JP4154741B2 - Manufacturing method of glass powder for artificial marble - Google Patents

Manufacturing method of glass powder for artificial marble Download PDF

Info

Publication number
JP4154741B2
JP4154741B2 JP29794997A JP29794997A JP4154741B2 JP 4154741 B2 JP4154741 B2 JP 4154741B2 JP 29794997 A JP29794997 A JP 29794997A JP 29794997 A JP29794997 A JP 29794997A JP 4154741 B2 JP4154741 B2 JP 4154741B2
Authority
JP
Japan
Prior art keywords
glass
glass powder
artificial marble
powder
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29794997A
Other languages
Japanese (ja)
Other versions
JPH11116294A (en
Inventor
進一 田邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP29794997A priority Critical patent/JP4154741B2/en
Publication of JPH11116294A publication Critical patent/JPH11116294A/en
Application granted granted Critical
Publication of JP4154741B2 publication Critical patent/JP4154741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • C04B2111/542Artificial natural stone
    • C04B2111/545Artificial marble

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浴槽等の材料に好適に用いられる人造大理石に配合するガラスパウダ−に関するものである。
【0002】
【従来の技術】
人造大理石は、外観に優れると共に天然の大理石と比ぺ、安価で軽量で強度もあることから、浴槽等の材料として広く用いられている。
人造大理石は、一般に不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂などの熱硬化性樹脂中に水酸化アルミニウム、ガラスパウダ−、フィラーを分散させた構造を有する。しかし、ガラスフィラーを使用することにより透明感を付与した人造大理石は、近年普及してきた24時間風呂のように長時間温水に漬かった状態で使用するとブリスターや白化が生じ外観に問題が生じやすいという問題があった。
これらの問題を解決するために最近は特開平8−268742号公報に開示されているように、B2 O3 及ぴR2 Oの含有量が少ないガラスパウダ−を用いると共に、ガラスパウダ−中の各成分の割合を調節し、ガラスパウダ−の屈折率を合成樹脂の屈折率と一致させることにより、上記の問題を解決している。
しかし、耐熱水性を向上させると溶融性が悪くなり、生産コストが上昇するという問題がある。また、透明性が高いと、裏面の状態まで見えるため、酸化チタン等の光拡散の効果を持つ物質を配合しているが、特に半透明感を維持しながら酸化チタンなどの分散の状態を均一にすることが難しいという問題もある。
耐熱水性に優れた組成の1つとしてEガラスがあり、Eガラスの組成は、無アルカリガラスであり、R2 Oは、0.8重量%以下(以後特に断らない限り%は重量%を意味する。)であるため、その耐熱水性およぴ強度に優れた特性から、Eガラス繊維はFRPあるいは熱可塑性樹脂の補強に大量に使用されている。
しかし、Eガラスは、天然原料を使用し、また、溶融温度も高く、炉材の侵食等から、Fe2O3 、Cr2Oがガラス中に溶けだし、その影響で透明であるが緑色に着色している。 そのためEガラスパウダ−を配合した人造大理石は、緑色に着色し、白色あるいは、ベ−ジュ色などの暖色系統の色を鮮やかに出すことが困難であるなどの問題が生じ、一部の用途でしか使用しなかった。
この様な現象はEガラスパウダ−に限らず透明でしかも緑あるいは青色に着色しているガラスパウダ−一般にいえることである。着色の原因の大きい原因であるFe2O3 は原料の中に含まれるものが多いが、Fe2O3 の少ない原料は高価である。
【0003】
【発明が解決しようとする課題】
本発明の課題は優れた耐熱水性を維持しながら、透明で、着色しているガラスパウダ−を配合した人造大理石の色の鮮やかさ、明るさなどの色相を改善することができるガラスパウダ−の製造を可能にし、それを配合した透明感の調整が容易で、しかも耐熱水性に優れた人造大理石を提供することにある。
【0004】
【課題を解決するための手段】
本発明者は、このような課題を解決するために鋭意検討を重ねた結果、ガラスパウダ−を部分的に結晶化させることにより、目的を達成できることを見出した。即ち、本発明は、ガラスの粉末に炭酸カルシウム、ドロマイト、珪酸カルシウムの微粉末を0.1〜40重量%添加し、良く混合し、700℃以上の温度で焼成し、ウオラストナイトまたは、アノ一サイトを0.1〜20重量%析出させ再度粉砕したガラスフィラーを提供することができる。結晶成分において、ウオラストナイトがフイラーとして使用されているように、アノーサイトも色相、耐熱水性には、全く問題はない。以下本発明をEガラスの場合を例にして説明するが、人造大理石の充填材として使用可能なガラスパウダ−で透明でしかも緑、青などに着色しているものであれば本発明を適用することができることはいうまでもない。本発明に使用するガラスの組成としてEガラスをあげると、SiO 52−56%、TiO 0−0.4%、Al 12−16%、B 8−13、Fe 0.05−0.4%、MgO 0−6%、CaO 16−25%、RO 0−3%、F 0−0.5%のものが代表的なものである。本発明では、まずこの組成の範囲のガラスをボ−ルミルなどの公知の粉砕方法により40メッシュ(420μm)以下に粉砕し必要があれば「フルイ」などで分級し粒度を揃える。
【0005】
ついでこのEガラスパウダ−の表面に炭酸カルシウム、ドロマイト、珪酸カルシウムなどの鉱物の微粉末が付着あるいは接するよう十分混合される。これら鉱物はEガラス粒子の表面あるいはその近くで加熱により、ウオラストナイト、アノ−サイトの結晶を発生させることが出来れば良く、そのため粒度は小さい方が望ましい。具体的には直径が400μm以下、好ましくは10−100μmであることが望ましい。炭酸カルシウム、ドロマイト、珪酸カルシウムなどの鉱物はその成分中に大量にCaOを含み、Eガラスの表面に接した状態で700℃以上の高温度で加熱されると接点で固溶体が生じ、これらの鉱物の融点がEガラスよりも高いためカルシウムの多い成分がEガラス側へ拡散していき、Eガラス粒子表面あるいは内部にアノ−サイト(CaAlSi)、ウオラストナイト(CaSiO)の結晶が成長する。加熱温度が高すぎるとEガラスが溶融し互いに融着し加熱後の粉砕によけいなエネルギ−が必要になるばかりでなく、表面に付けた鉱物も溶解し相互に成分の拡散が起き結晶の発生が減少する場合もあるので混合する鉱物の種類と配合量により変わるが、概略の上限の温度としては1050℃程度以下が望ましい。
【0006】
加熱時間は、高温で長時間加熱すれば結晶化が促進されるが、燃料が多く必要になる、加熱時間が長くなるにつれて、結晶の増加が鈍ってくるなどと効率の関連で少なくとも30分以上2時間以下が適当である。30分以下では結晶の発生が少なく、2時間以上加熱しても結晶の増加はわずかである。
これらの結晶とEガラスとの屈折率に差が有るので結晶表面で乱反射が生じ、Eガラスを透過する光のほかにEガラス粒子の表面近くで反射される光となり、緑色の着色を減少させ、白い反射光を増やすことにより緑色を弱めることに成功したものである。。
反応しなかった炭酸カルシウム、ドロマイトは酸化カルシウム、酸化マグネシウムとしてEガラス粒子の表面に存在するため必要に応じ水などで溶解除去する。 この様に高温処理したEガラス粒子と前記炭酸カルシウムなどの混合物は部分的に融着しているので再び粉砕する。未反応の酸化カルシウム、酸化マグネシウムがあれば、この段階で除去する。
ガラスパウダ−に含まれるウオラストナイト、アノ−サイトの結晶の量は、0.1−20%が適当である。0.1%以下では配合の効果がはっきりせず。20%以上ではガラスパウダ−の色に差がない。
ガラス中の結晶量の測定は、X線回折法により行うことができる。
【0007】
通常、このガラスパウダ−の表面とマトリックス樹脂の結合が強固になるよう、使用するマトリックス樹脂に合わせてシランカップリング剤等の表面処理剤で処理する。
例えば、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−N´−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、γ−アニリノプロピルトリエトキシシランのようなアミノシラン類はエポキシ樹脂、フェノ−ル樹脂などにの補強に、γ−グリシドキシプロピルトリエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルルトリエトキシシランのようなエポキシシラン類はポリエステル樹脂、エポキシ樹脂、フェノ−ル樹脂などの補強に、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリエトキシシランのようなビニルシラン類、γ−メタクリロキシプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどもそれぞれの樹脂に合わせて使用される。
【0008】
上記のガラスパウダ−を常法により合成樹脂中に分散させれば、耐熱水性に優れ透明感のある人造大理石を得ることができる。勿論、透明感の少ない石材調にしたい場合には、結晶量の多いガラスフィラーを使用すればよく、外観にすぐれた材料であることに相違はない。なお、本発明に用いられる合成樹脂としては、ポリカーポネート(屈折率1.586)、ポリスチレン(屈折率1.59)、ポリブロピレン(屈折率1.54)、ポリアセタール(屈折率1.48)、ナイロン(屈折率1.53)等の熱可塑性樹脂、アクリル樹脂(1.48〜1.57)、不飽和ポリエステル樹脂(屈折率1.52〜1.57)、エポキシ樹脂(屈折率1.61)等の熱硬化性樹脂が挙げられる。
【0009】
【実施例】
本発明を実施例を用いてさらに詳しく説明するが、本発明はこれらの実施例に限られるものではない。
実施例1
ボ−ルミルで40メッシュ以下に粉砕したEガラス粉末に、平均粒径70μmの炭酸カルシウムを5%添加、混練する。これを、950℃で1時間焼成する結晶化工程を経て、冷却後シランカッブリング剤、γ−アミノプロピルトリエトキシシランを0.8%添加して、再粉砕し、平均粒径30μmのガラスパウダ−とした。
このガラスパウダ−250gと不飽和ポリエステル樹脂100gr及び硬化剤1gを混練し、真空脱泡した。この混合物を60℃で1時間維持した後、80℃で1時間加熱硬化させて人造大理石を得た。このようにして得た人造大理石の耐熱水性及ぴ透明感についての評価を表1に示す。
【0010】
実施例2
炭酸カルシウムを10%添加し、以下実施例1と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0011】
実施例3
炭酸カルシウムを20%添加し、以下実施例1と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0012】
実施例4
炭酸カルシウムを30%添加し、以下実施例4と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0013】
実施例5
炭酸カルシウムを40%添加し、以下実施例1と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0014】
比較例1
Eガラスのみで平均粒度20μmに粉砕したガラスパウダ−を実施例1と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0015】
比較例2
SiO2 57wt%、Al2 O3 12.3wt%、CaO 25.0wt%、B2 O3 4.0wt%、R2 O 1.7wt%のガラスパウダ−(日東紡績(株)製)を実施例1と同様の方法により人造大理石を製造し、耐熱水性及ぴ透明感についての評価を表1に示す。
【0016】
【表1】

Figure 0004154741
【0017】
実施例1〜4のガラスフィラーを用いた人造大理石は、Eガラスの屈折率(1.56)に合成樹脂の屈折率に合わせることにより、透明感に優れ、比較例2よりも耐熱水性が良好であった。実施例5については、透明感が僅かしかないが、乳白色を示し、外観に優れたものである。比較例1は、透明感が強すぎ、暗緑色であり外観が悪かった。比較例2も透明感が強すぎて、裏面の状態を隠すために処理をしなければならなかった。
【0018】
【発明の効果】
本発明の人造大理石は、ガラスパウダ−を若干結晶化させることにより、色相を改善しているため、透明感に優れた美しい外観を有する。また、従来のものに比ぺ耐熱水性に優れ、浴槽等に使用した場合においても白化を生ずることがないため、耐用年数が長い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass powder to be blended with artificial marble which is preferably used for a material such as a bathtub.
[0002]
[Prior art]
Artificial marble is widely used as a material for bathtubs and the like because of its excellent appearance and low cost, light weight, and strength compared to natural marble.
Artificial marble generally has a structure in which aluminum hydroxide, glass powder, and filler are dispersed in a thermosetting resin such as unsaturated polyester resin, vinyl ester resin, and acrylic resin. However, artificial marble imparted with a transparent feeling by using glass filler is likely to cause blistering and whitening and to cause problems in appearance when used in a state where it has been soaked in warm water for a long time like a 24-hour bath that has become popular in recent years. There was a problem.
In order to solve these problems, as disclosed in JP-A-8-268742, a glass powder having a low content of B2 O3 and R2 O is used, and each component in the glass powder is used. The above problem is solved by adjusting the ratio of the glass powder so that the refractive index of the glass powder matches the refractive index of the synthetic resin.
However, when the hot water resistance is improved, there is a problem that the meltability deteriorates and the production cost increases. In addition, when the transparency is high, it can be seen even on the back surface, so it contains a substance with a light diffusion effect such as titanium oxide, but the state of dispersion of titanium oxide etc. is particularly uniform while maintaining a translucent feeling. There is also a problem that it is difficult to make.
One of the compositions excellent in hot water resistance is E glass, the composition of E glass is non-alkali glass, and R2 O is 0.8% by weight or less (hereinafter, unless otherwise specified,% means% by weight). Therefore, E glass fiber is used in a large amount for reinforcement of FRP or thermoplastic resin because of its excellent hot water resistance and strength.
However, E glass uses natural raw materials, has a high melting temperature, and Fe2O3 and Cr2O start to melt into the glass due to erosion of the furnace material, etc., and it is transparent but colored green. For this reason, artificial marble containing E glass powder is colored green and it is difficult to produce warm colors such as white or beige colors. Only used.
Such a phenomenon is not limited to E glass powder, but can be generally applied to glass powder that is transparent and colored green or blue. Fe2O3, which is a major cause of coloring, is often contained in raw materials, but raw materials with less Fe2O3 are expensive.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a glass powder that can improve hue such as vividness and brightness of artificial marble containing transparent and colored glass powder while maintaining excellent hot water resistance. An object of the present invention is to provide an artificial marble which can be produced, can be easily adjusted in transparency, and has excellent hot water resistance.
[0004]
[Means for Solving the Problems]
As a result of intensive studies in order to solve such problems, the present inventor has found that the object can be achieved by partially crystallizing the glass powder. That is, in the present invention, 0.1 to 40 % by weight of fine powders of calcium carbonate, dolomite , and calcium silicate are added to glass powder, mixed well, fired at a temperature of 700 ° C. or higher, and wollastonite or anodized. A glass filler in which 0.1 to 20% by weight of one site is deposited and ground again can be provided. As wollastonite is used as a filler in the crystalline component, there is no problem with anorthite in hue and hot water resistance. Hereinafter, the present invention will be described by taking the case of E glass as an example. However, the present invention is applied to any glass powder that can be used as a filler for artificial marble and is transparent and colored green or blue. It goes without saying that it can be done. E glass as a composition of the glass used in the present invention is SiO 2 52-56%, TiO 2 0-0.4%, Al 2 O 3 12-16%, B 2 O 3 8-13 % , Fe 2 O 3 0.05-0.4%, 0-6% MgO, CaO 16-25%, R 2 O 0-3%, that of F 2 0-0.5% are typical. In the present invention, the glass having this composition range is first pulverized to 40 mesh (420 μm) or less by a known pulverization method such as a ball mill, and if necessary, classified by “Fluy” etc. to make the particle sizes uniform.
[0005]
Next, fine powder of minerals such as calcium carbonate, dolomite , calcium silicate and the like is sufficiently mixed so as to adhere to or contact the surface of the E glass powder. These minerals only need to be able to generate wollastonite and ananosite crystals by heating at or near the surface of the E glass particles. Specifically, the diameter is 400 μm or less, preferably 10-100 μm. Minerals such as calcium carbonate, dolomite , and calcium silicate contain a large amount of CaO in their components, and when heated at a high temperature of 700 ° C. or higher in contact with the surface of E glass, a solid solution is formed at the contact point. Since the melting point of E glass is higher than that of E glass, the calcium-rich component diffuses toward the E glass side, and anorthite (CaAl 2 Si 2 O 8 ), wollastonite (CaSiO 3 ) Crystal grows. If the heating temperature is too high, the E glass melts and fuses with each other, and not only energy is required by grinding after heating, but also the mineral attached to the surface dissolves and the components diffuse to each other, generating crystals. However, the approximate upper limit temperature is desirably about 1050 ° C. or less.
[0006]
Crystallization is promoted by heating at a high temperature for a long time, but more fuel is required, and as the heating time becomes longer, the increase in crystals becomes dull and at least 30 minutes or more in relation to efficiency. Two hours or less is appropriate. The generation of crystals is less than 30 minutes, and the increase in crystals is slight even when heated for 2 hours or more.
Since there is a difference in refractive index between these crystals and E glass, irregular reflection occurs on the crystal surface, and in addition to the light transmitted through E glass, the light is reflected near the surface of E glass particles, reducing the green coloration. It has succeeded in weakening the green color by increasing the white reflected light. .
Unreacted calcium carbonate and dolomite are present on the surface of the E glass particles as calcium oxide and magnesium oxide, so they are dissolved and removed with water as necessary. Since the mixture of E glass particles and calcium carbonate treated at such a high temperature is partially fused, it is pulverized again. Any unreacted calcium oxide or magnesium oxide is removed at this stage.
The amount of wollastonite and anosite crystals contained in the glass powder is suitably 0.1-20%. Below 0.1%, the effect of blending is not clear. If it is 20% or more, there is no difference in the color of the glass powder.
The amount of crystals in the glass can be measured by an X-ray diffraction method.
[0007]
Usually, the glass powder is treated with a surface treatment agent such as a silane coupling agent in accordance with the matrix resin used so that the bond between the surface of the glass powder and the matrix resin becomes strong.
For example, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -N′-β- (aminoethyl) -γ-aminopropyl Aminosilanes such as triethoxysilane and γ-anilinopropyltriethoxysilane are used to reinforce epoxy resin, phenolic resin, etc., and γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl). ) Epoxy silanes such as ethyl triethoxysilane are used to reinforce polyester resins, epoxy resins, phenol resins and the like, such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltriethoxysilane. Vinylsilanes, γ-methacryloxypropyltrimethoxysilane, γ-chloropropyltrimethyl Toxisilane, γ-mercaptopropyltrimethoxysilane and the like are also used in accordance with each resin.
[0008]
If the above-mentioned glass powder is dispersed in a synthetic resin by a conventional method, an artificial marble having excellent hot water resistance and transparency can be obtained. Of course, when it is desired to make a stone material with less transparency, a glass filler with a large amount of crystal may be used, and there is no difference in the material having an excellent appearance. The synthetic resin used in the present invention includes polycarbonate (refractive index 1.586), polystyrene (refractive index 1.59), polypropylene (refractive index 1.54), polyacetal (refractive index 1.48), Thermoplastic resin such as nylon (refractive index 1.53), acrylic resin (1.48 to 1.57), unsaturated polyester resin (refractive index 1.52 to 1.57), epoxy resin (refractive index 1.61) ) And the like.
[0009]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
5% of calcium carbonate having an average particle diameter of 70 μm is added to and kneaded with E glass powder ground to 40 mesh or less by a ball mill. This was subjected to a crystallization step of baking at 950 ° C. for 1 hour, and after cooling, 0.8% of a silane coupling agent and γ-aminopropyltriethoxysilane was added and pulverized again to obtain a glass powder having an average particle size of 30 μm. -.
250 g of this glass powder, 100 g of unsaturated polyester resin, and 1 g of a curing agent were kneaded and vacuum degassed. This mixture was maintained at 60 ° C. for 1 hour and then heat-cured at 80 ° C. for 1 hour to obtain an artificial marble. Table 1 shows the evaluation of hot water resistance and transparency of the artificial marble thus obtained.
[0010]
Example 2
10% of calcium carbonate was added, and artificial marble was produced in the same manner as in Example 1 below. Table 1 shows the evaluation of hot water resistance and transparency.
[0011]
Example 3
20% calcium carbonate was added, and artificial marble was produced in the same manner as in Example 1 below. Table 1 shows the evaluation of hot water resistance and transparency.
[0012]
Example 4
30% calcium carbonate was added, and artificial marble was produced by the same method as in Example 4 below. Table 1 shows the evaluation of hot water resistance and transparency.
[0013]
Example 5
40% calcium carbonate was added, and artificial marble was produced in the same manner as in Example 1 below. Table 1 shows the evaluation of hot water resistance and transparency.
[0014]
Comparative Example 1
An artificial marble was produced from a glass powder pulverized only with E glass to an average particle size of 20 μm by the same method as in Example 1. Table 1 shows the evaluation of hot water resistance and transparency.
[0015]
Comparative Example 2
A glass powder (manufactured by Nitto Boseki Co., Ltd.) of SiO2 57 wt%, Al2 O3 12.3 wt%, CaO 25.0 wt%, B2 O3 4.0 wt%, R2 O 1.7 wt% was produced in the same manner as in Example 1. Table 1 shows the evaluation of hot water resistance and transparency.
[0016]
[Table 1]
Figure 0004154741
[0017]
The artificial marble using the glass fillers of Examples 1 to 4 is excellent in transparency by matching the refractive index of the synthetic resin with the refractive index of E glass (1.56), and has better hot water resistance than Comparative Example 2. Met. About Example 5, although there is little translucency, milky white is shown and it is excellent in the external appearance. In Comparative Example 1, the transparency was too strong, dark green, and the appearance was poor. The comparative example 2 was too transparent and had to be processed to hide the state of the back side.
[0018]
【The invention's effect】
The artificial marble of the present invention has a beautiful appearance excellent in transparency because the hue is improved by slightly crystallizing the glass powder. In addition, it has excellent hot water resistance compared to conventional ones, and does not cause whitening even when used in a bathtub or the like, and therefore has a long service life.

Claims (4)

ガラスの粉末に、炭酸カルシウム、ドロマイト、珪酸カルシウムから選ばれた1種又は複数種を添加、混合し、その後700℃以上の温度で焼成し、ウオラストナイト又はアノーサイトの結晶を析出させ、次いで粉砕する人造大理石用ガラスパウダーの製造方法。One or more kinds selected from calcium carbonate, dolomite, and calcium silicate are added to glass powder, mixed, then fired at a temperature of 700 ° C. or higher to precipitate wollastonite or anorthite crystals, Manufacturing method of glass powder for artificial marble to be crushed. 前記ガラスの粉末のガラス組成が、SiO 52〜56重量%、TiO 0〜0.4重量%、Al 12〜16重量%、B 8〜13重量%、Fe 0.05〜0.4重量%、MgO 0〜6重量%、CaO 16〜25重量%、RO 0〜3重量%、F 0〜0.5重量%、である請求項1に記載の人造大理石用ガラスパウダーの製造方法。ただし、上記Rはアルカリ金属元素を示す。 Glass composition of the powder of the glass, SiO 2 52 - 56 wt%, TiO 2 0 to 0.4 wt%, Al 2 O 3 12~16 wt%, B 2 O 3 8~13 wt%, Fe 2 O 3 0.05 to 0.4 wt%, MgO Less than six percent by weight, CaO 16 to 25 wt%, R 2 O 0 to 3 wt%, F 2 0 to 0.5 wt%, a is in claim 1 The manufacturing method of the glass powder for artificial marble of description. However, said R shows an alkali metal element. 前記ガラスの粉末に、前記炭酸カルシウム、ドロマイト、珪酸カルシウムから選ばれた1種又は複数種を、0.1〜40重量%添加する請求項1又は請求項2に記載の人造大理石用ガラスパウダーの製造方法。The glass powder for artificial marble according to claim 1 or 2, wherein one or more kinds selected from calcium carbonate, dolomite, and calcium silicate are added to the glass powder in an amount of 0.1 to 40% by weight. Production method. 前記ウオラストナイト又はアノーサイトの結晶を、0.1〜20重量%析出させる請求項1〜3の何れか一項に記載の人造大理石用ガラスパウダーの製造方法。The method for producing glass powder for artificial marble according to any one of claims 1 to 3, wherein 0.1 to 20% by weight of the wollastonite or anorthite crystals are precipitated.
JP29794997A 1997-10-16 1997-10-16 Manufacturing method of glass powder for artificial marble Expired - Fee Related JP4154741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29794997A JP4154741B2 (en) 1997-10-16 1997-10-16 Manufacturing method of glass powder for artificial marble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29794997A JP4154741B2 (en) 1997-10-16 1997-10-16 Manufacturing method of glass powder for artificial marble

Publications (2)

Publication Number Publication Date
JPH11116294A JPH11116294A (en) 1999-04-27
JP4154741B2 true JP4154741B2 (en) 2008-09-24

Family

ID=17853182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29794997A Expired - Fee Related JP4154741B2 (en) 1997-10-16 1997-10-16 Manufacturing method of glass powder for artificial marble

Country Status (1)

Country Link
JP (1) JP4154741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833273B1 (en) 2007-03-14 2008-05-28 대림콩크리트공업 주식회사 Engineered stone with metal texture
CN114573259A (en) * 2022-04-07 2022-06-03 青岛农业大学 Preparation method of modified glass powder, cement-based 3D printing material and preparation method thereof

Also Published As

Publication number Publication date
JPH11116294A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
CN106587634B (en) A kind of direct speckle devitrified glass and preparation method thereof using molten blast furnace slag
CN105060682A (en) Process for preparing glass ceramics with melting method
CN109592904B (en) High strength lithium silicate glass composition with high shielding property
JP4154741B2 (en) Manufacturing method of glass powder for artificial marble
CN114105525A (en) Flame-retardant glass fiber composite material and preparation method thereof
JP3799375B2 (en) Dental porcelain
WO2019044323A1 (en) Filler powder and method for producing same
JP2009185001A (en) Ceramic composition for dentistry
CN109704573B (en) Red glass product and preparation method thereof
JPH11314942A (en) Colored glass powder
JP3269416B2 (en) Crystallized glass and method for producing the same
EP1007486A1 (en) Spectral modifiers for glass compositions
JPH046648B2 (en)
JP3688170B2 (en) Artificial stone containing waste glass
JP2747938B2 (en) Glass for resin filling
JP3357881B2 (en) Artificial marble
CN110451808A (en) A method of improving fluoride opal glass whiteness
JP2003192518A (en) Dental glass
JP4072229B2 (en) Dissolvable glass and antibacterial composition using the same
JPH0556300B2 (en)
JP3127256B2 (en) Method for producing crystallized glass
KR100579189B1 (en) Method for preparing the crystallized glass tile using cullet
JP2002338298A (en) Ultraviolet/infrared absorption glass and production method therefor
JP2737059B2 (en) Crystallized glass for building materials
KR100249930B1 (en) A composition of glass and its production method utilizing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees