JP4154105B2 - Steam valve - Google Patents

Steam valve Download PDF

Info

Publication number
JP4154105B2
JP4154105B2 JP2000063671A JP2000063671A JP4154105B2 JP 4154105 B2 JP4154105 B2 JP 4154105B2 JP 2000063671 A JP2000063671 A JP 2000063671A JP 2000063671 A JP2000063671 A JP 2000063671A JP 4154105 B2 JP4154105 B2 JP 4154105B2
Authority
JP
Japan
Prior art keywords
steam valve
hole
steam
mounting surface
screw hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000063671A
Other languages
Japanese (ja)
Other versions
JP2001248408A (en
Inventor
石 勉 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000063671A priority Critical patent/JP4154105B2/en
Publication of JP2001248408A publication Critical patent/JP2001248408A/en
Application granted granted Critical
Publication of JP4154105B2 publication Critical patent/JP4154105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Plates (AREA)
  • Control Of Turbines (AREA)
  • Valve Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービンの蒸気を制御するための蒸気弁に係り、特に、支持部材に対する蒸気弁本体の取付構造の改良に関する。
【0002】
【従来の技術】
火力発電所の蒸気タービンにおいて、タービンケーシングより蒸気通路の上流側に配置される蒸気弁は、固定用のサポート取付部(支持部材)を介して固定される。サポート取付部としては、蒸気弁弁本体すなわちケーシングに直接溶接されるタイプと蒸気弁本体にボルトによって固定されるタイプとがある。
【0003】
後者のボルト固定タイプのものでは、図5及び図6に示すように、図示しない弁体を収容する蒸気弁本体2に、その軸線2a方向に平行な取付面3が設けられている。この取付面3には、植え込みボルト用のネジ穴4が形成されている。
【0004】
このタイプの蒸気弁1を固定する際には、図7に示すように、取付面3に、前記サポート取付部としてのブラケット20が、ボルト21およびナット22により固定され、このブラケット20が建屋内でハンガーされる。
【0005】
通常の使用条件下においては、蒸気弁本体2の内部には高温蒸気が通流する一方で、蒸気弁本体2の外面は建屋内の雰囲気にさらされているため、蒸気弁本体2の内側と外側には温度差が生じ、その結果、蒸気弁本体2には熱応力が作用する。この熱応力は蒸気弁内面では圧縮応力、外面では引張応力となるが、取付面3のネジ穴4の入口側の穴縁には応力集中により取付面3の平坦部に作用する応力よりも高応力が作用することになる。この応力集中によりネジ穴4の穴縁には経年的にクリープによる亀裂が進展することになり、蒸気弁本体2の寿命を縮める要因となりうる。
【0006】
【発明が解決しようとする課題】
本発明は、上記実状に鑑みなされたものであり、蒸気弁本体の取付面のネジ穴の穴縁の亀裂発生を抑制することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、蒸気タービンの蒸気を制御する蒸気弁であって、弁体を収容する蒸気弁本体の外側に取付面が設けられ、前記取付面から前記蒸気弁本体の内部に向かって延びるネジ穴が前記蒸気弁本体に直接形成され、前記ネジ穴に螺合するボルトを用いて前記蒸気弁本体が支持部材に固定され、使用時に、前記蒸気弁本体の内部を通流する高温蒸気により前記蒸気弁本体の内側と外側に生じる温度差によって前記取付面に熱応力としての引張応力が発生するものにおいて、前記取付面の前記ネジ穴の入口側にザグリ穴が設けられ、前記ザグリ穴の輪郭が直線部分を含んでおり、前記直線部分が前記ザグリ穴の入口近傍における主応力作用方向と平行とした蒸気弁を提供する。
【0008】
本発明によれば、ネジ穴の入口側にザグリ穴が設けられているため、ネジ穴の穴縁と蒸気弁本体の内面との距離を少なくすることができ、ネジ穴の穴縁と蒸気弁本体の内面との温度差を低減でき、これによりネジ穴の穴縁に作用する熱応力を軽減することができる。また、ザグリ穴を設けることにより応力集中を軽減することができる。特に、ザグリ穴の断面の輪郭が直線部分を含んでおり、この直線部分を前記ザグリ穴の入口近傍における主応力作用方向と略平行に設定しているため、主応力方向に関するザグリ穴の曲率半径は無限大となり、応力集中を最小にすることができる。
【0009】
なお、前記ネジ穴の中心位置はザグリ穴の中心位置から前記主応力作用方向に沿ってずれていてもよい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図1乃至図4を参照して説明する。なお、以下の説明においては、従来技術を説明する図5乃至図7に表示した部材と同一の部材については同一符号を付すものとする。
【0011】
図1及び図2に示すように、蒸気弁本体2の取付面3には、取付面3から蒸気弁本体2の内部に向かって延びるネジ穴4が複数形成されている。ネジ穴4の入口側すなわち取付面3側には、ザグリ穴10(またはザグリ穴10A)が形成されている。
【0012】
従来技術の項で説明したように、蒸気弁1の使用時には蒸気弁本体2に熱応力が作用するが、この場合の熱応力については図3に示すように円筒形状の物体に作用する熱応力で概略説明することができる。一般的に、図3上段に示すような円筒形状の物体において内面側に高温高圧の流体が存在する場合には、断面に沿った温度勾配は図3中段のグラフのようになり、そのとき発生する熱応力は断面方向で見ると図3下段のグラフに示すような分布を持つことが知られている。つまり外表面では最も高い引張力を示すが、逆に内表面では最も高い圧縮力を示す。
【0013】
従って、取付面21のネジ穴4の入口側にザグリ穴10(10A)を設けることにより、ネジ穴4の穴縁が取付面21(図4のモデルの円筒形状の外表面に相当)より内部側に移動したために、ネジ穴4の穴縁における応力値はザグリ穴10(10A)なしの場合に比べて小さくなる。なお、ザグリ穴10(10A)の深さC(図2(b)参照)の最適値の決定は、実験的に及び/又は数値解析により求めればよい。
【0014】
図2(a)はザグリ穴10の形状の詳細を示す図であり、この図2(a)に示すように、ザグリ穴10の穴縁は、一対の直線部分11,11と、これら直線部分11の両端を連結する一対の半円部分12,12とを有する長円形の輪郭を有している。なお、図示された実施形態においては、ザグリ穴10の輪郭形状は、ザグリ穴10の穴縁からの深さ方向の距離に関わらず一定である。
【0015】
直線部分11の向きは、ザグリ穴10の入口近傍における主応力作用方向Fmに対して平行となっている。なお、主応力作用方向Fmは、実験的にまたは数値解析により求めることができる。
【0016】
各直線部分11はともにB1+B2の長さを有する。なお、寸法B1およびB2は、ネジ穴4の中心を通り切断線IIb−IIbと直交する直線が各直線部分11と交差する点から各直線部分11の一端および他端までの距離に対応する寸法である。図2に示す実施形態においては、B1=B2となっており、ネジ穴4の中心とザグリ穴10の中心は一致している。
【0017】
図2(a)に示すように、ザグリ穴10は切断線IIb−IIbに関して対称である。半円部分12,12の半径R1,R2は互いに同一であり、各半円部分12の中心は、切断線IIb−IIbと、各直線部分11,11の互いに対応する端部同士を結ぶ直線との交点上に位置している。ザグリ穴10の幅寸法Aは半円部分12,12の半径R1,R2の2倍の値である。各直線部分11,11の向きは、各直線部分11,11と各半円部分12,12との接続点における各半円部分12,12の接線の向きと同一であり、各直線部分11,11と各半円部分12,12とはなめらかに接続されているため、前記接続点において応力集中が発生しにくい。
【0018】
ザグリ穴10の輪郭に上述したような幾何学的特徴持たせることにより、取付面3表面での主応力作用方向Fmに関するザグリ穴10の穴縁の曲率半径は無限大となり、結果的に応力集中が緩和されることになる。
【0019】
以上説明したように、本実施形態においては、ネジ穴4の入口側にザグリ穴10を設けてネジ穴4の穴縁の位置を内側にずらすことによりネジ穴4の穴縁に作用する熱応力を下げるとともに、ザグリ穴10の輪郭に主応力作用方向Fmと同じ向きの直線部分11を設けることによりザグリ穴10の端縁における応力集中を最小化している。このため、ネジ穴4の穴縁並びにザグリ穴10穴縁近傍の損傷の可能性を大幅に低減することができる。
【0020】
なお、図2においては、直線部分11に関連する寸法B1,B2は互いに等しくなっているが、これに限定されるものではなく、寸法B1,B2が互いに異なっていてもよい(図1(a)の下側に図示されたザグリ穴10A参照)。すなわちネジ穴4の中心位置をザグリ穴の中心位置から切断線IIb−IIbの方向、言い換えれば主応力作用方向Fmに沿ってずらしてもよい。この場合も同様の応力および応力集中の低減効果が得られる。
【0021】
なお、上記のように構成された蒸気弁本体2の各ネジ穴4には、図4に示すように、ボルト21が植え込まれ、各ボルト21に螺合するナット22によりブラケット20に取り付けられる。ブラケット20は建屋内にハンガーされ、これにより蒸気弁1が所定位置に固定される。
【0022】
【発明の効果】
以上説明したように、本発明によれば、蒸気弁本体の取付面のネジ穴の穴縁の損傷を効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明による蒸気弁の一実施形態を示す図であって、図1(a)は蒸気弁本体の取付面の正面図、図1(b)は図1(a)におけるIb−Ib切断線に沿った断面図。
【図2】図1に示すザグリ穴およびネジ穴の形状の詳細を示す図であって、図2(a)は図1(a)の領域IIaを拡大して示す図、図2(b)は図2(a)におけるIIb−IIb切断線に沿った断面図。
【図3】円筒形状物体に作用する熱応力を説明する図。
【図4】蒸気弁の取り付け方法を説明する図。
【図5】蒸気弁本体の構成を概略的に説明する図であって、図5(a)は平面図、図5(b)は図5(a)におけるVb−Vb切断線に沿った断面図。
【図6】従来の蒸気弁本体の取付面について説明する図であって、図6(a)は図5における矢印VIa方向から見た蒸気弁本体の取付面の正面図、図6(b)は図6(a)におけるVIb−VIb切断線に沿った断面図。
【図7】従来の蒸気弁の取り付け方法を説明する図。
【符号の説明】
1 蒸気弁
2 蒸気弁本体
3 取付面
4 ネジ穴
10 ザグリ穴
11 直線部分
20 支持部材
21 ボルト
Fm 主応力作用方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam valve for controlling steam of a steam turbine, and more particularly to an improvement in a structure for attaching a steam valve body to a support member.
[0002]
[Prior art]
In a steam turbine of a thermal power plant, a steam valve disposed on the upstream side of the steam passage from the turbine casing is fixed via a fixing support mounting portion (supporting member). The support mounting portion includes a type that is directly welded to the steam valve valve body, that is, a casing, and a type that is fixed to the steam valve body by bolts.
[0003]
In the latter bolt-fixed type, as shown in FIGS. 5 and 6, a steam valve body 2 that houses a valve body (not shown) is provided with a mounting surface 3 parallel to the direction of the axis 2a. A screw hole 4 for a stud bolt is formed in the mounting surface 3.
[0004]
When fixing this type of steam valve 1, as shown in FIG. 7, a bracket 20 as the support mounting portion is fixed to the mounting surface 3 with bolts 21 and nuts 22. Is hangered.
[0005]
Under normal use conditions, high-temperature steam flows inside the steam valve main body 2, but the outer surface of the steam valve main body 2 is exposed to the atmosphere in the building. A temperature difference occurs on the outside, and as a result, thermal stress acts on the steam valve body 2. This thermal stress is compressive stress on the inner surface of the steam valve and tensile stress on the outer surface, but is higher than the stress acting on the flat portion of the mounting surface 3 due to stress concentration at the hole edge on the inlet side of the screw hole 4 of the mounting surface 3. Stress will act. This stress concentration causes cracks due to creep to progress over time at the hole edge of the screw hole 4, which may be a factor for shortening the life of the steam valve body 2.
[0006]
[Problems to be solved by the invention]
This invention is made | formed in view of the said actual condition, and it aims at suppressing the crack generation | occurrence | production of the hole edge of the screw hole of the attachment surface of a steam valve main body.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a steam valve for controlling steam of a steam turbine , wherein a mounting surface is provided outside a steam valve main body that accommodates the valve body, and the steam valve main body extends from the mounting surface. internal screw hole extending toward the inside are formed directly on the steam valve body, the steam valve body with a bolt screwed into the screw hole is fixed to the support member, in use, the steam valve body In the case where a tensile stress as a thermal stress is generated on the mounting surface due to a temperature difference generated between the inside and the outside of the steam valve main body due to high-temperature steam flowing therethrough, a counterbored hole is formed on the inlet side of the screw hole on the mounting surface. A steam valve is provided, wherein a contour of the counterbore hole includes a straight portion, and the straight portion is parallel to a main stress acting direction in the vicinity of the entrance of the counterbore hole.
[0008]
According to the present invention, since the counterbore hole is provided on the inlet side of the screw hole, the distance between the hole edge of the screw hole and the inner surface of the steam valve body can be reduced, and the hole edge of the screw hole and the steam valve can be reduced. The temperature difference with the inner surface of the main body can be reduced, and thereby the thermal stress acting on the hole edge of the screw hole can be reduced. Moreover, stress concentration can be reduced by providing counterbored holes. In particular, the cross-sectional contour of the counterbore hole includes a straight portion, and the straight portion is set substantially parallel to the main stress acting direction in the vicinity of the entrance of the counterbore hole. Becomes infinite and stress concentration can be minimized.
[0009]
The center position of the screw hole may be shifted from the center position of the counterbore hole along the main stress acting direction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the following description, the same members as those shown in FIGS. 5 to 7 for explaining the prior art are denoted by the same reference numerals.
[0011]
As shown in FIGS. 1 and 2, a plurality of screw holes 4 extending from the attachment surface 3 toward the inside of the steam valve body 2 are formed in the attachment surface 3 of the steam valve body 2. A counterbore 10 (or counterbore 10A) is formed on the inlet side of the screw hole 4, that is, on the mounting surface 3 side.
[0012]
As described in the section of the prior art, thermal stress acts on the steam valve main body 2 when the steam valve 1 is used. In this case, the thermal stress acts on a cylindrical object as shown in FIG. Can be outlined. In general, when a high-temperature and high-pressure fluid exists on the inner surface side of a cylindrical object as shown in the upper part of FIG. 3, the temperature gradient along the cross-section becomes as shown in the middle part of FIG. It is known that the thermal stress to be distributed has a distribution as shown in the lower graph of FIG. That is, the outer surface shows the highest tensile force, but the inner surface shows the highest compressive force.
[0013]
Therefore, by providing a counterbore hole 10 (10A) on the inlet side of the screw hole 4 of the mounting surface 21, the hole edge of the screw hole 4 is located inside the mounting surface 21 (corresponding to the cylindrical outer surface of the model of FIG. 4). Therefore, the stress value at the hole edge of the screw hole 4 is smaller than that without the counterbore 10 (10A). In addition, what is necessary is just to obtain | require the determination of the optimal value of the depth C (refer FIG.2 (b)) of the counterbore 10 (10A) experimentally and / or by numerical analysis.
[0014]
FIG. 2A is a diagram showing the details of the shape of the counterbore hole 10, and as shown in FIG. 2A, the hole edge of the counterbore hole 10 includes a pair of linear portions 11, 11 and these linear portions. 11 has an oval outline having a pair of semicircular portions 12 and 12 connecting both ends of the same. In the illustrated embodiment, the contour shape of the counterbore hole 10 is constant regardless of the distance in the depth direction from the hole edge of the counterbore hole 10.
[0015]
The direction of the straight portion 11 is parallel to the main stress acting direction Fm in the vicinity of the entrance of the counterbore hole 10. The principal stress acting direction Fm can be obtained experimentally or by numerical analysis.
[0016]
Each of the straight portions 11 has a length of B1 + B2. The dimensions B1 and B2 correspond to the distance from the point where a straight line passing through the center of the screw hole 4 and perpendicular to the cutting line IIb-IIb intersects each straight line part 11 to one end and the other end of each straight line part 11. It is. In the embodiment shown in FIG. 2, B1 = B2, and the center of the screw hole 4 and the center of the counterbore hole 10 coincide.
[0017]
As shown in FIG. 2A, the counterbore 10 is symmetric with respect to the cutting line IIb-IIb. The radii R1 and R2 of the semicircular portions 12 and 12 are the same, and the center of each semicircular portion 12 is a cutting line IIb-IIb and a straight line connecting ends corresponding to each other of the linear portions 11 and 11. Located on the intersection of The width dimension A of the counterbore 10 is twice the radius R1, R2 of the semicircular portions 12, 12. The direction of each straight line portion 11, 11 is the same as the direction of the tangent of each semicircular portion 12, 12 at the connection point between each straight line portion 11, 11 and each semicircular portion 12, 12. 11 and the semicircular portions 12 and 12 are smoothly connected, so that stress concentration is unlikely to occur at the connection point.
[0018]
By giving the above-mentioned geometric characteristics to the contour of the counterbore 10, the radius of curvature of the hole edge of the counterbore 10 with respect to the main stress acting direction Fm on the surface of the mounting surface 3 becomes infinite, resulting in stress concentration. Will be eased.
[0019]
As described above, in the present embodiment, the thermal stress acting on the hole edge of the screw hole 4 by providing the counterbore hole 10 on the inlet side of the screw hole 4 and shifting the position of the hole edge of the screw hole 4 inward. , And the straight portion 11 having the same direction as the main stress acting direction Fm is provided on the contour of the counterbore 10 to minimize stress concentration at the edge of the counterbore 10. For this reason, the possibility of damage near the hole edge of the screw hole 4 and the counterbore hole 10 hole edge can be greatly reduced.
[0020]
In FIG. 2, the dimensions B1 and B2 related to the straight line portion 11 are equal to each other, but the present invention is not limited to this, and the dimensions B1 and B2 may be different from each other (FIG. ) Refer to the counterbored hole 10A shown on the lower side). That is, the center position of the screw hole 4 may be shifted from the center position of the counterbore hole along the direction of the cutting line IIb-IIb, in other words, along the principal stress acting direction Fm. In this case, the same effect of reducing stress and stress concentration can be obtained.
[0021]
As shown in FIG. 4, bolts 21 are implanted in the respective screw holes 4 of the steam valve main body 2 configured as described above, and are attached to the brackets 20 by nuts 22 that are screwed into the respective bolts 21. . The bracket 20 is hangered in the building, whereby the steam valve 1 is fixed at a predetermined position.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to effectively prevent damage to the edge of the screw hole on the mounting surface of the steam valve body.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of a steam valve according to the present invention, in which FIG. 1 (a) is a front view of a mounting surface of the steam valve body, and FIG. 1 (b) is Ib− in FIG. Sectional drawing along an Ib cutting line.
2 is a view showing details of the shape of a counterbore hole and a screw hole shown in FIG. 1, in which FIG. 2 (a) is an enlarged view of a region IIa of FIG. 1 (a), and FIG. These are sectional drawings along the IIb-IIb cutting line in Drawing 2 (a).
FIG. 3 is a diagram for explaining thermal stress acting on a cylindrical object.
FIG. 4 is a view for explaining a method of attaching a steam valve.
5A and 5B are diagrams schematically illustrating a configuration of a steam valve main body, in which FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line Vb-Vb in FIG. Figure.
6 is a view for explaining a mounting surface of a conventional steam valve body, in which FIG. 6 (a) is a front view of the mounting surface of the steam valve body viewed from the direction of arrow VIa in FIG. 5, and FIG. 6 (b). These are sectional drawings along the VIb-VIb cutting line in Fig.6 (a).
FIG. 7 is a view for explaining a conventional method of attaching a steam valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam valve 2 Steam valve main body 3 Mounting surface 4 Screw hole 10 Counterbore hole 11 Straight part 20 Support member 21 Bolt Fm Main stress action direction

Claims (1)

蒸気タービンの蒸気を制御する蒸気弁であって、弁体を収容する蒸気弁本体の外側に取付面が設けられ、前記取付面から前記蒸気弁本体の内部に向かって延びるネジ穴が前記蒸気弁本体に直接形成され、前記ネジ穴に螺合するボルトを用いて前記蒸気弁本体が支持部材に固定され、使用時に、前記蒸気弁本体の内部を通流する高温蒸気により前記蒸気弁本体の内側と外側に生じる温度差によって前記取付面に熱応力としての引張応力が発生するものにおいて、
前記取付面の前記ネジ穴の入口側にザグリ穴が設けられ、前記ザグリ穴の輪郭が直線部分を含んでおり、前記直線部分が前記ザグリ穴の入口近傍における主応力作用方向と平行であることを特徴とする蒸気弁。
A steam valve for controlling steam of a steam turbine , wherein a mounting surface is provided outside a steam valve main body that accommodates the valve body, and a screw hole extending from the mounting surface toward the inside of the steam valve main body has the steam valve The steam valve body is fixed to the support member using a bolt that is directly formed on the body and screwed into the screw hole, and when used, the steam valve body is heated by high-temperature steam flowing through the interior of the steam valve body. In the case where a tensile stress as a thermal stress is generated on the mounting surface due to a temperature difference generated between the inside and the outside,
A counterbore hole is provided on the inlet side of the screw hole on the mounting surface, the contour of the counterbore hole includes a straight line part, and the straight line part is parallel to the main stress acting direction in the vicinity of the inlet of the counterbore hole. A steam valve characterized by.
JP2000063671A 2000-03-08 2000-03-08 Steam valve Expired - Lifetime JP4154105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063671A JP4154105B2 (en) 2000-03-08 2000-03-08 Steam valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063671A JP4154105B2 (en) 2000-03-08 2000-03-08 Steam valve

Publications (2)

Publication Number Publication Date
JP2001248408A JP2001248408A (en) 2001-09-14
JP4154105B2 true JP4154105B2 (en) 2008-09-24

Family

ID=18583500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063671A Expired - Lifetime JP4154105B2 (en) 2000-03-08 2000-03-08 Steam valve

Country Status (1)

Country Link
JP (1) JP4154105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522414C2 (en) * 2002-06-03 2004-02-10 Volvo Lastvagnar Ab Vehicles comprising deformable joints and a deformation structure which can be used at a cab bracket
JP5761254B2 (en) 2013-05-27 2015-08-12 株式会社デンソー Rotating electric machine

Also Published As

Publication number Publication date
JP2001248408A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US5483792A (en) Turbine frame stiffening rails
CN101313129B (en) Turbine blade for a steam turbine
KR101670737B1 (en) Shaft assembly of an exhaust-gas turbocharger
WO2012077711A1 (en) Sheet metal turbine housing
EP1452692A2 (en) Turbine bucket damper pin
AU2005229202A1 (en) Device for supplying cooling air to a moving blade
US20020051706A1 (en) Cooled component, casting core for manufacturing such a component, as well as method for manufacturing such a component
JPH0151883B2 (en)
EP3327348A1 (en) Pipe reinforcement device and pipe reinforcement method
US20080060362A1 (en) Expansion Joint for Gas Turbines
JP4154105B2 (en) Steam valve
JP2006022812A (en) Reinforcement material of low pressure compressor for aircraft engine
JP4738567B2 (en) A method for extending the low cycle fatigue life of turbine nozzles.
US7318700B2 (en) Spiral pertaining to a turbo-machine
EP2778350A2 (en) Modular turbomachine inlet asembly and related inlet transition section
EP1780386B1 (en) Inlet flange of a curved conduit from an exhaust manifold and an internal combustion engine with such a flange
KR102579644B1 (en) turbomachinery rotor blades
JP4607494B2 (en) Vertical shaft water turbine
KR100218602B1 (en) Low pressure steam turbine
RU2369770C1 (en) Hydraulic turbine
JP4323245B2 (en) EGR cooler
CN110792549B (en) Inter-blade profile for a hydraulic turbine with removable cover portion
CN215922525U (en) Propeller mounting bracket of underwater robot
CN212361214U (en) Expansion joint
JPH07224684A (en) High-temperature expansion joint for exhaust duct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R151 Written notification of patent or utility model registration

Ref document number: 4154105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term