the reproducing means of said zeolite reaction vessel, for using the magnet type heater air heating means in the room during the heating operation.
JP00125399A 1999-01-06 1999-01-06 Air conditioner Expired - Fee Related JP4156118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00125399A JP4156118B2 (en) 1999-01-06 1999-01-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00125399A JP4156118B2 (en) 1999-01-06 1999-01-06 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000205607A JP2000205607A (en) 2000-07-28
JP4156118B2 true JP4156118B2 (en) 2008-09-24

Family

ID=11496301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00125399A Expired - Fee Related JP4156118B2 (en) 1999-01-06 1999-01-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP4156118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068784B2 (en) 2004-06-28 2011-11-29 Sony Corporation Communication system and communication device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086546A (en) * 2017-05-25 2017-08-22 广东电网有限责任公司佛山供电局 A kind of 10kV switch cubicles emergency opening system and its operating method
CN108361807A (en) * 2018-01-26 2018-08-03 青岛海尔空调电子有限公司 A kind of heat pump system and its control method
CN108375145A (en) * 2018-01-26 2018-08-07 青岛海尔空调电子有限公司 A kind of heat pump system and its defrosting control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068784B2 (en) 2004-06-28 2011-11-29 Sony Corporation Communication system and communication device
US8577293B2 (en) 2004-06-28 2013-11-05 Sony Corporation Communication system and communication device

Also Published As

Publication number Publication date
JP2000205607A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
US6918263B2 (en) Air conditioning system
JP4232463B2 (en) Air conditioner
US6915655B2 (en) Air conditioning system
JP3864982B2 (en) Air conditioning system
JP2004353887A (en) Moisture conditioning device
JP2000111096A (en) Desiccant air conditioning system
JP4156118B2 (en) Air conditioner
CN112923459B (en) Fresh air system
JP3821031B2 (en) Desiccant air conditioning system
WO2006103968A1 (en) Humidity regulation device
JP2004239541A (en) Desiccant type air-conditioning supporting unit
JP4414110B2 (en) Dehumidifying air conditioner
JP2004353908A (en) Dehumidifying air conditioner
JP2002018228A (en) Humidity controlling apparatus
JP2004098974A (en) Air conditioner for vehicle
JP2011094904A (en) Desiccant type ventilation fan
JPH09222244A (en) Humidify control air conditioner
JP2004353889A (en) Moisture conditioning device
JP4179052B2 (en) Humidity control device
CN218065121U (en) Indoor unit of air conditioner
JP4538931B2 (en) Air conditioning system
JP3314998B2 (en) Air conditioner
JPH11182969A (en) Air conditioner
JP2002130738A (en) Air conditioner
JP5949112B2 (en) Humidity control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees