JP4153377B2 - Waste treatment equipment - Google Patents

Waste treatment equipment Download PDF

Info

Publication number
JP4153377B2
JP4153377B2 JP2003195509A JP2003195509A JP4153377B2 JP 4153377 B2 JP4153377 B2 JP 4153377B2 JP 2003195509 A JP2003195509 A JP 2003195509A JP 2003195509 A JP2003195509 A JP 2003195509A JP 4153377 B2 JP4153377 B2 JP 4153377B2
Authority
JP
Japan
Prior art keywords
bag filter
exhaust gas
fly ash
waste
slaked lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003195509A
Other languages
Japanese (ja)
Other versions
JP2005030663A (en
Inventor
郁郎 仲西
和夫 高野
正昭 入江
洋一 高沢
良次 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Nippon Mining Holdings Inc
Original Assignee
Ebara Corp
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Nippon Mining and Metals Co Ltd filed Critical Ebara Corp
Priority to JP2003195509A priority Critical patent/JP4153377B2/en
Publication of JP2005030663A publication Critical patent/JP2005030663A/en
Application granted granted Critical
Publication of JP4153377B2 publication Critical patent/JP4153377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物処理装置に係り、特に、各種産業から生ずる銅(Cu)を含む金属滓と自動車、電機製品等から生ずる有価金属を含むシュレッダーダスト、金属成分を多く含む廃プラスチック等の産業廃棄物を原料として内部循環流動層ガス化炉において生成した熱分解ガスとともに、微粒子化されたチャー及び不燃成分を溶融炉へ送出しチャ−とガスを燃焼して灰分を溶融スラグ化し得られるスラグから有価金属を回収する廃棄物処理装置に関する。
【0002】
【従来の技術】
廃棄物を流動層ガス化炉により低温で熱分解ガス化した後に、溶融炉により高温で溶融燃焼させ、溶融炉から排出される排ガスの冷却工程、熱回収工程および濾過集塵工程の少なくとも1つの工程にて得られた捕集灰の大部分を流動層ガス化炉または溶融炉に戻し、スラグ化率を向上させることにより最終廃棄物の総量を低減させる廃棄物処理装置が知られている(例えば、特許文献1参照)。
【0003】
他方、廃棄物を処理する場合、その容量、性状、組成や種類により再生率、中間処理減量率、及び最終処分率が異なる(例えば、非特許文献1参照)。金属滓として銅滓の含有量が多い処理対象物については可燃成分と銅成分とを焼却することにより塩化第二銅などのダストが発生することを避けるため、処理フローとしては分別を徹底して行った後に、銅滓のみを取り出してリサイクルしていた。
【0004】
しかし、銅滓をリサイクルするには、大量のエネルギーを加えなければならない。そこで、分別することなく有機性ゴミのエネルギーを銅回収のために用いることが望ましい。
【0005】
【特許文献1】
特開平10−232007号公報(段落番号0025、第1図)
【0006】
【非特許文献1】
志垣正信編著「絵解き廃棄物の焼却技術」オーム社刊、平成12年10月改訂第3版発行、p.14−15
【0007】
【発明が解決しようとする課題】
現在、銅を装置に組み込んだ製品は多く、銅のみを分別することが困難な場合が多い。しかし銅のみを分別できない場合についても再資源化を行うことは、リサイクル率を高める上で現在非常に重要な技術的課題となってきている。しかし従来の廃棄物処理装置では、多種多様の廃棄物を処理することができるものであるが、被処理物の性格に応じ装置の変形を行なう必要がある。例えば、銅滓を多量に含む廃棄物を原料とする場合に、還元炉を併設させてガス化溶融炉から金属を回収するように構成すると、銅の回収率は必ずしも良好ではなく、ダストが大量に発生することで溶融炉にて、スラグ化しきれず、排ガス処理においてバグフィルタにダストが蓄積することによる多大な圧力損失が生ずる等の問題があることが判明した。
【0008】
また、溶融炉から排出される排ガスは、冷却工程により排ガス温度の低下に伴い高温で気化していた低沸点の銅、亜鉛、鉛等や塩化物が飛灰上に析出すると共に、排ガス中の塩化物が湿るため、バグフィルタの表面に飛灰、銅、亜鉛、鉛等の塩化物が付着し、捕集灰の回収率を低下させるという課題が存在していた。
【0009】
本発明は、斯かる実情に鑑み、バグフィルタに付着する飛灰、金属、塩化物の量を低減させ、バグフィルタから得た捕集灰を排水処理工程にて中和処理をした後に、排水処理装置から得た中和滓を脱水及び乾燥させてから、溶融炉に戻し金属をスラグ化して回収する廃棄物処理装置を提供しようとするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1にかかる発明による廃棄物処理装置は、例えば、図1に示すように、銅滓を実質的に含む廃棄物Aを投入し、底部12から質量速度の大きい流動化空気C2と質量速度の小さい流動化空気C1を吹き込み流動媒体の循環流を形成して廃棄物Aの一部を循環流中で450℃乃至600℃で熱分解ガス化しガスとチャー及び不燃成分Eを排出する内部循環流動層ガス化炉11と、前記ガスとチャー及び不燃成分Eを旋回導入口14より導入し、1300℃以上にて燃焼させて灰分をスラグ化して溶融スラグGを生成する旋回溶融炉21と、旋廻溶融炉21より排出される溶融スラグGを還元雰囲気下で溶融して黒銅Iを得る電気式保持炉31と、旋回溶融炉21から排出され内部で上昇する排ガスと噴霧する廃液Lとを接触させる廃液分解塔26と、廃液分解塔26の下流に設けられ、廃液Lと接触した排ガスを冷却水に接触させて冷却する急冷塔41と、急冷塔41の下流に設けられ、急冷塔41から移送された排ガスFから銅、亜鉛、鉛等の塩化物を含む飛灰を捕集するバグフィルタ51と、バグフィルタ51の下流に設けられ、バグフィルタ51から移送された排ガスを中和する洗浄塔61と、洗浄塔61の下流に設けられ、洗浄塔61から移送された排ガスFの濾過集塵を行い、飛灰を回収するミストコットレル71と;急冷塔41とバグフィルタ51との間に設けられ、バグフィルタ51に移送途中の急冷した排ガスに消石灰Kの粉状物を空気により吹き込む消石灰吹込装置87と、急冷塔41とバグフィルタ51の底部に接続し、急冷塔41とバグフィルタ51から飛灰Hを回収する飛灰処理装置91と、飛灰処理装置91の下流に設けられ、飛灰処理装置91から該飛灰処理装置91で回収した飛灰を移送し、ミストコットレル71からミストコットレル71で回収した飛灰を移送し、湿式処理により消石灰を混入して前記移送した飛灰を中和させ中和滓を抽出する排水処理装置82と、排水処理装置82の下流に設けられ、排水処理装置82から抽出した、前記混入された消石灰により排水処理装置82で中和された中和滓を脱水及び乾燥させる中和滓乾燥装置84と、旋回溶融炉21の頂部18に接続され、中和滓乾燥装置84により乾燥させた中和滓Nを貯留し、底部に設けられたバルブ29を介して旋回溶融炉21の1次燃焼室の頂部18へ該貯留した中和滓Nを投下する中和滓貯留装置27と、を備える。
【0011】
このように構成することで、消石灰吹込装置87と中和滓貯留装置27を備えるので、バグフィルタ51に移送途中の急冷した排ガスに消石灰Kの粉状物を空気により吹き込むことにより、バグフィルタ51へ消石灰Kを付着させ、急冷塔41とバグフィルタ51から回収した飛灰Hを湿式処理により消石灰を混入して中和させ中和滓を抽出し、脱水及び乾燥させた中和滓Nを旋回溶融炉21の頂部18から投下することができる。
【0012】
上記目的を達成するために、請求項2にかかる発明による請求項1に記載の廃棄物処理装置は、例えば、図1に示すように、消石灰吹込装置87は、急冷した排ガスが移送される前に、予め消石灰Kの粉状物を空気によりバグフィルタ51へ吹込み、バグフィルタ51の布へ消石灰Kの粉状物をコーティングするように構成する。
【0013】
このように構成することで、バグフィルタ51のろ布へ消石灰Kの粉状物をコーティングすることができる。
【0014】
上記目的を達成するために、請求項3にかかる発明による請求項1又は請求項2に記載の廃棄物処理装置は、例えば、図1に示すように、消石灰吹込装置87は、消石灰Kの粉状物を空気により吹き込むことにより、急冷した排ガス中の塩化物の湿った状態を改善すると共に、バグフィルタ51のダストの払い落としを容易にし圧力損失を低減させ、かつ、ダストの再飛散を抑えるように構成する。
【0015】
このように構成すると、急冷した排ガス中の塩化物の湿った状態を改善すると共に、バグフィルタ51のダストの払い落としを容易にし圧力損失を低減させることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。図1は発明を実施する形態の一例であって、図中、図と同一または類似の符号を付した部分は同一物または相当物を表わし、重複した説明は省略する。
【0017】
図1は、本発明による実施の形態である廃棄物処理装置の模式的な系統図である。廃棄物処理装置は、原料Aを側壁から導入する内部循環流動層ガス化炉11と、内部循環流動層ガス化炉11に接続されガスと微粒子化されたチャー及び不燃成分Eを旋回導入口14から導入する旋回溶融炉21と、旋回溶融炉21の下流に位置し、排ガスFの冷却工程を処理する急冷塔41と、冷却された排ガスFから銅、亜鉛、鉛等の塩化物を含む飛灰を捕集するバグフィルタ51と、排ガスFの中和工程を処理する洗浄塔61と、排ガスFの濾過集塵工程を処理するミストコットレル71と、濾過集塵済の排ガスを外部に放出する排突81とを備える。
【0018】
廃棄物処理装置は、銅滓A1を貯蔵する第1の貯蔵所1と、金属を含む産業廃棄物A2等を貯蔵する別の第2の貯蔵所2と、この第1と第2の貯蔵所から供給コンベア3により搬送される銅滓A1と産業廃棄物A2等を受容する供給フィーダー4とを備え、上記内部循環流動層ガス化炉11が供給フィーダー4の下流に接続され原料Aとしての銅滓A1と産業廃棄物A2等を導入する。
【0019】
旋回溶融炉21は、内部循環流動層ガス化炉11の下流に接続され内部循環流動層ガス化炉11からガスと微粒子化されたチャー及び不燃成分Eを旋回導入口14から導入し、底部のスラグ回収口23からスラグシュート16を介して溶融スラグGを還元炉31へ自重流下させ、溶融スラグGから銅Iを回収させる。
【0020】
また、旋回溶融炉21は、上部に立設する廃液分解塔26と接続され、旋回溶融炉21から排出され内部で上昇する排ガスFと噴霧する廃液Lとを接触させる。この廃液分解塔26の下流に設けられた急冷塔41は、廃液Lと接触した排ガスFを冷却水に接触させて冷却する。さらに、旋回溶融炉21は、頂部18にロータリーバルブ29を介して接続された中和滓貯留装置27を備える。
【0021】
バグフィルタ51は、急冷塔41の下流に設けられ、排ガスFから銅の塩化物を含む飛灰を捕集する。また、急冷塔41とバグフィルタ51との間を接続するダクトに接続する消石灰吹込装置87は、内部に消石灰Kを貯留し、圧縮空気を貯蔵する空気貯蔵部85からの圧縮空気を利用してロータリーバルブ86を介して供給される消石灰Kを、ダクトの中を通過している排ガスへ吹き込む。排ガスは消石灰Kと同伴してバグフィルタ51に移送される。
【0022】
飛灰処理装置91は、急冷塔41の底部とバグフィルタ51の底部に接続され、急冷塔41とバグフィルタ51から各々飛灰Hを回収し、飛灰処理装置91の下流に設けられた排水処理装置82へ飛灰Hを移送する。
【0023】
排水処理装置82は、ミストコットレル71と飛灰処理装置91から飛灰Hを回収し、湿式処理により消石灰を混入して飛灰Hや汚泥を中和させ中和滓を抽出し、排水処理装置82の下流に設けられた中和滓乾燥装置84へ中和滓を移送し脱水及び乾燥処理を施すように構成する。
【0024】
中和滓貯留装置27は、中和滓乾燥装置84により脱水及び乾燥させた中和滓Nを貯留し、底部に設けられたロータリーバルブ29を介して旋回溶融炉21の頂部18へ中和滓Nを連続的に投下する。
【0025】
上記内部循環流動層ガス化炉11は、銅滓A1を実質的に含む廃棄物Aを投入し、底部から空気Cを送入して質量速度の大きい流動化空気C2と質量速度の小さい流動化空気C1とを炉底部12に位置する流動床の散気板を介して内部循環流動層ガス化炉11内部へ吹き込み循環流を形成して廃棄物Aの一部を循環流中で熱分解ガス化しガスと微粒子化されたチャー及び不燃成分を排出する。
【0026】
廃棄物処理装置に用いる旋回溶融炉21は、内部循環流動層ガス化炉11から排出されるガスと微粒子化されたチャー及び不燃成分を旋回導入口14より導入すると共に、燃焼ガスを平面から見たときの軸方向に対し接線方向に導入して1次燃焼室の内部に旋回流を形成し、不燃成分をスラグ化し溶融スラグを生成する。
【0027】
上記第1の貯蔵所1には、同時に他の品位が低い銅鉱石、例えば含銅黄鉄鉱、黄銅鉱等の硫化鉱、酸化鉱を貯蔵することができる。銅滓としては真鍮伸銅工場、青銅工場から発生するスラグ、ダスト、削り粉さらには化学工場から発生する水酸化銅、沈殿銅がある。
【0028】
ここで、図1の系統図を参照して、廃棄物処理装置の動作を説明する。廃棄物処理装置は、第1の貯蔵所1から銅滓A1等を破砕機(不図示)に掛けて細かく粉砕し、粉砕した産業廃棄物A2等と伴に供給コンベア3により上方へ搬送し、供給コンベア3の終端から銅滓A1と産業廃棄物A2等を供給フィーダー4に投入する。
【0029】
次に、供給フィーダー4から一定量の銅滓A1と産業廃棄物A2等を原料Aとして内部循環流動層ガス化炉11に投入する。
【0030】
ここで銅滓A1は、実質的に銅を含む、すなわち銅品位が50から80%含有する滓が好ましい。銅品位50%以下では変動費コストが多大となり、銅品位が80%以上では何らかの手段で固型化して銅製錬の転炉工場へ投入した方が有利となるからである。また、産業廃棄物A2には、自動車、家庭電化製品等をシュレッダーで処理した有価金属とプラスチックを含むシュレッダーダスト、家庭用と工業用の少なくとも銅を含有する廃プラスチックが含まれる。
【0031】
内部循環流動層ガス化炉11は、内部に投入された産業廃棄物A2と銅滓等A1が、内部循環流動層ガス化炉11の炉底部12の流動床に空気Cを吹き込み、分岐する質量速度の大きい流動化空気C2と質量速度の小さい流動化空気C1により内部循環流動層ガス化炉11内で循環流を形成して廃棄物としての産業廃棄物A2と銅滓等A1の一部を循環流の中で熱分解ガス化し、このガスと微粒子化されたチャー及び不燃成分を排出する。
【0032】
内部循環流動層ガス化炉11は、内部温度を約450℃乃至600℃の温度に設定し、空気比を約0.3の還元性雰囲気を作り出すことにより産業廃棄物A2中の廃プラスチックの急速な燃焼を防止しながら、廃プラスチックを熱分解しガス化する。この場合、内部循環流動層ガス化炉11内では有価金属である銅(Cu)、鉄(Fe)、アルミニウム(Al)の酸化を防止し、銅滓の主体である酸化第一銅(CuO)が還元されるという効果も期待できる。
【0033】
内部循環流動層ガス化炉11内の温度が約450℃以下では、廃プラスチックがガスしにくく、約600℃以上では燃焼する。さらに好ましくは内部循環流動層ガス化炉11内の温度が約500から550℃が望ましい。廃プラスチックのガス化、有価金属の酸化防止に適するからである。
【0034】
内部循環流動層ガス化炉11内で細粒化されない銅滓と蒸気圧が低いCu、Fe、Al等の有価金属を含む第1の不燃物Dは炉底部12の流動床の脇からシュート部を通じて内部循環流動層ガス化炉11外に吐出され回収される。
【0035】
さらに、内部循環流動層ガス化炉11内で生成された熱分解ガスE、粉砕されたCuOを含む約100から250マイクロメータの直径の銅滓と廃プラスチックから分離した蒸気圧の高い有価金属の第2の不燃物が熱分解ガスEとともに内部循環流動層ガス化炉11の上部に設けた排出口を経由して下流の旋回溶融炉21に移送される。
【0036】
旋回溶融炉21は、熱分解ガスE等が旋回導入口14を経由して内部で旋回するように導入すると同時に、外部から空気を供給し空気比約0.9から1.3に調整して第1燃焼室の雰囲気を酸化性にし熱分解ガスEを燃焼させる。この燃焼は、約1200から1500℃の温度で行う。燃焼温度が約1200℃以下では溶融スラグの流動性が悪化し、約1500℃以上では旋回溶融炉21の内壁の耐火物等を損傷する場合があるからである。好ましくは、約1300℃とするのが好ましい。つまり、有害物質の発生を抑制し、銅滓A1のスラグ化に適する温度に調整することができる。
【0037】
旋回溶融炉21内の燃焼温度は、廃プラスチック等の産業廃棄物A2、汚泥Bの供給量や、空気の投入量で調整することができる。燃焼用空気は、鉛直方向に立設された略円筒状の旋回溶融炉21を上面から見た中心軸に対し接線方向に導入する。
【0038】
熱分解ガスEは、旋回溶融炉21内部で燃焼して排ガスFとなり、旋回溶融炉21の下流に立設した廃液分解塔26の上部に設けた排ガス排出口22から排出する。さらに、不燃物中のZn、Pbの一部は酸化されて飛灰Hとなり排ガスFと共に排ガス排出口22から排出される。銅滓等及びZn、Pbの一部は高温で溶融しスラグ化しながら旋回流の中で接触し大きくなり、重力により下部に落下する。
【0039】
また、銅滓等は高温で溶融しスラグ化しながら旋回流の遠心力により旋回溶融炉21の側壁に当たり、一部は側壁に衝突して溶融付着し成長する。その他は底部へ落下する。落下した溶融スラグGは、旋回溶融炉21の炉底部に設けたスラグ回収口23に集められ、スラグシュート16を経由し電気式保持炉31に回収する。回収された溶融スラグGにはCuOが多く含まれる。このように、CuOの品位の低い銅滓からCuOの品位の高い溶融スラグGをスラグ回収口23から回収することができる。
【0040】
次に、旋回溶融炉21から排出された排ガスFは、廃液分解塔26を上昇し噴霧する廃液Lと接触する。さらに排ガスFは、廃液分解塔26の下流に設けた急冷塔41へ移動し噴霧される冷却水に接触して排ガスFが冷却される。この急冷塔41により排ガスFを大気中に放出できるまでの温度に冷却することができる。また、冷却された排ガスFの中の塩化物は潮解性を増加する。
【0041】
また、旋回溶融炉21の下方に設けた還元炉としての電気式保持炉31で生じた冷却した排ガスは、二次燃焼炉(不図示)で燃焼して有害物質を分解し、急冷塔41で冷却水により同様に冷却する。この排ガスを急冷するのは、排ガスを約250℃乃至500℃の温度範囲に曝すと、ダイオキシン等の有害物質が再合成されるため、この温度範囲にある時間を少なくして有害物質の再度の生成を防止するためである。
【0042】
さらに、旋回溶融炉21から回収した溶融スラグGを電気式保持炉31内に投入し、上部から黒鉛製電極を挿入する。この電極間に電流を流し、溶融スラグGの抵抗熱で溶融する。電気式保持炉31には、さらに未処理の硫化鉱や銅滓を新たに投入することができる。電気式保持炉31の適正な操業のために、生成されるスラグの粘度、塩基度等を調整するためである。
【0043】
電気式保持炉31には、還元用のコークスMを投入することができる。コークスMの成分である炭素Cが直接CuOを還元してCuとCOを生成する。ここで、還元剤としては、コークスM、微粉炭、LPG等を挙げることができるが、コークスMが好ましい。投入用の装置が単純で、操作が容易だからである。
【0044】
電気式保持炉31内は、約1250から1400℃の温度範囲が好ましい。これは、CuOの融点が約1230℃であり、銅の融点が約1080℃で少なくともCuOの融点以上にする必要があるためである。0.5から1.0時間精錬することにより銅品位が約70から80%の黒銅Iを得ることができる。
【0045】
また、廃スラグJは、金属をほとんど含まない、珪砂による均質なガラス質成分で構成されているため、路床等へのセメント材料として利用することができる。スラグを処理する炉としては、その他に自溶炉、反射炉、溶鉱炉等を用いることができるが、原料のスラグの成分が変動する場合があるため、原材料が変動しても同様の処理ができる電気式保持炉31が好適である。
【0046】
急冷塔41とバグフィルタ51との間を接続するダクトに設けた消石灰吹込装置87は、上述したように圧縮空気により、ダクトの中を通過している排ガスFへ消石灰Kの粉状物を吹き込み、排ガスFと消石灰Kとを同伴してバグフィルタ51に移送する。
【0047】
また、消石灰吹込装置87は、活性炭を混合した消石灰Kを貯留してもよく。ロータリーバルブ86の回転数制御により、急冷した排ガスFをバグフィルタ51へ移送途中に活性炭と消石灰Kを吹き込み、平均粒径が約10から20マイクロメータの活性炭混合消石灰を空気と共に、ダクトの中に吹き込むことにより有害物質の除去処理を遂行する。
【0048】
急冷塔41とバグフィルタ51の底部に接続した飛灰処理装置91は、急冷塔41とバグフィルタ51からの飛灰Hを受容する。
【0049】
バグフィルタ51は、排ガスと空気と消石灰Kが吹き込まれることにより、バグフィルタ51の布面に消石灰Kを付着させ、吹き込まれた排ガス中の湿った塩化物の付着を低減させることができる。すなわち、消石灰Kは、塩化物や銅や飛灰を所定の頻度で払い落とす際に、剥離材及び再飛散防止剤の機能を発揮するため、従来に比して大量の塩化物や銅を含む飛灰Hを回収させると共に、布面を乾燥させバグフィルタ51の圧力損失を低減させることができる。しかも、ダクト内を通過している排ガスF中の飛灰上に析出した湿った塩化物にも消石灰Kが付着し表面の湿った状態を改善することができる。
【0050】
さらに、消石灰吹込装置87は、急冷塔41から排ガスが供給される前に、予め消石灰Kを空気とともにバグフィルタ51へ吹き込むとよい。すなわち、バグフィルタ51内部を消石灰Kでプリコーティングすることにより、さらに剥離材としての効果を高めることができる。このプリコーティングの処理後に通常の廃棄物処理工程を開始し、消石灰K、空気、排ガスをバグフィルタ51へ導入し、下地の消石灰層の表面に追加の消石灰層を形成させ銅や塩化物を含む飛灰Hの回収率を従来に比して向上させることができる。
【0051】
バグフィルタ51の下流に設けた洗浄塔61は、ブロア移送した排ガスFを苛性ソーダ(NaOH)の水溶液でSOx、HCl等を中和した後に、さらに下流に設けたミストコットレル71へ排ガスFをブロア移送し、排ガスF中のミスト、ダストを除去してから排突81を通して外部に放出する。
【0052】
ミストコットレル71で回収したダストを含む廃液は、排水処理装置82へ移送し、中和処理を施し、汚泥化した中和滓を排水処理装置82の下流に設けた中和滓乾燥装置84へ送り、中和滓を脱水及び乾燥処理を行う。ここで、排ガスFは消石灰Kの吹き込みにより洗浄塔61で苛性ソーダ溶液を噴霧して、SOx等を中和してからミストコットレル71で回収し、最終的に排突81から大気中に放出する。
【0053】
中和滓乾燥装置84により脱水及び乾燥させた中和滓Nは、旋回溶融炉21の上部に設けた中和滓貯留装置27に送り貯留される。上述の如く、中和滓Nはロータリーバルブ29を介して旋回溶融炉21の頂部18へ連続的に投入し、1次燃焼室内でスラグ化される。中和滓Nを旋回溶融炉21へ投入するのは、中和滓Nに含有する未燃物の量が極めて少ないため、内部循環流動層ガス化炉11に投入するよりも熱効率や銅の回収効率が高くなるからである。
【0054】
以上の廃棄物処理装置により、有価金属としての銅を効率良く回収することができる。例えば、第1の貯蔵所1に、酸化銅鉱の硫酸浸出後の銅滓を搬入する。
【0055】
また、第2の貯蔵所2には、約150mm以下に粉砕された家庭電化製品のシュレッダーダストと金属を含まない廃プラスチックを搬入する。
【0056】
これら銅滓A1とシュレッダーダストA2等をそれぞれの貯蔵所から計量コンベヤーで計量しながら、供給フィーダー4を経由して内部循環流動層ガス化炉11に投入する。1月で、例えば銅滓500t(乾燥重量400t)、シュッレダーダスト500t、廃プラスチック200tを同時に処理することもできる。
【0057】
本実施の形態で用いた内部循環流動層ガス化炉11の大きさは、鉛直方向に立設された円筒の容器で構成する。炉底部12の流動床から空気を吹き込み、炉内温度を約550℃に調整し、空気比を約0.3とすることによりスチレン−アクリル樹脂、ポリエチレン樹脂等やポリウレタン樹脂等のエンジニアリングプラスチックであっても熱分解してガス化することができる。
【0058】
旋回溶融炉21は、炉内温度が約1300℃に設定され、空気比を1.0程度にする。これにより、蒸気圧の高いZn、Pbは排ガスFとともに廃液分解塔26、急冷塔41に移送する。旋回溶融炉21では、高温で銅を酸化して溶融スラグGとし、電気式保持炉31に回収する。
【0059】
上記廃棄物処理装置は、銅滓を実質的に含む廃棄物Aを内部循環流動層ガス化炉11へ投入し、熱分解ガス化しガスと微粒子化されたチャー及び不燃成分Eを旋回溶融炉21へ導入し不燃成分をスラグ化して溶融スラグを生成する工程と、旋回溶融炉21から排出され内部で上昇する排ガスと上部から噴霧する廃液とを接触させてから、さらに排ガスを冷却水に接触させて冷却し、冷却した排ガスに消石灰Kの粉状物を空気により吹き込みながらバグフィルタ51へ移送し排ガスから銅の塩化物を含む飛灰Hを捕集する工程と、飛灰Hを湿式処理により消石灰を混入して中和させ中和滓を抽出し脱水及び乾燥させる工程と、脱水及び乾燥させた中和滓Nを中和滓貯留装置27に貯留しながらロータリーバルブ29を介して旋回溶融炉へ投下しスラグ化して溶融スラグを生成する工程と、を備えるため、バグフィルタ51から回収した飛灰H中の銅を効率よく回収することができる。
【0060】
以上の処理工程により、Cuは全投入量の95%以上回収することができる。
【0061】
尚、本発明の廃棄物処理装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0062】
【発明の効果】
以上、説明したように本発明の請求項1から請求項3に記載の廃棄物処理装置によれば、バグフィルタに付着する飛灰、金属、塩化物の量を低減させ、バグフィルタから得た捕集灰を排水処理工程にて中和処理をした後に、排水処理装置から得た中和滓を脱水及び乾燥させてから、溶融炉に戻し金属をスラグ化して回収する、という優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の実施の形態である廃棄物処理装置の模式的な系統図である。
【符号の説明】
1…貯蔵所、2…貯蔵所、3…供給コンベア、4…供給フィーダー、11…内部循環流動層ガス化炉、12…炉底部、14…旋回導入口、16…スラグシュート、21…旋回溶融炉、26…廃液分解塔、27…中和滓貯留装置、29…ロータリーバルブ、31…電気式保持炉、41…急冷塔、51…バグフィルタ、61…洗浄塔、71…ミストコットレル、81…排突、82…排水処理装置、84…中和滓乾燥装置、85…空気貯蔵部、86…ロータリーバルブ、87…消石灰吹込装置、91…飛灰処理装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste treatment apparatus, and in particular, industries such as metal soot containing copper (Cu) produced from various industries, shredder dust containing valuable metals produced from automobiles, electrical products, etc., waste plastics containing a large amount of metal components, and the like. Slag that can be obtained by melting the ash by melting char and gas by sending the char and incombustible components atomized together with the pyrolysis gas generated in the internal circulation fluidized bed gasification furnace using waste as a raw material The present invention relates to a waste treatment apparatus for recovering valuable metals from waste.
[0002]
[Prior art]
Waste is pyrolyzed and gasified at a low temperature in a fluidized bed gasification furnace, then melted and burned at a high temperature in a melting furnace, and at least one of a cooling process, a heat recovery process, and a filtration dust collection process of exhaust gas discharged from the melting furnace A waste treatment apparatus is known in which most of the collected ash obtained in the process is returned to the fluidized bed gasification furnace or melting furnace, and the total amount of final waste is reduced by improving the slag conversion rate ( For example, see Patent Document 1).
[0003]
On the other hand, when waste is treated, the regeneration rate, intermediate treatment weight loss rate, and final disposal rate differ depending on the capacity, properties, composition, and type (see Non-Patent Document 1, for example). Thorough separation of the processing flow is required for processing objects that contain a large amount of copper slag as metal slag to avoid the generation of dust such as cupric chloride by incineration of combustible and copper components. After going, only the copper slag was taken out and recycled.
[0004]
However, a large amount of energy must be added to recycle copper slag. Therefore, it is desirable to use the energy of organic waste for copper recovery without sorting.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-232007 (paragraph number 0025, FIG. 1)
[0006]
[Non-Patent Document 1]
Edited by Masanobu Shigaki, “Technique for Incineration of Illustrated Waste”, published by Ohm, revised third edition in October 2000, p. 14-15
[0007]
[Problems to be solved by the invention]
Currently, there are many products that incorporate copper into the device, and it is often difficult to separate only copper. However, recycling even when copper alone cannot be separated has now become a very important technical issue for increasing the recycling rate. However, the conventional waste treatment apparatus can treat a wide variety of wastes, but the apparatus needs to be modified according to the nature of the object to be treated. For example, when a waste containing a large amount of copper slag is used as a raw material, if a reduction furnace is provided to collect metal from the gasification melting furnace, the copper recovery rate is not necessarily good, and a large amount of dust is generated. It has been found that there is a problem that a large pressure loss occurs due to accumulation of dust in the bag filter during exhaust gas treatment due to the occurrence of slag in the melting furnace.
[0008]
In addition, the exhaust gas discharged from the melting furnace is deposited on the fly ash with low boiling point copper, zinc, lead, etc., which have been vaporized at a high temperature as the exhaust gas temperature decreases due to the cooling process. Since chlorides are wet, there is a problem that chlorides such as fly ash, copper, zinc, lead and the like adhere to the surface of the bag filter and reduce the collection rate of collected ash.
[0009]
In view of such circumstances, the present invention reduces the amount of fly ash, metal, and chloride adhering to the bag filter, and neutralizes the collected ash obtained from the bag filter in the waste water treatment step. An object of the present invention is to provide a waste treatment device for dehydrating and drying the neutralized soot obtained from the treatment device, returning it to the melting furnace, converting the metal into slag, and collecting it.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a waste treatment apparatus according to a first aspect of the present invention, for example, as shown in FIG. A large fluidized air C2 and a fluidized air C1 having a low mass velocity are blown to form a circulating flow of a fluid medium, and a part of the waste A is pyrolyzed and gasified at 450 ° C. to 600 ° C. in the circulating flow. The internal circulation fluidized bed gasification furnace 11 for discharging the non-combustible component E, the gas, the char and the non-combustible component E are introduced from the swirl inlet 14 and combusted at 1300 ° C. or more to slag the ash to form the molten slag G. The swirl melting furnace 21 to be generated, the electric holding furnace 31 to obtain the black copper I by melting the molten slag G discharged from the swirl melting furnace 21 in a reducing atmosphere, and the discharge from the swirl melting furnace 21 to rise inside. Spray with exhaust gas A waste liquid decomposition tower 26 that is in contact with the liquid L, a quench tower 41 that is provided downstream of the waste liquid decomposition tower 26 and that cools exhaust gas that has been in contact with the waste liquid L in contact with cooling water, and a downstream of the quench tower 41. The bag filter 51 that collects fly ash containing chlorides such as copper , zinc, and lead from the exhaust gas F transferred from the quenching tower 41, and the exhaust gas that is provided downstream of the bag filter 51 and transferred from the bag filter 51 A washing tower 61 for neutralizing the water, a mist cot rel 71 that is provided downstream of the washing tower 61 and collects the exhaust gas F collected from the washing tower 61 and collects fly ash ; a quenching tower 41 and a bag filter 51, connected to the bottom of the quenching tower 41 and the bag filter 51, and connected to the bottoms of the quenching tower 41 and the bag filter 51. 41 and a fly ash treatment device 91 that collects fly ash H from the bag filter 51 and a fly ash treatment device 91 that is provided downstream of the fly ash treatment device 91 and transports the fly ash collected by the fly ash treatment device 91. , transferring the fly ash collected by the mist Cottrell 71 from the mist Cottrell 71, a waste water treatment apparatus 82 by mixing a slaked lime by wet process to extract the neutralizing slag to neutralize the fly ash that the transfer, the waste water treatment apparatus 82 A neutralization soot drying device 84 for dehydrating and drying the neutralized soot that has been extracted from the waste water treatment device 82 and neutralized by the mixed slaked lime with the waste water treatment device 82; The neutralized soot N that is connected to the top 18 and dried by the neutralizing soot dryer 84 is stored and stored in the top 18 of the primary combustion chamber of the swirl melting furnace 21 through a valve 29 provided at the bottom. Throw neutralized 滓 N And a neutralizing soot storage device 27 to be lowered.
[0011]
By comprising in this way, since the slaked lime blowing apparatus 87 and the neutralization soot storage apparatus 27 are provided, the bag filter 51 is blown into the bag filter 51 by blowing the powdery substance of slaked lime K into the rapidly cooled exhaust gas being transferred. The fly ash H collected from the quenching tower 41 and the bag filter 51 is neutralized by adding slaked lime by wet processing to extract the neutralized soot, and the dewatered and dried neutralized soot N is swirled. It can be dropped from the top 18 of the melting furnace 21.
[0012]
In order to achieve the above object, the waste treatment apparatus according to claim 1 according to the invention according to claim 2 is, for example, as shown in FIG. In addition, the powdered slaked lime K is blown into the bag filter 51 by air in advance, and the cloth of the bag filter 51 is coated with the powdered slaked lime K.
[0013]
By comprising in this way, the powder of slaked lime K can be coated on the filter cloth of the bag filter 51.
[0014]
In order to achieve the above object, the waste treatment apparatus according to claim 1 or claim 2 according to the invention according to claim 3 is, for example, as shown in FIG. By blowing air into the air, the wet state of chloride in the rapidly cooled exhaust gas is improved, dust is easily removed from the bag filter 51, pressure loss is reduced , and dust re-scattering is suppressed. Configure as follows.
[0015]
If comprised in this way, while the wet state of the chloride in the rapidly cooled exhaust gas can be improved, dust removal of the bag filter 51 can be facilitated and the pressure loss can be reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an example of an embodiment of the present invention. In the figure, the same or similar reference numerals denote the same or equivalent parts, and duplicate explanations are omitted.
[0017]
FIG. 1 is a schematic system diagram of a waste disposal apparatus according to an embodiment of the present invention. The waste treatment apparatus includes an internal circulating fluidized bed gasification furnace 11 that introduces a raw material A from a side wall, and a swirl inlet 14 that is connected to the internal circulating fluidized bed gasification furnace 11 and gas and finely divided char and incombustible component E. , A swirl melting furnace 21 introduced from the above, a quenching tower 41 located downstream of the swirl melting furnace 21 for processing the cooling process of the exhaust gas F, and a fly containing a chloride such as copper, zinc, lead, etc. from the cooled exhaust gas F. Bag filter 51 that collects ash, cleaning tower 61 that processes the neutralization process of exhaust gas F, mist cot rel 71 that processes the dust collection process of exhaust gas F, and exhausted exhaust gas that has been filtered and collected And a discharge bump 81.
[0018]
The waste treatment apparatus includes a first storage 1 for storing copper slag A1, another second storage 2 for storing industrial waste A2 containing metal, and the first and second storages. And a feeder feeder 4 for receiving industrial waste A2 and the like, and the internal circulating fluidized bed gasifier 11 is connected downstream of the feeder feeder 4 to form copper as a raw material A.滓 Introduce A1 and industrial waste A2.
[0019]
The swirling melting furnace 21 is connected to the downstream of the internal circulation fluidized bed gasification furnace 11 and introduces gas and finely divided char and incombustible component E from the internal circulation fluidized bed gasification furnace 11 through the swirl introduction port 14. The molten slag G is caused to flow under its own weight from the slag recovery port 23 through the slag chute 16 to the reduction furnace 31, and copper I is recovered from the molten slag G.
[0020]
In addition, the swirl melting furnace 21 is connected to a waste liquid decomposition tower 26 installed in the upper part, and the exhaust gas F discharged from the swirl melting furnace 21 and rising inside is brought into contact with the waste liquid L to be sprayed. The quenching tower 41 provided downstream of the waste liquid decomposition tower 26 cools the exhaust gas F in contact with the waste liquid L by bringing it into contact with cooling water. Further, the swirl melting furnace 21 includes a neutralization soot storage device 27 connected to the top 18 via a rotary valve 29.
[0021]
The bag filter 51 is provided downstream of the quenching tower 41 and collects fly ash containing copper chloride from the exhaust gas F. The slaked lime blowing device 87 connected to the duct connecting the quenching tower 41 and the bag filter 51 stores slaked lime K therein and uses compressed air from the air storage unit 85 that stores compressed air. Slaked lime K supplied through the rotary valve 86 is blown into the exhaust gas passing through the duct. The exhaust gas is transferred to the bag filter 51 along with the slaked lime K.
[0022]
The fly ash treatment device 91 is connected to the bottom of the quench tower 41 and the bottom of the bag filter 51, collects fly ash H from the quench tower 41 and the bag filter 51, and drains provided downstream of the fly ash treatment device 91. The fly ash H is transferred to the processing device 82.
[0023]
The waste water treatment device 82 collects the fly ash H from the mist cot rel 71 and the fly ash treatment device 91, mixes slaked lime with a wet treatment, neutralizes the fly ash H and sludge, extracts neutralized soot, and the waste water treatment device. The neutralized soot is transferred to a neutralizing soot drying apparatus 84 provided downstream of 82 to perform dehydration and drying.
[0024]
The neutralization soot storage device 27 stores the neutralized soot N dehydrated and dried by the neutralization soot drying device 84 and neutralizes the neutralization soot to the top 18 of the swirl melting furnace 21 through the rotary valve 29 provided at the bottom. Drop N continuously.
[0025]
The internal circulation fluidized bed gasification furnace 11 is charged with waste A that substantially contains copper slag A1, and is fed with air C from the bottom so that fluidized air C2 having a high mass velocity and fluidization having a low mass velocity. The air C1 is blown into the internal circulating fluidized bed gasification furnace 11 through a diffuser plate of a fluidized bed located at the furnace bottom 12 to form a circulating flow, and a part of the waste A is pyrolyzed gas in the circulating flow. Gas, particulate char and incombustible components are discharged.
[0026]
The swirl melting furnace 21 used for the waste treatment apparatus introduces the gas discharged from the internal circulating fluidized bed gasification furnace 11, the char and the incombustible component, which are atomized, from the swirl inlet 14, and also sees the combustion gas from a plane. It is introduced in a tangential direction with respect to the axial direction at that time, and a swirl flow is formed inside the primary combustion chamber to slag the incombustible component and generate molten slag.
[0027]
The first reservoir 1 can simultaneously store other low-grade copper ores, for example, sulfide ores such as copper-containing pyrite and chalcopyrite, and oxide ores. The copper slag includes slag, dust, shavings generated from brass and copper bronze factories, bronze factories, and copper hydroxide and precipitated copper generated from chemical factories.
[0028]
Here, the operation of the waste treatment apparatus will be described with reference to the system diagram of FIG. The waste treatment apparatus is configured to finely pulverize the copper slag A1 etc. from the first storage 1 with a crusher (not shown), and convey it upward by the supply conveyor 3 together with the pulverized industrial waste A2 etc. Copper trough A1, industrial waste A2, etc. are put into the supply feeder 4 from the end of the supply conveyor 3.
[0029]
Next, a predetermined amount of copper slag A1, industrial waste A2, and the like are fed as raw material A into the internal circulating fluidized bed gasifier 11 from the supply feeder 4.
[0030]
Here, the copper jar A1 is preferably a jar that substantially contains copper, that is, contains 50 to 80% of copper grade. This is because when the copper quality is 50% or less, the variable cost becomes large, and when the copper quality is 80% or more, it is advantageous to solidify by some means and put it into a copper smelting converter factory. The industrial waste A2 includes shredder dust containing valuable metals and plastics obtained by treating automobiles, home appliances, etc. with a shredder, and waste plastics containing at least copper for household and industrial use.
[0031]
The internal circulating fluidized bed gasification furnace 11 is a mass in which industrial waste A2 and copper slag A1 and the like charged therein blow air C into the fluidized bed at the bottom 12 of the internal circulating fluidized bed gasification furnace 11 and branch off. A circulating flow is formed in the internal circulating fluidized bed gasification furnace 11 by the fluidizing air C2 having a high velocity and the fluidizing air C1 having a low mass velocity, and a part of the industrial waste A2 as waste and copper soot A1 is disposed. Pyrolysis gasification is performed in the circulating flow, and this gas, finely divided char and incombustible components are discharged.
[0032]
The internal circulating fluidized bed gasification furnace 11 sets the internal temperature to a temperature of about 450 ° C. to 600 ° C., and creates a reducing atmosphere with an air ratio of about 0.3, thereby rapidly disposing the plastic waste in the industrial waste A2. Waste plastic is pyrolyzed and gasified while preventing excessive combustion. In this case, copper (Cu), iron (Fe), and aluminum (Al), which are valuable metals, are prevented from being oxidized in the internal circulation fluidized bed gasification furnace 11, and cuprous oxide (Cu 2 ), which is the main body of copper soot. The effect that O) is reduced can also be expected.
[0033]
When the temperature in the internal circulation fluidized bed gasification furnace 11 is about 450 ° C. or less, the waste plastic is difficult to gas, and when it is about 600 ° C. or more, it burns. More preferably, the temperature in the internal circulating fluidized bed gasification furnace 11 is about 500 to 550 ° C. This is because it is suitable for the gasification of waste plastics and the prevention of oxidation of valuable metals.
[0034]
The first incombustible material D including copper soot not refined in the internal circulating fluidized bed gasification furnace 11 and valuable metals such as Cu, Fe, Al and the like having a low vapor pressure is taken from the side of the fluidized bed of the furnace bottom 12 to the chute part. Through the internal circulating fluidized bed gasification furnace 11 and recovered.
[0035]
In addition, the pyrolysis gas E generated in the internal circulating fluidized bed gasification furnace 11 and the copper vapor containing about 100 to 250 micrometers in diameter containing pulverized Cu 2 O and the high vapor pressure separated from the waste plastics. The second incombustible metal is transferred to the downstream swirl melting furnace 21 via the discharge port provided in the upper part of the internal circulating fluidized bed gasification furnace 11 together with the pyrolysis gas E.
[0036]
The swirling melting furnace 21 introduces the pyrolysis gas E and the like so as to swirl inside via the swirl inlet 14, and simultaneously supplies air from the outside to adjust the air ratio to about 0.9 to 1.3. The atmosphere in the first combustion chamber is made oxidizing and the pyrolysis gas E is burned. This combustion takes place at a temperature of about 1200 to 1500 ° C. This is because when the combustion temperature is about 1200 ° C. or lower, the fluidity of the molten slag deteriorates, and when it is about 1500 ° C. or higher, the refractory or the like on the inner wall of the swirl melting furnace 21 may be damaged. Preferably, the temperature is about 1300 ° C. That is, generation | occurrence | production of a harmful | toxic substance can be suppressed and it can adjust to the temperature suitable for slag formation of the copper jar A1.
[0037]
The combustion temperature in the swirl melting furnace 21 can be adjusted by the supply amount of industrial waste A2, such as waste plastic, sludge B, and the input amount of air. Combustion air is introduced in a tangential direction with respect to the central axis of the substantially cylindrical swirl melting furnace 21 erected in the vertical direction as viewed from above.
[0038]
The pyrolysis gas E burns in the swirl melting furnace 21 to become exhaust gas F, and is discharged from an exhaust gas discharge port 22 provided in an upper portion of a waste liquid decomposition tower 26 standing downstream of the swirl melting furnace 21. Furthermore, a part of Zn and Pb in the incombustible material is oxidized to fly ash H and discharged from the exhaust gas discharge port 22 together with the exhaust gas F. A part of Zn, Pb, etc., is melted at a high temperature and slags into contact with each other in a swirling flow and becomes large, and falls downward due to gravity.
[0039]
In addition, the copper slag etc. hits the side wall of the swirl melting furnace 21 due to the centrifugal force of the swirl flow while melting at high temperature and slag, and a part of it collides with the side wall and melts and adheres to grow. Others fall to the bottom. The dropped molten slag G is collected in a slag collection port 23 provided at the bottom of the swirl melting furnace 21 and is collected in an electric holding furnace 31 via a slag chute 16. The recovered molten slag G contains a large amount of Cu 2 O. Thus, it is possible to recover the quality of high melting slag G of Cu 2 O from the slag recovery port 23 from a low copper slag-quality of Cu 2 O.
[0040]
Next, the exhaust gas F discharged from the swirl melting furnace 21 comes into contact with the waste liquid L that rises and sprays the waste liquid decomposition tower 26. Furthermore, the exhaust gas F moves to the quenching tower 41 provided downstream of the waste liquid decomposition tower 26 and comes into contact with the sprayed cooling water to cool the exhaust gas F. The quenching tower 41 can cool the exhaust gas F to a temperature at which it can be released into the atmosphere. Further, the chloride in the cooled exhaust gas F increases deliquescence.
[0041]
Further, the cooled exhaust gas generated in the electric holding furnace 31 as a reduction furnace provided below the swirling melting furnace 21 is burned in a secondary combustion furnace (not shown) to decompose harmful substances, and in the quenching tower 41. Cool in the same way with cooling water. The exhaust gas is rapidly cooled because, when the exhaust gas is exposed to a temperature range of about 250 ° C. to 500 ° C., harmful substances such as dioxin are re-synthesized. This is to prevent generation.
[0042]
Further, the molten slag G recovered from the swirl melting furnace 21 is put into the electric holding furnace 31, and a graphite electrode is inserted from above. An electric current is passed between the electrodes, and the molten slag G is melted by the resistance heat. The electric holding furnace 31 can be further charged with untreated sulfide ore and copper slag. This is for adjusting the viscosity, basicity, and the like of the slag to be generated for proper operation of the electric holding furnace 31.
[0043]
The electric holding furnace 31 can be charged with coke M for reduction. Carbon C, which is a component of coke M, directly reduces Cu 2 O to produce Cu and CO. Here, examples of the reducing agent include coke M, pulverized coal, LPG, and the like, but coke M is preferable. This is because the input device is simple and easy to operate.
[0044]
The electric holding furnace 31 preferably has a temperature range of about 1250 to 1400 ° C. This is because the melting point of Cu 2 O is about 1230 ° C., and the melting point of copper needs to be at least about that of Cu 2 O at about 1080 ° C. By refining for 0.5 to 1.0 hour, black copper I having a copper quality of about 70 to 80% can be obtained.
[0045]
Moreover, since waste slag J is comprised with the homogeneous glassy component by a silica sand which hardly contains a metal, it can be utilized as a cement material to a roadbed etc. As a furnace for treating slag, a flash smelting furnace, a reflection furnace, a blast furnace, and the like can be used. However, since the slag component of the raw material may fluctuate, the same treatment can be performed even if the raw material fluctuates. The electric holding furnace 31 is suitable.
[0046]
The slaked lime blowing device 87 provided in the duct connecting the quenching tower 41 and the bag filter 51 blows the powdered slaked lime K into the exhaust gas F passing through the duct as described above. Then, the exhaust gas F and the slaked lime K are accompanied and transferred to the bag filter 51.
[0047]
The slaked lime blowing device 87 may store slaked lime K mixed with activated carbon. By controlling the rotational speed of the rotary valve 86, activated carbon and slaked lime K are blown in the middle of the transfer of the rapidly cooled exhaust gas F to the bag filter 51, and the activated carbon mixed slaked lime having an average particle diameter of about 10 to 20 micrometers together with air is put into the duct. We perform removal processing of harmful substance by blowing.
[0048]
The fly ash treatment device 91 connected to the bottoms of the quenching tower 41 and the bag filter 51 receives the fly ash H from the quenching tower 41 and the bag filter 51.
[0049]
The bag filter 51 allows the slaked lime K to adhere to the cloth surface of the bag filter 51 by blowing exhaust gas, air, and slaked lime K, thereby reducing the adhesion of wet chloride in the blown exhaust gas. That is, slaked lime K exhibits a function of a release material and a re-scattering agent when removing chloride, copper, and fly ash at a predetermined frequency, and therefore contains a larger amount of chloride and copper than conventional. While collecting fly ash H, the cloth surface can be dried and the pressure loss of the bag filter 51 can be reduced. Moreover, the slaked lime K adheres to the moist chloride deposited on the fly ash in the exhaust gas F passing through the duct, and the wet state of the surface can be improved.
[0050]
Further, the slaked lime blowing device 87 may blow slaked lime K together with air into the bag filter 51 before the exhaust gas is supplied from the quenching tower 41. That is, by pre-coating the inside of the bag filter 51 with slaked lime K, the effect as a release material can be further enhanced. After this pre-coating treatment, a normal waste treatment process is started, and slaked lime K, air, and exhaust gas are introduced into the bag filter 51 to form an additional slaked lime layer on the surface of the underlying slaked lime layer and contain copper and chloride The recovery rate of the fly ash H can be improved as compared with the prior art.
[0051]
The cleaning tower 61 provided downstream of the bag filter 51 neutralizes SOx, HCl and the like with an aqueous solution of caustic soda (NaOH), and then blows the exhaust gas F to the mist cot rel 71 provided further downstream. After the mist and dust in the exhaust gas F are removed, the exhaust gas 81 is discharged to the outside.
[0052]
Waste liquid containing dust collected by the mist cot rel 71 is transferred to the waste water treatment device 82, neutralized, and the sludge neutralized waste is sent to the neutralization waste drying device 84 provided downstream of the waste water treatment device 82. Then, the neutralized soot is dehydrated and dried. Here, the exhaust gas F is sprayed with a caustic soda solution in the washing tower 61 by blowing slaked lime K, neutralizes SOx and the like, and then recovered by the mist cot rel 71, and finally discharged from the exhaust projection 81 into the atmosphere.
[0053]
The neutralized soot N dehydrated and dried by the neutralizing soot dryer 84 is sent to and stored in the neutralized soot storage device 27 provided in the upper part of the swirl melting furnace 21. As described above, the neutralized soot N is continuously supplied to the top 18 of the swirl melting furnace 21 through the rotary valve 29 and is slagged in the primary combustion chamber. The reason why the neutralized soot N is charged into the swirl melting furnace 21 is that the amount of unburned material contained in the neutralized soot N is extremely small. This is because the efficiency is increased.
[0054]
With the above waste disposal apparatus, copper as a valuable metal can be efficiently recovered. For example, the copper slag after sulfuric acid leaching of copper oxide ore is carried into the first storage 1.
[0055]
Moreover, the shredder dust of household appliances crushed to about 150 mm or less and waste plastic not containing metal are carried into the second storage 2.
[0056]
The copper culm A1 and the shredder dust A2 and the like are put into the internal circulation fluidized bed gasification furnace 11 via the supply feeder 4 while being measured from each storage place by a measuring conveyor. In January, for example, copper jar 500t (dry weight 400t), shredder dust 500t, and waste plastic 200t can be processed at the same time.
[0057]
The size of the internal circulation fluidized bed gasification furnace 11 used in the present embodiment is constituted by a cylindrical container erected in the vertical direction. By blowing air from the fluidized bed at the furnace bottom 12 and adjusting the furnace temperature to about 550 ° C. and setting the air ratio to about 0.3, engineering plastics such as styrene-acrylic resin, polyethylene resin, and polyurethane resin can be used. However, it can be pyrolyzed and gasified.
[0058]
The swirl melting furnace 21 has a furnace temperature set to about 1300 ° C. and an air ratio of about 1.0. Thereby, Zn and Pb having a high vapor pressure are transferred to the waste liquid decomposition tower 26 and the quenching tower 41 together with the exhaust gas F. In the swirl melting furnace 21, copper is oxidized at a high temperature to form molten slag G, which is recovered in the electric holding furnace 31.
[0059]
In the waste treatment apparatus, the waste A substantially containing copper soot is introduced into the internal circulation fluidized bed gasification furnace 11, and pyrolysis gasification gas and finely divided char and incombustible component E are swirl melting furnace 21. And introducing a non-combustible component into slag to produce molten slag, contacting the exhaust gas discharged from the swirl melting furnace 21 and the waste liquid sprayed from above, and further contacting the exhaust gas with cooling water Cooling the exhaust gas, blowing the powdered slaked lime K into the bag filter 51 while blowing air with air, collecting the fly ash H containing copper chloride from the exhaust gas, and the wet ash H by wet processing A step of extracting neutralized soot by dehydration and drying by mixing and neutralizing slaked lime, and a rotary melting furnace through a rotary valve 29 while storing the dehydrated and dried neutralized soot N in the neutralizing soot storage device 27 Dropped To provide a process by lag of generating molten slag, it may be recovered better copper in fly ash H recovered from the bag filter 51 efficiently.
[0060]
Through the above processing steps, Cu can be recovered by 95% or more of the total input amount.
[0061]
In addition, the waste disposal apparatus of this invention is not limited only to the above-mentioned illustration example, Of course, various changes can be added within the range which does not deviate from the summary of this invention.
[0062]
【The invention's effect】
As described above, according to the waste treatment apparatus according to claims 1 to 3 of the present invention, the amount of fly ash, metal, and chloride adhering to the bag filter is reduced and obtained from the bag filter. After neutralizing the collected ash in the wastewater treatment process, the neutralized soot obtained from the wastewater treatment device is dehydrated and dried, and then returned to the melting furnace to recover the metal by slag. Can play.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a waste disposal apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reservoir, 2 ... Reservoir, 3 ... Supply conveyor, 4 ... Feed feeder, 11 ... Internal circulation fluidized bed gasification furnace, 12 ... Furnace bottom part, 14 ... Swirling inlet, 16 ... Slag chute, 21 ... Swirling melting Furnace, 26 ... Waste liquid decomposition tower, 27 ... Neutralization tank storage device, 29 ... Rotary valve, 31 ... Electric holding furnace, 41 ... Quenching tower, 51 ... Bag filter, 61 ... Cleaning tower, 71 ... Mistcotler, 81 ... Ejection, 82 ... Wastewater treatment device, 84 ... Neutralizing soot drying device, 85 ... Air storage unit, 86 ... Rotary valve, 87 ... Slaked lime blowing device, 91 ... Fly ash treatment device.

Claims (3)

銅滓を実質的に含む廃棄物を投入し、底部から質量速度の大きい流動化空気と質量速度の小さい流動化空気を吹き込み流動媒体の循環流を形成して前記廃棄物の一部を該循環流中で450℃乃至600℃で熱分解ガス化しガスとチャー及び不燃成分を排出する内部循環流動層ガス化炉と;
前記ガスとチャー及び不燃成分を旋回導入口より導入し、1300℃以上にて燃焼させて灰分をスラグ化して溶融スラグを生成する旋回溶融炉と;
前記旋廻溶融炉より排出される溶融スラグを還元雰囲気下で溶融して黒銅を得る電気式保持炉と;
前記旋回溶融炉から排出され内部で上昇する排ガスと噴霧する廃液とを接触させる廃液分解塔と;
前記廃液分解塔の下流に設けられ、前記廃液と接触した排ガスを冷却水に接触させて冷却する急冷塔と;
前記急冷塔の下流に設けられ、前記急冷塔から移送された排ガスから銅、亜鉛、鉛等の塩化物を含む飛灰を捕集するバグフィルタと;
前記バグフィルタの下流に設けられ、前記バグフィルタから移送された排ガスを中和する洗浄塔と
前記洗浄塔の下流に設けられ、前記洗浄塔から移送された排ガスの濾過集塵を行い、飛灰を回収するミストコットレルと
前記急冷塔と前記バグフィルタとの間に設けられ、該バグフィルタに移送途中の急冷した排ガスに消石灰の粉状物を空気により吹き込む消石灰吹込装置と;
前記急冷塔と前記バグフィルタの底部に接続し、前記急冷塔と前記バグフィルタから飛灰を回収する飛灰処理装置と;
前記飛灰処理装置の下流に設けられ、該飛灰処理装置から該飛灰処理装置で回収した飛灰を移送し、前記ミストコットレルから前記ミストコットレルで回収した飛灰を移送し、湿式処理により消石灰を混入して前記移送した飛灰を中和させ中和滓を抽出する排水処理装置と;
前記排水処理装置の下流に設けられ、該排水処理装置から抽出した、前記混入された消石灰により前記排水処理装置で中和された中和滓を脱水及び乾燥させる中和滓乾燥装置と;
前記旋回溶融炉の頂部に接続され、前記中和滓乾燥装置により乾燥させた中和滓を貯留し、底部に設けられたバルブを介して前記旋回溶融炉の1次燃焼室の頂部へ該貯留した中和滓を投下する中和滓貯留装置と;
を備える廃棄物処理装置。
Waste material substantially containing copper slag is introduced, fluidized air having a large mass velocity and fluidized air having a small mass velocity are blown from the bottom to form a circulating flow of the fluid medium, and a part of the waste material is circulated. An internal circulating fluidized bed gasifier for pyrolysis and gasification in the stream at 450 ° C. to 600 ° C. to discharge gas, char and incombustible components;
A swirl melting furnace in which the gas, char and non-combustible components are introduced from a swirl inlet and burned at 1300 ° C. or higher to slag ash to produce molten slag;
An electric holding furnace for obtaining black copper by melting molten slag discharged from the rotating melting furnace in a reducing atmosphere;
A waste liquid decomposition tower for contacting exhaust gas discharged from the swirl melting furnace and rising inside with the sprayed waste liquid;
A quenching tower that is provided downstream of the waste liquid decomposition tower and cools the exhaust gas that has come into contact with the waste liquid by bringing it into contact with cooling water;
A bag filter that is provided downstream of the quenching tower and collects fly ash containing chlorides such as copper, zinc, and lead from the exhaust gas transferred from the quenching tower;
A washing tower provided downstream of the bag filter and neutralizing exhaust gas transferred from the bag filter ;
A mist cotrel that is provided downstream of the washing tower, collects and filters exhaust gas transferred from the washing tower, and collects fly ash ;
A slaked lime blowing device that is provided between the quenching tower and the bag filter and blows slaked lime powder into the quenched exhaust gas that is being transferred to the bag filter by air;
A fly ash treatment device connected to the quench tower and the bottom of the bag filter, and for collecting fly ash from the quench tower and the bag filter;
Provided downstream of the fly ash treatment device, the fly ash collected by the fly ash treatment device is transferred from the fly ash treatment device, the fly ash collected by the mist cot rel is transferred from the mist cot rel , and wet processing is performed. A wastewater treatment device that mixes slaked lime to neutralize the transferred fly ash and extract neutralized soot;
A neutralization soot drying device provided downstream of the wastewater treatment device and dehydrating and drying the neutralized soot neutralized in the wastewater treatment device by the mixed slaked lime extracted from the wastewater treatment device;
The neutralized soot, which is connected to the top of the swirl melting furnace and dried by the neutralization soot drying apparatus, is stored and stored in the top of the primary combustion chamber of the swirl melting furnace through a valve provided at the bottom. A neutralization paddle storage device for dropping the neutralized paddle;
A waste treatment apparatus comprising:
前記消石灰吹込装置は、前記急冷した排ガスが移送される前に、予め消石灰の粉状物を空気により前記バグフィルタへ吹込み、該バグフィルタの布へ該消石灰の粉状物をコーティングする請求項1に記載の廃棄物処理装置。  The slaked lime blowing device blows slaked lime powder into the bag filter in advance with air before the quenched exhaust gas is transferred, and coats the bag filter cloth with the slaked lime powder. The waste disposal apparatus according to 1. 前記消石灰吹込装置は、消石灰の粉状物を空気により吹き込むことにより、前記急冷した排ガス中の塩化物の湿った状態を改善すると共に、前記バグフィルタのダストの払い落としを容易にし圧力損失を低減させ、かつ、ダストの再飛散を抑える請求項1又は請求項2に記載の廃棄物処理装置。  The slaked lime blowing device improves the moist state of chloride in the rapidly cooled exhaust gas by blowing slaked lime powder with air, facilitates the dust removal of the bag filter and reduces pressure loss The waste disposal apparatus according to claim 1, wherein the waste disposal apparatus suppresses re-scattering of dust.
JP2003195509A 2003-07-11 2003-07-11 Waste treatment equipment Expired - Lifetime JP4153377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195509A JP4153377B2 (en) 2003-07-11 2003-07-11 Waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195509A JP4153377B2 (en) 2003-07-11 2003-07-11 Waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2005030663A JP2005030663A (en) 2005-02-03
JP4153377B2 true JP4153377B2 (en) 2008-09-24

Family

ID=34206298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195509A Expired - Lifetime JP4153377B2 (en) 2003-07-11 2003-07-11 Waste treatment equipment

Country Status (1)

Country Link
JP (1) JP4153377B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851625A (en) * 2012-11-30 2014-06-11 胡波 Smoke gas feedback incinerator
KR101725800B1 (en) * 2015-10-01 2017-04-11 조한 Exhaust gas processing system of the furnace
CN106680066A (en) * 2016-12-19 2017-05-17 珠海格力电器股份有限公司 Method for analyzing metal elements in electronic waste
KR20180111344A (en) * 2017-03-31 2018-10-11 조한 Exhaust gas processing system of the furnace
CN110564971A (en) * 2019-10-29 2019-12-13 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc from blast furnace gas mud
CN111850314B (en) * 2020-07-30 2023-01-24 中国恩菲工程技术有限公司 Oxygen-blown smelting process and system for electric furnace
CN112588783A (en) * 2020-11-26 2021-04-02 日照职业技术学院 Intelligent waste recovery device for environmental art design

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284381A (en) * 1988-05-11 1989-11-15 Nkk Corp Treatment of fly ash
JPH07100320A (en) * 1993-08-06 1995-04-18 Mizutani Kazuo Batch type reaction dust collector for incineration furnace
JPH10238725A (en) * 1996-10-25 1998-09-08 Mitsui Eng & Shipbuild Co Ltd Waste treatment method and device
JPH1157653A (en) * 1997-08-11 1999-03-02 Ebara Corp Recovery device for slag of waste and slagging method
JP3535381B2 (en) * 1998-04-24 2004-06-07 日鉱金属株式会社 Collection of valuable metals
JP2001296011A (en) * 2000-04-11 2001-10-26 Babcock Hitachi Kk Gasifying device for refuse

Also Published As

Publication number Publication date
JP2005030663A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
NL1007710C2 (en) Method for processing waste or biomass material.
KR100584745B1 (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
JPH09235148A (en) Use of residue, waste and fuel of low heating value in cement furnace
CN111020212B (en) Recovery process of copper from copper-containing waste metal
EP0913360A1 (en) Intermittent continuous method for recovering refined activated carbon from waste tyres and the like and the device therefor
WO2018018615A1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
CN100398907C (en) Fluidized bed incineration method for industrial organic waste liquid with high salt content
JP2003004211A (en) Equipment and method for treating waste
JP4153377B2 (en) Waste treatment equipment
FI127645B (en) Recovery of nutrients and energy from sewage sludge and animal manure
JP4039647B2 (en) Method and apparatus for treating dust in waste melting furnace
CN112143527A (en) System and method for treating oil-based rock debris with high-temperature plasma tubular melting furnace
SK281217B6 (en) Process for the partial oxidation of a hydrocarbon feedstock
CN104566398B (en) Device and method for treating waste printed circuit boards
JP3935742B2 (en) High quality fuel production apparatus and production method from organic waste
JP3535381B2 (en) Collection of valuable metals
JPH09235559A (en) Utilization of residue and waste in terms of material and energy in upright furnace
JPH08253350A (en) Method for utilizing raw material when cement is manufactured and plant for it
JP3938981B2 (en) Gas recycling method for waste gasification
CN110484301B (en) Ender grading gasification system for dry-type clean treatment of fly ash
JPH08159430A (en) Method of combustion treatment for rubber waste
JP4227854B2 (en) Melting furnace deposit removal device
JP4119802B2 (en) Waste gasification and melting equipment
JP3829244B2 (en) Waste gasification method
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Ref document number: 4153377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term