JP4155504B2 - Flow meter and its impeller - Google Patents

Flow meter and its impeller Download PDF

Info

Publication number
JP4155504B2
JP4155504B2 JP2002308846A JP2002308846A JP4155504B2 JP 4155504 B2 JP4155504 B2 JP 4155504B2 JP 2002308846 A JP2002308846 A JP 2002308846A JP 2002308846 A JP2002308846 A JP 2002308846A JP 4155504 B2 JP4155504 B2 JP 4155504B2
Authority
JP
Japan
Prior art keywords
impeller
twist angle
blade
fluid
outflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308846A
Other languages
Japanese (ja)
Other versions
JP2004144576A (en
Inventor
将範 川西
伸治 榎谷
鉄平 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2002308846A priority Critical patent/JP4155504B2/en
Publication of JP2004144576A publication Critical patent/JP2004144576A/en
Application granted granted Critical
Publication of JP4155504B2 publication Critical patent/JP4155504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、流入口と流出口を有する流量計に関し、特に流体の流れによって回転する羽根車の羽根が、その中心軸を中心としてねじれた形状を有するものに関する。
【0002】
【従来の技術】
従来の流量計の羽根車100は、図18に示すように、流体の流入側から流出側に至るまで、図18に示す関係を維持したねじれ角一定の羽根113で、流体が羽根113の間を通過することにより、流体の圧力を受ける側の羽根面を流体が押し回し、回転軸を中心として、羽根車が回転する。この回転数が、流速に比例することにより、歯車等にてアナログ的に、あるいはセンサー等でデジタル的に、一定の常数を表示機構で加え積算流量値に変換し、計量する機構となっていた(例えば、特許文献1参照)。
【0003】
【特許文献1】
実開平3−13690号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このようなねじれ角が一定の羽根を有する羽根車では、流体の流入側の回転力と流出側の回転力が等しくならないため、羽根に流入側と流出側の回転力の差が抵抗として作用し、流量−器差曲線においてある流量域(特に小流量域)で器差がプラス傾向を示す、つまりピークの出る器差の原因となっていた。また、流体の圧力を受けない反対側の面も、ねじれ角が一定のため、羽根の回転によってねじ曲げられた水流を羽根の面に境界層が生じて縮流させることになり、ピークの出る器差の原因となっていた。
【0005】
この発明は、ピークの出る器差の発生を抑制し得る流量計を提供することを課題とする。
【0006】
【課題を解決するための手段及び発明の効果】
この発明は、流入口と流出口を有する流量計に内蔵され、流体の流れによって回転する羽根車の羽根が、その中心軸を中心としてねじれた形状の流量計において、当該羽根のねじれ角が一定でなく、そのねじれ角は、流体の流入側から流出側に向かって一定の関係で滑らかに増加するように、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内である羽根車を備えることを特徴とする。
【0007】
このようにしたことにより、羽根車において流体の圧力を受ける面の、流体の流入側の回転力と流出側の回転力をほぼ等しくすることにより、羽根に流入側と流出側の回転力の差が抵抗として作用することを無くし又は抑制し、ピークの出ないフラットな器差になり易くなる。
【0008】
また発明は、ねじれた羽根の、流体によって圧力を受ける側の面のねじれ角が一定でなく、そのねじれ角は、流体の流入側から流出側に向かって一定の関係で滑らかに増加するように、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内であることを特徴とする。
【0009】
ここでは、流体の圧力を受ける側の面のみの、ねじれ角を4°から7°の範囲内で増加させてやることにより、ピークの器差を改善することができる。
【0010】
またこの発明は、ねじれた羽根の、流体によって圧力を受ける側の反対側の面のねじれ角が一定でなく、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が4°から7°の範囲内である羽根車を備えることを特徴とする。
【0011】
このように、流体の圧力を受けない反対側の面のみ、ねじれ角を4°から7°の範囲で増加させてやることにより、羽根の回転によってねじ曲げられた流体の流れを縮流させることなく、ピークの器差を改善することができる。
【0012】
さらに参考として、羽根のねじれ角が、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内で、羽根が「く」の字形に折れ曲がった羽根車とすることができる。
【0013】
一般に、羽根車の羽根のねじれ角が流入側から徐々に4°から7°変化して、流出側のねじれ角に達するような羽根車の製作は相当の工数と時間を要し、容易なことではない。そこで、製作を容易にする目的で、ねじれ角の変化は徐々にするのではなく、ある位置で一回のみ変化するような羽根車、言い換えれば羽根が「く」の字形に折れ曲がった羽根車を用いたときでも、器差のピークを下げるという効果を充分に得ることができる。
【0014】
なお、羽根においてねじれ角を多段に変化させることもでき、また羽根において流出側で流入側よりねじれ角を増加させる際、流出側において、流体の圧力を受ける側の面と、それとは反対側の面とで、ねじれ角を同じにすることもできるし、互いに異ならせることもできる。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を図面に示す実施例を参照しつつ説明する。
図1は、この発明が適用される流量計の一例を示している。この例の流量計1は、水流の上流側に位置する補足管2と、それに合体された下ケースと3を備え、それらにまたがって流入口4から流出口5に至る流体(一般には水)の流路が形成される。下ケース3の中央部には、ほぼ垂直上方へ導かれる水流に対する整流器6が位置するとともに、それに付随する調整器8があり、それらの上側に計量室7が位置している。
【0016】
その計量室7の内部には羽根車10が、整流器6に固定された垂直方向のピボット軸9に上側からわずかな隙間をもって挿入された状態で、垂直方向の軸線回りに回転自在に設置される。羽根車10の中心線の回りには、その中心線に対してねじれた複数の羽根13がボス12と一体に形成され、それらの羽根13は、羽根車10の中心線を中心とするらせん状の面に沿ってねじれるように形成されている。下ケース3の管路において上方へ導かれた流体は、整流器6で整流された後、下側から羽根車10に当たり、その羽根13のねじれに基づき羽根車10を回転させつつ、羽根車10の軸方向に通過し、その後方向を変えて流出口5から下流に流出する。
【0017】
羽根車10の回転は、電子式流量計の場合、羽根車10の上部に内蔵された磁石により、その回転をMRセンサーなどで検知して電気信号に置き換えられて、電子カウンター24で積算される。電子カウンター24は遮水ケース20内に納められ、開閉式の蓋18で被われる。羽根車10の下方に位置する整流器6は、垂直方向の中心線から放射状に延びる複数の整流羽根19を有し、それらの羽根の1枚を垂直軸に対して微小角度調整することで、羽根車10の羽根13に当たる水流の向きをわずかに変えることにより、羽根車10の回転数を微調整するのが調整器8であり、整流器6に付属して設けられている。なお、機械式の流量計の場合は、羽根車10の回転が複数の歯車等により機械的な回転積算計等を介してカウントされる。
【0018】
図2に示すように、羽根車10は、回転軸11に、その回転軸11よりも径が大きく、羽根車10よりは径の小さいボス12が設けられ、このボス12に回転軸11の軸線に対してねじれた複数(例えば6枚)の羽根13が等間隔に設けられている。羽根車10を有する流量計1は、上述のように羽根車10の複数の羽根13のそれぞれの流体の圧力を受ける側の面14が水流の力を受けて、その羽根車10を回転軸11とともに、その軸線の回りに回転させる構造となっており、一定の常数を表示機構によって加えてやることにより、通過量を(この流量計が)計測するようになっている。
【0019】
そして、この羽根車10の複数の羽根13の中央面13cを、流出側からのねじれ角α’から流入側のねじれ角αを減じた値が、1°から10°の範囲になるように、ねじれ角を途中で変化させる(図2(g)参照)。この変化については、流入側からねじれ角が流出側に向かって一定の関係で滑らかに増加していく変化、そのねじれ角が増加及び減少をして流出側で目的のねじれ角になるような変化、滑らかな変化でなく、目的のねじれ角まで数回に分ける変化が挙げられるが、この場合、流出側に向かって一定の関係で滑らかに増加していく変化の方が、水の流れを乱さないことから望ましい。
【0020】
図2に示すものは、流体の圧力を受ける側の面14と、その流体の圧力を受ける面とは反対側の面15の双方において、ねじれ角(垂直線に対するなす角をねじれ角とすればαとなる)を流出側で増加させたものであり、羽根13の厚みは一定となり、ねじれ角の変化の範囲が1°〜10°となる。好ましくは4〜7°に設定することができる。そのねじれ角の範囲が小さすぎると、器差をフラットにする効果が得にくくなり、逆に大きすぎると、羽根車10を回転させる力の成分が過小になって、そのため別の面での抵抗(上向きのスラスト力など)が生じやすいので、上記の範囲が望ましいと言える。
【0021】
また図3に示すように、流体の圧力を受ける側の面14のみ、ねじれ角を1°から10°の範囲で増加させてやってもよい。この場合でも、流入側から流出側に向かって一定の関係で滑らかに増加していく変化、ねじれ角が増加及び減少をして流出側で目的のねじれ角になるような変化、滑らかな変化ではなく、目的のねじれ角まで数回に分ける変化が挙げられるが、この場合、流出側に向かって一定の関係で滑らかに増加していく変化の方が、水の流れを乱さないことから望ましい。
【0022】
さらに、図4に示すように、流体の圧力を受けない反対側の面15のみ、ねじれ角を1°から10°の範囲で増加させてやってもよい。この場合も、流入側から流出側に向かって一定の関係で滑らかに増加していく変化、ねじれ角が増加及び減少をして流出側で目的のねじれ角になるような変化、滑らかな変化ではなく、目的のねじれ角まで数回に分ける変化が挙げられるが、この場合、流出側に向かって一定の関係で滑らかに増加していく変化の方が、水の流れを乱さないことから望ましい。
【0023】
また図5に示すように、羽根13のねじれ角が、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、1°から10°の範囲内で、羽根13が「く」の字形に折れ曲がった羽根車とすることができる。
【0024】
羽根車の製作上、滑らかに製作することは容易でなく、そこで上述のフラットな器差の効果を確保しつつ、製作を容易にする観点からねじれ角の変化を1回にしたものが、上記「く」の字状の形態である。ねじれ角を変化させる位置は、羽根車の流入側から流出側へ向かう中間の位置から流出側までの間にするのが好ましい。その中でも、羽根車の流入側から流出側へ向かう中間の位置から流出側までの間に変化するのがよい。
【0025】
図6は、羽根13の流体の圧力を受ける側の面14(圧力作用面ともいう)と、流体の圧力を受ける側の面14とは反対側の面15(圧力非作用面ともいう)の双方で、ねじれ角を流入側より流出側を大きくし、かつ流出側の各面14と15のねじれ角を互いに異ならせたものである。
【0026】
また、図7は「く」の字形の羽根13とする場合に、流出側でのねじれ角を同一にする形態、異ならせる形態をそれぞれ概念的に示している。そして、上述のようなねじれ角の変化を、羽根の半径方向寸法(突出寸法)の全長(d)にわたって形成してもよいし、その全長の一部(例えば外周側の半分等)としてもよい。
【0027】
図8は、羽根13のねじれ角を、「く」の字形の1段階の変化ではなく、2段階等、複数段に変化させた例を示している。
【0028】
また、図9は、羽根13の流出側のねじれ角を流入側より大きく変化させる
際に、流出側における圧力作用面14と圧力非作用面15とのねじれ角を同一にしたもの(a)、前者を後者より大きくしたもの(b)、後者を前者より大きくしたもの(c)の例を示している。
【0029】
以上のような羽根車10の羽根13の形態の変更により、例えば図2のようにすれば、図10のように、器差のピークが生じにくくフラットに近くなる。図11は図3の、図12は図4の、また図13は図5の形態に対応する器差の変化を示しており、程度の差こそあれ、器差のフラット化の効果が認められる。
【0030】
以下に、このような効果が生じる理由を説明するが、あくまでも実験結果に基づいた推測であって、この推論の是非でこの発明が影響を受けるわけではない。
羽根車の回転制御について、今、図14のような、高さがhの羽根車の任意の羽根P0-Phの流入側の粒子(点)P0を考える。また、羽根車には、抵抗がない理想の状態を想定する。
【0031】
この点の、流体の粒子(点)P0は、t秒後にはP0(0)からP0(t)に移動する。また、羽根上の流入側の粒子(点)F0は、t秒後にはF0(0)からF0(t)に移動する。
また、流出側の流体の粒子(点)Phは、t秒後にはPh(0)からPh(t)に移動する。また、羽根上の流出側の粒子(点)Fhは、t秒後にはFh(0)からFh(t)に移動する。
この理想の状態では、P0(t)とPh(t)を結んだ線(この状態では直線となる)とF0(t)とFh(t)を結んだ線(この状態では直線となる)とは、重なる。すなわち、t秒後の羽根と流体との間に隙間はないという状態を表している。
【0032】
次に、羽根に抵抗のある状態を図15で考える。
今、羽根の底面から高さxの粒子(点)Pxの流体の動きを考える。この点の、流体の粒子Pxは、t秒後にはPx(0)からPx(t)に移動する。この時、羽根には抵抗があるため、回転方向とは逆にa°だけ向きが変化した位置にPx(t)はある。この角度aは、xが増加すると、aも同様に増加する関数であることが解る。このため、P0(t)とPh(t)を結んだ線とF0(t)とFh(t)を結んだ線(この状態では直線となる)とは、重ならない。
すなわち、斜線部分の隙間が発生することになる。これが、抵抗となり図16のように、理想状態から抵抗Tだけ、下がった部分が器差曲線になるため、ピーク値が高いメータとなる。
【0033】
ここで、羽根のねじれ角を途中で、b°だけ増加させるような図17の羽根車を製作すると、ねじれ角が一定の羽根よりも隙間(ハッチング箇所)が少なくなり、抵抗Tの小さい、すなわち、フラットな器差曲線のメータを製作することが出来ることが解る。
【0034】
次に、流体の圧力を受けない側の羽根の面、図17のC面について考える。
Px(0)からPx(t)に向きをわずかに変えた粒子の流れは、羽根と羽根との間の流れに影響し、C面でも同様に、羽根の流出側では、大きく左側に向きを変えた流れとなる。
このとき、羽根のC面をねじれ角一定の羽根で製作した場合、ジグザグでハッチングした箇所Zで、縮流が起こり、この縮流が抵抗となりピークの出る原因となる。よって、圧力を受けない側の面も、同様に、ねじれ角を変化させてやるとピークのないメータを製作できることとなる。
【図面の簡単な説明】
【図1】この発明が適用される流量計の一例を示す断面図。
【図2】この発明に従う羽根車の例1を示す図。
【図3】この発明に従う羽根車の例2を示す図。
【図4】この発明に従う羽根車の例3を示す図。
【図5】この発明に従う羽根車の例4を示す図。
【図6】この発明に従う羽根車の例5を示す図。
【図7】この発明に従う羽根車の例6を示す図。
【図8】この発明に従う羽根車の例7を示す図。
【図9】この発明に従う羽根車の例8を示す図。
【図10】図2の羽根車を使用した場合の器差を従来のものと比較して示すグラフ。
【図11】図3の羽根車を使用した場合の器差を従来のものと比較して示すグラフ。
【図12】図4の羽根車を使用した場合の器差を従来のものと比較して示すグラフ。
【図13】図5の羽根車を使用した場合の器差を従来のものと比較して示すグラフ。
【図14】本発明の羽根車の流体に与えるメカニズムの推論を説明する図。
【図15】同じく図14に続く図。
【図16】 同じく図15に続く図。
【図17】同じく図16に続く図。
【図18】従来の羽根車の例を示す図。
【符号の説明】
1 流量計
4 流入口
5 流出口
7 計量室
9 ピボット軸
10 羽根車
11 回転軸
12 ボス
13 羽根
14 圧力作用面(受圧面)
15 圧力非作用面(非受圧面)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flowmeter having an inlet and an outlet, and particularly relates to a flowmeter in which an impeller blade rotated by a fluid flow has a twisted shape about its central axis.
[0002]
[Prior art]
As shown in FIG. 18, a conventional flowmeter impeller 100 is a blade 113 having a constant twist angle that maintains the relationship shown in FIG. 18 from the fluid inflow side to the outflow side. By passing through the fluid, the fluid pushes around the blade surface that receives the pressure of the fluid, and the impeller rotates about the rotation axis. Since this rotational speed is proportional to the flow velocity, it has become a mechanism that adds a constant number with a display mechanism in analog form with a gear or the like, or digitally with a sensor or the like, converts it into an integrated flow rate value, and measures it. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 3-13690
[Problems to be solved by the invention]
However, in such an impeller having blades having a constant twist angle, the rotational force on the inflow side and the rotational force on the outflow side of the fluid are not equal. It acts, and the instrumental difference shows a positive tendency in a certain flow rate region (especially a small flow rate region) in the flow rate-instrument difference curve, that is, it is a cause of the instrumental difference where a peak appears. In addition, since the torsion angle is constant on the opposite surface that is not subjected to fluid pressure, the water flow twisted by the rotation of the blade causes a boundary layer to be generated on the surface of the blade, causing the peak to flow. It was the cause of the difference.
[0005]
This invention makes it a subject to provide the flowmeter which can suppress generation | occurrence | production of the instrument difference in which a peak appears.
[0006]
[Means for Solving the Problems and Effects of the Invention]
The present invention relates to a flow meter which is built in a flow meter having an inlet and an outlet, and is configured such that a blade of an impeller rotated by a fluid flow is twisted about its central axis, and the twist angle of the blade is constant. Rather, the twist angle changes from the middle of the blade so that it smoothly increases in a fixed relationship from the fluid inflow side to the outflow side, and the difference obtained by subtracting the torsion angle from the outflow side to the inflow side is , Characterized in that it comprises an impeller in the range of 4 ° to 7 ° .
[0007]
By doing so, the rotational force on the inflow side and the outflow side of the surface receiving the pressure of the fluid in the impeller is made substantially equal so that the difference in rotational force between the inflow side and the outflow side of the blade is reduced. Prevents or acts as a resistance, and tends to be a flat instrumental error without a peak.
[0008]
Further, the invention is such that the twist angle of the surface of the twisted blade on the side receiving pressure by the fluid is not constant, and the twist angle increases smoothly from the fluid inflow side to the outflow side in a constant relationship. The difference between the blade angle and the twist angle from the outflow side to the inflow side is within the range of 4 ° to 7 ° .
[0009]
Here, the instrumental difference of the peak can be improved by increasing the torsion angle of the surface on the side receiving the fluid pressure within the range of 4 ° to 7 ° .
[0010]
In addition, the twist angle of the surface of the twisted blade on the side opposite to the side that receives pressure by the fluid is not constant, changes from the middle of the blade, and the difference obtained by subtracting the twist angle on the inflow side from the outflow side is It is characterized by comprising an impeller within a range of 4 ° to 7 ° .
[0011]
In this way, by increasing the twist angle in the range of 4 ° to 7 ° only on the opposite surface that is not subjected to fluid pressure, the flow of fluid twisted by the rotation of the blades is not reduced. , Peak instrumental error can be improved.
[0012]
For further reference , the blade twist angle changes from the middle of the blade, and the difference between subtracting the twist angle from the outflow side to the inflow side is within the range of 4 ° to 7 °. It can be a folded impeller.
[0013]
In general, the manufacture of an impeller in which the twist angle of the impeller blade gradually changes from 4 ° to 7 ° from the inflow side and reaches the outflow side twist angle requires considerable man-hours and time, and is easy. is not. Therefore, for the purpose of facilitating the manufacture, the change of the twist angle is not made gradually, but an impeller whose blade changes only once at a certain position, in other words, an impeller in which the blade is bent into a "<" shape. Even when used, the effect of lowering the peak of the instrumental error can be sufficiently obtained.
[0014]
In addition, the twist angle can be changed in multiple stages on the blade, and when the twist angle is increased on the outflow side from the inflow side on the outflow side, the surface on the outflow side on the side receiving the fluid pressure and the opposite side The surface can have the same twist angle or can be different from each other.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the examples shown in the drawings.
FIG. 1 shows an example of a flow meter to which the present invention is applied. The flow meter 1 of this example includes a supplementary pipe 2 located on the upstream side of the water flow, and a lower case 3 combined therewith, and a fluid (generally water) extending from the inlet 4 to the outlet 5 across them. The flow path is formed. In the central part of the lower case 3, there is a rectifier 6 for a water flow guided substantially vertically upward, and a regulator 8 associated therewith, and a measuring chamber 7 is located above them.
[0016]
An impeller 10 is installed in the measuring chamber 7 so as to be rotatable about a vertical axis while being inserted into a vertical pivot shaft 9 fixed to the rectifier 6 with a slight gap from above. . Around the center line of the impeller 10, a plurality of blades 13 twisted with respect to the center line are formed integrally with the boss 12, and the blades 13 are spiral with the center line of the impeller 10 as the center. It is formed so as to be twisted along the surface. The fluid guided upward in the pipe line of the lower case 3 is rectified by the rectifier 6, hits the impeller 10 from below, and rotates the impeller 10 based on the twist of the vane 13, It passes in the axial direction, and then changes direction and flows out from the outlet 5 downstream.
[0017]
In the case of an electronic flow meter, the rotation of the impeller 10 is detected by an MR sensor or the like by a magnet built in the upper portion of the impeller 10 and replaced with an electric signal, and is integrated by an electronic counter 24. . The electronic counter 24 is housed in a water shielding case 20 and covered with an openable lid 18. The rectifier 6 located below the impeller 10 has a plurality of rectifying blades 19 extending radially from the vertical center line, and by adjusting one of these blades by a minute angle with respect to the vertical axis, The adjuster 8 finely adjusts the rotational speed of the impeller 10 by slightly changing the direction of the water flow hitting the blades 13 of the car 10, and is attached to the rectifier 6. In the case of a mechanical flow meter, the rotation of the impeller 10 is counted by a plurality of gears or the like via a mechanical rotation integrator.
[0018]
As shown in FIG. 2, the impeller 10 has a rotating shaft 11 provided with a boss 12 having a diameter larger than that of the rotating shaft 11 and smaller than that of the impeller 10, and the boss 12 has an axis of the rotating shaft 11. A plurality of (for example, six) blades 13 that are twisted with respect to each other are provided at equal intervals. As described above, the flow meter 1 having the impeller 10 receives the force of the water flow from the surface 14 on the side where the fluid of each of the plurality of blades 13 of the impeller 10 receives the force of the water flow. At the same time, it is configured to rotate around its axis, and the passage amount (this flow meter) is measured by adding a constant constant by a display mechanism.
[0019]
The central surface 13c of the plurality of blades 13 of the impeller 10 has a value obtained by subtracting the twist angle α on the inflow side from the twist angle α ′ from the outflow side in a range of 1 ° to 10 °. The twist angle is changed in the middle (see FIG. 2G). Regarding this change, the twist angle smoothly increases from the inflow side toward the outflow side in a constant relationship, and the twist angle increases and decreases to the target twist angle on the outflow side. In this case, a change that increases smoothly in a fixed relationship toward the outflow side disturbs the flow of water. It is desirable because it is not.
[0020]
2 shows a twist angle (both the angle formed with respect to the vertical line is the twist angle) on both the surface 14 on the side receiving the fluid pressure and the surface 15 on the opposite side to the surface receiving the fluid pressure. α)) is increased on the outflow side, the thickness of the blade 13 is constant, and the range of change in the twist angle is 1 ° to 10 °. Preferably, it can be set to 4 to 7 °. If the range of the twist angle is too small, it becomes difficult to obtain the effect of flattening the instrumental error. Conversely, if the range is too large, the component of the force that rotates the impeller 10 becomes too small, and therefore resistance on another side. The above range can be said to be preferable because (such as upward thrust force) is likely to occur.
[0021]
Further, as shown in FIG. 3, the twist angle may be increased in the range of 1 ° to 10 ° only on the surface 14 that receives the fluid pressure. Even in this case, a change that smoothly increases from the inflow side to the outflow side in a constant relationship, a change that increases and decreases the twist angle to the target twist angle on the outflow side, and a smooth change However, in this case, a change that increases smoothly in a fixed relationship toward the outflow side is preferable because it does not disturb the flow of water.
[0022]
Furthermore, as shown in FIG. 4, the twist angle may be increased in the range of 1 ° to 10 ° only on the opposite surface 15 that is not subjected to fluid pressure. In this case as well, a change that smoothly increases from the inflow side to the outflow side in a constant relationship, a change that increases and decreases the twist angle to the target twist angle on the outflow side, and a smooth change However, in this case, a change that increases smoothly in a fixed relationship toward the outflow side is preferable because it does not disturb the flow of water.
[0023]
Further, as shown in FIG. 5, the twist angle of the blade 13 changes from the middle of the blade, and the difference obtained by subtracting the twist angle from the outflow side to the inflow side is within a range of 1 ° to 10 °. It can be an impeller that is bent into the shape of “ku”.
[0024]
In the manufacture of the impeller, it is not easy to manufacture smoothly, so that the effect of the flat instrumental error described above is ensured while the change in the twist angle is made once from the viewpoint of facilitating the manufacture. It is the shape of the letter “ku”. The position where the twist angle is changed is preferably between the middle position from the inflow side to the outflow side of the impeller and the outflow side. Among these, it is good to change between the intermediate position which goes to the outflow side from the inflow side of an impeller to an outflow side.
[0025]
FIG. 6 illustrates a surface 14 (also referred to as a pressure acting surface) on the side of the blade 13 that receives fluid pressure and a surface 15 (also referred to as a non-pressure acting surface) opposite to the surface 14 on the side that receives fluid pressure. In both cases, the torsion angle is made larger on the outflow side than on the inflow side, and the torsion angles of the surfaces 14 and 15 on the outflow side are made different from each other.
[0026]
Further, FIG. 7 conceptually shows a form in which the twist angle on the outflow side is made the same and a form in which the torsion angle is made different in the case of using the “<” shaped blade 13. The change in the twist angle as described above may be formed over the entire length (d) of the radial dimension (protrusion dimension) of the blade, or may be a part of the total length (for example, half on the outer peripheral side). .
[0027]
FIG. 8 shows an example in which the twist angle of the blade 13 is changed to a plurality of stages, such as two stages, instead of a one-step change of the “<” shape.
[0028]
FIG. 9 shows that when the twist angle on the outflow side of the blade 13 is greatly changed from the inflow side, the twist angle between the pressure acting surface 14 and the pressure non-working surface 15 on the outflow side is the same (a), An example is shown in which the former is larger than the latter (b) and the latter is larger than the former (c).
[0029]
By changing the form of the blade 13 of the impeller 10 as described above, for example, as shown in FIG. 2, the instrumental error peak is hardly generated as shown in FIG. FIG. 11 shows changes in instrumental differences corresponding to those in FIG. 3, FIG. 12 in FIG. 4, and FIG. 13 in FIG. 5. The effect of flattening the instrumental differences is recognized to some extent. .
[0030]
The reason why such an effect occurs will be described below. However, this is only an estimation based on the experimental results, and the present invention is not affected by the appropriateness of this inference.
Regarding the rotation control of the impeller, now consider particles (points) P0 on the inflow side of arbitrary blades P0-Ph of an impeller having a height h as shown in FIG. In addition, the impeller assumes an ideal state with no resistance.
[0031]
The fluid particle (point) P0 at this point moves from P0 (0) to P0 (t) after t seconds. Further, the inflow side particle (point) F0 on the blade moves from F0 (0) to F0 (t) after t seconds.
The outflow side fluid particles (points) Ph move from Ph (0) to Ph (t) after t seconds. The outflow side particle (point) Fh on the blade moves from Fh (0) to Fh (t) after t seconds.
In this ideal state, a line connecting P0 (t) and Ph (t) (in this state, a straight line) and a line connecting F0 (t) and Fh (t) (in this state, a straight line) Will overlap. That is, there is no gap between the blade and the fluid after t seconds.
[0032]
Next, a state in which the blades are resistant will be considered in FIG.
Consider the movement of a fluid of a particle (point) Px having a height x from the bottom surface of the blade. The fluid particle Px at this point moves from Px (0) to Px (t) after t seconds. At this time, since the blade has resistance, Px (t) is at a position where the direction is changed by a ° in the opposite direction to the rotation direction. It can be seen that the angle a is a function that increases as x increases. For this reason, the line connecting P0 (t) and Ph (t) and the line connecting F0 (t) and Fh (t) (in this state, a straight line) do not overlap.
That is, a gap in the hatched portion is generated. As shown in FIG. 16, this is a resistance, and the portion that has fallen from the ideal state by the resistance T becomes an instrumental difference curve, so that the meter has a high peak value.
[0033]
Here, if the impeller of FIG. 17 is manufactured in which the twist angle of the blade is increased by b ° in the middle, the gap (hatched portion) is smaller than the blade having a constant twist angle, and the resistance T is small. It can be seen that a flat instrumental difference meter can be manufactured.
[0034]
Next, the surface of the blade on the side not receiving the fluid pressure, the C surface of FIG.
The flow of particles with the direction slightly changed from Px (0) to Px (t) affects the flow between the blades. Similarly, in the C plane, the direction of the flow is largely leftward on the outflow side of the blades. Changed flow.
At this time, if the C surface of the blade is manufactured with a blade having a constant helix angle, a contraction occurs at a portion Z that is zigzag hatched, and this contraction causes resistance and causes a peak. Therefore, a meter having no peak can be manufactured on the surface on which the pressure is not received by similarly changing the twist angle.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a flow meter to which the present invention is applied.
FIG. 2 is a diagram showing an example 1 of an impeller according to the present invention.
FIG. 3 is a diagram showing an example 2 of an impeller according to the present invention.
FIG. 4 is a diagram showing an example 3 of an impeller according to the present invention.
FIG. 5 is a diagram showing an example 4 of an impeller according to the present invention.
FIG. 6 is a diagram showing an example 5 of an impeller according to the present invention.
FIG. 7 is a diagram showing an example 6 of an impeller according to the present invention.
FIG. 8 shows an example 7 of an impeller according to the present invention.
FIG. 9 is a diagram showing an example 8 of an impeller according to the present invention.
FIG. 10 is a graph showing instrumental error when the impeller of FIG. 2 is used in comparison with a conventional one.
11 is a graph showing the instrumental difference when the impeller of FIG. 3 is used in comparison with the conventional one.
12 is a graph showing the instrumental difference when the impeller of FIG. 4 is used in comparison with the conventional one.
13 is a graph showing the instrumental difference when the impeller of FIG. 5 is used in comparison with the conventional one.
FIG. 14 is a diagram illustrating inference of a mechanism given to the fluid of the impeller of the present invention.
FIG. 15 is a view that continues from FIG. 14;
FIG. 16 is also a diagram subsequent to FIG.
FIG. 17 is a view subsequent to FIG. 16;
FIG. 18 is a diagram showing an example of a conventional impeller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flowmeter 4 Inlet 5 Outlet 7 Measuring chamber 9 Pivot shaft 10 Impeller 11 Rotating shaft 12 Boss 13 Blade 14 Pressure acting surface (pressure receiving surface)
15 Pressure non-operation surface (non-pressure-receiving surface)

Claims (4)

流入口と流出口を有する流量計に内蔵され、流体の流れによって回転する羽根車の中心軸から放射状にのびたねじれた形状の羽根を有した流量計において、当該羽根のねじれ角が一定でなく、そのねじれ角は、流体の流入側から流出側に向かって一定の関係で滑らかに増加するように、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内である羽根車を備えることを特徴とする流量計。In a flow meter having a blade with a twisted shape radially extending from a central axis of an impeller that is built in a flow meter having an inlet and an outlet and rotates by a fluid flow, the twist angle of the blade is not constant, The twist angle changes from the middle of the blade so as to increase smoothly from the fluid inflow side to the outflow side in a constant relationship, and the difference obtained by subtracting the twist angle from the outflow side to the inflow side is 4 °. A flow meter comprising an impeller that is within a range of 7 ° to 7 ° . ねじれた羽根の、流体によって圧力を受ける側の面のねじれ角が一定でなく、そのねじれ角は、流体の流入側から流出側に向かって一定の関係で滑らかに増加するように、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内である羽根車を備えることを特徴とする流量計。The twist angle of the surface of the twisted blade that receives pressure by the fluid is not constant, and the twist angle is increased in the middle of the blade so that the twist angle smoothly increases in a constant relationship from the fluid inflow side to the outflow side. A flowmeter characterized by comprising an impeller whose difference is obtained by changing the twist angle from the outflow side to the inflow side within a range of 4 ° to 7 ° . ねじれた羽根の、流体によって圧力を受ける側の反対側の面のねじれ角が一定でなく、そのねじれ角は、流体の流入側から流出側に向かって一定の関係で滑らかに増加するように、羽根の途中から変化し、流出側から流入側のねじれ角を減じたその差が、4°から7°の範囲内である羽根車を備えること特徴とする流量計。The twist angle of the surface of the twisted blade opposite to the side subjected to pressure by the fluid is not constant, and the twist angle smoothly increases in a constant relationship from the fluid inflow side to the outflow side. A flowmeter characterized by comprising an impeller that changes from the middle of a blade and the difference obtained by reducing the torsion angle from the outflow side to the inflow side is within a range of 4 ° to 7 ° . 請求項1ないし3のいずれか1項に記載の流量計に内蔵された羽根車 An impeller built in the flow meter according to any one of claims 1 to 3 .
JP2002308846A 2002-10-23 2002-10-23 Flow meter and its impeller Expired - Fee Related JP4155504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308846A JP4155504B2 (en) 2002-10-23 2002-10-23 Flow meter and its impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308846A JP4155504B2 (en) 2002-10-23 2002-10-23 Flow meter and its impeller

Publications (2)

Publication Number Publication Date
JP2004144576A JP2004144576A (en) 2004-05-20
JP4155504B2 true JP4155504B2 (en) 2008-09-24

Family

ID=32454877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308846A Expired - Fee Related JP4155504B2 (en) 2002-10-23 2002-10-23 Flow meter and its impeller

Country Status (1)

Country Link
JP (1) JP4155504B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597285B (en) * 2015-02-08 2018-06-05 德州学院 Anti- sundries winds rivers and canals flow rate of water flow measuring instrument
WO2018034557A1 (en) * 2016-08-19 2018-02-22 George Kent (Malaysia) Berhad An impeller for water meter

Also Published As

Publication number Publication date
JP2004144576A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US4648281A (en) Turbine flowmeter
US7758297B2 (en) Method for flow optimization in multi-stage turbine-type machines
EP3139137B1 (en) Fluid flow meter
US7476081B2 (en) Centrifugal compressing apparatus
JP4155504B2 (en) Flow meter and its impeller
JP5043245B1 (en) Flow sensor
JP2013024770A (en) Tangential flow impeller type water meter
JPS6328246B2 (en)
JPS608447B2 (en) Flowmeter with rotating body
JP4108842B2 (en) Air cleaner
JP7159754B2 (en) Impeller type flow meter
JP5088849B2 (en) Flow meter and its impeller
JPS6328247B2 (en)
JP4318336B2 (en) Water meter
JP3943393B2 (en) Flowmeter
JP3907473B2 (en) Flowmeter
JP2896999B2 (en) Impeller of impeller type flow meter
WO1993011408A1 (en) Fluid motor
JP4503034B2 (en) Flowmeter
JP4540360B2 (en) Flowmeter
JPS5836015Y2 (en) water meter
JP4641764B2 (en) Impeller type flow meter
JP3615667B2 (en) Flow detector
JP3100678B2 (en) Rectifier for axial flow water meter
JPS5812442B2 (en) Variable capacity nozzleless turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees