JP4151935B2 - Radiation measurement equipment - Google Patents

Radiation measurement equipment Download PDF

Info

Publication number
JP4151935B2
JP4151935B2 JP2000191199A JP2000191199A JP4151935B2 JP 4151935 B2 JP4151935 B2 JP 4151935B2 JP 2000191199 A JP2000191199 A JP 2000191199A JP 2000191199 A JP2000191199 A JP 2000191199A JP 4151935 B2 JP4151935 B2 JP 4151935B2
Authority
JP
Japan
Prior art keywords
neutron
rays
unit
activation
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000191199A
Other languages
Japanese (ja)
Other versions
JP2002006055A (en
Inventor
宏隆 酒井
好夫 北
典之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000191199A priority Critical patent/JP4151935B2/en
Publication of JP2002006055A publication Critical patent/JP2002006055A/en
Application granted granted Critical
Publication of JP4151935B2 publication Critical patent/JP4151935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放射線測定方法および装置に係り、特に常時は少く不定時にバースト的に大きくなる中性子線量を測定する放射線測定方法および装置に関する。
【0002】
【従来の技術】
従来、中性子線量を計測する手法としては主に、中性子線を直接計量する検出器を用いる手法、および、中性子線による核反応による放射化を利用して放射化した物質の量を測定することによって中性子線量を推定する手法がある。
【0003】
【発明が解決しようとする課題】
バースト的に大量に中性子線が発生する事象においては、従来の中性子線量モニタではある程度の線量率を超えると出力が飽和してしまい、その飽和中の中性子線量がわからない、また、飽和が生じないように検出効率を低下させた場合、通常の中性子線量モニタとしての役に立たないという問題がある。
【0004】
そこで本発明は、通常時の低線量率における中性子線量と高線量率時の中性子線量を測定することのできる放射線測定方法および装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項の発明は、中性子線により放射化する物質からなる放射化箔とこの放射化箔の背後に設けられγ線および中性子線に有感な検出器とを備えた放射線検出部と、この放射線検出部の出力を受けて中性子線による信号とγ線による信号を並行処理する信号処理部と、この信号処理部の出力を受けて前記放射線検出部へ入射した中性子線の線量率を算出するデータ解析部とを備え、前記データ解析部は、信号処理部から入力される中性子線の計数とγ線の計数の時間変化からγ線の計数が閾値を超えた場合に検出器の飽和の発生を判断し飽和の生じていた期間にさかのぼって検出器の不感期間における中性子線量の推定を行い、前記γ線の計数の閾値は、それまでの中性子線の計数の時間変化に追随させて変化させる構成とする。
【0008】
請求項2の発明は、請求項1の発明の放射線測定装置において、前記γ線の計数の閾値を、放射化のない時点でTh(0)とし、ある時点t(単位:秒)におけるTh(t)は、下記式で表される構成とする。
【数2】

Figure 0004151935
ただし、εは一崩壊あたりの放射線検出部におけるγ線の検出効率(単位:counts/decay)、R(t)はある時点tの放射化量 (単位atom)、D(t)はそれまでの中性子線量率 (単位:Sv/秒)、pは放射化率(単位:atom/Sv)、λは崩壊定数 (単位:decay/秒/atom)
これらの発明によれば、放射化物質の数半減期以内の時間に再びバースト状の多量の中性子発生を起こし、計数の飽和が生じた際にもその多量の中性子発生毎に飽和を検知し、線量の修正を行うことができる。
【0011】
【発明の実施の形態】
通常、中性子検出器はγ線にも有感であるが、従来の技術においては、一般的に、γ線による寄与は雑音成分として除去する。しかし、本発明の放射線測定方法および装置はその両者を共に利用して、検出器への中性子入射のカウントにより求まるその時々の線量率、および中性子入射によって放射化された放射性物質からのγ線を測定する。後者は、検出器の周辺に置かれた熱中性子に対して大きな反応断面積を持つ放射化物質、例えばAuやInを中性子が放射化することによって放射性物質が生じるが、その崩壊で放出されるγ線のカウントをγ線、中性子線双方に有感な放射線検出器、例えばZnS(Ag)シンチレータに6Liを混入した検出器により測定するものである。
【0012】
本発明の実施の形態の放射線測定装置は、図1に示すように、放射線検出部1と信号処理部2とデータ解析部3とデータ記録部4からなる。測定されるべき中性子源は放射線検出部1の左方にある。
【0013】
放射線検出部1は、鉛の板からなる遮蔽箱11の中に、AuまたはInからなる放射箔12と、Alの板からなるβ線遮蔽13と、6Liを混入したZnS(Ag)またはガラスからなるシンチレータ14と、光電子増倍管15をこの順序で配置してある。光電子増倍管15には駆動用の高電圧源16と、放射線検出信号を増幅するための前置増幅器17が接続されている。
【0014】
信号処理部2は中性子線による信号とγ線による信号に対して別々の系統を有し、線形増幅器21n,21γと、波高弁別器22n,22γと、計数回路23n,23γとからなる。
【0015】
このような構成の放射線測定装置においては、中性子を荷電粒子に変換するコンバータとしての6Liを含んだシンチレータ14に入射した中性子線およびγ線による信号を光電子増倍管15で電気信号に変換する。
【0016】
6Li(n,α)T反応によってシンチレータ14に与えられるエネルギーが約4.8keVであるのに対し、金(197Au)の放射化によって生じる198Auの放出するγ線が412keV,676keV,1088keVであり、115Inの放射化によって生じる116mInの放出するγ線が138keVから2112keVの範囲である。そのため、α線による発光効率と、γ線(とシンチレータ14との相互作用によって生じる二次電子)による発光効率の比を表すα/β比の大きなシンチレータ14など、α線に対するエネルギーから信号の波高値への変換効率が大きいシンチレータを用いれば、図2に示すように、中性子線とγ線との信号の波高値の間に差が生じる。そこで、それぞれ、計数回路23n,23γに入力するのに適当な波高値になるように増幅率を設定した線型増幅器21n,21γで増幅し、中性子線用の計数回路23nでは中性子線のみ、γ線用の計数回路23γでは放射化によるγ線のみを計数するように波高値のレベルを設定した波高弁別器22n,22γを通した後に計数することにより、中性子線のみ、またはγ線のみによる計数を得る。
【0017】
このようにして本実施の形態の放射線測定装置においては、中性子線による計数率が小さいときは放射化によるγ線の入射に伴う計数を考慮せず、放射線検出部1に入射した中性子線による計数のみから中性子線量率を求める。
【0018】
計数率が大きくなり、計数が飽和して測定ができなかった期間の中性子線量は、計数の飽和が解けた後に、γ線による計数のみを選択する回路(21γ,22γ,23γ)による計数から、放射化箔12の放射化量を測定し、飽和期間にさかのぼって求める。この過去の飽和期間の中性子線量推定に用いる放射化量測定用の回路(21γ,22γ,23γ)は、中性子入射による即時の線量率測定用(21n,22n,23n)とは別系統であるため、放射化量測定中にも、その時々の中性子線量をリアルタイムで求めることができる。
【0019】
シンチレータ14としてα線に対するエネルギー・信号波高変換効率の低い物質、例えばα/β比の小さいNaI(Tl)等、α線に対する信号波高値が小さい物質を使用する場合には、中性子線による付与エネルギーと、γ線による付与エネルギーの差がより大きい必要があるので、より高エネルギーの反応を起こす物質を使用する必要がある。そのためには、核分裂物質、例えば微量の235Uを使用するのがよい。235Uの核分裂によるエネルギーは200MeV程度であり、α線に対するエネルギーから信号の波高値への変換効率の小さな検出器であっても、容易に数MeVのγ線によるカウントと弁別が可能である。235Uの混入量はごく微量でよく、また濃縮235Uを使用する必要はなく、天然235Uで十分である。
【0020】
放射線検出部1の周囲は外部のバックグラウンドによるγ線のカウントを防ぐために10cm程度厚の鉛板を用いた遮蔽構造とする。こうした構造をとることによって、周辺環境、及び、臨界時における外部からのγ線の影響を低減することができるとともに、中性子検出時に検出系内の放射化箔12から放出されるγ線の外部に対する遮蔽の役割も果たす。また、検出部1の構造材には、放射化量決定の際の妨げにならない物質、たとえば金(放射化断面積98.8barn)よりも放射化断面積が小さい物質であるアルミニウム(0.235barn)等を使用することにより、より高精度な中性子線量率の測定が可能となる。
【0021】
信号処理部2における計数の時間変化はデータ記録部4に記録される。γ線の計数が閾値を超えた場合、飽和が直前に発生していたと判断し、飽和の生じていた期間にさかのぼってその線量をγ線の測定により求まる放射化物質の放射化量から求める。γ線の計数の飽和がない場合には、中性子線の計数のみから事前の校正で得られている換算係数より中性子の線量率を求める。
【0022】
飽和が存在したかどうかを判定するのに用いるγ線の計数率の閾値は、それまでの中性子線量の推移から、放射化量を常にデータ解析装置で把握し、それに追随して変動させる。その値は以下のようにして決定する。ある時点t(単位:秒)の放射化量R(t)(単位atom)は、それまでの中性子線量率D(t)(単位:Sv/秒)と、放射化率p(単位:atom/Sv)及び、崩壊定数λ(decay/秒/atom)と
【数3】
Figure 0004151935
の関係にあるので、
【数4】
Figure 0004151935
と求まる。ただし、飽和の起こった期間内の線量率は、飽和中の線量を飽和期間の長さで平均した値で近似する。
【0023】
従って、放射化のない時点でのγ線カウントの閾値をTh(0)とすれば、ある時点tにおけるγ線カウントの閾値Th(t)は
【数5】
Figure 0004151935
と表すことができる。ただし、εは一崩壊あたりの検出部1におけるγ線の検出効率(単位:counts/decay)である。
【0024】
このように、閾値を変動させることによって、放射化物質の数半減期以内の時間に再びバースト状の多量の中性子発生を起こし、計数の飽和が生じた際にもその多量の中性子発生毎に飽和を検知し、線量の修正を行うことができる。
【0025】
中性子線とγ線との弁別には波高値を使う以外にも波形により弁別を行う方法がある。いくつかのシンチレータ、例えばNaI(Tl)やCsI(Tl)等のほとんどのシンチレータを用いた放射線検出部1の出力波形は、図4に示すように入射粒子の種類によって異なる。この性質を利用して図5に示すように、前置増幅器17の出力波形をデジタル化装置5によりデジタル化し、データ解析部3に送り、この解析部3において波形の解析を行うことによって、中性子線とγ線の弁別、エネルギーの決定、計数率の測定などを行うことができる。
【0026】
波形を解析することによってまた、個々の波形の雑音除去や、飽和に近づいたときの波形の重畳の解消等も行うことができ、中性子のパルス計数時の飽和計数率の上限を上げることができる。
【0027】
また、放射線検出部1の出力波の波高値のみによる弁別では、γ線による出力信号の波高値と、中性子による出力信号の波高値とが同程度となるような組み合わせ、例えば、α/β比の小さなNaI(Tl)などのシンチレータと、10B(n,α)7Li(2.8MeV)のような生成エネルギーの小さな核反応を生じる物質の組み合わせを使用できなかったが、波形解析による弁別ではそうした物質の組み合わせも使用可能となる。
【0028】
放射線検出部1中の熱中性子との反応を起こすのに使用するシンチレータ14として、前記においては、6Liをコンバータとして含有したシンチレータZnS(Ag)を示したが、コンバータとしては、10B(n,α)7Li(2.8MeV),14N(n,p)14C(0.63MeV),35Cl(n,p)35S(0.62MeV)といった物質も、波高値のみでは弁別し難かったが、波形を解析することにより弁別可能となり使用することができる。この場合の測定装置の回路を図5に示す。
【0029】
中性子線量測定においては、中性子の個数だけではなく、そのエネルギーも線量決定の際の重要な因子である。従って、熱中性子/熱外(高速)中性子の存在比が分かればより正確な線量の算出が可能となる。
【0030】
中性子を検出器で直接計数することによる熱中性子/熱外中性子存在比の推定法として、コンバータ物質に6Li等の熱中性子断面積の大きな物質だけでなく、生成反応にしきい反応を有し、また、熱中性子用のコンバータとは生成粒子の異なる反応である、24Mg(反応:24Mg(n,p)24Na、しきいエネルギー6.0MeV)、54Fe(反応:54Fe(n,p)54Mn、しきいエネルギー2.2MeV)、58Ni(反応:58Ni(n,p)58Co、しきいエネルギー:2.9MeV)等を使用し、波形解析により、熱中性子による生成粒子と、熱外中性子による生成粒子との弁別を行い、熱中性子/熱外中性子の存在比を知ることができる。
【0031】
放射化物質にも、しきい反応を持つ物質を使用し、その物質が放射化し、崩壊する際に放出するγ線のエネルギーだけにウィンドウを設定し計数することによって、熱中性子による線量のみならず、熱外中性子による線量を同時に求めることができる。
【0032】
【発明の効果】
本発明の放射線測定方法および装置は、中性子による計数と放射化によるγ線の計数を併用するので、通常の中性子モニタよりも広範囲の線量率を測定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の放射線測定装置の構成を示す図。
【図2】発生パルスの波高値による中性子線とγ線の弁別を示す図。
【図3】複数回のバースト状中性子線発生時における計数の飽和の検知を示す図。
【図4】入射粒子による発生パルス波形の違いを示す図。
【図5】本発明の他の実施の形態の放射線測定装置の構成を示す図。
【符号の説明】
1…放射線検出部、2…信号処理部、3…データ解析部、4…データ記録部、5…デジタル化装置、11…遮蔽箱、12…放射化箔、13…β線遮蔽板、14…シンチレータ、15…光電子増倍管、16…高電圧源、17…前置増幅器、21n,21γ…線形増幅器、22n,22γ…波高弁別器、23n,23γ…計数回路。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation measurement method and apparatus, and more particularly, to a radiation measurement method and apparatus for measuring a neutron dose that is always small and becomes bursty when indefinite.
[0002]
[Prior art]
Traditionally, neutron doses are measured mainly by using a detector that directly measures neutron radiation, and by measuring the amount of material activated using activation by nuclear reaction by neutron radiation. There are methods to estimate neutron dose.
[0003]
[Problems to be solved by the invention]
In an event where a large amount of neutron radiation is generated in a burst, the output will saturate if the dose rate exceeds a certain level with the conventional neutron dose monitor, and the neutron dose during the saturation will not be known and saturation will not occur. However, when the detection efficiency is lowered, there is a problem that it is not useful as a normal neutron dose monitor.
[0004]
Therefore, an object of the present invention is to provide a radiation measurement method and apparatus capable of measuring a neutron dose at a low dose rate at normal times and a neutron dose at a high dose rate.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 includes an activation foil made of a material activated by neutron rays and a detector provided behind the activation foil and sensitive to γ rays and neutron rays. The radiation detection unit provided, the signal processing unit that receives the output from the radiation detection unit and processes the signal from the neutron beam and the signal from the γ-ray in parallel, and the output from the signal processing unit is incident on the radiation detection unit A data analysis unit for calculating a dose rate of neutron rays, and the data analysis unit has exceeded the threshold value by counting the neutrons input from the signal processing unit and the time change of the γ ray counts. If the stomach line estimation of neutron dose in dead time of the detector determines by going back to the time which had occurred saturated occurrence of saturation of the detector, the threshold value of the counting of the γ ray, counting neutrons far Change to follow the time change of The configuration is as follows.
[0008]
According to a second aspect of the present invention, in the radiation measuring apparatus according to the first aspect of the present invention, a threshold value for counting the γ rays is set to Th (0) at the time when there is no activation, and Th ( t) is represented by the following formula .
[Expression 2]
Figure 0004151935
However, ε is the detection efficiency (unit: counts / decay) of γ rays in the radiation detection unit per decay, R (t) is the amount of activation at a certain time t (unit atom), and D (t) is Neutron dose rate (unit: Sv / second), p is activation rate (unit: atom / Sv), λ is decay constant (unit: decay / second / atom)
According to these inventions, a large amount of burst neutrons are generated again in the time within the number half-life of the radioactive material, and when the saturation of the count occurs, the saturation is detected for each generation of the large amount of neutrons, The dose can be corrected.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Normally, neutron detectors are also sensitive to γ-rays. However, in the prior art, the contribution of γ-rays is generally removed as a noise component. However, the radiation measuring method and apparatus according to the present invention use both of them to calculate the instantaneous dose rate obtained by counting the number of neutrons incident on the detector and the γ-rays from the radioactive material activated by the neutron incidence. taking measurement. The latter is a radioactive material that has a large reaction cross section with respect to thermal neutrons placed around the detector, such as Au and In. The count of γ rays is measured by a radiation detector sensitive to both γ rays and neutron rays, for example, a detector in which 6 Li is mixed in a ZnS (Ag) scintillator.
[0012]
As shown in FIG. 1, the radiation measuring apparatus according to the embodiment of the present invention includes a radiation detection unit 1, a signal processing unit 2, a data analysis unit 3, and a data recording unit 4. The neutron source to be measured is on the left side of the radiation detector 1.
[0013]
The radiation detector 1 includes a shielding box 11 made of a lead plate, a radiation foil 12 made of Au or In, a β-ray shielding plate 13 made of an Al plate, and ZnS (Ag) mixed with 6 Li or A scintillator 14 made of glass and a photomultiplier tube 15 are arranged in this order. A high voltage source 16 for driving and a preamplifier 17 for amplifying a radiation detection signal are connected to the photomultiplier tube 15.
[0014]
The signal processing unit 2 has separate systems for neutron and γ-ray signals, and includes linear amplifiers 21n and 21γ, wave height discriminators 22n and 22γ, and counting circuits 23n and 23γ.
[0015]
In the radiation measuring apparatus having such a configuration, a signal from a neutron beam and a γ ray incident on a scintillator 14 containing 6 Li as a converter for converting neutrons into charged particles is converted into an electrical signal by the photomultiplier tube 15. .
[0016]
The energy given to the scintillator 14 by the 6 Li (n, α) T reaction is about 4.8 keV, whereas the γ-rays emitted by 198 Au generated by the activation of gold ( 197 Au) are 412 keV, 676 keV, and 1088 keV. The γ rays emitted by 116m In produced by activation of 115 In are in the range of 138 keV to 2112 keV. Therefore, the wave of the signal from the energy to the α-ray, such as a scintillator 14 having a large α / β ratio that represents the ratio of the emission efficiency by the α-ray and the emission efficiency by the γ-ray (secondary electrons generated by the interaction with the scintillator 14) If a scintillator with high conversion efficiency to a high value is used, as shown in FIG. 2, a difference occurs between the peak values of signals of neutron rays and γ rays. Therefore, amplification is performed by linear amplifiers 21n and 21γ whose amplification factors are set so as to obtain appropriate peak values to be input to the counting circuits 23n and 23γ, respectively. use of the counting circuit 23γ the activation wave height valve by vessel was set the level of the peak value to count only γ rays by 22n, by counting after passing a 22Ganma, neutrons alone, or counting by γ rays only Get.
[0017]
As described above, in the radiation measurement apparatus according to the present embodiment, when the counting rate by the neutron beam is small, the counting by the neutron beam incident on the radiation detection unit 1 is not considered without considering the counting due to the incidence of the γ ray by the activation. The neutron dose rate is obtained only from
[0018]
The neutron dose during the period when the count rate was increased and the count could not be measured because the count was saturated, after the count saturation was released, from the count by the circuit (21γ, 22γ, 23γ) that selects only the count by γ rays, The activation amount of the activation foil 12 is measured and obtained retroactively during the saturation period. The circuit for radiation activation measurement (21γ, 22γ, 23γ) used to estimate the neutron dose during the previous saturation period is a separate system from that for immediate dose rate measurement (21n, 22n, 23n) by neutron incidence. Even during the activation measurement, the neutron dose can be obtained in real time.
[0019]
If the scintillator 14 uses a substance with low energy / signal wave height conversion efficiency for α-rays, such as NaI (Tl) with a low α / β ratio, the energy applied by neutrons Since the difference in energy applied by γ rays needs to be larger, it is necessary to use a substance that causes a higher energy reaction. To that end, it is better to use a fission material, for example a small amount of 235 U. The energy of fission of 235 U is about 200 MeV, and even a detector with low conversion efficiency from the energy for α rays to the peak value of the signal can be easily counted and discriminated by γ rays of several MeV. A very small amount of 235 U may be mixed, and it is not necessary to use concentrated 235 U. Natural 235 U is sufficient.
[0020]
The periphery of the radiation detection unit 1 has a shielding structure using a lead plate having a thickness of about 10 cm in order to prevent counting of γ rays due to an external background. By adopting such a structure, it is possible to reduce the influence of γ rays from the surrounding environment and from the outside at the critical time, and to the outside of the γ rays emitted from the activation foil 12 in the detection system at the time of neutron detection. Also serves as a shield. In addition, the structural material of the detection unit 1 includes a material that does not interfere with the determination of the activation amount, such as aluminum (0.235 barn), which is a material whose activation cross-section is smaller than gold (activation cross-section 98.8 barn). By using the neutron dose rate can be measured with higher accuracy.
[0021]
The time change of the count in the signal processing unit 2 is recorded in the data recording unit 4. When the γ-ray count exceeds the threshold, it is determined that saturation has occurred immediately before, and the dose is obtained from the activation amount of the radioactive material determined by γ-ray measurement, going back to the period in which saturation occurred. If the gamma ray count is not saturated, the neutron dose rate is obtained from the conversion factor obtained from the previous calibration only from the neutron ray count.
[0022]
The threshold of the counting rate of γ rays used to determine whether saturation has existed or not is always grasped by a data analyzer from the transition of neutron dose so far, and is varied accordingly. Its value is determined as follows. The activation amount R (t) (unit: atom) at a certain time t (unit: second) is the neutron dose rate D (t) (unit: Sv / second) and the activation rate p (unit: atom / second). Sv) and decay constant λ (decay / second / atom) and
Figure 0004151935
Because of the relationship
[Expression 4]
Figure 0004151935
Is obtained. However, the dose rate within the saturation period is approximated by a value obtained by averaging the saturated dose over the length of the saturation period.
[0023]
Therefore, if the threshold value of γ-ray count at the time when there is no activation is Th (0), the threshold value Th (t) of γ-ray count at a certain time t is
Figure 0004151935
It can be expressed as. Here, ε is the detection efficiency (unit: counts / decay) of γ rays in the detection unit 1 per decay.
[0024]
In this way, by changing the threshold value, a large amount of burst-like neutrons are generated again in the time within the half-life of the radioactive material. Can be detected and the dose can be corrected.
[0025]
In addition to using the crest value, there is a method for discriminating between neutron rays and γ rays by using a waveform. The output waveform of the radiation detection unit 1 using some scintillators, for example, most scintillators such as NaI (Tl) and CsI (Tl), varies depending on the type of incident particles as shown in FIG. By utilizing this property, as shown in FIG. 5, the output waveform of the preamplifier 17 is digitized by the digitizing device 5 and sent to the data analysis unit 3. Discrimination between γ-rays, determination of energy, measurement of counting rate, etc. can be performed.
[0026]
By analyzing the waveform, it is also possible to remove noise from individual waveforms and eliminate waveform superposition when approaching saturation, thereby increasing the upper limit of the saturation count rate when counting neutron pulses .
[0027]
Further, in the discrimination based only on the peak value of the output wave of the radiation detector 1, a combination in which the peak value of the output signal by γ rays and the peak value of the output signal by neutron are approximately the same, for example, α / β ratio The combination of a scintillator such as NaI (Tl) and a substance that produces a nuclear reaction with a low production energy such as 10 B (n, α) 7 Li (2.8 MeV) could not be used. Combinations of such substances can also be used.
[0028]
As the scintillator 14 used for causing the reaction with the thermal neutrons in the radiation detector 1, the scintillator ZnS (Ag) containing 6 Li as a converter is shown in the above, but as the converter, 10 B (n , α) 7 Li (2.8 MeV), 14 N (n, p) 14 C (0.63 MeV), 35 Cl (n, p) 35 S (0.62 MeV), it was difficult to discriminate only by the peak value. By analyzing the waveform, it can be discriminated and used. The circuit of the measuring device in this case is shown in FIG.
[0029]
In neutron dosimetry, not only the number of neutrons but also their energy are important factors in determining the dose. Therefore, if the abundance ratio of thermal neutron / external (fast) neutron is known, a more accurate dose can be calculated.
[0030]
As a method of estimating the thermal neutron / external neutron abundance ratio by directly counting neutrons with a detector, the converter material has not only a large thermal neutron cross section such as 6 Li but also a threshold reaction in the production reaction, Further, the converter for thermal neutrons is a different product particle reaction, 24 Mg (reaction: 24 Mg (n, p) 24 Na, the threshold energy 6.0MeV), 54 Fe (reaction: 54 Fe (n, p ) 54 Mn, threshold energy 2.2 MeV), 58 Ni (reaction: 58 Ni (n, p) 58 Co, threshold energy: 2.9 MeV), etc. It is possible to know the abundance ratio between thermal neutrons and epithermal neutrons by discriminating from particles generated by external neutrons.
[0031]
As a radioactive substance, a substance having a threshold reaction is used, and by setting and counting only the energy of γ rays emitted when the substance is activated and decays, not only the dose from thermal neutrons is counted. The dose from epithermal neutrons can be obtained simultaneously.
[0032]
【The invention's effect】
Since the radiation measuring method and apparatus of the present invention use both neutron counting and γ-ray counting by activation, it is possible to measure a dose rate in a wider range than a normal neutron monitor.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a radiation measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing discrimination between a neutron beam and a γ-ray according to a peak value of a generated pulse.
FIG. 3 is a diagram showing detection of count saturation when a plurality of burst-like neutron beams are generated.
FIG. 4 is a diagram showing a difference in generated pulse waveform due to incident particles.
FIG. 5 is a diagram showing a configuration of a radiation measuring apparatus according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Radiation detection part, 2 ... Signal processing part, 3 ... Data analysis part, 4 ... Data recording part, 5 ... Digitization apparatus, 11 ... Shielding box, 12 ... Activation foil, 13 ... Beta ray shielding board, 14 ... Scintillator, 15 ... Photomultiplier tube, 16 ... High voltage source, 17 ... Preamplifier, 21n, 21γ ... Linear amplifier, 22n, 22γ ... Wave height discriminator, 23n, 23γ ... Count circuit.

Claims (2)

中性子線により放射化する物質からなる放射化箔とこの放射化箔の背後に設けられγ線および中性子線に有感な検出器とを備えた放射線検出部と、
この放射線検出部の出力を受けて中性子線による信号とγ線による信号を並行処理する信号処理部と、
この信号処理部の出力を受けて前記放射線検出部へ入射した中性子線の線量率を算出するデータ解析部とを備え、
前記データ解析部は、信号処理部から入力される中性子線の計数とγ線の計数の時間変化からγ線の計数が閾値を超えた場合に検出器の飽和の発生を判断し飽和の生じていた期間にさかのぼって検出器の不感期間における中性子線量の推定を行い、
前記γ線の計数の閾値は、それまでの中性子線の計数の時間変化に追随させて変化させることを特徴とする放射線測定装置。
A radiation detector comprising an activation foil made of a material activated by neutron rays and a detector sensitive to γ rays and neutron rays provided behind the activation foil;
A signal processing unit that receives the output of the radiation detection unit and processes the signal from the neutron beam and the signal from the γ ray in parallel;
A data analysis unit that receives the output of the signal processing unit and calculates the dose rate of the neutron beam incident on the radiation detection unit;
The data analysis unit determines the occurrence of saturation when the γ-ray count exceeds a threshold from the time change of the neutron count and γ-ray count input from the signal processing unit, and the saturation occurs. There line estimation of neutron dose in dead time of the detector dating back to period,
The radiation measurement apparatus according to claim 1, wherein the threshold for counting γ rays is changed in accordance with a change in neutron beam count over time .
前記γ線の計数の閾値を、放射化のない時点でTh(0)とし、ある時点t(単位:秒)におけるTh(t)は、下記式で表されることを特徴とする請求項記載の放射線測定装置。
Figure 0004151935
ただし、εは一崩壊あたりの放射線検出部におけるγ線の検出効率(単位:counts/decay)、R(t)はある時点tの放射化量 (単位atom)、D(t)はそれまでの中性子線量率 (単位:Sv/秒)、pは放射化率(単位:atom/Sv)、λは崩壊定数 (decay/秒/atom)
The threshold count of γ-rays, and Th (0) when no activation, some point t (in seconds) Th (t) in the claim 1, characterized by being represented by the following formula The radiation measuring apparatus described.
Figure 0004151935
However, ε is the detection efficiency (unit: counts / decay) of γ rays in the radiation detection unit per decay, R (t) is the amount of activation at a certain time t (unit atom), and D (t) is Neutron dose rate (unit: Sv / sec), p is activation rate (unit: atom / Sv), λ is decay constant (decay / sec / atom)
JP2000191199A 2000-06-26 2000-06-26 Radiation measurement equipment Expired - Fee Related JP4151935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191199A JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191199A JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2002006055A JP2002006055A (en) 2002-01-09
JP4151935B2 true JP4151935B2 (en) 2008-09-17

Family

ID=18690537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191199A Expired - Fee Related JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4151935B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214176B2 (en) * 2004-03-12 2009-01-28 独立行政法人 日本原子力研究開発機構 Neutron measurement system
JP4415095B2 (en) 2004-04-15 2010-02-17 独立行政法人 日本原子力研究開発機構 Particle beam detector and neutron detector using ZnS phosphor
JP4791935B2 (en) * 2006-10-27 2011-10-12 独立行政法人日本原子力研究開発機構 Neutron / gamma ray discrimination method of scintillation neutron detector using ZnS phosphor
WO2013003349A2 (en) * 2011-06-26 2013-01-03 Schlumberger Canada Limited Scintillator-based neutron detector for oilfield applications
WO2014136990A1 (en) * 2013-03-08 2014-09-12 国立大学法人九州大学 High-sensitivity neutron detection method using self-radioactivation of scintillator
CN110244339A (en) * 2016-06-01 2019-09-17 南京中硼联康医疗科技有限公司 Radiation dose measurement method
US10527743B2 (en) * 2016-11-15 2020-01-07 Thermo Fisher Scientific Messtechnik Gmbh System and method of neutron radiation detection
JP7039448B2 (en) * 2018-12-07 2022-03-22 株式会社東芝 Neutron detector and neutron detection method
CN116736361B (en) * 2023-05-16 2024-01-26 中国工程物理研究院材料研究所 Method for correcting non-uniformity of space detection efficiency of radioactive waste measurement system

Also Published As

Publication number Publication date
JP2002006055A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP3957763B2 (en) Low energy neutron detector based on lithium lanthanide borate scintillator
JP4064009B2 (en) Line type discrimination type radiation detector
EP2077457B1 (en) Radiation dosimeter and radiation dose computing program
Hurst et al. Techniques of measuring neutron spectra with threshold detectors—tissue dose determination
US20020121603A1 (en) Method and apparatus to prevent signal pile-up
EP2113791A1 (en) Sodium iodide sctinitllator with flat plastic scintillator for Compton suppression
US8232530B2 (en) Solid state neutron detector
Walker et al. Measurement of radiative capture resonance integrals in a thermal reactor spectrum, and the thermal cross section of Pu-240
JP4151935B2 (en) Radiation measurement equipment
WO2021120697A1 (en) Pulse radiation detection circuit and apparatus
JP2001235546A (en) Radioactive gas measuring device and fuel failure detecting system
JP5487173B2 (en) Radionuclide analyzer and its coincidence coincidence suppression method
CN108535758B (en) Pulse shape discrimination algorithm
JP2006337136A (en) Neutron dosimetry device
US11163076B2 (en) Method for the detection of neutrons with scintillation detectors used for gamma ray spectroscopy
JPH0820517B2 (en) γ-ray nuclide analysis method and device
JP2008249337A (en) Radioactivity absolute measurement method, method for determining detection efficiency of radiation detector assembly and method for calibrating radiation measuring apparatus
JPH01134291A (en) Scintillation type dose rate meter
JP2003057346A (en) Radiation monitoring device
US4101769A (en) Method for direct measurement of beta-ray absorbed dose rate and an instrument therefor
CN114509801A (en) Neutron/gamma discrimination system and method for gadolinium-based material
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JP2001311780A (en) Neutron ray measuring device
Pavelic et al. SiPM-based detector for high resolution measurements in pulsed radiation fields: preliminary findings
Horn et al. Suppression of background radiation in BGO and NaI detectors used in nuclear reaction analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees