JP4152756B2 - In-tank filter material and manufacturing method thereof - Google Patents
In-tank filter material and manufacturing method thereof Download PDFInfo
- Publication number
- JP4152756B2 JP4152756B2 JP2003009188A JP2003009188A JP4152756B2 JP 4152756 B2 JP4152756 B2 JP 4152756B2 JP 2003009188 A JP2003009188 A JP 2003009188A JP 2003009188 A JP2003009188 A JP 2003009188A JP 4152756 B2 JP4152756 B2 JP 4152756B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- heat
- fineness
- dtex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filtering Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は燃料フィルターに関し、特に内燃機関等に設けられた燃料タンクから燃料噴射装置へ供給するのに好適に用いられるインタンク用燃料フィルター材ならびにその製造方法に関するものである。
【0002】
【従来の技術】
内燃機関等の燃料噴射弁へ燃料を濾過して供給するためのインタンク用燃料フィルターは、燃料に混入した異物を通過させない濾過特性,流量特性,耐久性,耐燃料性,耐薬品性などの様々な特性が要求される。
【0003】
従来、燃料フィルターは燃料が燃料タンクから燃料フィルター装置を経て燃料噴射弁に供給される工程において、燃料タンク内と燃料フィルター装置に設けられ、用いられるフィルターとして金網,焼結金属,ナイロンネット,不織布等が一般に使用されていたが、このうち、燃料タンクに設置されている燃料フィルターの構造は吸引時に袋状のフィルターの内側同士が密着しないように内面に保持フレームが挿入されていて、これによって内面同士がくっ付くことなく燃料を確実に濾過して吸引できるように考慮されている。
なお、その濾過フィルター材は最近ではナイロンネット,不織布が使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来の濾過フィルター材は比較的にコスト高で、タンク内の燃料を最大限に吸収するため、濾過フィルターの先端は燃料タンクの底面に接触させている。
また、袋状の濾材の内側同士が密着したり、折れたりしないことが必要であるために、濾過フィルターの構造を工夫して対応しているのが現状である。
【0005】
本発明は上述の如き実状に鑑み、これに対処すべく、特にフィルター材構成に好適な繊維として熱融着繊維、とりわけ耐燃料性に有効なナイロン樹脂成分を鞘成分とする熱融着繊維の採用を見出すことにより、従来のフィルター材に比較し、より弾性があって、濾過性能に優れ、かつコスト低減可能な燃料の濾過性,耐久性に優れたフィルター材、特にインタンク用フィルター材を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
即ち、上記目的に適合する本発明フィルター材は、基本的に高融点短繊維と熱融着短繊維の混繊繊維層が2層以上、積層一体化され、一側より他側に向かって粗密構造をもつ積層繊維層に形成された不織布であり、とりわけ高融点短繊維としてポリエステル短繊維を用い、粗層側の繊度を3.0デシテックス〜20.0デシテックス、密層側の繊度を0.5デシテックス〜5.0デシテックスとすること、一方、熱融着短繊維として鞘成分がナイロン樹脂、芯成分がポリエステル樹脂からなる繊度の範囲が1.0デシテックス〜5.0デシテックスである芯鞘複合繊維を用いること、そして上記高融点短繊維と熱融着短繊維の混繊比率は10/90〜50/50であり、高融点短繊維と熱融着短繊維の混繊の平均繊度は粗層繊維層は5.0デシテックス以下、密層繊維層は2.2デシテックス以下であることを特徴としている。
【0008】
請求項2は上記フィルター材の製造方法に係り、ポリエステル短繊維よりなる高融点短繊維と鞘成分がナイロン樹脂,芯成分がポリエステル樹脂よりなる芯鞘型複合繊維よりなる熱融着短繊維を10:90〜50:50で混繊配合してなる混繊繊維層を二層以上積層させた後、繊維層間を繊維の交絡によって物理的に結合させ、次いで加熱処理して鞘成分のナイロン樹脂を溶融させ繊維同士を付着せしめて一側より他側に向かって粗密構造をもち、粗層繊維層の混繊後の平均繊度が5.0デシテックス以下、密層繊維層の平均繊度が2.2デシテックス以下である不織布を形成し、次いで加熱ローラによるカレンダー処理を施すことからなる。
【0009】
【発明の実施の形態】
以下、更に上記本発明の詳細について説明する。
本発明は、上述の如く高融点短繊維と熱融着短繊維の混繊繊維層の二層以上からなる一体化された一側より他側に向かって粗密構造をもつ積層繊維層の不織布である。
ここで、上記の高融点短繊維としては、ポリエステル短繊維が用いられ、その粗層側の繊度範囲は3.0デシテックス〜20.0デシテックスが好適である。3.0デシテックス以下であると粗塵を濾過する役目であるのに、細かい塵を捕集し、その結果、フィルターの濾過寿命を早める。また、20デシテックス以上では熱融着短繊維の繊度にも関係するが、粗塵の濾過の程度に差が見られなくなる。
【0010】
一方、ポリエステル短繊維の密層側の繊度範囲は0.5デシテックス〜5.0デシテックスが好ましく、0.5デシテックス以下であると微粒子の塵を濾過する役目は充分にあるが、初期圧が高く、その結果、フィルターの濾過寿命を早める。また、5デシテックス以上では微粒子の塵を濾過する役目を果たすのに乏しいので好ましくない。
【0011】
次に熱融着短繊維としては、芯鞘複合繊維、特に鞘成分がナイロン樹脂からなり、芯成分がポリエステル樹脂からなるものが好ましい。とりわけ鞘成分としてナイロン樹脂を用いることは本発明インタンク用フィルター材において重要な特徴である。
この鞘成分のナイロンの融点範囲はポリエステルに比し低融点で通常、130℃〜230℃程度である。低融点であるための粗密構造をもつ不織布を形成した後、加熱することにより繊維同士の付着をはかることができる。しかも鞘成分に低融点のポリエステル樹脂を使用すれば耐燃料性に劣るがナイロン樹脂はこの点、耐燃料性に優れている。
【0012】
この熱融着短繊維の繊度範囲は1.0デシテックス〜5.0デシテックスが望ましく、1.0デシテックス以下では熱融着の効率が低下する。また、繊度が5.0デシテックス以上では全体の濾過効率が低下する。
なお、上記高融点短繊維と熱融着短繊維の混繊比率としては10/90〜50/50であることが好ましく、特に高融点短繊維が10以下であると不織布を構成する混繊繊維の腰が弱く、即ち、圧縮弾性率が低く、濾過中に不織布の厚さ方向に圧縮され易く、その結果、背圧上昇が早期に起こり易く好ましくない。
また、高融点短繊維が50以上であると、不織布の高融点短繊維の脱落が起こり易く、フィルター性能が直ぐに低下すると共に工程の機能を阻害するので好ましくない。
【0013】
しかして、以上の燃料の濾過性に優れたインタンク用フィルター材は、前述の如き高融点短繊維と前述の如きナイロン樹脂を鞘成分、ポリエステル樹脂を芯成分とする芯鞘型複合繊維を含む熱融着短繊維を所定の割合で配合してなる混繊繊維層を二層以上積層させた後、繊維層間を交絡によって物理的に結合させ、次いで加熱処理して構成繊維の一部を溶融させて繊維同士を付着せしめて不織布を形成し、次いで加熱ローラによるカレンダー処理を施すことにより作成される。
得られる不織布は本発明の耐燃料性が良好で燃料の濾過性に優れたインタンク用フィルター材である。
【0014】
繊維層間の交絡結合を繊維同志の交絡によって行う物理的方法としてはニードルパンチ加工やウォータージェット加工が好適である。
また加熱処理は混繊繊維層を組成する高融点短繊維の溶融温度より低く、熱融着短繊維の溶融温度より高い温度で加熱すればよく、この際、全ての融着短繊維の溶融を待つ必要はなく、繊維同士が所要程度付着されれば一部の繊維の溶融でも充分である。
そして、最後は加熱ローラによるカレンダー処理によって繊維層の表面平滑化を図り、厚みを平均化せしめる。
殊に上記のフィルター材において、素材を同種に統一することにより使用後の分離処理や再生処理の取り扱いが容易となり、環境に優しくなる。
【0015】
【実施例】
以下、本発明の実施例及び比較例により更に具体的に説明する。
なお、以下の実施例及び比較例における目付量,厚さ,圧縮弾性利率,濾過性能等の測定または評価は下記の方法に従って行った。
【0016】
(イ)単位面積当たりの質量(目付量)
JIS L1906の5.2に記載の方法に準拠して求めた。
(ロ)厚さ
JIS L1906の5.1の方法に従って荷重2KPaで測定した。
(ハ)圧縮弾性率
圧縮試験はピーコック社製アップライト・ダイヤル・ゲイジを用い、圧縮面積25mmφで試料を圧縮し、初荷重12mg/mm2として荷重200mg/mm2下での変形距離(mm)を求め、その距離を荷重188mg/mm2に除して、更に試料の目付で除して100倍して得た。単位は100g目付当たりmg/mm3である。
(ニ)濾過性能評価
テストベンチ(SAEJ1858に準拠)による濾過性能評価を下記条件で実施し評価した。
評価条件
ダスト ISO MEDEIUM TD(5〜80μm)
ダスト投入量 50mg/min
オイル MIL−H5606F
テスト油量 3.0L
テスト流量 3.0L/min
ダストレンジ 5μm、20μm、40μm、60μm、80μm、100μm、
評価
初期圧損は測定初期の圧力(KPa)
濾過効率は60μmまでの捕集量で評価(%)
濾過寿命の評価は9.8KPa到着時間(min)
【0017】
【実施例1】
粗層側として繊度が6.6デシテックス、繊維長51mmのポリエステル短繊維25重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)75重量%からなる目付100g/m2の繊維層(平均繊度:2.93デシテックス)と、密層側として繊度1.3デシテックス、繊維長44mmのポリエステル短繊維25重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)75重量%からなる目付150g/m2の繊維層(平均繊度:1.6デシテックス)を積層して密層の表面から粗層へニードルパンチ加工(針深度13mm、打ち込み本数90本/cm2)を施して繊維交絡による一体化処理をした。
引き続き、ピンテンター式熱処理機で熱処理(処理温度240℃、処理時間50秒)を行って繊維間の熱融着を行った。
次いで、密層部を加熱ローラー(表面温度190℃)に粗層部を雰囲気温度のローラー(ローラー間のクリアランス0.3mm)に接触させてカレンダー処理を行い、のち冷却して本発明の燃料用のインタンク用フィルター材を得た。
【0018】
【実施例2】
粗層側として繊度が6.6デシテックス、繊維長51mmのポリエステル短繊維50重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)50重量%からなる目付100g/m2の繊維層(平均繊度:4.15デシテックス)と、密層側として繊度1.3デシテックス、繊維長44mmのポリエステル短繊維50重量%及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)50重量%からなる目付150g/m2の繊維層(平均繊度:1.5デシテックス)を積層して密層の表面から粗層へニードルパンチ加工(針深度13mm、打ち込み本数90本/cm2)を施して繊維交絡による一体化処理をした。
引き続きピンテンター式熱処理機で熱処理(処理温度240℃、処理時間50秒)を行って繊維間の熱融着を行った。
次いで密層部を加熱ローラー(表面温度190℃)に粗層部を雰囲気温度のローラー(ローラー間のクリアランス0.3mm)に接触させてカレンダー処理を行い、のち、冷却して本発明の燃料用のインタンク用フィルター材を得た。
【0019】
【実施例3】
粗層側のポリエステル短繊維の繊度6.6デシテックスを繊度10.0デシテックスで目付150g/m2(平均繊度3.78デシテックス)に変更した以外は全て実施例1の条件とし、本発明の燃料用のインタンク用フィルター材を得た。
【0020】
【実施例4】
密層側のポリエステル短繊維の繊度1.3デシテックスを繊度3.0デシテックスで目付200g/m2(平均繊度2.03デシテックス)に変更した以外は全て実施例1の条件とし、本発明の燃料用のインタンク用フィルター材を得た。
【0021】
【比較例1】
粗層側のポリエステル短繊維と熱融着短繊維の配合比率を8/92(平均繊度1.83)に変更した以外は全て実施例1の条件とし、燃料用のインタンク用フィルター材を得た。
【比較例2】
粗層側のポリエステル短繊維と熱融着短繊維の配合比率を90/10(平均繊度6.11デシテックス)に、密層側のポリエステル繊維と熱融着短繊維の配合比率を90/10(平均繊度1.34デシテックス)に変更した以外は全て実施例1の条件とし、燃料用のインタンク用フィルター材を得た。
【比較例3】
メルトブロー法で作られたナイロン長繊維の繊維層からなる粗層が繊度3.0デシテックス、目付が70g/m2、中層が繊度2.2デシテックス、目付が70g/m2、密層が繊度0.9デシテックス、目付が70g/m2である各繊維層を粗層,中層,密層と積層し、粗層側に40メッシュのナイロンの網を重ねて密層側から超音波融着をピン間隔8mmでピン列間隔8mmのドット柄模様で層接着したインタンク用フィルター材を得た。
【比較例4】
熱融着短繊維をナイロン−エステル鞘芯の代わりに低融点エステル/高融点エステル(低融点ポリエステル融点120℃)の鞘芯に替えた以外は全て実施例1の条件に従って実施し、燃料用のインタンク用フィルター材を得た。
【0022】
かくして得られた上記実施例1,2,3,4及び比較例1,2,3,4について、夫々特性評価を行った。その結果を表1に示す。
【0023】
【表1】
【0024】
上記表1より実施例1,2,3,4の本発明フィルター材は共に濾過性能が良く、燃料に対する耐久性に優れていることが分かる。
比較例1は熱融着短繊維が多いため圧縮弾性率が低くなり、燃料の濾過性の初期圧損が高くなる。比較例2は逆に熱融着短繊維が少ないため、繊維の脱落が生じる問題がある。
また、比較例3は全てナイロンであるために圧縮弾性率がエステルに比較して劣るため、へたり易く、その結果、背圧上昇が早い。また、比較例4の如く、層間の接着を低融点のポリエステル不織布を使用することは、燃料の耐久性に劣ることを示しており、低融点のポリエステル不織布の使用は好ましくない。
【0025】
【発明の効果】
以上説明したように、本発明の高融点短繊維と熱融着短繊維の混繊繊維層が二層以上からなる一体化された粗密構造をもつ積層繊維層の不織布からなるインタンク用フィルター材は、濾過フィルター材として従来のものより弾力性があって、濾過性能に優れ、かつコストの低減を図った燃料の濾過性能,耐久性に優れており、インタンク用フィルターとして極めて有効な濾過フィルター材を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel filter, and more particularly to an in-tank fuel filter material suitably used for supplying fuel from a fuel tank provided in an internal combustion engine or the like to a fuel injection device, and a method for manufacturing the same.
[0002]
[Prior art]
An in-tank fuel filter for filtering and supplying fuel to a fuel injection valve of an internal combustion engine, etc. has filtering characteristics, flow characteristics, durability, fuel resistance, chemical resistance, etc. that do not allow foreign matters mixed in the fuel to pass through. Various characteristics are required.
[0003]
Conventionally, a fuel filter is provided in the fuel tank and in the fuel filter device in a process in which fuel is supplied from the fuel tank to the fuel injection valve through a fuel filter device. Of these, the structure of the fuel filter installed in the fuel tank has a holding frame inserted on the inner surface so that the inside of the bag-shaped filter does not adhere to each other during suction. It is considered that fuel can be reliably filtered and sucked without the inner surfaces sticking to each other.
In recent years, nylon nets and non-woven fabrics are used as the filter material.
[0004]
[Problems to be solved by the invention]
However, the conventional filter material as described above is relatively expensive and absorbs the fuel in the tank as much as possible, so that the tip of the filter is in contact with the bottom surface of the fuel tank.
Moreover, since it is necessary for the inner side of a bag-shaped filter medium to adhere | attach and do not break, the present condition is responding by devising the structure of a filtration filter.
[0005]
In view of the actual situation as described above, the present invention is made of a heat-sealing fiber as a fiber particularly suitable for a filter material structure, and particularly a heat-sealing fiber having a nylon resin component effective for fuel resistance as a sheath component. By finding adoption, filter materials that are more elastic than conventional filter materials, have superior filtration performance, and have excellent fuel filterability and durability that can reduce costs, especially filter materials for in-tanks. It is intended to provide.
[0006]
[Means for Solving the Problems]
In other words, the filter material of the present invention suitable for the above-mentioned purpose is basically composed of two or more mixed fiber layers of high melting point short fibers and heat-bonding short fibers laminated and integrated so that the density increases from one side to the other side. It is a nonwoven fabric formed in a laminated fiber layer having a structure . Particularly, polyester short fibers are used as high melting point short fibers, the coarse layer side fineness is 3.0 to 20.0 decitex, and the dense layer side fineness is 0. A core-sheath composite in which the sheath component is nylon resin and the core component is polyester resin as the heat-bonding short fiber, and the range of fineness is 1.0 decitex to 5.0 decitex The mixing ratio of the high melting point short fibers and the heat-sealing short fibers is 10/90 to 50/50, and the average fineness of the high melting point short fibers and the heat-sealing short fibers is coarse. Layer fiber layer is 5.0 de Tex below dense layer fibrous layer is characterized in that 2.2 dtex or less.
[0008]
A second aspect of the present invention relates to a method for producing the filter material, comprising 10 high-melting short fibers made of polyester short fibers and 10 heat-bonded short fibers made of core-sheath type composite fibers made of nylon resin as the sheath component and polyester resin as the core component. : After blending two or more mixed fiber layers formed by blending blends at 90 to 50:50 , the fiber layers are physically bonded by entanglement of the fibers, and then heat-treated to obtain a nylon resin as a sheath component. is melted by adhering the fiber維同workers Chi also compressional structure toward the other side from the one side, the average fineness after commingled coarse layer fiber layer 5.0 dtex or less, the average fineness of the dense layer fiber layer It consists of forming a non-woven fabric that is 2.2 decitex or less and then applying a calender treatment with a heating roller.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described below.
The present invention is a laminated fiber layer nonwoven fabric having a dense structure from one side to the other side composed of two or more layers of mixed fiber layers of high melting point short fibers and heat-bonding short fibers as described above. is there.
Here, polyester short fibers are used as the high melting point short fibers, and the fineness range on the coarse layer side is preferably 3.0 dtex to 20.0 dtex. Although it is the role which filters coarse dust as it is 3.0 decitex or less, fine dust is collected and, as a result, the filtration life of a filter is shortened. Further, if it is 20 dtex or more, there is no difference in the degree of coarse dust filtration although it is related to the fineness of the heat-bonded short fibers.
[0010]
On the other hand, the fineness range on the dense layer side of the polyester short fiber is preferably 0.5 dtex to 5.0 dtex, and if it is 0.5 dtex or less, it has a role of filtering fine dust, but the initial pressure is high. As a result, the filter's filtration life is shortened. On the other hand, if it is 5 dtex or more, it is not preferable because it is insufficient to play the role of filtering fine particles.
[0011]
Next, as the heat Chakutan fibers, sheath-core composite fibers, in particular made sheath component is nylon resin, the core component preferably has polyester resins or Ranaru. In particular, the use of a nylon resin as the sheath component is an important feature in the in-tank filter material of the present invention.
The melting range of the nylon of the sheath component is typically a low melting point compared to the polyester is about 130 ° C. to 230 ° C.. After forming a nonwoven fabric having a coarse / dense structure for low melting point, the fibers can be adhered to each other by heating. Moreover inferior to levers fuel resistance to use low melting point of the polyester resin sheath component this point nylon resin is excellent in fuel resistance.
[0012]
The fineness range of this heat-bonded short fiber is preferably 1.0 dtex to 5.0 dtex, and if it is 1.0 dtex or less, the efficiency of heat-sealing decreases. Moreover, if the fineness is 5.0 dtex or more, the overall filtration efficiency is lowered.
In addition, it is preferable that it is 10 / 90-50 / 50 as a blend ratio of the said high melting point short fiber and a heat-fusion short fiber, and especially the mixed fiber which comprises a nonwoven fabric when a high melting point short fiber is 10 or less Is weak, that is, the compression elastic modulus is low, and is easily compressed in the thickness direction of the nonwoven fabric during filtration. As a result, an increase in back pressure is likely to occur at an early stage, which is not preferable.
On the other hand, if the high melting point short fibers are 50 or more, the high melting point short fibers of the nonwoven fabric are liable to drop off, and the filter performance is immediately deteriorated and the function of the process is hindered.
[0013]
Thus, the above- mentioned in-tank filter material having excellent fuel filterability includes a high-melting-point short fiber as described above and a core-sheath type composite fiber having a nylon resin as a sheath component and a polyester resin as a core component as described above. After laminating two or more mixed fiber layers composed of heat-bonded short fibers at a predetermined ratio , the fiber layers are physically bonded by entanglement, and then heat treated to melt some of the constituent fibers. The fibers are adhered to each other to form a non-woven fabric and then subjected to calendering with a heating roller.
The obtained non-woven fabric is an in-tank filter material having good fuel resistance and excellent fuel filterability according to the present invention.
[0014]
As a physical method for performing entanglement bonding between fiber layers by entanglement between fibers, needle punching or water jet processing is suitable.
The heat treatment may be performed at a temperature lower than the melting temperature of the high-melting short fibers constituting the mixed fiber layer and higher than the melting temperature of the heat-bonding short fibers. There is no need to wait, and melting of some fibers is sufficient if the fibers adhere to the required extent.
Finally, the surface of the fiber layer is smoothed by calendaring with a heating roller, and the thickness is averaged.
In particular, in the above-mentioned filter material, by unifying the same material, handling of separation processing and regeneration processing after use becomes easy, and it becomes environmentally friendly.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In addition, the measurement or evaluation of the basis weight, thickness, compression elastic modulus, filtration performance, etc. in the following examples and comparative examples was performed according to the following method.
[0016]
(I) Mass per unit area (weight per unit area)
It calculated | required based on the method of 5.2 of JISL1906.
(B) Thickness It was measured at a load of 2 KPa according to the method of 5.1 of JIS L1906.
(C) Compression elastic modulus The compression test uses an upright dial gage manufactured by Peacock, compresses the sample with a compression area of 25 mmφ, and deforms under an initial load of 12 mg / mm 2 and a load of 200 mg / mm 2 (mm) The distance was divided by a load of 188 mg / mm 2 and further divided by the basis weight of the sample to obtain 100 times. The unit is mg / mm 3 per 100 g basis weight.
(D) Filtration performance evaluation A filtration performance evaluation by a test bench (based on SAEJ1858) was performed and evaluated under the following conditions.
Evaluation conditions Dust ISO MEDIUM TD (5 to 80 μm)
Dust input 50mg / min
Oil MIL-H5606F
Test oil volume 3.0L
Test flow rate 3.0L / min
Dust range 5μm, 20μm, 40μm, 60μm, 80μm, 100μm,
Initial pressure loss of evaluation is initial pressure (KPa)
Filtration efficiency is evaluated by collecting amount up to 60μm (%)
Evaluation of filtration life is 9.8 KPa arrival time (min)
[0017]
[Example 1]
As the coarse layer side, a heat-bonded short fiber having a fineness of 6.6 decitex, a polyester short fiber having a fiber length of 51 mm and 25% by weight, and a fineness of 1.7 decitex and a fiber length of 38 mm (sheath component being nylon, melting point 220 ° C., 100 g / m 2 fiber layer (average fineness: 2.93 dtex) with a core component of 75% by weight of polyester (melting point: 260 ° C.), polyester short fiber having a fineness of 1.3 dtex and a fiber length of 44 mm on the dense layer side 150 g / m per unit area consisting of 25% by weight and 75% by weight of a heat-bonded short fiber having a fineness of 1.7 dtex and a fiber length of 38 mm (sheath component is nylon, melting point 220 ° C., core component is polyester, melting point 260 ° C.) second fiber layer (average fineness: 1.6 dtex) was laminated needle punched from the surface of the dense layer to the rough layer (needle depth 13 mm, end counts 9 This / cm 2) subjected to the integration processing by the fiber entanglement.
Subsequently, a heat treatment (treatment temperature: 240 ° C., treatment time: 50 seconds) was performed with a pin tenter type heat treatment machine to perform heat fusion between the fibers.
Next, the dense layer portion is brought into contact with a heating roller (surface temperature 190 ° C.) and the coarse layer portion is brought into contact with a roller having an ambient temperature (clearance 0.3 mm between the rollers) to perform calendar treatment, and then cooled to be used for the fuel of the present invention. In-tank filter material was obtained.
[0018]
[Example 2]
As the coarse layer side, a heat-bonded short fiber having a fineness of 6.6 decitex, a polyester short fiber of 51 mm fiber length of 50% by weight, and a fineness of 1.7 decitex and a fiber length of 38 mm (sheath component is nylon, melting point 220 ° C., 100 g / m 2 fiber layer (average fineness: 4.15 dtex) with a core component of 50% by weight of polyester, melting point 260 ° C., and polyester short fibers with fineness of 1.3 dtex and fiber length of 44 mm on the dense layer side 150 g / m 2 per unit area consisting of 50% by weight and 50% by weight of heat-bonded short fibers having a fineness of 1.7 dtex and a fiber length of 38 mm (sheath component is nylon, melting point 220 ° C., core component is polyester, melting point 260 ° C.) Fiber layers (average fineness: 1.5 dtex) and needle punching from the surface of the dense layer to the coarse layer (needle depth 13 mm, number of driven 90 / Cm 2) was the integration process by the fiber entangled subjected to.
Subsequently, heat treatment (treatment temperature: 240 ° C., treatment time: 50 seconds) was performed with a pin tenter type heat treatment machine to perform heat fusion between the fibers.
Next, the dense layer part is brought into contact with a heating roller (surface temperature 190 ° C.) and the coarse layer part is brought into contact with a roller having an ambient temperature (clearance between the rollers: 0.3 mm) to perform calendering, and then cooled and used for the fuel of the present invention. In-tank filter material was obtained.
[0019]
[Example 3]
The fuel of the present invention is the same as in Example 1 except that the fineness of the polyester short fiber on the coarse layer side is changed to 6.6 decitex and the basis weight is 150 g / m 2 (average fineness 3.78 dtex) with a fineness of 10.0 decitex. An in-tank filter material was obtained.
[0020]
[Example 4]
The fuel of the present invention is the same as in Example 1 except that the fineness of the polyester short fibers on the dense layer side is changed to 1.3 dtex and the basis weight is 200 g / m 2 (average fineness is 2.03 dtex). An in-tank filter material was obtained.
[0021]
[Comparative Example 1]
Except for changing the blending ratio of the polyester short fibers and the heat-sealing short fibers on the coarse layer side to 8/92 (average fineness 1.83), all the conditions were the same as those in Example 1, and an in-tank filter material for fuel was obtained. It was.
[Comparative Example 2]
The blending ratio of the polyester short fiber on the coarse layer side and the heat-bonding short fiber is 90/10 (average fineness 6.11 dtex), and the blending ratio of the polyester fiber on the dense layer side and the heat-sealing short fiber is 90/10 ( Except for the change to the average fineness of 1.34 dtex, all conditions were the same as those in Example 1, and an in-tank filter material for fuel was obtained.
[Comparative Example 3]
A coarse layer composed of a long nylon fiber layer produced by the melt blow method has a fineness of 3.0 dtex, a basis weight of 70 g / m 2 , a middle layer of a fineness of 2.2 dtex, a basis weight of 70 g / m 2 , and a dense layer of 0 fineness. .9 dtex, each fiber layer with a basis weight of 70 g / m 2 is laminated with coarse layer, middle layer and dense layer, 40 mesh nylon net is layered on the coarse layer side and ultrasonic fusion is pinned from the dense layer side An in-tank filter material was obtained in which the layers were bonded with a dot pattern with an interval of 8 mm and a pin row interval of 8 mm.
[Comparative Example 4]
Except that the heat-bonding short fiber was replaced with a low melting point ester / high melting point ester (low melting point polyester melting point 120 ° C.) sheath core instead of the nylon-ester sheath core, all the steps were performed according to the conditions of Example 1 and An in-tank filter material was obtained.
[0022]
Characteristic evaluation was performed on the above-described Examples 1, 2, 3, and 4 and Comparative Examples 1, 2, 3, and 4 thus obtained. The results are shown in Table 1.
[0023]
[Table 1]
[0024]
From Table 1 above, it can be seen that the filter materials of the present invention of Examples 1, 2, 3 and 4 both have good filtration performance and excellent durability against fuel.
In Comparative Example 1, since there are many heat-bonded short fibers, the compression elastic modulus is low, and the initial pressure loss of the filterability of the fuel is high. On the contrary, Comparative Example 2 has a problem in that the fibers are dropped because there are few heat-bonded short fibers.
In addition, since all of Comparative Example 3 is nylon, the compression elastic modulus is inferior to that of ester, so it is easy to sag, and as a result, the back pressure rises quickly. In addition, as in Comparative Example 4, the use of a polyester nonwoven fabric having a low melting point for adhesion between layers indicates that the durability of the fuel is inferior, and the use of a polyester nonwoven fabric having a low melting point is not preferable.
[0025]
【The invention's effect】
As described above, an in-tank filter material comprising a nonwoven fabric of laminated fiber layers having an integrated coarse-dense structure in which the mixed fiber layers of the high melting point short fibers and the heat-bonding short fibers of the present invention are composed of two or more layers. Is a filter filter material that is more effective as an in-tank filter because it is more flexible than conventional filter filters, has superior filtration performance, and has excellent fuel filtration performance and durability with reduced costs. Material can be provided.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003009188A JP4152756B2 (en) | 2003-01-17 | 2003-01-17 | In-tank filter material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003009188A JP4152756B2 (en) | 2003-01-17 | 2003-01-17 | In-tank filter material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004218595A JP2004218595A (en) | 2004-08-05 |
JP4152756B2 true JP4152756B2 (en) | 2008-09-17 |
Family
ID=32898753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003009188A Expired - Fee Related JP4152756B2 (en) | 2003-01-17 | 2003-01-17 | In-tank filter material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4152756B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4700968B2 (en) * | 2005-01-05 | 2011-06-15 | 旭化成せんい株式会社 | Fuel filter material and fuel filter |
JP5976351B2 (en) * | 2012-03-19 | 2016-08-23 | 呉羽テック株式会社 | Filter media and fuel filter |
JP6927710B2 (en) * | 2017-02-10 | 2021-09-01 | Jnc株式会社 | filter |
CN110529310B (en) * | 2019-09-24 | 2024-04-02 | 西华大学 | High-melting-point fatty acid methyl ester or ethyl ester oil supply system |
-
2003
- 2003-01-17 JP JP2003009188A patent/JP4152756B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004218595A (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0983113B1 (en) | Pleatable nonwoven composite article for gas filter media | |
US6183536B1 (en) | Enhanced performance vacuum cleaner bag and method of operation | |
KR102178689B1 (en) | Liquid filtration media containing melt-blown fibers | |
JP3802839B2 (en) | Nonwoven fabric for filters and filters for engines | |
EP0960645B1 (en) | Vacuum cleaner bag or filter, and method of filtering a gas | |
KR101691670B1 (en) | Thermally stabilized bag house filters and media | |
JP2009028617A (en) | Filter nonwoven fabric | |
JP5075679B2 (en) | Filter nonwoven fabric | |
US20150129486A1 (en) | Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures | |
JP4745815B2 (en) | Air filter material for internal combustion engines | |
US7485592B2 (en) | Bag filter comprising polyphenylene sulfide and acrylic fiber | |
JP3134943U (en) | The present invention relates to a fuel filter used as a filter medium in the course of supplying fuel from a fuel tank provided in an internal combustion engine or the like to a nano fuel injection device. | |
US20040116026A1 (en) | Charged synthetic nonwoven filtration media and method for producing same | |
KR19990087272A (en) | Electrostatic fibrous filter web | |
KR20160106087A (en) | Multilayer filtration material for filter, method for manufacturing same, and air filter | |
JP5281719B1 (en) | Filter material | |
KR20200014743A (en) | Spunbond Nonwoven Fabric for Filter and Manufacturing Method Thereof | |
WO2008078858A1 (en) | Filter element for cleaning inlet air of internal combustion engine and process for preparing the same | |
US7153793B2 (en) | Multilayer nonwovens incorporating differential cross-sections | |
EP1258277B1 (en) | Vacuum cleaner bag | |
JP4152756B2 (en) | In-tank filter material and manufacturing method thereof | |
JP4700968B2 (en) | Fuel filter material and fuel filter | |
JP3233988B2 (en) | Filter cloth and method for producing the same | |
JP2011177631A (en) | Filter unit | |
JP6614919B2 (en) | Method for producing nonwoven filter material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080701 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4152756 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |