JP4152268B2 - Method for measuring salinity in hardened concrete and mortar - Google Patents

Method for measuring salinity in hardened concrete and mortar Download PDF

Info

Publication number
JP4152268B2
JP4152268B2 JP2003188692A JP2003188692A JP4152268B2 JP 4152268 B2 JP4152268 B2 JP 4152268B2 JP 2003188692 A JP2003188692 A JP 2003188692A JP 2003188692 A JP2003188692 A JP 2003188692A JP 4152268 B2 JP4152268 B2 JP 4152268B2
Authority
JP
Japan
Prior art keywords
hardened concrete
mortar
organic acid
measuring
salinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003188692A
Other languages
Japanese (ja)
Other versions
JP2005024348A (en
Inventor
義徳 長井
仁 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2003188692A priority Critical patent/JP4152268B2/en
Publication of JP2005024348A publication Critical patent/JP2005024348A/en
Application granted granted Critical
Publication of JP4152268B2 publication Critical patent/JP4152268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬化コンクリート又は硬化モルタル中の含有塩分量を簡易に測定する方法に関する。
【0002】
【従来の技術】
硬化コンクリートや硬化モルタルの劣化状況を把握する上で、該コンクリートやモルタルの塩分量が測定される。硬化コンクリート中の塩分量を測定する方法は、社団法人日本コンクリート工学協会規格JCI−SC4「硬化コンクリート中に含まれる塩化物の分析方法」が用いられてきた。この分析方法では非常に高い精度で塩分濃度が得られるものの、測定には時間と熟練を要し、コンクリートからの塩化物の抽出に硝酸などの強酸を使用し、また加熱煮沸等の操作も要するなど安全面から作業上の制約も多い。また、抽出した塩化物量の測定がクロム酸銀−吸光光度法又は硝酸銀滴定法を使う必要があって、高価な測定装置の使用や煩雑な測定操作となる場合があり、コンクリート構築物の劣化診断現場などで簡単・容易に行えるような方法ではない。
【0003】
このため、硬化コンクリートや硬化モルタル中の塩分量をより簡易に測定できる方法が検討され、現場でも比較的容易に適用出来る方法として、有機酸によってコンクリートから抽出した塩化物を含む酸性液に対し、無水炭酸ナトリウムで中和し、中和により有機酸ナトリウムが生じた溶液の塩分濃度を測定する方法が報告されている。(例えば非特許文献1参照)。また、特に有機酸ナトリウムが生じた溶液の塩分濃度測定を、モール法の原理を利用した簡易且つ迅速測定可能な検出剤を使用した方法で行なうことも知られている。(例えば特許文献1参照)。しかるに、これらの方法で中和剤として用いる無水炭酸ナトリウムは比較的高い吸湿性があるため、現場等での長期保管には必ずしも適したものではない。また一般に入手容易な無水炭酸ナトリウムはその製造過程で0.05重量%程度の塩化物を含むため、中和時の使用量が多くなると、抽出液中の塩化物濃度が高まり、実際の硬化コンクリート中の塩化物量よりも高い値が測定される傾向があった。
【0004】
【非特許文献1】
塩分量の簡易測定技術の開発、「コンクリートの耐久性向上技術の開発報告書 <第一編>」、建設省、1988年11月、P.109−114
【特許文献1】
特開昭62−91860号公報
【0005】
【発明が解決しようとする課題】
本発明は、コンクリート・モルタル構築物の劣化診断現場でも測定可能な硬化コンクリートや硬化モルタル中の塩分測定方法であって、作業上の制約や負荷が殆どなく、極めて簡易にかつ高い精度で測定することができる塩分測定方法を提供する。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題解決のための検討を重ねた結果、硬化したコンクリートやモルタルを有機酸処理した後に使用する中和剤を、一般にその原料及び製造工程上塩化物の混入が起らず、また吸湿性も比較的低い炭酸カルシウムや水酸化カルシウムにすることで系外からの塩化物混入を阻止し、また中和時に析出した低溶解度の有機酸カルシウムを濾過することで液中の塩分量測定を容易にし、総じて迅速かつ簡単に高精度で塩分量の測定ができる方法となったことから本発明を完成させた。
【0007】
即ち、本発明は、次の(1)〜(4)で表される硬化コンクリート・モルタル中の塩分測定方法である。(1)硬化コンクリート・モルタルに無水有機酸を加えて塩化物を抽出した後、炭酸カルシウム系又は水酸化カルシウム系中和剤を加えて中和し、中和により有機酸カルシウムが析出した液を濾過し、濾液の塩素濃度を測定することを特徴とする硬化コンクリート・モルタル中の塩分測定方法。(2)炭酸カルシウム系又は水酸化カルシウム系中和剤が炭酸カルシウム又は水酸化カルシウムを主成分とする天然石粒であることを特徴とする前記(1)の硬化コンクリート・モルタル中の塩分測定方法。(3)濾液の塩化物濃度の測定をモール法で行なうことを特徴とする前記(1)又は(2)の硬化コンクリート・モルタル中の塩分測定方法。(4)硬化コンクリート・モルタルへの無水有機酸添加から中和による有機酸カルシウム析出までの工程を、ガス放出口を有する密封容器中で行なうことを特徴とする前記(1)〜(3)何れかの硬化コンクリート・モルタル中の塩分測定方法。
【0008】
【発明の実施の形態】
本発明の塩分測定方法で測定対象となる硬化コンリートや硬化モルタルは特に限定されるものではない。測定試料としては、対象とするコンクリートやモルタル硬化物の所望の箇所から任意の手法、例えば穿孔や切削などによって小片又は粉末を採取する。本発明による測定に必要なコンクリート・モルタルの採取量は、1回の測定に付、2〜10g程度の少量で良い。また採取物が小片の場合、概ね0.5mmを超える大きさのものが含まれる時は粉砕し、できるだけ粉末状にするのが望ましい。
【0009】
採取したコンクリート・モルタルは脱イオン水に入れ、コンクリート・モルタル100重量部に対し、無水有機酸20〜100重量部を加えて塩化物を抽出する。脱イオン水としては塩素イオンを含まない水であれば良く、例えば蒸留水、イオン交換水、精製水等が使用できる。脱イオン水の使用量は、およそ200重量部以上が推奨される。また、塩化物抽出の際は撹拌を行なうことが望ましい。
【0010】
塩化物抽出に使用する無水有機酸は、水中で塩素イオンを放出しないものであれば何れの無水有機酸でも良く、例えば酢酸、クエン酸、酒石酸、マレイン酸、リンゴ酸、スルファミン酸等の無水物が挙げられる。好ましくは粉末状の無水有機酸を使用する。無水有機酸の使用量が20重量部未満では塩化物の抽出が不十分となるので好ましくなく、100重量部を超えると、大量の中和剤が必要になり、中和反応が激しくなるので好ましくない。無水有機酸による硬化コンクリート・モルタル中の塩化物抽出時間は、3〜10分が好ましい。3分未満の抽出時間では、抽出が不十分となるので好ましくなく、また10分を超えるような抽出時間にしても塩化物の抽出がそれ以上増えることはない。
【0011】
無水有機酸添加によって塩化物が抽出した液は、炭酸カルシウム系又は水酸化カルシウム系中和剤を加えて中和する。中和時間は概ね10〜20分が望ましい。炭酸カルシウム系中和剤は炭酸カルシウム粉末でも良く、また水酸化カルシウム系中和剤は水酸化カルシウム粉末であっても良いが、平均粒径がおよそ45μm以下の粉末では抽出液中和時に激しく反応し、反応容器から溢れることもあるので、好ましくは炭酸カルシウム又は水酸化カルシウムを主成分とする天然石粒を使用する。炭酸カルシウムを主成分とする天然石粒は塩化物を含まないものであれば特に限定されず、例えば方解石、寒水石、石灰石等が使用できる。また、水酸化カルシウムを主成分とする天然石粒も塩化物を含まないものであれば特に限定されず、例えば消石灰等が使用できる。該天然石粒は炭酸カルシウムや水酸化カルシウムの粉末よりも概して反応活性が低いため、平均粒径が45μmより幾分小さいもの、例えば30μm程度のものでも支障なく使用できる。一方、平均粒径がおよそ200μmを超えると反応活性が乏しくなり、中和反応終了までに1時間以上要すこともあるので好ましくない。
【0012】
中和後の液内には、有機酸カルシウムが沈降析出するため、これを濾過によって除去し、得られた濾液の塩素含有濃度を測定する。濾液中の塩素含有濃度測定は、例えば従来から行なわれている測定手法を含め、何れの測定法でも可能であるが、好ましくは、その迅速性と精度からモール法に準拠した測定法が推奨される。尚、本発明ではコンクリート・モルタル採取物の溶解から濾液中の塩化物測定までの操作を全て常温付近(約5〜35℃)で行なうことができ、加熱等の処理は特に必要としない。
【0013】
また、本発明は、前記のコンクリート・モルタル採取物への無水有機酸添加から中和による有機酸カルシウム析出までの工程を密封容器中で行なうものである。該容器は、内容物の状態が外から目視で常時容易に確認できるものとし、具体的には容器の一部又は全てが無色透明若しくは淡い着色の半透明であることが望ましい。容器材質は使用薬剤に耐えるものなら制限されず、例えば硬質樹脂やガラス類が使用できる。また該容器は、振動等を加えた際に内容物が漏れ出ないように栓や蓋などで密封できる容器とする。更に、該容器には反応生成したガスを容器外へ放出するための小孔を有するのが望ましい。小孔は略直径が1〜10mm程度のものとし、望ましくは容器本体の上部に1ヶ所設けるか或いは密封用の蓋又は栓に1ヶ所有するもので良い。該小孔も密閉可能にすべく、小孔用に栓や蓋などを取り付けられる構造とするのが好ましいが、指や不透水テープ等で塞いで密閉使用しても良く、この場合は栓や蓋などを取り付けない開孔構造であっても良い。このような容器の形状や大きさは特に制限されないが、例えば外形が円柱や角柱状容器とし、携帯性の点から内容積が40〜500ml程度のものが推奨される。容器中での抽出・中和等の反応は、振動等を適宜加えると反応時間が短縮される傾向があるので好ましい。また、有機酸カルシウム析出後は、容器から内容物を全て取り出し、前記の濾過を行なった後、濾液中の塩素濃度を測定する。
【0014】
【実施例】
以下、実施例により本発明を具体的に詳しく説明する。
【0015】
[使用材料]
次のA〜Dの材料から選定した。
A:蒸留水(関東化学株式会社製「蛍光分析用蒸留水」)
B1:酒石酸(関東化学株式会社製試薬)
B2:クエン酸(関東化学株式会社製試薬)
C1:平均粒子径約100μmの寒水石(日立寒水石株式会社製)
C2:炭酸カルシウム(関東化学株式会社製試薬)
C3:水酸化カルシウム(関東化学株式会社製試薬)
D:無水炭酸ナトリウム(関東化学株式会社製試薬)
【0016】
[実施例1]
コンクリート硬化体をハンマードリルを用いて穿孔し、コンクリート粉末(平均粒径約120μm)を採取した。
【0017】
直径2mmの小孔を底面から227mmの高さ位置の側面に1ヶ所有し、頂部に密封栓をねじ込み可能な、内径28mm、内寸高さ230mmのポリプロピレン製円柱状容器に、蒸留水(A)を20.0g入れ、更に採取したコンクリート粉末5.0gと有機酸として酒石酸(B1)2.0gを投入した。次いで容器を栓で密封し、小孔を指で塞いで約10秒間容器を振った後、小孔を塞いだ指を2〜3秒ゆるめ、容器内に発生したガスを器外へ放出した。この容器の振動とガス放出を5回繰り返した後、小孔を開放した状態で栓を開け、中和剤として寒水石(C1)2.0gを容器に入れて約1分間放置した。放置後は栓で密封し、小孔を指で塞いで約10秒間容器を振った後、小孔を塞いだ指を2〜3秒ゆるめ、容器内に発生したガスを器外へ放出した。この容器の振動とガス放出を5回繰り返した後、小孔を開放し、約10分間放置した。放置後、容器内容物を全て取り出して濾過した。濾過後の濾液は、モール法を利用した市販の塩化物濃度検出剤(商品名「カンタブ」、太平洋マテリアル株式会社製)で塩素濃度を測定した。その結果、塩素含有量は0.068重量%であった。
【0018】
[実施例2]
実施例1と同じコンクリート硬化体採取物を測定対象とし、有機酸として酒石酸(B1)2.0gを使用する代わりにクエン酸(B2)2.0gを使用する以外は全て実施例1と同様の方法で、コンクリート硬化体中の塩素含有濃度を測定した。その結果、塩素含有量は0.067重量%であった。
【0019】
[実施例3]
実施例1と同じコンクリート硬化体採取物を測定対象とし、中和剤として寒水石(C1)3.0gを使用する代わりに炭酸カルシウム(C2)3.0gを使用する以外は全て実施例1と同様の方法で、コンクリート硬化体中の塩素含有濃度を測定した。その結果、塩素含有量は0.067重量%であった。
【0020】
[実施例4]
実施例1と同じコンクリート硬化体採取物を測定対象とし、中和剤として寒水石(C1)3.0gを使用する代わりに水酸化カルシウム(C3)3.0gを使用する以外は全て実施例1と同様の方法で、コンクリート硬化体中の塩素含有濃度を測定した。その結果、塩素含有量は0.066重量%であった。
【0021】
[比較例1]
実施例1と同じコンクリート硬化体採取物を測定対象とし、中和剤として寒水石(C1)3.0gを使用する代わりに炭酸ナトリウム(D)3.0gを使用する以外は全て実施例1と同様の方法で、コンクリート硬化体中の塩素含有濃度を測定した。その結果、塩素含有量は0.098重量%であった。
【0022】
[比較例2]
実施例1と同じコンクリート硬化体採取物を測定対象とし、中和後の液は濾過を一切行なわず、容器内容物をそのまま塩化物濃度測定対象とした以外は実施例1と同様の方法でコンクリート硬化体中の塩素含有濃度を測定した。その結果、塩素含有量は0.025重量%であった。
【0023】
[比較例3]
実施例1と同じコンクリート硬化体採取物を測定対象とし、社団法人日本コンクリート工学協会規格JCI−SC4「硬化コンクリート中に含まれる塩化物の分析方法」に準拠した方法で採取物を処理し、硝酸銀滴定法にて全塩素含有濃度を測定した。その結果、塩素含有量は0.068重量%であった。
【0024】
以上の実施結果から、本発明による硬化コンクリート・モルタル中の塩分測定方法を用いれば、最も高精度で信頼性の高いJCI−SC4に準拠した方法で測定した全塩素含有濃度の値(比較例3)と殆ど遜色ない塩素含有濃度の値が測定され、高精度で信頼性の高い測定結果(実施例1〜4)が得られたことがわかる。
【0025】
【発明の効果】
本発明の硬化コンクリート・モルタル中の塩分測定方法は、非熟練者が行なっても比較的短時間に極めて簡易に且つかなり高い精度で測定することができる。また、特に本発明による当該分析に適した密封容器を使用すれば、携帯性に優れるため作業現場等へも容易に持ち込むことができ、しかも多種の分析機器を駆使した煩雑な操作を行なう必要がないので、測定の作業効率が高まる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for simply measuring the amount of salt contained in hardened concrete or hardened mortar.
[0002]
[Prior art]
In order to grasp the deterioration state of hardened concrete or hardened mortar, the salt content of the concrete or mortar is measured. As a method for measuring the amount of salt in hardened concrete, Japan Concrete Institute Standard JCI-SC4 “Analytical Method for Chloride Contained in Hardened Concrete” has been used. Although this analysis method can obtain salinity with very high accuracy, it takes time and skill to measure, and it uses a strong acid such as nitric acid to extract chloride from concrete, and requires operations such as heating and boiling. There are many work restrictions from the safety aspect. In addition, it is necessary to use the silver chromate-absorptiometric method or silver nitrate titration method to measure the amount of extracted chloride, which may require the use of expensive measuring equipment and complicated measurement operations. It is not a simple and easy method.
[0003]
For this reason, a method that can more easily measure the amount of salt in hardened concrete and hardened mortar has been studied, and as a method that can be applied relatively easily in the field, an acidic solution containing chloride extracted from concrete with an organic acid, There has been reported a method for measuring the salt concentration of a solution in which an organic acid sodium is generated by neutralization with anhydrous sodium carbonate. (For example, refer nonpatent literature 1). It is also known to measure the salinity concentration of a solution in which sodium organic acid is produced, particularly by a method using a detection agent that can be easily and rapidly measured using the principle of the Mole method. (For example, refer to Patent Document 1). However, anhydrous sodium carbonate used as a neutralizing agent in these methods has a relatively high hygroscopicity and is not necessarily suitable for long-term storage at the site or the like. In addition, generally available anhydrous sodium carbonate contains about 0.05% by weight of chloride in the production process, so if the amount used during neutralization increases, the concentration of chloride in the extract increases, and the actual hardened concrete There was a tendency for values higher than the amount of chloride in them to be measured.
[0004]
[Non-Patent Document 1]
Development of simple salinity measurement technology, “Development report on durability improvement technology of concrete <Part 1>”, Ministry of Construction, November 1988, p. 109-114
[Patent Document 1]
Japanese Patent Laid-Open No. 62-91860
[Problems to be solved by the invention]
The present invention is a method for measuring salinity in hardened concrete and hardened mortar that can be measured at the site of deterioration diagnosis of concrete and mortar structures, and has very few work restrictions and loads, and can be measured very easily and with high accuracy. Provided is a salinity measuring method capable of
[0006]
[Means for Solving the Problems]
As a result of repeated investigations for solving the above problems, the present inventors generally used a neutralizing agent used after treating a hardened concrete or mortar with an organic acid, and the mixing of chlorides in the raw material and the manufacturing process generally occurred. In addition, calcium carbonate and calcium hydroxide with relatively low hygroscopicity are used to prevent chloride contamination from outside the system, and the low-solubility organic acid calcium precipitated during neutralization is filtered. The present invention has been completed because it has become a method that facilitates the measurement of the salinity and can measure the salinity quickly and easily with high accuracy.
[0007]
That is, this invention is a salt content measuring method in the hardened concrete mortar represented by following (1)-(4). (1) After adding anhydrous organic acid to hardened concrete and mortar to extract chlorides, neutralize by adding calcium carbonate or calcium hydroxide neutralizer, and the solution in which organic acid calcium is precipitated by neutralization A method for measuring salinity in hardened concrete mortar, which comprises filtering and measuring the chlorine concentration of the filtrate. (2) The method for measuring salinity in hardened concrete / mortar according to (1) above, wherein the calcium carbonate-based or calcium hydroxide-based neutralizing agent is natural stone grains mainly composed of calcium carbonate or calcium hydroxide. (3) The method for measuring salinity in hardened concrete mortar as described in (1) or (2) above, wherein the chloride concentration of the filtrate is measured by the Mohr method. (4) Any of (1) to (3) above, wherein the steps from addition of anhydrous organic acid to hardened concrete / mortar to organic acid calcium precipitation by neutralization are performed in a sealed container having a gas discharge port. Method for measuring salinity in hardened concrete mortar.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The cured concrete and cured mortar to be measured by the salt content measuring method of the present invention are not particularly limited. As a measurement sample, a small piece or powder is collected from a desired portion of the target concrete or mortar cured product by an arbitrary method such as drilling or cutting. The amount of concrete mortar collected for the measurement according to the present invention may be as small as 2 to 10 g per measurement. In addition, when the collected material is a small piece, it is desirable to pulverize and collect the powder as much as possible when a sample having a size exceeding about 0.5 mm is included.
[0009]
The collected concrete mortar is put in deionized water, and chloride is extracted by adding 20 to 100 parts by weight of an organic acid anhydride to 100 parts by weight of the concrete mortar. The deionized water may be water that does not contain chlorine ions. For example, distilled water, ion exchange water, purified water, and the like can be used. About 200 parts by weight or more of deionized water is recommended. In addition, it is desirable to perform stirring when extracting chloride.
[0010]
The anhydrous organic acid used for the chloride extraction may be any anhydrous organic acid as long as it does not release chlorine ions in water. For example, acetic acid, citric acid, tartaric acid, maleic acid, malic acid, sulfamic acid and other anhydrides. Is mentioned. Preferably, powdered organic acid anhydride is used. If the amount of the organic acid anhydride used is less than 20 parts by weight, the extraction of the chloride becomes insufficient, which is not preferable. If the amount exceeds 100 parts by weight, a large amount of neutralizing agent is required and the neutralization reaction becomes intense, which is preferable. Absent. The chloride extraction time in the hardened concrete mortar with anhydrous organic acid is preferably 3 to 10 minutes. An extraction time of less than 3 minutes is not preferable because the extraction becomes insufficient, and even if the extraction time exceeds 10 minutes, the extraction of chloride does not increase any more.
[0011]
The liquid from which chloride is extracted by addition of anhydrous organic acid is neutralized by adding a calcium carbonate or calcium hydroxide neutralizer. The neutralization time is preferably about 10 to 20 minutes. The calcium carbonate neutralizer may be calcium carbonate powder, and the calcium hydroxide neutralizer may be calcium hydroxide powder. However, when the average particle size is about 45 μm or less, the powder reacts violently when neutralizing the extract. However, since it may overflow from the reaction vessel, natural stone grains mainly composed of calcium carbonate or calcium hydroxide are preferably used. The natural stone grains mainly composed of calcium carbonate are not particularly limited as long as they do not contain chloride, and for example, calcite, cryolite, limestone and the like can be used. Moreover, the natural stone grain which has calcium hydroxide as a main component will not be specifically limited if it does not contain a chloride, For example, slaked lime etc. can be used. The natural stone grains generally have a lower reaction activity than calcium carbonate and calcium hydroxide powders, and even those having an average particle size somewhat smaller than 45 μm, for example, about 30 μm can be used without any problem. On the other hand, when the average particle size exceeds about 200 μm, the reaction activity becomes poor, and it may take 1 hour or more to complete the neutralization reaction, which is not preferable.
[0012]
Since organic acid calcium precipitates in the liquid after neutralization, it is removed by filtration, and the chlorine-containing concentration of the obtained filtrate is measured. The chlorine content concentration in the filtrate can be measured by any measurement method including, for example, conventional measurement methods, but preferably a measurement method based on the Mole method is recommended because of its rapidity and accuracy. The In the present invention, the operations from the dissolution of the concrete / mortar sample to the measurement of chloride in the filtrate can all be performed at around room temperature (about 5 to 35 ° C.), and the treatment such as heating is not particularly required.
[0013]
Moreover, this invention performs the process from the addition of an anhydrous organic acid to the said concrete mortar extract to organic acid calcium precipitation by neutralization in a sealed container. It is desirable that the state of the contents of the container can be always easily visually confirmed from the outside. Specifically, it is desirable that a part or all of the container is colorless and transparent or lightly colored and translucent. The container material is not limited as long as it can withstand the chemical used, and for example, a hard resin or glass can be used. The container is a container that can be sealed with a stopper or a lid so that the contents do not leak out when vibration or the like is applied. Further, it is desirable that the container has a small hole for discharging the gas produced by the reaction out of the container. The small hole has a diameter of about 1 to 10 mm, preferably one at the top of the container body or one at the sealing lid or stopper. In order to make the small hole sealable, it is preferable to have a structure in which a stopper or a lid can be attached to the small hole. However, the small hole may be closed and sealed with a finger or an impermeable tape. An opening structure without a lid attached may be used. The shape and size of such a container are not particularly limited. For example, a container having an outer shape of a cylinder or a prismatic column and an internal volume of about 40 to 500 ml is recommended from the viewpoint of portability. The reaction such as extraction / neutralization in the container is preferable because the reaction time tends to be shortened if vibration or the like is appropriately added. Moreover, after organic acid calcium precipitation, after removing all the contents from a container and performing the said filtration, the chlorine concentration in a filtrate is measured.
[0014]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0015]
[Materials used]
The following materials A to D were selected.
A: Distilled water (“Distilled water for fluorescence analysis” manufactured by Kanto Chemical Co., Inc.)
B1: Tartaric acid (Reagent manufactured by Kanto Chemical Co., Inc.)
B2: Citric acid (Reagent manufactured by Kanto Chemical Co., Inc.)
C1: Cryolite with an average particle size of about 100 μm (manufactured by Hitachi Seisui Co., Ltd.)
C2: Calcium carbonate (Reagent manufactured by Kanto Chemical Co., Inc.)
C3: Calcium hydroxide (Reagent manufactured by Kanto Chemical Co., Inc.)
D: Anhydrous sodium carbonate (reagent manufactured by Kanto Chemical Co., Inc.)
[0016]
[Example 1]
The hardened concrete body was punched using a hammer drill, and concrete powder (average particle diameter of about 120 μm) was collected.
[0017]
Distilled water (A) has a small hole with a diameter of 2 mm on the side surface at a height of 227 mm from the bottom, and a polypropylene cylindrical container with an inner diameter of 28 mm and an inner height of 230 mm that can be screwed with a sealing plug at the top. 20.0 g), and 5.0 g of the collected concrete powder and 2.0 g of tartaric acid (B1) as the organic acid were added. Next, the container was sealed with a stopper, the small hole was closed with a finger, the container was shaken for about 10 seconds, the finger with the small hole closed was loosened for 2 to 3 seconds, and the gas generated in the container was released to the outside. After repeating the vibration and gas release of this container five times, the stopper was opened with the small holes opened, and 2.0 g of cold water stone (C1) as a neutralizing agent was placed in the container and left for about 1 minute. After standing, it was sealed with a stopper, the small hole was closed with a finger, the container was shaken for about 10 seconds, the finger with the small hole closed was loosened for 2 to 3 seconds, and the gas generated in the container was released outside the container. After repeating this container vibration and gas release five times, the small holes were opened and left for about 10 minutes. After standing, the entire contents of the container were taken out and filtered. The filtrate after filtration was measured for chlorine concentration with a commercially available chloride concentration detecting agent (trade name “Cantab”, manufactured by Taiheiyo Materials Co., Ltd.) using the Mole method. As a result, the chlorine content was 0.068% by weight.
[0018]
[Example 2]
The same sample of the hardened concrete body as in Example 1 is used as the measurement object, and all the same as Example 1 except that 2.0 g of citric acid (B2) is used instead of 2.0 g of tartaric acid (B1) as the organic acid. The chlorine content concentration in the hardened concrete was measured by this method. As a result, the chlorine content was 0.067% by weight.
[0019]
[Example 3]
Example 1 is the same as Example 1 except that 3.0 g of calcium carbonate (C2) is used in place of 3.0 g of cold water stone (C1) as a neutralizing agent. The chlorine content concentration in the hardened concrete was measured by the same method. As a result, the chlorine content was 0.067% by weight.
[0020]
[Example 4]
Example 1 is the same except that 3.0 g of calcium hydroxide (C3) is used instead of 3.0 g of cold water stone (C1) as a neutralizing agent. In the same manner as above, the chlorine content in the hardened concrete was measured. As a result, the chlorine content was 0.066% by weight.
[0021]
[Comparative Example 1]
Example 1 is the same as in Example 1 except that 3.0 g of sodium carbonate (D) is used in place of 3.0 g of cold water stone (C1) as a neutralizing agent. The chlorine content concentration in the hardened concrete was measured by the same method. As a result, the chlorine content was 0.098% by weight.
[0022]
[Comparative Example 2]
Concrete was obtained in the same manner as in Example 1 except that the same hardened concrete sample as in Example 1 was used for measurement, the liquid after neutralization was not filtered at all, and the contents of the container were directly used for chloride concentration measurement. The chlorine content concentration in the cured product was measured. As a result, the chlorine content was 0.025% by weight.
[0023]
[Comparative Example 3]
Using the same hardened concrete specimen as in Example 1 as the measurement object, the specimen was treated by a method in accordance with Japan Concrete Institute Standard JCI-SC4 “Analytical Method for Chloride Contained in Hardened Concrete”, and silver nitrate The total chlorine content was measured by titration. As a result, the chlorine content was 0.068% by weight.
[0024]
From the above results, if the method for measuring salinity in hardened concrete mortar according to the present invention is used, the value of total chlorine content measured by a method based on JCI-SC4 with the highest accuracy and reliability (Comparative Example 3). ) And a chlorine-containing concentration value almost inferior to each other, and it can be seen that highly accurate and reliable measurement results (Examples 1 to 4) were obtained.
[0025]
【The invention's effect】
The method for measuring the salinity in the hardened concrete mortar of the present invention can be measured very easily and with considerably high accuracy in a relatively short time even when performed by an unskilled person. In particular, if a sealed container suitable for the analysis according to the present invention is used, since it is excellent in portability, it can be easily brought into a work site and the like, and it is necessary to perform complicated operations using various analytical instruments. As a result, the measurement work efficiency increases.

Claims (4)

硬化コンクリート・モルタルに無水有機酸を加えて塩化物を抽出した後、炭酸カルシウム系又は水酸化カルシウム系中和剤を加えて中和し、中和により有機酸カルシウムが析出した液を濾過し、濾液の塩素濃度を測定することを特徴とする硬化コンクリート・モルタル中の塩分測定方法。After adding anhydrous organic acid to hardened concrete and mortar and extracting chloride, neutralize by adding calcium carbonate or calcium hydroxide neutralizer, filter the liquid from which organic acid calcium is precipitated by neutralization, A method for measuring salinity in hardened concrete mortar, characterized by measuring a chlorine concentration in a filtrate. 炭酸カルシウム系又は水酸化カルシウム系中和剤が炭酸カルシウム又は水酸化カルシウムを主成分とする天然石粒であることを特徴とする請求項1記載の硬化コンクリート・モルタル中の塩分測定方法。2. The method for measuring salinity in hardened concrete mortar according to claim 1, wherein the calcium carbonate-based or calcium hydroxide-based neutralizing agent is natural stone grains mainly composed of calcium carbonate or calcium hydroxide. 濾液の塩化物濃度の測定をモール法で行なうことを特徴とする請求項1又は2記載の硬化コンクリート・モルタル中の塩分測定方法。3. The method for measuring the salinity in hardened concrete mortar according to claim 1, wherein the chloride concentration of the filtrate is measured by the Mole method. 硬化コンクリート・モルタルへの無水有機酸添加から中和による有機酸カルシウム析出までの工程を、ガス放出口を有する密封容器中で行なうことを特徴とする請求項1〜3何れか記載の硬化コンクリート・モルタル中の塩分測定方法。The process from addition of anhydrous organic acid to hardened concrete mortar to organic acid calcium precipitation by neutralization is carried out in a sealed container having a gas discharge port. Method for measuring salinity in mortar.
JP2003188692A 2003-06-30 2003-06-30 Method for measuring salinity in hardened concrete and mortar Expired - Lifetime JP4152268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188692A JP4152268B2 (en) 2003-06-30 2003-06-30 Method for measuring salinity in hardened concrete and mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188692A JP4152268B2 (en) 2003-06-30 2003-06-30 Method for measuring salinity in hardened concrete and mortar

Publications (2)

Publication Number Publication Date
JP2005024348A JP2005024348A (en) 2005-01-27
JP4152268B2 true JP4152268B2 (en) 2008-09-17

Family

ID=34187137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188692A Expired - Lifetime JP4152268B2 (en) 2003-06-30 2003-06-30 Method for measuring salinity in hardened concrete and mortar

Country Status (1)

Country Link
JP (1) JP4152268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102406466B1 (en) * 2021-10-21 2022-06-08 주식회사 한국건설품질시험연구원 Technology for chloride content test in concrete and measuring method of chloride content test in concrete thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351751A (en) * 2004-06-10 2005-12-22 Taiheiyo Material Kk Method for measuring amount of chlorine in hardened concrete and mortar
JP4777937B2 (en) * 2007-05-22 2011-09-21 公益財団法人鉄道総合技術研究所 Concrete deterioration judgment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102406466B1 (en) * 2021-10-21 2022-06-08 주식회사 한국건설품질시험연구원 Technology for chloride content test in concrete and measuring method of chloride content test in concrete thereof

Also Published As

Publication number Publication date
JP2005024348A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
Mullin et al. The occurrence of cadmium in seawater and in marine organisms and sediments
Brunori et al. Reuse of a treated red mud bauxite waste: studies on environmental compatibility
Fujita et al. Immobilization of arsenic from novel synthesized scorodite—analysis on solubility and stability
Borovec et al. Distribution of some metals in sediments of the central part of the Labe (Elbe) River: Czech Republic
Taunton et al. Geochemistry in the lung: Reaction-path modeling and experimental examination of rock-forming minerals under physiologic conditions
JP4152268B2 (en) Method for measuring salinity in hardened concrete and mortar
Schotsmans et al. Raman spectroscopy as a non‐destructive screening technique for studying white substances from archaeological and forensic burial contexts
Bing et al. Removal of radioactive cesium from solutions by zinc ferrocyanide
JP2005351751A (en) Method for measuring amount of chlorine in hardened concrete and mortar
Ozdemir et al. Characterization and environment risk assessment of galvanic sludge
Van Breemen Calculation of ionic activities in natural waters
CN104900285B (en) A kind of administering method of the thing containing radionuclide contamination
Delaney et al. Trace and minor element ratios in Halimeda aragonite from the Great Barrier Reef
RU2437083C1 (en) Method for x-ray fluorescence determination of acid-soluble forms of metals in soil
Verma et al. Fluoride in water: a risk assessment perspective
EP2840395A1 (en) Method for characterization of the rate of movement of an oxidation front in cementitious materials
Landstrom et al. An investigation of trace elements in marine and lacustrine deposits by means of a neutron activation method
Espinoza-Tumialán et al. Mining Environmental Liability and Its in Situ Treatment with Calcium Oxide for Zinc Removal
Means et al. Comparison of three methods to measure acidity of coal-mine drainage
Dissanayake et al. Thermally activated laterite soil as an adsorbent for phosphate and fluoride removal from contaminated water
JP3657678B2 (en) Simplified determination of limestone and dolomite
Cusbert et al. In vitro dissolution of uranium
CN106732448A (en) Sorbing material of one heavy metal species and its preparation method and application
Wang et al. Extraction of hexavalent chromium from chromium ore processing residue using salted aqueous solutions
Sapozhnikov et al. The sorption of 90Sr from natural waters by alginates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Ref document number: 4152268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term