JP4155378B2 - Drive control device for four-wheel drive vehicle - Google Patents

Drive control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP4155378B2
JP4155378B2 JP2000169588A JP2000169588A JP4155378B2 JP 4155378 B2 JP4155378 B2 JP 4155378B2 JP 2000169588 A JP2000169588 A JP 2000169588A JP 2000169588 A JP2000169588 A JP 2000169588A JP 4155378 B2 JP4155378 B2 JP 4155378B2
Authority
JP
Japan
Prior art keywords
driving force
drive
wheel
motor
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000169588A
Other languages
Japanese (ja)
Other versions
JP2001347846A (en
Inventor
歩誠 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2000169588A priority Critical patent/JP4155378B2/en
Publication of JP2001347846A publication Critical patent/JP2001347846A/en
Application granted granted Critical
Publication of JP4155378B2 publication Critical patent/JP4155378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、前軸または後軸の何れか一方を機械式自動変速機を介してエンジンで駆動し、他方をモータで駆動するハイブリッド方式の4輪駆動車の駆動制御装置に関する。
【0002】
【従来の技術】
近年、自動車等の車両においては、低公害、省資源の観点からエンジンとモータとを併用するハイブリッド車が開発・実用化されており、このようなハイブリッド車のエンジンとモータの駆動形態には様々なものが提案されている。例えば、特開平9−284911号公報には、前軸または後軸の一方を無段変速機(CVT)を介してエンジンで駆動し、他方をモータにより駆動して、走行状態などによりFF、RR、4WDを選択可能な4輪駆動車が開示されている。
【0003】
また、エンジンと連結する変速機としては、先行技術で示されるトルクコンバータとCVTの組み合わせ以外にも、手動変速機のクラッチとギヤシフトをアクチュエータにより自動化し、高効率を維持しながら通常の自動変速機同様に手動変速不要な機械式自動変速機(AMT:Automatic Mechanical Transmission )を用いることが考えられている。
【0004】
【発明が解決しようとする課題】
ところで、一般に、手動変速機では、変速時にエンジンのスロットルを戻しながらクラッチを切断して変速するため、変速時に加速度が失われ、強い引き込み感を伴う変速ショックが生じる。そして、特に機械式自動変速機においては、ドライバが変速操作をしなくても変速が行われる場合があり、変速ショックに対する不快感が強くなる傾向があり、改善の必要性が高い。
【0005】
本発明は上記事情に鑑みてなされたもので、前軸または後軸の何れか一方を機械式自動変速機を介してエンジンで駆動し、他方をモータで駆動する4輪駆動車において、変速により発生が予想される強い引き込み感を伴う変速ショックを抑制し、例え、ドライバ操作によらない変速が行われても自然で、ドライバに不快感を与えることのない4輪駆動車の駆動制御装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため請求項1記載の本発明による4輪駆動車の駆動制御装置は、前軸または後軸の何れか一方を機械式自動変速機を介してエンジンで駆動し、他方をモータで駆動する4輪駆動車の駆動制御装置において、上記モータで駆動する上記他方に左右輪間の駆動力配分を可変自在な左右駆動力配分可変手段を設け、上記機械式自動変速機の変速前から変速中にかけての駆動制御の変化に応じて発生する車両挙動の変化を推定し、上記左右駆動力配分可変手段で上記左右輪間の駆動力配分を可変して上記車両挙動変化を抑制すると共に、上記機械式自動変速機の変速中は、変速中の4輪の合計駆動力が変速前の4輪の合計駆動力を維持するべく上記モータの駆動力を制御することを特徴とする。
【0007】
また、請求項2記載の本発明による4輪駆動車の駆動制御装置は、請求項1記載の4輪駆動車の駆動制御装置において、走行する路面の路面摩擦係数が低い場合は、上記機械式自動変速機の変速中に上記モータで駆動する車輪の上限駆動力を制限することを特徴とする。
【0009】
すなわち、請求項1記載の4輪駆動車の駆動制御装置は、モータで駆動する他方に左右輪間の駆動力配分を可変自在な左右駆動力配分可変手段を設け、機械式自動変速機の変速前から変速中にかけての駆動制御の変化に応じて発生する車両挙動の変化を推定し、左右駆動力配分可変手段で左右輪間の駆動力配分を可変して車両挙動変化を抑制すると共に、機械式自動変速機の変速中は、変速中の4輪の合計駆動力が変速前の4輪の合計駆動力を維持するべくモータの駆動力を制御する。このため、通常走行状態から変速状態に移行しても、途絶えられるエンジンからの駆動力はモータにより補完され、強い引き込み感を伴う変速ショックが抑制されて、例え、ドライバ操作によらない変速が行われても自然で、ドライバに不快感を与えることがない。また、変速中は前後軸で走行する状態からモータで駆動する他方の軸のみの走行状態に変わるため、左右駆動力配分可変手段により車両に新たに生じるアンダーステア傾向或いはオーバーステア傾向を抑制して、変速に移行する際の車両挙動を安定させることができる。
【0010】
また、請求項2記載の4輪駆動車の駆動制御装置は、走行する路面の路面摩擦係数が低い場合は、機械式自動変速機の変速中にモータで駆動する車輪の上限駆動力を制限するようにして、変速時にモータで駆動力を補完する際に、モータで駆動する他方の軸の駆動力が大きくなりすぎることを抑制し、低μ路であっても安定した車両挙動を保てるようにする。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図7は本発明の実施の一形態を示し、図1は車両に搭載した駆動制御装置の全体説明図、図2はリヤファイナルドライブ装置の構成説明図、図3は駆動制御プログラムのフローチャート、図4は前輪駆動力演算ルーチンのフローチャート、図5はエンジン回転数とスロットル開度に対するエンジントルクの特性説明図、図6はクラッチレリーズストロークに対するクラッチ伝達トルク容量の特性説明図、図7は駆動制御装置による効果を説明するタイムチャートである。
【0013】
図1において、符号1は車両を示し、符号2はエンジンで、車両前部に配置されている。このエンジン2の出力軸は機械式自動変速機3に接続されており、エンジン駆動力が、この機械式自動変速機3から図示しないディファレンシャル装置を介して前軸4に伝達されて、左前輪5fl及び右前輪5frを駆動する構成となっている。
【0014】
機械式自動変速機3は、エンジン2のフライホイールに対しクラッチディスクを圧接・離隔させる通常の機械式クラッチで構成したクラッチ装置と、後段と前進複数段の変速が可能な歯車式変速機(以上図示せず)とからなる。そして、クラッチ装置は、変速機が自動変速される際には、これにともない自動的に断接制御され、手動変速のみならず自動変速も可能に構成されている。
【0015】
また、ドライバが操作する車両1のセレクトレバー3aには、N(ニュートラル)レンジ、R(リバース)レンジ、自動変速モードに相当するD(ドライブ)レンジ、手動変速モードに相当するM(マニュアル)レンジが設けられている。
【0016】
一方、符号6はモータを示し、このモータ6の出力軸はリヤファイナルドライブ装置7に接続されており、モータ駆動力が、リヤファイナルドライブ装置7を介して後軸8に伝達されて、左後輪5rl及び右後輪5rrを駆動するように構成されている。
【0017】
モータ6は、エンジン駆動の発電機9からバッテリ10に蓄電した電力により駆動される。また、車両1の減速時は、モータ6により発電し、バッテリ10に蓄電するように構成され、エネルギ効率の良い運転が可能になっている。
【0018】
また、リヤファイナルドライブ装置7は、図2に示すように、左右輪間の差動機能と動力配分機能を有するもので、ベベルギヤ式の差動機構部11と、3列歯車からなる歯車機構部12と、後輪における左右輪間の駆動力配分を可変する2組のクラッチ機構部13とから主要に構成され、ディファレンシャルキャリア14内に一体的に収容されている。
【0019】
また、モータ6からの駆動力を伝達するドライブピニオン15は、差動機構部11のディファレンシャルケース16の外周に設けられたファイナルギヤ17と噛合されている。
【0020】
差動機構部11は、ディファレンシャルケース16に固定したピニオンシャフト18に回転自在に軸支されたディファレンシャルピニオン19と、これに噛み合う左右のサイドギヤ20L,20Rをディファレンシャルケース16内に収容して構成されている。これらサイドギヤ20L,20Rには、後軸8の端部がそれぞれ軸着されている。
【0021】
歯車機構部12は、第1,第2,第3の歯車21z1,21z2,21z3が、後軸8を回転中心として差動機構部11側から順に並設されており、第1の歯車21z1は、ディファレンシャルケース16に固定され、第2,第3の歯車21z2,21z3は、後軸8に固定されている。
【0022】
これら第1,第2,第3の歯車21z1,21z2,21z3は、同一回転軸芯上に配設された第4,第5,第6の歯車21z4,21z5,21z6と噛合され、第4の歯車21z4は、クラッチ機構部13の第1のデフコントロールクラッチ22aを介して第5の歯車21z5と連結・解放自在に構成されている。また、第4の歯車21z4は、クラッチ機構部13の第2のデフコントロールクラッチ22bを介して第6の歯車21z6と連結・解放自在に構成されている。
【0023】
そして、第1,第2,第3,第4,第5,第6の歯車21z1,21z2,21z3,21z4,21z5,21z6のそれぞれの歯数z1,z2,z3,z4,z5,z6は、例えば、82,78,86,46,50,42に設定されており、第1,第4の歯車21z1,21z4の歯車列((z4/z1)=0.56)を基準として、第2,第5の歯車21z2,21z5の歯車列((z5/z2)=0.64)が増速、第3,第6の歯車21z3,21z6の歯車列((z6/z3)=0.49)が減速の歯車列となっている。
【0024】
このため、第1,第2のデフコントロールクラッチ22a,22bの両方を連結作動させない場合、ドライブピニオン15からの駆動力は、そのまま差動機構部11を経て左右後輪5rl,5rrに等配分されるが、第1のデフコントロールクラッチ22aを連結作動させた場合は、右後輪5rrのトルク配分が大きくなり、通常の路面μであれば車両の左旋回性が向上される。また逆に、第2のデフコントロールクラッチ22bを連結作動させた場合は、左後輪5rlのトルク配分が大きくなり、通常の路面μであれば車両の右旋回性が向上される。
【0025】
第1,第2のデフコントロールクラッチ22a,22bは、複数のソレノイドバルブを擁した油圧回路で構成するデフコントロールクラッチ駆動部23と接続されており、このデフコントロールクラッチ駆動部23で発生される油圧で解放・連結が行われる。そして、デフコントロールクラッチ駆動部23を駆動させる制御信号(各ソレノイドバルブに対する出力信号)は、制御装置30から出力されるようになっている。こうして、リヤファイナルドライブ装置7とデフコントロールクラッチ駆動部23とで左右駆動力配分可変手段が構成されている。
【0026】
制御装置30は、マイクロコンピュータとその周辺回路により構成され、車両全体の総合的な制御、すなわち、エンジン2に関する制御、機械式自動変速機3に関する制御(主にクラッチ装置の制御)、モータ6に関する制御、バッテリ10に関する制御、デフコントロールクラッチ駆動部23に関する制御等を実行すると共に、車両1の駆動制御を実行する。
【0027】
そして、制御装置30では、駆動制御に関しては、機械式自動変速機3のクラッチ装置のクラッチレリーズストローク、エンジン回転数Ne、スロットル開度Th、ギヤ比i、車速V、操舵角θ等のセンサ値、シフトポジション等のスイッチ信号や、路面摩擦係数μ等の推定演算値が入力されて、後述する駆動制御プログラムに従って車両1の駆動制御を実行する。
【0028】
以下、制御装置30で実行される駆動制御を、図3の駆動制御プログラムのフローチャートに基づき説明する。この駆動制御プログラムは所定時間毎に実行され、まず、ステップ(以下「S」と略称)101で必要パラメータ、すなわち、機械式自動変速機3のクラッチ装置のクラッチレリーズストローク、エンジン回転数Ne、スロットル開度Th、ギヤ比i、車速V、操舵角θ等のセンサ値、シフトポジション等のスイッチ信号や、路面摩擦係数μ等の推定演算値を入力する。
【0029】
次いで、S102に進み、通常の駆動制御を実行する。この通常の駆動制御とは、後輪駆動力を、4輪駆動車としての性能を発揮するために前輪駆動力に所定の比率、例えば、0.3を乗じた値に制御することを基本として実行する。そして、高μ路等の走行条件により、4輪駆動車としての性能が必要無い場合は、前輪駆動力に乗じる比率を0にする等して可変し駆動制御する。
【0030】
その後、S103に進み、変速が開始されたか否か判定する。この変速開始の判定は、クラッチレリーズストロークの値から判定する。この判定の結果、変速開始ではない場合は、再びS101に戻り、変速開始の場合はS104に進む。
【0031】
S104では、図4に示す前輪駆動力Ffa演算ルーチンに従って、前輪駆動力Ffaを演算する。図4のフローチャートでは、まず、S201で、エンジン回転数Neとスロットル開度Thを基に、予め設定しておいたマップ(図5)を参照してエンジントルクTeを設定する。
【0032】
次いで、S202に進み、クラッチレリーズストロークを基に予め設定しておいたマップ(図6)を参照してクラッチ伝達トルク容量Tcを設定する。
【0033】
その後、S203に進み、エンジントルクTeとクラッチ伝達トルク容量Tcとを比較して、エンジントルクTeの方がクラッチ伝達トルク容量Tcより小さければS204に進み、トランスミッション入力トルクTiをエンジントルクTeとする。また、エンジントルクTeがクラッチ伝達トルク容量Tc以上の場合はS205に進み、トランスミッション入力トルクTiをクラッチ伝達トルク容量Tcとする。
【0034】
そして、S204或いはS205でトランスミッション入力トルクTiを設定した後、S206に進み、前輪駆動力Ffaを以下(1)式に基づき演算する。
Ffa=Ti・i/R …(1)
ここで、Rはタイヤ半径。
【0035】
S104で前輪駆動力Ffaを演算した後、S105に進み、目標4輪合計駆動力F4tを演算する。
この目標4輪合計駆動力F4tは、変速前の4輪合計駆動力F1と変速後の4輪合計駆動力F2と変速開始からの経過時間tとで以下の(2)式に基づき演算する。T0を目標とする変速時間として、
F4t=(F2−F1)・t/T0+F1 …(2)
すなわち、変速前の4輪合計駆動力F1と変速後の4輪合計駆動力F2とから経過時間tに応じた、変速中の目標4輪合計駆動力F4tの変化を推定して、変速中の目標4輪合計駆動力F4tを滑らかに設定する。
【0036】
ここで、変速前の4輪合計駆動力F1は、変速前のエンジントルクをTe1、ギヤ比をi1、ファイナルギヤ比をGfとすると、
F1=Te1・i1・Gf/R
尚、エンジントルクTe1は、変速前のエンジン回転数Ne1とスロットル開度Th1を基に図5を参照して求めたものである。
【0037】
また、変速後の4輪合計駆動力F2は、変速後のエンジントルクをTe2、ギヤ比をi2として、
F2=Te2・i2・Gf/R
ここで、変速後のエンジントルクTe2は、変速後のエンジン回転数Ne2とスロットル開度Th2を基に図5を参照して求めたものである。そして、変速後のエンジン回転数Ne2は、Ne2=Ne1・i1/i2で算出する。
【0038】
次いで、S106に進むと、S104で演算した前輪駆動力FfaとS105で演算した目標4輪合計駆動力F4tとを基に、後輪目標駆動力Frtを演算する。
Frt=F4t−Ffa …(3)
【0039】
次に、S107に進み、後輪目標駆動力Frtが、タイヤのスリップ限界を超えるか否か判定する。このタイヤのスリップ限界を規定する限界値は、路面摩擦係数μに応じて設定し、限界値=Wr・μ・R(Wrは後軸荷重)で設定する。
【0040】
このS107での結果、後輪目標駆動力Frtが限界値以上の場合はS108で後輪目標駆動力Frtを限界値(=Wr・μ・R)に制限して、S109へと進む。一方、S107での結果、後輪目標駆動力Frtが限界値を越えていなければ、そのまま、S109に進む。
【0041】
S109では、車両挙動に応じて左右駆動力配分比Fri/Fro(旋回内側車輪の駆動力/旋回外側車輪の駆動力)を設定する。
Fri/Fro=k・|θ|・V …(4)
ここで、kは定数。
【0042】
すなわち、前輪駆動は弱アンダーステア傾向、後輪駆動ではオーバーステア傾向の旋回特性となる。そのため変速時には、モータ6による後輪駆動となるため、ステア特性は、弱アンダーステア傾向からオーバーステア傾向に変化し、ドライバに不自然な感覚を与える可能性がある。そこで、このステア特性の変化を抑制するべく左右駆動力配分比Fri/Froを補正して設定するのである。ここで、旋回特性の変化は操舵角θと車速Vが大きいほど顕著となるので、左右駆動力配分比Fri/Froは、上記(4)式に示すように、例えば操舵角θと車速Vの積に比例した値とする。尚、本実施の形態では、後輪をモータ駆動とするため、変速時にリヤ駆動となり、オーバーステア傾向を緩和するため旋回外側車輪のトルクを減少するようになっているが、前輪をモータ駆動する場合には、アンダーステア傾向となるため、旋回内側車輪のトルクを減少することでアンダーステア傾向を緩和することができる。
【0043】
そして、S110に進み、S106或いはS108で制限して設定した後輪目標駆動力Frtに基づきモータ6を駆動制御すると共に、S109で演算した左右駆動力配分比Fri/Froに基づきデフコントロールクラッチ駆動部23に対して制御信号を出力しデフコントロールクラッチ制御する。
【0044】
その後、S111で変速が終了したか否か判定し、変速が終了していなければ再びS104からの処理を繰り返し、変速が終了していればルーチンから抜ける。
【0045】
このような本発明の実施の形態による駆動制御装置による効果を、図7に示すのタイムチャートで説明する。まず、図7(b)でクラッチレリーズストロークの値から機械式自動変速機3のクラッチ装置が係合状態にあるときには、通常の駆動制御が行われ、4輪合計の駆動力は、図7(a)に示すように、前輪の駆動力と後輪の駆動力の和で表される。
【0046】
その後、図7(b)に示すように、クラッチレリーズストロークの値から機械式自動変速機3のクラッチ装置が解放に向かい変速を開始すると、図7(a)に示すように、エンジン2により駆動される前輪の駆動力は減少し、変速中では前輪の駆動力はゼロとなる。このとき、モータ6により駆動される後輪の駆動力(外側後輪+内側後輪)は次第に増加し、旋回中では、この後輪の駆動力が上記(3)式により求められた値となって、4輪合計の駆動力となるように滑らかに補われて出力される。このため、変速により発生が予想される強い引き込み感を伴う変速ショックが抑制され、例え、ドライバ操作によらない変速が行われても自然で、ドライバに不快感を与えることが防止される。また、変速中にモータ駆動力で補うにあたり、後輪の駆動力は、路面摩擦係数μに応じた限界値(=Wr・μ・R)に制限されるため、後輪がスリップすることが確実に防止される。
【0047】
また、この時の後輪の駆動力は、車両1の車速Vと旋回状態とを考慮して、上記(4)式に基づき旋回外側後輪に多く配分される。このため、例え、車両1が旋回中であっても車両のステア特性が変わるようなことが無く安定した旋回走行が継続できる。
【0048】
そして、図7(b)に示すように、クラッチレリーズストロークの値から機械式自動変速機3のクラッチ装置が係合されていくと、図7(a)に示すように、エンジン2により駆動される前輪の駆動力は再び増加され、モータ6により駆動される後輪の駆動力は再び減少される。その後、機械式自動変速機3のクラッチ装置が係合されると、再び通常の駆動制御に移行する。
【0049】
尚、本実施の形態による機械式自動変速機3は、自動変速可能な歯車変速機で説明したが、本発明はサブクラッチ付きの機械式自動変速機でも適用でき、この場合には、変速中でもトルクの伝達が可能なため、後輪目標駆動力Frtを低く抑えることができ、バッテリ10の消費電流を抑えることができる。
【0050】
また、本実施の形態では、リヤファイナルドライブ装置7に設けた左右動力配分機能を用いて左右に駆動力の配分を行うようになっているが、ホイールモータを使用して左右輪の駆動力配分を行っても同様の効果を得ることができる。
【0051】
【発明の効果】
以上、説明したように本発明によれば、前軸または後軸の何れか一方を機械式自動変速機を介してエンジンで駆動し、他方をモータで駆動する4輪駆動車において、変速により発生が予想される強い引き込み感を伴う変速ショックを抑制し、例え、ドライバ操作によらない変速が行われても自然で、ドライバに不快感を与えることが有効に防止される。
【図面の簡単な説明】
【図1】車両に搭載した駆動制御装置の全体説明図
【図2】リヤファイナルドライブ装置の構成説明図
【図3】駆動制御プログラムのフローチャート
【図4】前輪駆動力演算ルーチンのフローチャート
【図5】エンジン回転数とスロットル開度に対するエンジントルクの特性説明図
【図6】クラッチレリーズストロークに対するクラッチ伝達トルク容量の特性説明図
【図7】駆動制御装置による効果を説明するタイムチャート
【符号の説明】
1 車両
2 エンジン
3 機械式自動変速機
4 前軸
5fl,5fr 前輪
5rl,5rr 後輪
6 モータ
7 リヤファイナルドライブ装置(左右駆動力配分可変手段)
8 後軸
10 バッテリ
23 デフコントロールクラッチ駆動部(左右駆動力配分可変手段)
30 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive control device for a hybrid four-wheel drive vehicle in which either a front shaft or a rear shaft is driven by an engine via a mechanical automatic transmission and the other is driven by a motor.
[0002]
[Prior art]
In recent years, in vehicles such as automobiles, hybrid vehicles using both an engine and a motor have been developed and put into practical use from the viewpoint of low pollution and resource saving, and there are various drive modes for the engine and motor of such a hybrid vehicle. Has been proposed. For example, in Japanese Patent Laid-Open No. 9-284911, one of a front shaft and a rear shaft is driven by an engine via a continuously variable transmission (CVT), and the other is driven by a motor. A four-wheel drive vehicle capable of selecting 4WD is disclosed.
[0003]
In addition to the combination of the torque converter and CVT shown in the prior art, the transmission and the engine connected to the engine automate the clutch and gear shift of the manual transmission with an actuator and maintain a high efficiency while maintaining a high efficiency. Similarly, it is considered to use an automatic mechanical transmission (AMT) that does not require manual shifting.
[0004]
[Problems to be solved by the invention]
By the way, in general, in manual transmissions, gears are shifted by shifting the clutch while returning the throttle of the engine at the time of shifting, so that acceleration is lost at the time of shifting and a shift shock with a strong pulling feeling occurs. In particular, in a mechanical automatic transmission, there is a case where a gear shift is performed even if the driver does not perform a gear shift operation, and there is a tendency that an unpleasant feeling with respect to a gear shift shock tends to be strong, and there is a high need for improvement.
[0005]
The present invention has been made in view of the above circumstances, and in a four-wheel drive vehicle in which either the front shaft or the rear shaft is driven by an engine via a mechanical automatic transmission and the other is driven by a motor, A drive control device for a four-wheel drive vehicle that suppresses a shift shock accompanied by a strong pull-in feeling that is expected to occur, for example, is natural even if a shift not performed by a driver is performed, and does not cause discomfort to the driver. It is intended to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a drive control device for a four-wheel drive vehicle according to the present invention as set forth in claim 1 drives either the front shaft or the rear shaft by an engine via a mechanical automatic transmission, and the other motor. In the drive control device for a four-wheel drive vehicle driven by the motor, the other driven by the motor is provided with a left / right driving force distribution variable means capable of changing the driving force distribution between the left and right wheels, and before the shift of the mechanical automatic transmission. A change in vehicle behavior that occurs in response to a change in drive control from to the time of shifting, and a change in the drive force distribution between the left and right wheels by the left and right drive force distribution variable means to suppress the vehicle behavior change. during the shifting of the mechanical automatic transmission is characterized in that the total driving force of the four wheels during the gear shift controls the driving force of the motor to maintain the total drive force of the four wheels of the pre-shift.
[0007]
According to a second aspect of the present invention, there is provided a drive control device for a four-wheel drive vehicle according to the first aspect of the present invention. In the drive control device for a four-wheel drive vehicle according to the first aspect, when the road surface friction coefficient of the traveling road surface is low, The upper limit driving force of the wheels driven by the motor is limited during shifting of the automatic transmission.
[0009]
In other words, the drive control device for a four-wheel drive vehicle according to claim 1 is provided with a left and right driving force distribution variable means capable of varying the driving force distribution between the left and right wheels on the other side driven by the motor, and the shift of the mechanical automatic transmission. A change in vehicle behavior that occurs in response to a change in drive control from the front to the front during a shift is estimated, and the drive force distribution between the left and right wheels is varied by the left and right drive force distribution variable means to suppress the vehicle behavior change, and the machine During the shifting of the automatic transmission, the driving force of the motor is controlled so that the total driving force of the four wheels being shifted maintains the total driving force of the four wheels before the shifting. For this reason, even when shifting from the normal running state to the shift state, the interrupted driving force from the engine is supplemented by the motor, and the shift shock accompanied by a strong pull-in feeling is suppressed. It ’s natural, and it does n’t make the driver uncomfortable. In addition, during shifting, the state of traveling on the front and rear shafts changes to the traveling state of only the other shaft driven by the motor, so the understeer tendency or oversteer tendency newly generated in the vehicle is suppressed by the left and right driving force distribution variable means, The vehicle behavior at the time of shifting to the shift can be stabilized.
[0010]
The drive control device for a four-wheel drive vehicle according to claim 2 limits the upper limit driving force of a wheel driven by a motor during a shift of a mechanical automatic transmission when the road surface friction coefficient of a traveling road surface is low. Thus, when the driving force is supplemented by the motor at the time of shifting, the driving force of the other shaft driven by the motor is prevented from becoming too large so that stable vehicle behavior can be maintained even on low μ roads. To do.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show an embodiment of the present invention, FIG. 1 is an overall explanatory diagram of a drive control device mounted on a vehicle, FIG. 2 is an explanatory diagram of the configuration of a rear final drive device, and FIG. 3 is a drive control program. FIG. 4 is a flowchart of a front wheel driving force calculation routine, FIG. 5 is a characteristic explanatory diagram of engine torque with respect to engine speed and throttle opening, FIG. 6 is a characteristic explanatory diagram of clutch transmission torque capacity with respect to a clutch release stroke, and FIG. It is a time chart explaining the effect by a drive control device.
[0013]
In FIG. 1, the code | symbol 1 shows a vehicle and the code | symbol 2 is an engine and is arrange | positioned at the vehicle front part. The output shaft of the engine 2 is connected to the mechanical automatic transmission 3, and the engine driving force is transmitted from the mechanical automatic transmission 3 to the front shaft 4 via a differential device (not shown), so that the left front wheel 5fl. And the right front wheel 5fr is driven.
[0014]
The mechanical automatic transmission 3 includes a clutch device configured by a normal mechanical clutch that presses and separates a clutch disc from the flywheel of the engine 2, and a gear-type transmission capable of shifting between a rear stage and a plurality of forward stages. (Not shown). When the transmission is automatically shifted, the clutch device is automatically connected / disconnected, and is capable of automatic shifting as well as manual shifting.
[0015]
The select lever 3a of the vehicle 1 operated by the driver includes an N (neutral) range, an R (reverse) range, a D (drive) range corresponding to the automatic transmission mode, and an M (manual) range corresponding to the manual transmission mode. Is provided.
[0016]
On the other hand, reference numeral 6 denotes a motor, and the output shaft of the motor 6 is connected to the rear final drive device 7, and the motor driving force is transmitted to the rear shaft 8 via the rear final drive device 7 so that the left rear The wheel 5rl and the right rear wheel 5rr are configured to be driven.
[0017]
The motor 6 is driven by the electric power stored in the battery 10 from the engine-driven generator 9. Further, when the vehicle 1 is decelerated, it is configured to generate electric power by the motor 6 and store it in the battery 10, thereby enabling an energy efficient operation.
[0018]
Further, as shown in FIG. 2, the rear final drive device 7 has a differential function between the left and right wheels and a power distribution function, and includes a bevel gear type differential mechanism section 11 and a gear mechanism section comprising three rows of gears. 12 and two sets of clutch mechanisms 13 that vary the distribution of driving force between the left and right wheels in the rear wheel, and are housed integrally in the differential carrier 14.
[0019]
The drive pinion 15 that transmits the driving force from the motor 6 is meshed with a final gear 17 provided on the outer periphery of the differential case 16 of the differential mechanism section 11.
[0020]
The differential mechanism unit 11 is configured by accommodating a differential pinion 19 rotatably supported on a pinion shaft 18 fixed to the differential case 16 and left and right side gears 20L, 20R meshing with the differential pinion 19 in the differential case 16. Yes. The end portions of the rear shaft 8 are respectively attached to the side gears 20L and 20R.
[0021]
The gear mechanism portion 12 includes first, second, and third gears 21z1, 21z2, and 21z3 arranged in parallel from the differential mechanism portion 11 side with the rear shaft 8 as a rotation center, and the first gear 21z1 is The second and third gears 21z2 and 21z3 are fixed to the rear shaft 8 and fixed to the differential case 16.
[0022]
These first, second, and third gears 21z1, 21z2, and 21z3 are meshed with fourth, fifth, and sixth gears 21z4, 21z5, and 21z6 disposed on the same rotation axis, and the fourth gear. The gear 21z4 is configured to be freely connected / released with the fifth gear 21z5 via the first differential control clutch 22a of the clutch mechanism section 13. Further, the fourth gear 21z4 is configured to be connectable and disengageable with the sixth gear 21z6 via the second differential control clutch 22b of the clutch mechanism section 13.
[0023]
The number of teeth z1, z2, z3, z4, z5 and z6 of the first, second, third, fourth, fifth and sixth gears 21z1, 21z2, 21z3, 21z4, 21z5 and 21z6 are For example, it is set to 82, 78, 86, 46, 50, 42, and the second, second, and second gears 21z1, 21z4 are referred to as the reference gear train ((z4 / z1) = 0.56). The gear train of the fifth gears 21z2 and 21z5 ((z5 / z2) = 0.64) is accelerated, and the gear train of the third and sixth gears 21z3 and 21z6 ((z6 / z3) = 0.49). It is a gear train for reduction.
[0024]
Therefore, when both the first and second differential control clutches 22a and 22b are not connected and operated, the driving force from the drive pinion 15 is equally distributed to the left and right rear wheels 5rl and 5rr via the differential mechanism section 11 as they are. However, when the first differential control clutch 22a is connected and operated, the torque distribution of the right rear wheel 5rr is increased, and the left turnability of the vehicle is improved when the road surface μ is normal. Conversely, when the second differential control clutch 22b is connected and operated, the torque distribution of the left rear wheel 5rl is increased, and the right turning performance of the vehicle is improved if the road surface μ is normal.
[0025]
The first and second differential control clutches 22a and 22b are connected to a differential control clutch drive unit 23 configured by a hydraulic circuit having a plurality of solenoid valves, and the hydraulic pressure generated by the differential control clutch drive unit 23. Is released and connected. A control signal (an output signal for each solenoid valve) for driving the differential control clutch drive unit 23 is output from the control device 30. Thus, the rear final drive device 7 and the differential control clutch drive unit 23 constitute left and right driving force distribution varying means.
[0026]
The control device 30 is constituted by a microcomputer and its peripheral circuits, and is related to overall control of the entire vehicle, that is, control related to the engine 2, control related to the mechanical automatic transmission 3 (mainly control of the clutch device), and motor 6. The control related to the battery 10, the control related to the differential control clutch drive unit 23, and the like are executed, and the drive control of the vehicle 1 is executed.
[0027]
In the control device 30, regarding the drive control, sensor values such as the clutch release stroke of the clutch device of the mechanical automatic transmission 3, the engine speed Ne, the throttle opening Th, the gear ratio i, the vehicle speed V, the steering angle θ, and the like. A switch signal such as a shift position and an estimated calculation value such as a road surface friction coefficient μ are input, and drive control of the vehicle 1 is executed according to a drive control program described later.
[0028]
Hereinafter, the drive control executed by the control device 30 will be described based on the flowchart of the drive control program of FIG. This drive control program is executed every predetermined time. First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, the clutch release stroke of the clutch device of the mechanical automatic transmission 3, the engine speed Ne, the throttle Sensor values such as opening degree Th, gear ratio i, vehicle speed V, steering angle θ, switch signals such as shift position, and estimated calculation values such as road surface friction coefficient μ are input.
[0029]
Next, in S102, normal drive control is executed. This normal drive control is basically based on controlling the rear wheel drive force to a value obtained by multiplying the front wheel drive force by a predetermined ratio, for example, 0.3 in order to exhibit the performance as a four-wheel drive vehicle. Execute. When the performance as a four-wheel drive vehicle is not required due to traveling conditions such as a high μ road, the drive control is performed by varying the ratio of multiplying the front wheel drive force by 0 or the like.
[0030]
Thereafter, the process proceeds to S103, in which it is determined whether or not shifting has been started. This shift start determination is made from the clutch release stroke value. As a result of the determination, if the shift is not started, the process returns to S101 again, and if the shift is started, the process proceeds to S104.
[0031]
In S104, the front wheel driving force Ffa is calculated according to the front wheel driving force Ffa calculation routine shown in FIG. In the flowchart of FIG. 4, first, in S201, the engine torque Te is set with reference to a preset map (FIG. 5) based on the engine speed Ne and the throttle opening degree Th.
[0032]
Next, in S202, the clutch transmission torque capacity Tc is set with reference to a map (FIG. 6) set in advance based on the clutch release stroke.
[0033]
Thereafter, the process proceeds to S203, where the engine torque Te and the clutch transmission torque capacity Tc are compared. If the engine torque Te is smaller than the clutch transmission torque capacity Tc, the process proceeds to S204, and the transmission input torque Ti is set as the engine torque Te. If the engine torque Te is equal to or greater than the clutch transmission torque capacity Tc, the process proceeds to S205, and the transmission input torque Ti is set to the clutch transmission torque capacity Tc.
[0034]
Then, after setting the transmission input torque Ti in S204 or S205, the process proceeds to S206, and the front wheel driving force Ffa is calculated based on the following equation (1).
Ffa = Ti · i / R (1)
Here, R is the tire radius.
[0035]
After calculating the front wheel driving force Ffa in S104, the process proceeds to S105, and the target four-wheel total driving force F4t is calculated.
This target four-wheel total driving force F4t is calculated based on the following equation (2) with the four-wheel total driving force F1 before shifting, the four-wheel total driving force F2 after shifting, and the elapsed time t from the start of shifting. As a shift time with T0 as a target,
F4t = (F2-F1) .t / T0 + F1 (2)
That is, a change in the target four-wheel total driving force F4t during the shift according to the elapsed time t is estimated from the total four-wheel driving force F1 before the shift and the four-wheel total drive force F2 after the shift, The target four-wheel total driving force F4t is set smoothly.
[0036]
Here, the four-wheel total driving force F1 before the shift is given by assuming that the engine torque before the shift is Te1, the gear ratio is i1, and the final gear ratio is Gf.
F1 = Te1, i1, Gf / R
The engine torque Te1 is obtained with reference to FIG. 5 based on the engine speed Ne1 and the throttle opening degree Th1 before shifting.
[0037]
Also, the four-wheel total driving force F2 after the shift is calculated by assuming that the engine torque after the shift is Te2 and the gear ratio is i2.
F2 = Te2, i2, Gf / R
Here, the engine torque Te2 after the shift is obtained with reference to FIG. 5 based on the engine speed Ne2 and the throttle opening degree Th2 after the shift. Then, the engine speed Ne2 after the shift is calculated as Ne2 = Ne1 · i1 / i2.
[0038]
Next, in S106, the rear wheel target driving force Frt is calculated based on the front wheel driving force Ffa calculated in S104 and the target four-wheel total driving force F4t calculated in S105.
Frt = F4t−Ffa (3)
[0039]
Next, in S107, it is determined whether or not the rear wheel target driving force Frt exceeds the tire slip limit. The limit value that defines the tire slip limit is set according to the road surface friction coefficient μ, and is set to limit value = Wr · μ · R (Wr is the rear axle load).
[0040]
As a result of S107, if the rear wheel target driving force Frt is equal to or greater than the limit value, the rear wheel target driving force Frt is limited to the limit value (= Wr · μ · R) in S108, and the process proceeds to S109. On the other hand, as a result of S107, if the rear wheel target driving force Frt does not exceed the limit value, the process proceeds to S109 as it is.
[0041]
In S109, the left / right driving force distribution ratio Fri / Fro (the driving force of the turning inner wheel / the driving force of the turning outer wheel) is set according to the vehicle behavior.
Fri / Fro = k · | θ | · V (4)
Here, k is a constant.
[0042]
That is, the front wheel drive has a weak understeering tendency, and the rear wheel drive has an oversteering turning characteristic. Therefore, since the rear wheels are driven by the motor 6 at the time of shifting, the steering characteristic changes from a weak understeering tendency to an oversteering tendency, which may give an unnatural feeling to the driver. Therefore, the left / right driving force distribution ratio Fri / Fro is corrected and set in order to suppress the change in the steering characteristic. Here, since the change in the turning characteristic becomes more significant as the steering angle θ and the vehicle speed V are larger, the left / right driving force distribution ratio Fri / Fro is, for example, the steering angle θ and the vehicle speed V as shown in the above equation (4). The value is proportional to the product. In this embodiment, since the rear wheels are driven by a motor, the rear wheels are driven at the time of shifting, and the torque of the turning outer wheel is reduced to alleviate the oversteer tendency, but the front wheels are driven by a motor. In such a case, an understeer tendency tends to occur. Therefore, the understeer tendency can be reduced by reducing the torque of the turning inner wheel.
[0043]
In S110, the motor 6 is driven and controlled based on the rear wheel target driving force Frt set by limiting in S106 or S108, and the differential control clutch driving unit based on the left / right driving force distribution ratio Fri / Fro calculated in S109. A control signal is output to 23 and the differential control clutch is controlled.
[0044]
Thereafter, it is determined in S111 whether or not the shift has been completed. If the shift has not been completed, the processing from S104 is repeated again, and if the shift has been completed, the routine is exited.
[0045]
The effects of the drive control apparatus according to the embodiment of the present invention will be described with reference to a time chart shown in FIG. First, when the clutch device of the mechanical automatic transmission 3 is in the engaged state from the value of the clutch release stroke in FIG. 7B, normal drive control is performed, and the total driving force of the four wheels is shown in FIG. As shown in a), it is represented by the sum of the driving force of the front wheels and the driving force of the rear wheels.
[0046]
Thereafter, as shown in FIG. 7 (b), when the clutch device of the mechanical automatic transmission 3 starts shifting toward the release from the value of the clutch release stroke, it is driven by the engine 2 as shown in FIG. 7 (a). The driving force of the front wheels is reduced, and the driving force of the front wheels becomes zero during shifting. At this time, the driving force of the rear wheels driven by the motor 6 (outer rear wheel + inner rear wheel) gradually increases, and during turning, the driving force of the rear wheels is the value obtained by the above equation (3). Thus, the output is smoothly compensated so as to obtain the total driving force of the four wheels. For this reason, a shift shock accompanied by a strong pull-in feeling that is expected to occur due to a shift is suppressed, and even if a shift that does not depend on a driver operation is performed, it is natural to prevent the driver from feeling uncomfortable. Also, when supplementing with motor driving force during shifting, the driving force of the rear wheel is limited to a limit value (= Wr · μ · R) corresponding to the road surface friction coefficient μ, so that the rear wheel is sure to slip. To be prevented.
[0047]
Further, the driving force of the rear wheels at this time is largely distributed to the turning outer rear wheel based on the above equation (4) in consideration of the vehicle speed V of the vehicle 1 and the turning state. For this reason, even if the vehicle 1 is making a turn, the steer characteristic of the vehicle does not change, and a stable turn can be continued.
[0048]
Then, as shown in FIG. 7 (b), when the clutch device of the mechanical automatic transmission 3 is engaged from the value of the clutch release stroke, the engine 2 is driven as shown in FIG. 7 (a). The driving force of the front wheels is increased again, and the driving force of the rear wheels driven by the motor 6 is decreased again. Thereafter, when the clutch device of the mechanical automatic transmission 3 is engaged, normal drive control is resumed.
[0049]
Although the mechanical automatic transmission 3 according to the present embodiment has been described as a gear transmission capable of automatic transmission, the present invention can also be applied to a mechanical automatic transmission with a sub-clutch. Since torque can be transmitted, the rear wheel target driving force Frt can be suppressed low, and the current consumption of the battery 10 can be suppressed.
[0050]
Further, in the present embodiment, the left and right driving force distribution function provided in the rear final drive device 7 is used to distribute the driving force to the left and right, but the wheel motor is used to distribute the driving force of the left and right wheels. Even if it performs, the same effect can be acquired.
[0051]
【The invention's effect】
As described above, according to the present invention, one of the front shaft and the rear shaft is driven by an engine via a mechanical automatic transmission and the other is driven by a motor. Therefore, it is possible to suppress a shift shock accompanied by a strong pull-in feeling that is expected to occur. For example, even if a shift not performed by the driver is performed, it is natural to effectively prevent the driver from feeling uncomfortable.
[Brief description of the drawings]
FIG. 1 is an overall explanatory diagram of a drive control device mounted on a vehicle. FIG. 2 is a configuration explanatory diagram of a rear final drive device. FIG. 3 is a drive control program flowchart. FIG. 4 is a front wheel drive force calculation routine flowchart. [Description of characteristics of engine torque with respect to engine speed and throttle opening] [FIG. 6] Description of characteristics of clutch transmission torque capacity with respect to clutch release stroke [FIG. 7] Time chart illustrating effects of drive control device [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Engine 3 Mechanical automatic transmission 4 Front shaft 5fl, 5fr Front wheel 5rl, 5rr Rear wheel 6 Motor 7 Rear final drive device (right and left driving force distribution variable means)
8 Rear shaft 10 Battery 23 Differential control clutch drive unit (right and left driving force distribution variable means)
30 Control device

Claims (2)

前軸または後軸の何れか一方を機械式自動変速機を介してエンジンで駆動し、他方をモータで駆動する4輪駆動車の駆動制御装置において、
上記モータで駆動する上記他方に左右輪間の駆動力配分を可変自在な左右駆動力配分可変手段を設け、
上記機械式自動変速機の変速前から変速中にかけての駆動制御の変化に応じて発生する車両挙動の変化を推定し、上記左右駆動力配分可変手段で上記左右輪間の駆動力配分を可変して上記車両挙動変化を抑制すると共に、
上記機械式自動変速機の変速中は、変速中の4輪の合計駆動力が変速前の4輪の合計駆動力を維持するべく上記モータの駆動力を制御することを特徴とする4輪駆動車の駆動制御装置。
In a drive control device for a four-wheel drive vehicle in which either the front shaft or the rear shaft is driven by an engine via a mechanical automatic transmission and the other is driven by a motor.
The other driven by the motor is provided with a left / right driving force distribution variable means capable of changing the driving force distribution between the left and right wheels,
A change in vehicle behavior that occurs in response to a change in drive control from before the gear shift to during the gear shift of the mechanical automatic transmission is estimated, and the drive force distribution between the left and right wheels is varied by the left and right drive force distribution varying means. To suppress the above vehicle behavior change,
During the shift of the mechanical automatic transmission, the four-wheel drive is characterized in that the driving force of the motor is controlled so that the total driving force of the four wheels being shifted maintains the total driving force of the four wheels before the shifting. Car drive control device.
走行する路面の路面摩擦係数が低い場合は、上記機械式自動変速機の変速中に上記モータで駆動する車輪の上限駆動力を制限することを特徴とする請求項1記載の4輪駆動車の駆動制御装置。  2. The four-wheel drive vehicle according to claim 1, wherein when the road surface friction coefficient of the traveling road surface is low, an upper limit driving force of a wheel driven by the motor is limited during a shift of the mechanical automatic transmission. Drive control device.
JP2000169588A 2000-06-06 2000-06-06 Drive control device for four-wheel drive vehicle Expired - Fee Related JP4155378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169588A JP4155378B2 (en) 2000-06-06 2000-06-06 Drive control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169588A JP4155378B2 (en) 2000-06-06 2000-06-06 Drive control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2001347846A JP2001347846A (en) 2001-12-18
JP4155378B2 true JP4155378B2 (en) 2008-09-24

Family

ID=18672426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169588A Expired - Fee Related JP4155378B2 (en) 2000-06-06 2000-06-06 Drive control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP4155378B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341299B2 (en) * 2003-05-26 2009-10-07 日産自動車株式会社 Wheel drive device
KR102440501B1 (en) * 2016-12-14 2022-09-06 현대자동차주식회사 Method of Torque Vectoring Control including Turn Acceleration and Vehicle thereof
JP7170966B2 (en) * 2018-10-10 2022-11-15 マツダ株式会社 vehicle drive
JP2020090217A (en) * 2018-12-06 2020-06-11 スズキ株式会社 Control device of vehicle
JP7363170B2 (en) * 2019-08-01 2023-10-18 日産自動車株式会社 Shift control method and shift control system

Also Published As

Publication number Publication date
JP2001347846A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
EP1352775B1 (en) A method of operating a hybrid electric vehicle
US8489304B2 (en) Torque distribution control apparatus for four-wheel drive vehicle
US7374255B2 (en) Control method for four-wheel drive vehicle
JP5559421B2 (en) Driving force distribution control device and four-wheel drive vehicle
JP5808601B2 (en) Driving force distribution control device and four-wheel drive vehicle
EP1627763B1 (en) Control method for four-wheel drive vehicle
JP5307602B2 (en) Vehicle power transmission control device
CN110871782A (en) Hybrid vehicle
US9855936B2 (en) System and method to improve engagement shift quality in automatic transmissions using engagement brake torque control
JP4155378B2 (en) Drive control device for four-wheel drive vehicle
JP5307603B2 (en) Vehicle power transmission control device
JP4417203B2 (en) Driving force control method for four-wheel drive vehicle
JP4263459B2 (en) Vehicle differential limiting control device
JP4162471B2 (en) Drive control device for front and rear wheel drive vehicles
WO2020054765A1 (en) Control device
JP2005289161A (en) Driving force control method of 4-wheel drive vehicle
JP2001112101A (en) Controller of vehicle equipped with motor generator
JPWO2020022224A1 (en) Control device
JP6715901B2 (en) Drive
JP5039000B2 (en) Driving force control device
JP5685429B2 (en) Driving force distribution control device for all-wheel drive vehicles
US11407404B2 (en) Operating continuously variable transmission at discrete gear ratios
JPH0692156A (en) Torque transmitting quantity control device for four-wheel-drive vehicle
JP2004314762A (en) Control device of frictional engagement apparatus for vehicle
JP2550682B2 (en) Front and rear wheel differential control device for four-wheel drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4155378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees