JP2004218595A - In-tank filter material and its manufacturing method - Google Patents

In-tank filter material and its manufacturing method Download PDF

Info

Publication number
JP2004218595A
JP2004218595A JP2003009188A JP2003009188A JP2004218595A JP 2004218595 A JP2004218595 A JP 2004218595A JP 2003009188 A JP2003009188 A JP 2003009188A JP 2003009188 A JP2003009188 A JP 2003009188A JP 2004218595 A JP2004218595 A JP 2004218595A
Authority
JP
Japan
Prior art keywords
fiber
filter material
dtex
heat
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003009188A
Other languages
Japanese (ja)
Other versions
JP4152756B2 (en
Inventor
Hiroyuki Nakajima
博幸 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ltd
Original Assignee
Kureha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ltd filed Critical Kureha Ltd
Priority to JP2003009188A priority Critical patent/JP4152756B2/en
Publication of JP2004218595A publication Critical patent/JP2004218595A/en
Application granted granted Critical
Publication of JP4152756B2 publication Critical patent/JP4152756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-tank filter material of excellent fuel filtering property and durability reduced in cost with elasticity and excellent filtering property compared with conventional filter materials. <P>SOLUTION: This in-tank filter material of excellent fuel filtering property is formed of nonwoven fabric formed in a laminated fiber layer of coarse-dense structure from one side toward the other side by laminating and integrating two or more mixed fiber layers of high fusing point short fiber and heat-fused short fiber. Polyester short fiber is used as the high fusing point short fiber, while sheath-core compound fiber is used as the heat-fused short fiber, and the effective ratio of both fibers is 10:90-50:50. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は燃料フィルターに関し、特に内燃機関等に設けられた燃料タンクから燃料噴射装置へ供給するのに好適に用いられるインタンク用燃料フィルター材ならびにその製造方法に関するものである。
【0002】
【従来の技術】
内燃機関等の燃料噴射弁へ燃料を濾過して供給するためのインタンク用燃料フィルターは、燃料に混入した異物を通過させない濾過特性,流量特性,耐久性,耐燃料性,耐薬品性などの様々な特性が要求される。
【0003】
従来、燃料フィルターは燃料が燃料タンクから燃料フィルター装置を経て燃料噴射弁に供給される工程において、燃料タンク内と燃料フィルター装置に設けられ、用いられるフィルターとして金網,焼結金属,ナイロンネット,不織布等が一般に使用されていたが、このうち、燃料タンクに設置されている燃料フィルターの構造は吸引時に袋状のフィルターの内側同士が密着しないように内面に保持フレームが挿入されていて、これによって内面同士がくっ付くことなく燃料を確実に濾過して吸引できるように考慮されている。
なお、その濾過フィルター材は最近ではナイロンネット,不織布が使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来の濾過フィルター材は比較的にコスト高で、タンク内の燃料を最大限に吸収するため、濾過フィルターの先端は燃料タンクの底面に接触させている。
また、袋状の濾材の内側同士が密着したり、折れたりしないことが必要であるために、濾過フィルターの構造を工夫して対応しているのが現状である。
【0005】
本発明は上述の如き実状に鑑み、これに対処すべく、特にフィルター材構成に好適な繊維として熱融着繊維を見出すことにより、従来のフィルター材に比較し、より弾性があって、濾過性能に優れ、かつコスト低減可能な燃料の濾過性,耐久性に優れたフィルター材、特にインタンク用フィルター材を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
即ち、上記目的に適合する本発明フィルター材は、基本的に高融点短繊維と熱融着短繊維の混繊繊維層が2層以上、積層一体化され、一側より他側に向かって粗密構造をもつ積層繊維層に形成された不織布よりなることを特徴とする。
このフィルター材は燃料の濾過性に優れた特性を有しており、インタンク用フィルター材として頗る有効である。
【0007】
請求項2〜5は、上記フィルター材の好ましい実施態様であり、高融点短繊維としてはポリエステル短繊維を用い、粗層側の繊度を3.0デシテックス〜20.0デシテックス、密層側の繊度を0.5デシテックス〜5.0デシテックスとすること、また、熱融着短繊維としては鞘成分がナイロン樹脂からなり、芯成分がポリエステル樹脂からなる繊度の範囲が1.0デシテックス〜5.0デシテックスである芯鞘複合繊維を用いること、そして上記高融点短繊維と熱融着短繊維の混繊比率は10/90〜50/50であること、更に高融点短繊維と熱融着短繊維の混繊の平均繊度は粗層繊維層は5.0デシテックス以下、密層繊維層は2.2デシテックス以下であることの各態様が挙示されている。
【0008】
請求項6は上記フィルター材の製造方法に係り、高融点短繊維と熱融着短繊維を配合してなる混繊繊維層を二層以上積層させた後、繊維層間を繊維の交絡によって物理的に結合させ、次いで加熱処理して繊維の一部を溶融させて繊維同士を付着せしめて一側より他側に向かって粗密構造をもつ不織布を形成し、次いで加熱ローラによるカレンダー処理を施すことからなる。
【0009】
【発明の実施の形態】
以下、更に上記本発明の詳細について説明する。
本発明は、上述の如く高融点短繊維と熱融着短繊維の混繊繊維層の二層以上からなる一体化された一側より他側に向かって粗密構造をもつ積層繊維層の不織布である。
ここで、上記の高融点短繊維としては、ポリエステル短繊維が用いられ、その粗層側の繊度範囲は3.0デシテックス〜20.0デシテックスが好適である。
3.0デシテックス以下であると粗塵を濾過する役目であるのに、細かい塵を捕集し、その結果、フィルターの濾過寿命を早める。また、20デシテックス以上では熱融着短繊維の繊度にも関係するが、粗塵の濾過の程度に差が見られなくなる。
【0010】
一方、ポリエステル短繊維の密層側の繊度範囲は0.5デシテックス〜5.0デシテックスが好ましく、0.5デシテックス以下であると微粒子の塵を濾過する役目は充分にあるが、初期圧が高く、その結果、フィルターの濾過寿命を早める。また、5デシテックス以上では微粒子の塵を濾過する役目を果たすのに乏しいので好ましくない。
【0011】
次に熱融着短繊維としては、芯鞘複合繊維、特に鞘成分がナイロン樹脂からなり、芯成分がポリエステル樹脂、あるいはナイロン66樹脂からなるものが好ましい。
通常、ポリエステル樹脂が用いられる。
鞘成分のナイロンの融点範囲はポリエステルに比し低融点で130℃〜230℃程度が好ましい。なかでも鞘成分に低融点のポリエステル樹脂を使用するのは耐燃料性に劣るので好ましくない。
【0012】
この熱融着短繊維の繊度範囲は1.0デシテックス〜5.0デシテックスが望ましく、1.0デシテックス以下では熱融着の効率が低下する。また、繊度が5.0デシテックス以上では全体の濾過効率が低下する。
なお、上記高融点短繊維と熱融着短繊維の混繊比率としては10/90〜50/50であることが好ましく、特に高融点短繊維が10以下であると不織布を構成する混繊繊維の腰が弱く、即ち、圧縮弾性率が低く、濾過中に不織布の厚さ方向に圧縮され易く、その結果、背圧上昇が早期に起こり易く好ましくない。
また、高融点短繊維が50以上であると、不織布の高融点短繊維の脱落が起こり易く、フィルター性能が直ぐに低下すると共に工程の機能を阻害するので好ましくない。
【0013】
しかして、以上の燃料の濾過性に優れたインタンク用フィルター材は、高融点短繊維と熱融着短繊維を配合してなる混繊繊維層を二層以上積層させた後、繊維層間を交絡によって物理的に結合させ、次いで加熱処理して繊維の一部を溶融させて繊維同士を付着せしめて不織布を形成し、次いで加熱ローラによるカレンダー処理を施すことにより作成される。
得られる不織布は本発明の燃料の濾過性に優れたインタンク用フィルター材である。
【0014】
繊維層間の交絡結合を繊維同志の交絡によって行う物理的方法としてはニードルパンチ加工やウォータージェット加工が好適である。
また加熱処理は混繊繊維層を組成する高融点短繊維の溶融温度より低く、熱融着短繊維の溶融温度より高い温度で加熱すればよく、この際、全ての融着短繊維の溶融を待つ必要はなく、繊維同士が所要程度付着されれば一部の繊維の溶融でも充分である。
そして、最後は加熱ローラによるカレンダー処理によって繊維層の表面平滑化を図り、厚みを平均化せしめる。
殊に上記のフィルター材において、素材を同種に統一することにより使用後の分離処理や再生処理の取り扱いが容易となり、環境に優しくなる。
【0015】
【実施例】
以下、本発明の実施例及び比較例により更に具体的に説明する。
なお、以下の実施例及び比較例における目付量,厚さ,圧縮弾性利率,濾過性能等の測定または評価は下記の方法に従って行った。
【0016】
(イ)単位面積当たりの質量(目付量)
JIS L1906の5.2に記載の方法に準拠して求めた。
(ロ)厚さ
JIS L1906の5.1の方法に従って荷重2KPaで測定した。
(ハ)圧縮弾性率
圧縮試験はピーコック社製アップライト・ダイヤル・ゲイジを用い、圧縮面積25mmφで試料を圧縮し、初荷重12mg/mmとして荷重200mg/mm下での変形距離(mm)を求め、その距離を荷重188mg/mmに除して、更に試料の目付で除して100倍して得た。単位は100g目付当たりmg/mmである。
(ニ)濾過性能評価
テストベンチ(SAEJ1858に準拠)による濾過性能評価を下記条件で実施し評価した。
評価条件
ダスト ISO MEDEIUM TD(5〜80μm)
ダスト投入量 50mg/min
オイル MIL−H5606F
テスト油量 3.0L
テスト流量 3.0L/min
ダストレンジ 5μm、20μm、40μm、60μm、80μm、100μm、
評価
初期圧損は測定初期の圧力(KPa)
濾過効率は60μmまでの捕集量で評価(%)
濾過寿命の評価は9.8KPa到着時間(min)
【0017】
【実施例1】
粗層側として繊度が6.6デシテックス、繊維長51mmのポリエステル短繊維25重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)75重量%からなる目付100g/mの繊維層(平均繊度:2.93デシテックス)と、密層側として繊度1.3デシテックス、繊維長44mmのポリエステル短繊維25重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)75重量%からなる目付150g/mの繊維層(平均繊度:1.6デシテックス)を積層して密層の表面から粗層へニードルパンチ加工(針深度13mm、打ち込み本数90本/cm)を施して繊維交絡による一体化処理をした。
引き続き、ピンテンター式熱処理機で熱処理(処理温度240℃、処理時間50秒)を行って繊維間の熱融着を行った。
次いで、密層部を加熱ローラー(表面温度190℃)に粗層部を雰囲気温度のローラー(ローラー間のクリアランス0.3mm)に接触させてカレンダー処理を行い、のち冷却して本発明の燃料用のインタンク用フィルター材を得た。
【0018】
【実施例2】
粗層側として繊度が6.6デシテックス、繊維長51mmのポリエステル短繊維50重量%、及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)50重量%からなる目付100g/mの繊維層(平均繊度:4.15デシテックス)と、密層側として繊度1.3デシテックス、繊維長44mmのポリエステル短繊維50重量%及び繊度が1.7デシテックス、繊維長が38mmの熱融着短繊維(鞘成分がナイロン、融点220℃、芯成分がポリエステル、融点260℃)50重量%からなる目付150g/mの繊維層(平均繊度:1.5デシテックス)を積層して密層の表面から粗層へニードルパンチ加工(針深度13mm、打ち込み本数90本/cm)を施して繊維交絡による一体化処理をした。
引き続きピンテンター式熱処理機で熱処理(処理温度240℃、処理時間50秒)を行って繊維間の熱融着を行った。
次いで密層部を加熱ローラー(表面温度190℃)に粗層部を雰囲気温度のローラー(ローラー間のクリアランス0.3mm)に接触させてカレンダー処理を行い、のち、冷却して本発明の燃料用のインタンク用フィルター材を得た。
【0019】
【実施例3】
粗層側のポリエステル短繊維の繊度6.6デシテックスを繊度10.0デシテックスで目付150g/m(平均繊度3.78デシテックス)に変更した以外は全て実施例1の条件とし、本発明の燃料用のインタンク用フィルター材を得た。
【0020】
【実施例4】
密層側のポリエステル短繊維の繊度1.3デシテックスを繊度3.0デシテックスで目付200g/m(平均繊度2.03デシテックス)に変更した以外は全て実施例1の条件とし、本発明の燃料用のインタンク用フィルター材を得た。
【0021】
【比較例1】
粗層側のポリエステル短繊維と熱融着短繊維の配合比率を8/92(平均繊度1.83)に変更した以外は全て実施例1の条件とし、燃料用のインタンク用フィルター材を得た。
【比較例2】
粗層側のポリエステル短繊維と熱融着短繊維の配合比率を90/10(平均繊度6.11デシテックス)に、密層側のポリエステル繊維と熱融着短繊維の配合比率を90/10(平均繊度1.34デシテックス)に変更した以外は全て実施例1の条件とし、燃料用のインタンク用フィルター材を得た。
【比較例3】
メルトブロー法で作られたナイロン長繊維の繊維層からなる粗層が繊度3.0デシテックス、目付が70g/m、中層が繊度2.2デシテックス、目付が70g/m、密層が繊度0.9デシテックス、目付が70g/mである各繊維層を粗層,中層,密層と積層し、粗層側に40メッシュのナイロンの網を重ねて密層側から超音波融着をピン間隔8mmでピン列間隔8mmのドット柄模様で層接着したインタンク用フィルター材を得た。
【比較例4】
熱融着短繊維をナイロン−エステル鞘芯の代わりに低融点エステル/高融点エステル(低融点ポリエステル融点120℃)の鞘芯に替えた以外は全て実施例1の条件に従って実施し、燃料用のインタンク用フィルター材を得た。
【0022】
かくして得られた上記実施例1,2,3,4及び比較例1,2,3,4について、夫々特性評価を行った。その結果を表1に示す。
【0023】
【表1】

Figure 2004218595
【0024】
上記表1より実施例1,2,3,4の本発明フィルター材は共に濾過性能が良く、燃料に対する耐久性に優れていることが分かる。
比較例1は熱融着短繊維が多いため圧縮弾性率が低くなり、燃料の濾過性の初期圧損が高くなる。比較例2は逆に熱融着短繊維が少ないため、繊維の脱落が生じる問題がある。
また、比較例3は全てナイロンであるために圧縮弾性率がエステルに比較して劣るため、へたり易く、その結果、背圧上昇が早い。また、比較例4の如く、層間の接着を低融点のポリエステル不織布を使用することは、燃料の耐久性に劣ることを示しており、低融点のポリエステル不織布の使用は好ましくない。
【0025】
【発明の効果】
以上説明したように、本発明の高融点短繊維と熱融着短繊維の混繊繊維層が二層以上からなる一体化された粗密構造をもつ積層繊維層の不織布からなるインタンク用フィルター材は、濾過フィルター材として従来のものより弾力性があって、濾過性能に優れ、かつコストの低減を図った燃料の濾過性能,耐久性に優れており、インタンク用フィルターとして極めて有効な濾過フィルター材を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel filter, and more particularly to a fuel filter material for an in-tank suitably used to supply a fuel to a fuel injection device from a fuel tank provided in an internal combustion engine or the like, and a method of manufacturing the same.
[0002]
[Prior art]
The in-tank fuel filter for filtering and supplying fuel to the fuel injection valve of an internal combustion engine, etc., has filtration characteristics, flow characteristics, durability, fuel resistance, chemical resistance, etc. that do not allow foreign substances mixed in the fuel to pass through. Various characteristics are required.
[0003]
Conventionally, a fuel filter is provided in a fuel tank and a fuel filter device in a process in which fuel is supplied from a fuel tank to a fuel injection valve via a fuel filter device, and a wire mesh, a sintered metal, a nylon net, and a nonwoven fabric are used as filters. Among them, the structure of the fuel filter installed in the fuel tank has a holding frame inserted on the inner surface so that the inside of the bag-shaped filter does not adhere to each other during suction, and It has been considered that the fuel can be surely filtered and sucked without the inner surfaces sticking to each other.
Recently, nylon nets and non-woven fabrics have been used as the filter material.
[0004]
[Problems to be solved by the invention]
However, the conventional filter material as described above is relatively expensive, and the tip of the filter is in contact with the bottom surface of the fuel tank in order to absorb the fuel in the tank to the maximum.
Further, since it is necessary that the insides of the bag-shaped filter media do not adhere to each other and do not break, the current situation is that the structure of the filter is improved by devising it.
[0005]
In view of the above situation, the present invention finds a heat-sealing fiber as a fiber suitable for a filter material structure in order to cope with the situation, and has a more elasticity compared with a conventional filter material, and has a higher filtering performance. It is an object of the present invention to provide a filter material having excellent filterability and durability which is excellent in fuel cost and can be reduced in cost, particularly a filter material for an in-tank use.
[0006]
[Means for Solving the Problems]
That is, the filter material of the present invention that meets the above-mentioned object is basically composed of two or more mixed fiber layers of high-melting short fibers and heat-fused short fibers, which are laminated and integrated. It is made of a nonwoven fabric formed on a laminated fiber layer having a structure.
This filter material has excellent fuel filterability and is very effective as an in-tank filter material.
[0007]
Claims 2 to 5 are preferred embodiments of the filter material, wherein polyester short fibers are used as the high melting point short fibers, and the fineness of the coarse layer is 3.0 to 20.0 decitex, and the fineness of the dense layer is Of 0.5 to 5.0 decitex, and the heat-fusible short fibers have a sheath component of nylon resin and a core component of polyester resin with a fineness range of 1.0 to 5.0 decitex. The core-sheath conjugate fiber which is decitex is used, and the mixing ratio of the high melting point short fiber and the heat fusion short fiber is 10/90 to 50/50, and the high melting point short fiber and the heat fusion short fiber are further used. The average fineness of the mixed fiber is 5.0 dtex or less for the coarse fiber layer and 2.2 dtex or less for the dense fiber layer.
[0008]
Claim 6 relates to the method for producing a filter material, wherein two or more mixed fiber layers each including a high melting point short fiber and a heat-sealing short fiber are laminated, and then the fiber layers are physically entangled by fiber entanglement. Then, heat treatment is performed to melt a part of the fibers and attach the fibers together to form a nonwoven fabric having a dense structure from one side to the other side, and then calendering by a heating roller Become.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the details of the present invention will be further described.
The present invention is a nonwoven fabric of a laminated fiber layer having a coarse-dense structure from one side integrated toward the other side composed of two or more layers of a mixed fiber layer of a high melting point short fiber and a heat fusion short fiber as described above. is there.
Here, polyester short fibers are used as the high melting point short fibers, and the fineness range on the coarse layer side is preferably from 3.0 dtex to 20.0 dtex.
When it is less than 3.0 decitex, it serves to filter coarse dust, but collects fine dust, thereby shortening the filtration life of the filter. In addition, if it is more than 20 decitex, it depends on the fineness of the heat-fused short fibers, but no difference is seen in the degree of filtration of coarse dust.
[0010]
On the other hand, the fineness range of the polyester staple fiber on the dense layer side is preferably 0.5 decitex to 5.0 decitex, and when it is 0.5 decitex or less, the role of filtering fine particle dust is sufficient, but the initial pressure is high. As a result, the filtration life of the filter is shortened. On the other hand, if it is 5 dtex or more, it is not preferable because it does not play a role of filtering fine particle dust.
[0011]
Next, as the heat-fusible short fiber, a core-sheath conjugate fiber, particularly a sheath component made of a nylon resin and a core component made of a polyester resin or a nylon 66 resin is preferable.
Usually, a polyester resin is used.
The melting point of nylon of the sheath component is preferably lower than that of polyester, and is preferably about 130 ° C to 230 ° C. Among them, the use of a polyester resin having a low melting point as the sheath component is not preferable because of poor fuel resistance.
[0012]
The fineness range of the heat-fused short fibers is preferably from 1.0 dtex to 5.0 dtex, and if it is less than 1.0 dtex, the efficiency of the heat fusion decreases. When the fineness is 5.0 decitex or more, the overall filtration efficiency is reduced.
The mixed fiber ratio of the high-melting short fibers and the heat-fused short fibers is preferably 10/90 to 50/50, and particularly when the high-melting short fibers are 10 or less, the mixed fibers constituting the nonwoven fabric Has a low stiffness, that is, has a low compression modulus, and is easily compressed in the thickness direction of the nonwoven fabric during filtration. As a result, the back pressure tends to increase early, which is not preferable.
On the other hand, if the number of the high-melting short fibers is 50 or more, the high-melting short fibers of the nonwoven fabric are liable to drop off, which immediately deteriorates the filter performance and impairs the function of the process, which is not preferable.
[0013]
However, the filter material for in-tank, which has excellent filterability of the above-mentioned fuel, is obtained by laminating two or more mixed fiber layers composed of high melting point short fibers and heat fusion short fibers, They are physically bonded by entanglement, and then heat-treated to melt a part of the fibers, adhere the fibers to each other to form a nonwoven fabric, and then perform calendering by a heating roller.
The obtained nonwoven fabric is the filter material for an in-tank of the present invention which is excellent in fuel filterability.
[0014]
Needle punching or water jet processing is suitable as a physical method for performing the entanglement between the fiber layers by entanglement of the fibers.
In addition, the heat treatment may be performed by heating at a temperature lower than the melting temperature of the high-melting short fibers constituting the mixed fiber layer and higher than the melting temperature of the heat-fused short fibers. There is no need to wait, and it is sufficient to melt some of the fibers as long as the fibers adhere to the required degree.
Finally, the surface of the fiber layer is smoothed by calendering using a heating roller, and the thickness is averaged.
In particular, in the above-mentioned filter materials, by unifying the materials to the same type, handling of the separation treatment and the regeneration treatment after use becomes easy, and the environment becomes environmentally friendly.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
In the following Examples and Comparative Examples, the measurement or evaluation of the basis weight, thickness, compression modulus, filtration performance, etc. was performed according to the following methods.
[0016]
(B) Mass per unit area (basis weight)
It was determined according to the method described in 5.2 of JIS L1906.
(B) Thickness The thickness was measured at a load of 2 KPa according to the method of 5.1 of JIS L1906.
(C) compression test compressive modulus using a Peacock Co. Upright Dial Gage, the samples were compressed by the compression area 25 mm, distance variations in the load 200 mg / mm 2 under the initial load of 12 mg / mm 2 (mm) Was obtained, the distance was divided by the load of 188 mg / mm 2 , and further divided by the basis weight of the sample to obtain 100 times. The unit is mg / mm 3 per 100 g basis weight.
(D) Filtration performance evaluation A filtration bench was evaluated by a test bench (based on SAEJ1858) under the following conditions.
Evaluation conditions Dust ISO MEDIUM TD (5-80 μm)
Dust input amount 50mg / min
Oil MIL-H5606F
Test oil volume 3.0L
Test flow rate 3.0L / min
Dust range 5μm, 20μm, 40μm, 60μm, 80μm, 100μm,
Evaluation initial pressure loss is pressure (KPa) at the beginning of measurement
Filtration efficiency is evaluated based on the amount collected up to 60 μm (%)
Evaluation of filtration life is 9.8 KPa arrival time (min)
[0017]
Embodiment 1
As the coarse layer side, a heat-fused short fiber having a fineness of 6.6 dtex, a fiber length of 51 mm and a polyester short fiber of 25% by weight and a fiber size of 1.7 decitex and a fiber length of 38 mm (sheath component is nylon, melting point: 220 ° C., the core component is polyester, the melting point 260 ° C.) fiber layer having a basis weight of 100 g / m 2 consisting of 75 wt% (average fineness: 2.93 dtex) and a fineness of 1.3 dtex, polyester staple fibers having a fiber length of 44mm as dense layer side A heat-fused short fiber of 25% by weight, a fineness of 1.7 decitex and a fiber length of 38mm (sheath component: nylon, melting point: 220 ° C, core component: polyester, melting point: 260 ° C). second fiber layer (average fineness: 1.6 dtex) was laminated needle punched from the surface of the dense layer to the rough layer (needle depth 13 mm, end counts 9 This / cm 2) subjected to the integration processing by the fiber entanglement.
Subsequently, heat treatment (processing temperature: 240 ° C., processing time: 50 seconds) was performed by a pin tenter type heat treatment machine to perform heat fusion between the fibers.
Next, the dense layer portion is brought into contact with a heating roller (surface temperature of 190 ° C.) and the coarse layer portion is brought into contact with a roller at an ambient temperature (a clearance between the rollers of 0.3 mm) to carry out calendering treatment. Was obtained.
[0018]
Embodiment 2
As the coarse layer side, a heat-fused short fiber having a fineness of 6.6 decitex, a fiber length of 51 mm and a polyester short fiber of 50% by weight and a fineness of 1.7 decitex and a fiber length of 38 mm (sheath component is nylon, melting point: 220 ° C., A fiber layer (average fineness: 4.15 dtex) having a basis weight of 100 g / m 2 and a polyester short fiber having a fineness of 1.3 dtex and a fiber length of 44 mm as the dense layer side, comprising 50% by weight of a core component of polyester and a melting point of 260 ° C. 50 wt% and a fineness of 1.7 dtex, heat Chakutan fibers of the fiber length of 38mm (sheath component is nylon, melting point 220 ° C., the core component is polyester, the melting point 260 ° C.) basis weight 150 g / m 2 consisting of 50 wt% Needle layer (average fineness: 1.5 dtex) and needle punching from the surface of the dense layer to the coarse layer (needle depth: 13 mm, number of shots: 90) / Cm 2) was the integration process by the fiber entangled subjected to.
Subsequently, heat treatment (processing temperature: 240 ° C., processing time: 50 seconds) was performed by a pin tenter type heat treatment machine to perform heat fusion between the fibers.
Next, the dense layer portion is brought into contact with a heating roller (surface temperature of 190 ° C.) and the coarse layer portion is brought into contact with a roller at an ambient temperature (a clearance between rollers of 0.3 mm) to carry out a calendering treatment. Was obtained.
[0019]
Embodiment 3
The fuel of the present invention was prepared under the same conditions as in Example 1 except that the fineness of 6.6 dtex of the polyester short fiber on the coarse layer side was changed to a weight of 150 g / m 2 (average fineness of 3.78 dtex) at a fineness of 10.0 dtex. In-tank filter material was obtained.
[0020]
Embodiment 4
The fuel of the present invention was prepared under the same conditions as in Example 1 except that the fineness of the polyester short fiber on the dense layer side was changed from 1.3 dtex to a density of 3.0 dtex to a basis weight of 200 g / m 2 (average fineness of 2.03 dtex). In-tank filter material was obtained.
[0021]
[Comparative Example 1]
A fuel in-tank filter material was obtained under the same conditions as in Example 1 except that the mixing ratio of the polyester short fibers and the heat-fused short fibers on the coarse layer side was changed to 8/92 (average fineness: 1.83). Was.
[Comparative Example 2]
The compounding ratio of the polyester short fibers and the heat-fusible short fibers on the coarse layer side is 90/10 (average fineness 6.11 dtex), and the compounding ratio between the polyester fibers on the dense layer side and the heat-fusible short fibers is 90/10 ( Except that the average fineness was changed to 1.34 dtex, all conditions were the same as in Example 1 to obtain an in-tank filter material for fuel.
[Comparative Example 3]
The coarse layer consisting of the nylon long fiber fiber layer produced by the melt blow method has a fineness of 3.0 dtex, the basis weight is 70 g / m 2 , the middle layer has a fineness of 2.2 dtex, the basis weight is 70 g / m 2 , and the dense layer has a fineness of 0. Each fiber layer having a density of 0.9 dtex and a basis weight of 70 g / m 2 was laminated with a coarse layer, a middle layer, and a dense layer, and a 40-mesh nylon net was laminated on the coarse layer side, and ultrasonic fusion was performed from the dense layer side. An in-tank filter material layer-adhered with a dot pattern having an interval of 8 mm and a pin array interval of 8 mm was obtained.
[Comparative Example 4]
Except that the heat-fused staple fiber was replaced with a low-melting ester / high-melting ester (low-melting polyester melting point: 120 ° C.) sheath core instead of the nylon-ester sheath core, all were carried out in accordance with the conditions of Example 1 and used for fuel. An in-tank filter material was obtained.
[0022]
The characteristics of the above Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4 thus obtained were evaluated. Table 1 shows the results.
[0023]
[Table 1]
Figure 2004218595
[0024]
From Table 1 above, it can be seen that the filter materials of the present invention of Examples 1, 2, 3, and 4 all have good filtration performance and are excellent in fuel durability.
In Comparative Example 1, the compression modulus is low due to the large number of heat-fused short fibers, and the initial pressure loss of the filterability of the fuel is high. On the contrary, Comparative Example 2 has a problem that the fibers are dropped because the heat-fused short fibers are small.
Further, since Comparative Example 3 is all made of nylon, the compression elastic modulus is inferior to that of ester, so that it is easy to settle, and as a result, the back pressure rises quickly. Further, as shown in Comparative Example 4, the use of a low-melting polyester nonwoven fabric for bonding between layers indicates that the durability of the fuel is inferior, and the use of a low-melting polyester nonwoven fabric is not preferred.
[0025]
【The invention's effect】
INDUSTRIAL APPLICABILITY As described above, an in-tank filter material comprising a nonwoven fabric of a laminated fiber layer having an integrated coarse-dense structure in which a mixed fiber layer of a high-melting short fiber and a heat-fusible short fiber of the present invention is composed of two or more layers Is a more effective filter for in-tank applications because it is more resilient than conventional materials, has better filtration performance, and has excellent fuel filtration performance and reduced cost. Material can be provided.

Claims (6)

高融点短繊維と熱融着短繊維の混繊繊維層が2層以上、積層一体化され、一側より他側に向かって粗密構造を持つ積層繊維層に形成された不織布よりなることを特徴とする燃料の濾過性に優れたインタンク用フィルター材。Two or more mixed fiber layers of high-melting short fibers and heat-fused short fibers are laminated and integrated, and are made of a nonwoven fabric formed into a laminated fiber layer having a dense structure from one side to the other side. In-tank filter material with excellent fuel filterability. 高融点短繊維がポリエステル短繊維であって、粗層側の繊度が3.0デシテックス〜20.0デシテックス,密層側の繊度が0.5デシテックス〜5.0デシテックスである請求項1記載の燃料の濾過性に優れたインタンク用フィルター材。The high melting point short fiber is a polyester short fiber, and the fineness of the coarse layer is 3.0 to 20.0 dtex and the fineness of the dense layer is 0.5 to 5.0 dtex. In-tank filter material with excellent fuel filterability. 熱融着短繊維が繊度1.0デシテックス〜5.0デシテックスの芯鞘型複合繊維であって、その鞘成分がナイロン樹脂からなり、芯成分がポリエステル樹脂からなる請求項1または2記載の燃料の濾過性に優れたインタンク用フィルター材。3. The fuel according to claim 1, wherein the heat-fusible short fiber is a core-sheath composite fiber having a fineness of 1.0 dtex to 5.0 dtex, wherein the sheath component is made of a nylon resin and the core component is made of a polyester resin. In-tank filter material with excellent filterability. 高融点短繊維と熱融着短繊維の混繊比率が10:90〜50:50である請求項1,2または3記載の燃料の濾過性に優れたインタンク用フィルター材。The in-tank filter material according to claim 1, 2 or 3, wherein the mixed ratio of the high melting point short fiber and the heat fusion short fiber is 10:90 to 50:50. 高融点短繊維と熱融着短繊維の混繊後の平均繊度が粗層繊維層は5.0デシテックス以下、密層繊維層は2.2デシテックス以下である請求項1,2,3または4記載の燃料の濾過性に優れたインタンク用フィルター材。The average fineness of the coarse fiber layer after mixing the high melting point short fibers and the heat fusion short fibers is 5.0 dtex or less, and the dense fiber layer is 2.2 dtex or less. An in-tank filter material having excellent filterability for the fuel described in the above. 高融点短繊維と熱融着短繊維を配合してなる混繊繊維層を二層以上積層させた後、繊維層間を繊維の交絡によって物理的に結合させ、次いで加熱処理して繊維の一部を溶融させ、繊維同士を付着せしめて一側より他側に向かって粗密構造をもつ不織布を形成し、次いで加熱ローラによりカレンダー処理を施すことを特徴とする燃料の濾過性に優れたインタンク用フィルター材の製造方法。After laminating two or more mixed fiber layers composed of high-melting short fibers and heat-fused short fibers, the fiber layers are physically bonded by entanglement of the fibers, and then heat-treated to form part of the fibers. Is melted, fibers are attached to each other to form a nonwoven fabric having a dense structure from one side to the other side, and then calendered by a heating roller. Manufacturing method of filter material.
JP2003009188A 2003-01-17 2003-01-17 In-tank filter material and manufacturing method thereof Expired - Fee Related JP4152756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009188A JP4152756B2 (en) 2003-01-17 2003-01-17 In-tank filter material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009188A JP4152756B2 (en) 2003-01-17 2003-01-17 In-tank filter material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004218595A true JP2004218595A (en) 2004-08-05
JP4152756B2 JP4152756B2 (en) 2008-09-17

Family

ID=32898753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009188A Expired - Fee Related JP4152756B2 (en) 2003-01-17 2003-01-17 In-tank filter material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4152756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187710A (en) * 2005-01-05 2006-07-20 Asahi Kasei Fibers Corp Filter medium for fuel and filter for fuel
JP2013193028A (en) * 2012-03-19 2013-09-30 Kureha Ltd Filter medium and fuel filter
JP2018126721A (en) * 2017-02-10 2018-08-16 Jnc株式会社 filter
CN110529310A (en) * 2019-09-24 2019-12-03 西华大学 A kind of high-melting fat fatty acid methyl esters or ethyl ester oil supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187710A (en) * 2005-01-05 2006-07-20 Asahi Kasei Fibers Corp Filter medium for fuel and filter for fuel
JP4700968B2 (en) * 2005-01-05 2011-06-15 旭化成せんい株式会社 Fuel filter material and fuel filter
JP2013193028A (en) * 2012-03-19 2013-09-30 Kureha Ltd Filter medium and fuel filter
JP2018126721A (en) * 2017-02-10 2018-08-16 Jnc株式会社 filter
CN110529310A (en) * 2019-09-24 2019-12-03 西华大学 A kind of high-melting fat fatty acid methyl esters or ethyl ester oil supply system
CN110529310B (en) * 2019-09-24 2024-04-02 西华大学 High-melting-point fatty acid methyl ester or ethyl ester oil supply system

Also Published As

Publication number Publication date
JP4152756B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US8939295B2 (en) Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures
AU2008274606B2 (en) Vacuum-cleaner filter bag
US6183536B1 (en) Enhanced performance vacuum cleaner bag and method of operation
EP2741838B1 (en) Liquid filtration media containing melt-blown fibers
JP5490680B2 (en) Baghouse filters and media
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
JP4745815B2 (en) Air filter material for internal combustion engines
NO322853B1 (en) Filter for removing particles mixed into a gas and improved vacuum cleaner bag with this filter
EP2212006A1 (en) Thermally stabilized bag house filters and media
JP3134943U (en) The present invention relates to a fuel filter used as a filter medium in the course of supplying fuel from a fuel tank provided in an internal combustion engine or the like to a nano fuel injection device.
JP5976351B2 (en) Filter media and fuel filter
CN106955528B (en) Non-woven fabric filter material and filter element of air filter
JP7077515B2 (en) Non-woven filter
KR20200014743A (en) Spunbond Nonwoven Fabric for Filter and Manufacturing Method Thereof
JPWO2013035201A1 (en) Filter material
JP4152642B2 (en) Automotive fuel filter material and automotive fuel filter
EP1581327A1 (en) Multilayer nonwovens incorporating differential cross-sections
JP2022184905A (en) Filter medium having nonwoven fabric layer and melt-blown layer
JP2004218595A (en) In-tank filter material and its manufacturing method
JP4700968B2 (en) Fuel filter material and fuel filter
JP6006476B2 (en) High efficiency non-woven filter media for large particle size dust
JP2010149037A (en) Filter material for air filter
JP2011177631A (en) Filter unit
US6811594B1 (en) Filter materials and methods for the production thereof
JP2004218599A (en) In-tank filter material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Ref document number: 4152756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees