JP2002006055A - Radiation measuring method and device using it - Google Patents

Radiation measuring method and device using it

Info

Publication number
JP2002006055A
JP2002006055A JP2000191199A JP2000191199A JP2002006055A JP 2002006055 A JP2002006055 A JP 2002006055A JP 2000191199 A JP2000191199 A JP 2000191199A JP 2000191199 A JP2000191199 A JP 2000191199A JP 2002006055 A JP2002006055 A JP 2002006055A
Authority
JP
Japan
Prior art keywords
neutron
radiation
dose rate
rays
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000191199A
Other languages
Japanese (ja)
Other versions
JP4151935B2 (en
Inventor
Hirotaka Sakai
宏隆 酒井
Yoshio Kita
好夫 北
Noriyuki Seki
典之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000191199A priority Critical patent/JP4151935B2/en
Publication of JP2002006055A publication Critical patent/JP2002006055A/en
Application granted granted Critical
Publication of JP4151935B2 publication Critical patent/JP4151935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation measuring method and a device using it that can measure a neutron beam dose in a normal low dose rate and a neutron beam dose in a high dose rate. SOLUTION: Detectors (14, 15), which are sensitive to both γ and a neutron beam, and a substance (12) that radioactivates by the neutron beam are combined. Neutron beam doses in both of the low dose and the high dose rate are determined by measuring a pulse in the low rate and by estimating a neutron beam dose by a radioactivating method in the high dose rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放射線測定方法およ
び装置に係り、特に常時は少く不定時にバースト的に大
きくなる中性子線量を測定する放射線測定方法および装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation measuring method and apparatus, and more particularly, to a radiation measuring method and apparatus for measuring a neutron dose which is always small and irregularly large in a burst.

【0002】[0002]

【従来の技術】従来、中性子線量を計測する手法として
は主に、中性子線を直接計量する検出器を用いる手法、
および、中性子線による核反応による放射化を利用して
放射化した物質の量を測定することによって中性子線量
を推定する手法がある。
2. Description of the Related Art Conventionally, methods for measuring a neutron dose mainly include a method using a detector for directly measuring a neutron beam,
In addition, there is a method of estimating a neutron dose by measuring the amount of a substance activated by using activation due to a nuclear reaction by a neutron beam.

【0003】[0003]

【発明が解決しようとする課題】バースト的に大量に中
性子線が発生する事象においては、従来の中性子線量モ
ニタではある程度の線量率を超えると出力が飽和してし
まい、その飽和中の中性子線量がわからない、また、飽
和が生じないように検出効率を低下させた場合、通常の
中性子線量モニタとしての役に立たないという問題があ
る。
In the event that a large amount of neutrons are generated in a burst, the output of a conventional neutron dose monitor is saturated when the dose rate exceeds a certain level, and the neutron dose during the saturation is reduced. If the detection efficiency is reduced so as not to be understood or to prevent saturation, there is a problem that it is not useful as a normal neutron dose monitor.

【0004】そこで本発明は、通常時の低線量率におけ
る中性子線量と高線量率時の中性子線量を測定すること
のできる放射線測定方法および装置を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a radiation measuring method and apparatus capable of measuring a neutron dose at a low dose rate at normal times and a neutron dose at a high dose rate.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、γ線および中性子線の双方に有
感な検出器と中性子線により放射化する物質とを組み合
わせ、低線量率の場合にはパルス測定により、高線量率
の場合には放射化法により中性子線量を推定することに
より、低線量率と高線量率の双方の場合における中性子
線量率を求めることを特徴とする。この発明によれば、
小線量率から大線量率にわたって中性子線量を測定する
ことができる。
Means for Solving the Problems In order to solve the above problems, the invention of claim 1 combines a detector sensitive to both γ-rays and neutrons with a substance activated by neutrons. The neutron dose rate is calculated for both low and high dose rates by estimating the neutron dose by pulse measurement for dose rate and activation method for high dose rate. I do. According to the invention,
Neutron dose can be measured from a small dose rate to a large dose rate.

【0006】請求項2の発明は、中性子線により放射化
する物質からなる放射化箔とこの放射化箔の背後に設け
られγ線および中性子線に有感な検出器とを備えた放射
線検出部と、この放射線検出部の出力を受けて中性子線
による信号とγ線による信号を並行処理する信号処理部
と、この信号処理部の出力を受けて前記放射線検出部へ
入射した中性子線の線量率を算出するデータ解析部とを
備えた構成とする。この発明によれば、通常時の小線量
率と異常時の大線量率を一台の測定装置で測定しそれぞ
れの測定値を遺漏なく取得することができる。
According to a second aspect of the present invention, there is provided a radiation detector comprising an activation foil made of a substance activated by a neutron beam and a detector provided behind the activation foil and sensitive to γ-rays and neutron rays. A signal processing unit that receives the output of the radiation detection unit and performs parallel processing on the signal based on the neutron beam and the signal based on the γ-ray; and on the output of the signal processing unit, the dose rate of the neutron beam incident on the radiation detection unit. And a data analysis unit that calculates According to the present invention, it is possible to measure the small dose rate in the normal state and the large dose rate in the abnormal state with one measuring device, and obtain the respective measured values without omission.

【0007】請求項3の発明は、上記請求項2の発明の
放射線測定装置において、信号処理部は、中性子線によ
る信号とγ線による信号を波高値によって弁別する構成
とする。この発明によれば、中性子線による信号とγ線
による信号を明確に区別することができる。
According to a third aspect of the present invention, in the radiation measuring apparatus according to the second aspect of the present invention, the signal processing section discriminates a signal based on a neutron beam and a signal based on a γ-ray based on a peak value. According to the present invention, a signal due to a neutron beam and a signal due to a gamma ray can be clearly distinguished.

【0008】請求項4の発明は、上記請求項2の発明の
放射線測定装置において、データ解析部は、信号処理部
から入力される中性子線による信号とγ線による信号の
時間変化から中性子の高線量率時における検出器の飽和
の発生を判断し検出器の不感期間における中性子線量の
推定を行う構成とする。この発明によれば、放射線測定
の個々のイベントに合わせて検出器の飽和を判断するこ
とができる。
According to a fourth aspect of the present invention, in the radiation measuring apparatus according to the second aspect of the present invention, the data analyzing section determines a neutron level based on a time change of the signal by the neutron beam and the signal by the γ ray input from the signal processing section. It is configured to determine the occurrence of saturation of the detector at the dose rate and to estimate the neutron dose during the dead period of the detector. According to the present invention, the saturation of the detector can be determined in accordance with each event of the radiation measurement.

【0009】請求項5の発明は、上記請求項2の発明の
放射線測定装置において、データ解析部は、中性子の入
射による波形と、γ線の入射による波形との差異を検知
することにより、入射した放射線の線種の識別を行い、
中性子の計数から即時の中性子線量率を、γ線のエネル
ギー範囲毎の計数から放射化物質の生成量を推定する構
成とする。この発明によれば、中性子線による信号とγ
線による信号を区別しやすく、また信号に重畳する雑音
の除去をおこないやすい。
According to a fifth aspect of the present invention, in the radiation measuring apparatus according to the second aspect of the present invention, the data analysis section detects a difference between a waveform caused by neutron incidence and a waveform caused by γ-ray incidence, thereby obtaining an incident light. Of the type of radiation
The configuration is such that the immediate neutron dose rate is estimated from the neutron count, and the amount of activated material generated is estimated from the count for each γ-ray energy range. According to the present invention, the signal from the neutron beam and γ
It is easy to distinguish the signal by the line, and it is easy to remove noise superimposed on the signal.

【0010】請求項6の発明は、上記請求項2の発明の
放射線測定装置において、放射化箔は高速中性子のしき
いエネルギーをもつ核反応を生ずる物質からなり、デー
タ解析部は中性子のエネルギーごとの存在比の推定を行
う構成とする。この発明によれば、中性子線源のエネル
ギー分布を知得することができる。
According to a sixth aspect of the present invention, in the radiation measuring apparatus according to the second aspect of the present invention, the activation foil is made of a substance which causes a nuclear reaction having a threshold energy of fast neutrons, and the data analysis unit is provided for each neutron energy. It is configured to estimate the existence ratio of. According to the present invention, the energy distribution of the neutron source can be obtained.

【0011】[0011]

【発明の実施の形態】通常、中性子検出器はγ線にも有
感であるが、従来の技術においては、一般的に、γ線に
よる寄与は雑音成分として除去する。しかし、本発明の
放射線測定方法および装置はその両者を共に利用して、
検出器への中性子入射のカウントにより求まるその時々
の線量率、および中性子入射によって放射化された放射
性物質からのγ線を測定する。後者は、検出器の周辺に
置かれた熱中性子に対して大きな反応断面積を持つ放射
化物質、例えばAuやInを中性子が放射化することによっ
て放射性物質が生じるが、その崩壊で放出されるγ線の
カウントをγ線、中性子線双方に有感な放射線検出器、
例えばZnS(Ag)シンチレータに6Liを混入した検出器によ
り測定するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A neutron detector is usually sensitive to gamma rays, but in the prior art, the contribution of gamma rays is generally removed as a noise component. However, the radiation measurement method and apparatus of the present invention utilize both of them,
The current dose rate determined by counting the neutron incidence on the detector and the γ-rays from the radioactive material activated by the neutron incidence are measured. In the latter, radioactive substances with a large reaction cross section for thermal neutrons placed around the detector, such as Au and In, are activated by neutrons, which are released by their decay A radiation detector that is sensitive to both γ-rays and neutrons
For example, it is measured by a detector in which 6 Li is mixed in a ZnS (Ag) scintillator.

【0012】本発明の実施の形態の放射線測定装置は、
図1に示すように、放射線検出部1と信号処理部2とデ
ータ解析部3とデータ記録部4からなる。測定されるべ
き中性子源は放射線検出部1の左方にある。
A radiation measuring apparatus according to an embodiment of the present invention comprises:
As shown in FIG. 1, it comprises a radiation detecting section 1, a signal processing section 2, a data analyzing section 3, and a data recording section 4. The neutron source to be measured is to the left of the radiation detector 1.

【0013】放射線検出部1は、鉛の板からなる遮蔽箱
11の中に、AuまたはInからなる放射箔12と、Alの板から
なるβ線遮蔽枚13と、6Liを混入したZnS(Ag)またはガラ
スからなるシンチレータ14と、光電子増倍管15をこの順
序で配置してある。光電子増倍管15には駆動用の高電圧
源16と、放射線検出信号を増幅するための前置増幅器17
が接続されている。
The radiation detecting section 1 is a shielding box made of a lead plate.
11, a radiation foil 12 made of Au or In, a β-ray shielding sheet 13 made of Al, a scintillator 14 made of ZnS (Ag) or glass mixed with 6 Li, and a photomultiplier tube 15 They are arranged in this order. The photomultiplier tube 15 has a high voltage source 16 for driving and a preamplifier 17 for amplifying the radiation detection signal.
Is connected.

【0014】信号処理部2は中性子線による信号とγ線
による信号に対して別々の系統を有し、線形増幅器21
n,21γと、波高弁別器22n,22γと、計数回路23n,
23γとからなる。
The signal processing unit 2 has separate systems for the signal based on the neutron beam and the signal based on the γ-ray.
n, 21γ, wave height discriminators 22n, 22γ, and counting circuit 23n,
23γ.

【0015】このような構成の放射線測定装置において
は、中性子を荷電粒子に変換するコンバータとしての6L
iを含んだシンチレータ14に入射した中性子線およびγ
線による信号を光電子増倍管15で電気信号に変換する。
[0015] In the radiation measuring apparatus having such a configuration, 6 L as a converter for converting neutrons into charged particles is used.
Neutron beam and γ incident on scintillator 14 containing i
The signal by the line is converted into an electric signal by the photomultiplier tube 15.

【0016】6Li(n,α)T反応によってシンチレータ14
に与えられるエネルギーが約4.8keVであるのに対し、
金(197Au)の放射化によって生じる198Auの放出するγ
線が412keV,676keV,1088keVであり、115Inの放射
化によって生じる116mInの放出するγ線が138keVから2
112keVの範囲である。そのため、α線による発光効率
と、γ線(とシンチレータ14との相互作用によって生じ
る二次電子)による発光効率の比を表すα/β比の大き
なシンチレータ14など、α線に対するエネルギーから信
号の波高値への変換効率が大きいシンチレータを用いれ
ば、図2に示すように、中性子線とγ線との信号の波高
値の間に差が生じる。そこで、それぞれ、計数回路23
n,23γに入力するのに適当な波高値になるように増幅
率を設定した線型増幅器21n,21γで増幅し、中性子線
用の計数回路23nでは中性子線のみ、γ線用の計数回路
23γでは放射化によるγ線のみを計数するように波高値
のレベルを設定した波高弁22n,22γを通した後に計数
することにより、中性子線のみ、またはγ線のみによる
計数を得る。
The scintillator 14 is formed by the 6 Li (n, α) T reaction.
Energy is about 4.8 keV,
Γ emitted by 198 Au generated by activation of gold ( 197 Au)
The lines are 412 keV, 676 keV, and 1088 keV, and the γ-ray emitted by 116 min produced by the activation of 115 In is 2 from 138 keV.
The range is 112 keV. Therefore, a signal wave is generated from energy with respect to α-rays, such as a scintillator 14 having a large α / β ratio, which represents a ratio of luminous efficiency due to α-rays to luminous efficiency due to γ-rays (and secondary electrons generated by the interaction with the scintillator 14). If a scintillator having a high conversion efficiency to a high value is used, a difference occurs between the peak values of the neutron beam and the γ-ray signal as shown in FIG. Therefore, each of the counting circuits 23
n, 23γ are amplified by linear amplifiers 21n, 21γ whose amplification factors are set so as to have appropriate peak values, and in the neutron beam counting circuit 23n, only the neutron beam is counted, and the γ-ray counting circuit is used.
At 23γ, counting is performed after passing through pulse height valves 22n and 22γ in which the peak value level is set so as to count only γ-rays due to activation, thereby obtaining a count using only neutron beams or only γ-rays.

【0017】このようにして本実施の形態の放射線測定
装置においては、中性子線による計数率が小さいときは
放射化によるγ線の入射に伴う計数を考慮せず、放射線
検出部1に入射した中性子線による計数のみから中性子
線量率を求める。
As described above, in the radiation measuring apparatus according to the present embodiment, when the counting rate due to neutrons is small, the neutrons incident on the radiation detecting unit 1 are not considered, without taking into account the counting accompanying the incidence of gamma rays due to activation. The neutron dose rate is determined from the line count alone.

【0018】計数率が大きくなり、計数が飽和して測定
ができなかった期間の中性子線量は、計数の飽和が解け
た後に、γ線による計数のみを選択する回路(21γ,22
γ,23γ)による計数から、放射化箔12の放射化量を測
定し、飽和期間にさかのぼって求める。この過去の飽和
期間の中性子線量推定に用いる放射化量測定用の回路
(21γ,22γ,23γ)は、中性子入射による即時の線量
率測定用(21n,22n,23n)とは別系統であるため、
放射化量測定中にも、その時々の中性子線量をリアルタ
イムで求めることができる。
The neutron dose during the period when the counting rate becomes large and the counting is saturated and the measurement cannot be performed is determined by a circuit (21γ, 22
(γ, 23γ), the amount of activation of the activation foil 12 is measured, and the amount is determined by going back to the saturation period. The activation measurement circuit (21γ, 22γ, 23γ) used for neutron dose estimation in the past saturation period is a different system from the one for immediate dose rate measurement by neutron incidence (21n, 22n, 23n). ,
Even during activation measurement, the neutron dose at that time can be obtained in real time.

【0019】シンチレータ14としてα線に対するエネル
ギー・信号波高変換効率の低い物質、例えばα/β比の
小さいNaI(Tl)等、α線に対する信号波高値が小さい物
質を使用する場合には、中性子線による付与エネルギー
と、γ線による付与エネルギーの差がより大きい必要が
あるので、より高エネルギーの反応を起こす物質を使用
する必要がある。そのためには、核分裂物質、例えば微
量の235Uを使用するのがよい。235Uの核分裂によるエ
ネルギーは200MeV程度であり、α線に対するエネルギ
ーから信号の波高値への変換効率の小さな検出器であっ
ても、容易に数MeVのγ線によるカウントと弁別が可能
である。235Uの混入量はごく微量でよく、また濃縮235
Uを使用する必要はなく、天然235Uで十分である。
When a substance having a low energy / signal peak conversion efficiency with respect to α rays, for example, a substance having a small signal peak value with respect to α rays such as NaI (Tl) having a small α / β ratio is used as the scintillator 14, a neutron beam is used. It is necessary to use a substance that causes a higher-energy reaction because the difference between the applied energy due to γ rays and the applied energy due to γ rays needs to be larger. For this purpose, it is preferable to use a fission material, for example, a trace amount of 235 U. The energy due to the fission of 235 U is about 200 MeV, and even a detector having a small conversion efficiency from the energy for α-rays to the peak value of a signal can easily be distinguished from the count by γ-rays of several MeV. 235 mixed amount of U may be a very small amount, also concentrated 235
There is no need to use U, and 235 U naturally is sufficient.

【0020】放射線検出部1の周囲は外部のバックグラ
ウンドによるγ線のカウントを防ぐために10cm程度厚の
鉛板を用いた遮蔽構造とする。こうした構造をとること
によって、周辺環境、及び、臨界時における外部からの
γ線の影響を低減することができるとともに、中性子検
出時に検出系内の放射化箔12から放出されるγ線の外部
に対する遮蔽の役割も果たす。また、検出部1の構造材
には、放射化量決定の際の妨げにならない物質、たとえ
ば金(放射化断面積98.8barn)よりも放射化断面積が小
さい物質であるアルミニウム(0.235barn)等を使用す
ることにより、より高精度な中性子線量率の測定が可能
となる。
The radiation detector 1 has a shielding structure using a lead plate having a thickness of about 10 cm in order to prevent gamma rays from being counted by an external background. By adopting such a structure, it is possible to reduce the influence of the surrounding environment and external γ-rays at the time of criticality, and at the same time, to the outside of the γ-rays emitted from the activation foil 12 in the detection system during neutron detection. Also acts as a shield. The structural material of the detection unit 1 includes a substance that does not hinder the determination of the amount of activation, for example, aluminum (0.235 barn), which is a substance having an activation cross section smaller than gold (activation cross section 98.8 barn). By using, it is possible to measure the neutron dose rate with higher accuracy.

【0021】信号処理部2における計数の時間変化はデ
ータ記録部4に記録される。γ線の計数が閾値を超えた
場合、飽和が直前に発生していたと判断し、飽和の生じ
ていた期間にさかのぼってその線量をγ線の測定により
求まる放射化物質の放射化量から求める。γ線の計数の
飽和がない場合には、中性子線の計数のみから事前の校
正で得られている換算係数より中性子の線量率を求め
る。
The time change of the count in the signal processing unit 2 is recorded in the data recording unit 4. If the count of γ-rays exceeds the threshold value, it is determined that saturation has occurred immediately before, and the dose is calculated from the activation amount of the radioactive substance obtained by measuring γ-rays in the period in which the saturation occurred. If there is no saturation in the counting of γ-rays, the neutron dose rate is obtained from the conversion factor obtained by the preliminary calibration only from the neutron counting.

【0022】飽和が存在したかどうかを判定するのに用
いるγ線の計数率の閾値は、それまでの中性子線量の推
移から、放射化量を常にデータ解析装置で把握し、それ
に追随して変動させる。その値は以下のようにして決定
する。ある時点t(単位:秒)の放射化量R(t)(単位ato
m)は、それまでの中性子線量率D(t)(単位:Sv/秒)と、
放射化率p(単位:atom/Sv)及び、崩壊定数λ(decay/秒
/atom)と
The threshold value of the counting rate of γ-rays used to determine whether or not saturation has occurred is based on the transition of the neutron dose up to that time, and the amount of activation is always grasped by the data analyzer, and is changed accordingly. Let it. Its value is determined as follows. Activation amount R (t) (unit ato) at a certain time point t (unit: second)
m) is the previous neutron dose rate D (t) (unit: Sv / sec),
Activation rate p (unit: atom / Sv) and decay constant λ (decay / second
/ atom) and

【数1】 の関係にあるので、(Equation 1) Because of the relationship

【数2】 と求まる。ただし、飽和の起こった期間内の線量率は、
飽和中の線量を飽和期間の長さで平均した値で近似す
る。
(Equation 2) Is obtained. However, the dose rate during the period when saturation occurs
The dose during saturation is approximated by the average of the length of the saturation period.

【0023】従って、放射化のない時点でのγ線カウン
トの閾値をTh(0)とすれば、ある時点tにおけるγ線カ
ウントの閾値Th(t)は
Therefore, if the threshold value of the γ-ray count at the time of no activation is Th (0), the threshold value Th (t) of the γ-ray count at a certain time t is

【数3】 と表すことができる。ただし、εは一崩壊あたりの検出
部1におけるγ線の検出効率(単位:counts/decay)で
ある。
(Equation 3) It can be expressed as. Here, ε is the detection efficiency (unit: counts / decay) of γ-rays in the detection unit 1 per decay.

【0024】このように、閾値を変動させることによっ
て、放射化物質の数半減期以内の時間に再びバースト状
の多量の中性子発生を起こし、計数の飽和が生じた際に
もその多量の中性子発生毎に飽和を検知し、線量の修正
を行うことができる。
As described above, by changing the threshold value, a large amount of neutrons are generated again in a burst form within a time period within several half-lives of the radioactive material, and even when the counting is saturated, the large amount of neutrons is generated. The saturation can be detected every time, and the dose can be corrected.

【0025】中性子線とγ線との弁別には波高値を使う
以外にも波形により弁別を行う方法がある。いくつかの
シンチレータ、例えばNaI(Tl)やCsI(Tl)等のほとんどの
シンチレータを用いた放射線検出部1の出力波形は、図
4に示すように入射粒子の種類によって異なる。この性
質を利用して図5に示すように、前置増幅器17の出力波
形をデジタル化装置5によりデジタル化し、データ解析
部3に送り、この解析部3において波形の解析を行うこ
とによって、中性子線とγ線の弁別、エネルギーの決
定、計数率の測定などを行うことができる。
There is a method of discriminating neutron rays and γ rays from discrimination by waveforms other than using peak values. The output waveform of the radiation detection unit 1 using some scintillators, for example, most scintillators such as NaI (Tl) and CsI (Tl) differs depending on the type of incident particles as shown in FIG. Utilizing this property, as shown in FIG. 5, the output waveform of the preamplifier 17 is digitized by the digitizing device 5 and sent to the data analysis unit 3, where the waveform analysis is performed. It can discriminate between rays and gamma rays, determine energy, measure count rate, and the like.

【0026】波形を解析することによってまた、個々の
波形の雑音除去や、飽和に近づいたときの波形の重畳の
解消等も行うことができ、中性子のパルス計数時の飽和
計数率の上限を上げることができる。
By analyzing the waveforms, it is also possible to remove noise from individual waveforms and to eliminate superimposition of waveforms when the waveform approaches saturation, thereby raising the upper limit of the saturation counting rate when counting neutron pulses. be able to.

【0027】また、放射線検出部1の出力波の波高値の
みによる弁別では、γ線による出力信号の波高値と、中
性子による出力信号の波高値とが同程度となるような組
み合わせ、例えば、α/β比の小さなNaI(Tl)などのシ
ンチレータと、10B(n,α)7Li(2.8MeV)のような生成
エネルギーの小さな核反応を生じる物質の組み合わせを
使用できなかったが、波形解析による弁別ではそうした
物質の組み合わせも使用可能となる。
In the discrimination based on only the peak value of the output wave of the radiation detection unit 1, a combination in which the peak value of the output signal due to γ-rays and the peak value of the output signal due to neutrons are similar, for example, α / beta ratio and a scintillator, such as NaI (Tl) having a small, 10 B (n, α) 7 Li could not be used a combination of materials to produce a small nuclear reaction generates energy, such as (2.8MeV), waveform analysis In such discrimination, combinations of such substances can also be used.

【0028】放射線検出部1中の熱中性子との反応を起
こすのに使用するシンチレータ14として、前記において
は、6Liをコンバータとして含有したシンチレータZnS(A
g)を示したが、コンバータとしては、10B(n,α)7Li
(2.8MeV),14N(n,p)14C(0.63MeV),35Cl(n,p)35S
(0.62MeV)といった物質も、波高値のみでは弁別し難か
ったが、波形を解析することにより弁別可能となり使用
することができる。この場合の測定装置の回路を図5に
示す。
As the scintillator 14 used to cause a reaction with the thermal neutrons in the radiation detecting section 1, the above-described scintillator ZnS (A) containing 6 Li as a converter is used.
g), but as a converter, 10 B (n, α) 7 Li
(2.8 MeV), 14 N (n, p) 14 C (0.63 MeV), 35 Cl (n, p) 35 S
A substance such as (0.62 MeV) was difficult to discriminate only by the peak value, but it can be discriminated by analyzing the waveform and can be used. FIG. 5 shows a circuit of the measuring apparatus in this case.

【0029】中性子線量測定においては、中性子の個数
だけではなく、そのエネルギーも線量決定の際の重要な
因子である。従って、熱中性子/熱外(高速)中性子の
存在比が分かればより正確な線量の算出が可能となる。
In neutron dosimetry, not only the number of neutrons but also their energy is an important factor in dose determination. Therefore, if the abundance ratio of thermal neutrons / epithermal (fast) neutrons is known, more accurate dose calculation becomes possible.

【0030】中性子を検出器で直接計数することによる
熱中性子/熱外中性子存在比の推定法として、コンバー
タ物質に6Li等の熱中性子断面積の大きな物質だけでな
く、生成反応にしきい反応を有し、また、熱中性子用の
コンバータとは生成粒子の異なる反応である、24Mg(反
応:24Mg(n,p)24Na、しきいエネルギー6.0MeV)、54Fe
(反応:54Fe(n,p)54Mn、しきいエネルギー2.2MeV)、58
Ni(反応:58Ni(n,p)58Co、しきいエネルギー:2.9MeV)
等を使用し、波形解析により、熱中性子による生成粒子
と、熱外中性子による生成粒子との弁別を行い、熱中性
子/熱外中性子の存在比を知ることができる。
[0030] As estimation of the thermal neutrons / epithermal neutron abundance by counting directly neutron detector, as well as a substance having high thermal neutron cross-sectional area of 6 Li or the like to the converter material, the threshold in response to formation reaction 24 Mg (reaction: 24 Mg (n, p) 24 Na, threshold energy 6.0 MeV), and 54 Fe
(Reaction: 54 Fe (n, p) 54 Mn, threshold energy 2.2 MeV), 58
Ni (reaction: 58 Ni (n, p) 58 Co, threshold energy: 2.9 MeV)
By using the waveform analysis, it is possible to discriminate particles produced by thermal neutrons from particles produced by epithermal neutrons, and to know the abundance ratio of thermal neutrons / epineutrons.

【0031】放射化物質にも、しきい反応を持つ物質を
使用し、その物質が放射化し、崩壊する際に放出するγ
線のエネルギーだけにウィンドウを設定し計数すること
によって、熱中性子による線量のみならず、熱外中性子
による線量を同時に求めることができる。
As the activated substance, a substance having a threshold reaction is used, and γ released when the substance is activated and decays.
By setting the window only for the energy of the line and counting, not only the dose due to thermal neutrons but also the dose due to epithermal neutrons can be obtained at the same time.

【0032】[0032]

【発明の効果】本発明の放射線測定方法および装置は、
中性子による計数と放射化によるγ線の計数を併用する
ので、通常の中性子モニタよりも広範囲の線量率を測定
することができる。
According to the radiation measuring method and apparatus of the present invention,
Since both neutron counting and activation gamma ray counting are used, a wider range of dose rates can be measured than with a normal neutron monitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の放射線測定装置の構成を
示す図。
FIG. 1 is a diagram showing a configuration of a radiation measuring apparatus according to an embodiment of the present invention.

【図2】発生パルスの波高値による中性子線とγ線の弁
別を示す図。
FIG. 2 is a diagram illustrating discrimination between a neutron beam and a γ-ray based on a peak value of a generated pulse.

【図3】複数回のバースト状中性子線発生時における計
数の飽和の検知を示す図。
FIG. 3 is a diagram showing detection of counting saturation when a plurality of burst neutron beams are generated.

【図4】入射粒子による発生パルス波形の違いを示す
図。
FIG. 4 is a diagram showing a difference in a generated pulse waveform depending on an incident particle.

【図5】本発明の他の実施の形態の放射線測定装置の構
成を示す図。
FIG. 5 is a diagram showing a configuration of a radiation measuring apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…放射線検出部、2…信号処理部、3…データ解析
部、4…データ記録部、5…デジタル化装置、11…遮蔽
箱、12…放射化箔、13…β線遮蔽板、14…シンチレー
タ、15…光電子増倍管、16…高電圧源、17…前置増幅
器、21n,21γ…線形増幅器、22n,22γ…波高弁別
器、23n,23γ…計数回路。
DESCRIPTION OF SYMBOLS 1 ... Radiation detection part, 2 ... Signal processing part, 3 ... Data analysis part, 4 ... Data recording part, 5 ... Digitizing device, 11 ... Shielding box, 12 ... Activation foil, 13 ... Beta ray shielding plate, 14 ... Scintillator, 15 photomultiplier tube, 16 high voltage source, 17 preamplifier, 21n, 21γ linear amplifier, 22n, 22γ wave height discriminator, 23n, 23γ counting circuit.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01T 3/00 G01T 3/00 G (72)発明者 関 典之 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 2G088 FF09 GG20 JJ01 JJ29 KK01 KK12 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) G01T 3/00 G01T 3/00 G (72) Inventor Noriyuki Seki 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Fuchu Works F term (reference) 2G088 FF09 GG20 JJ01 JJ29 KK01 KK12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 γ線および中性子線の双方に有感な検出
器と中性子線により放射化する物質とを組み合わせ、低
線量率の場合にはパルス測定により、高線量率の場合に
は放射化法により中性子線量を推定することにより、低
線量率と高線量率の双方の場合における中性子線量率を
求めることを特徴とする放射線測定方法。
1. A combination of a detector sensitive to both gamma rays and neutrons and a substance activated by neutrons. Pulse measurement is performed at a low dose rate, and activation is performed at a high dose rate. A radiation measurement method characterized by determining a neutron dose rate in both a low dose rate and a high dose rate by estimating a neutron dose by a method.
【請求項2】 中性子線により放射化する物質からなる
放射化箔とこの放射化箔の背後に設けられγ線および中
性子線に有感な検出器とを備えた放射線検出部と、この
放射線検出部の出力を受けて中性子線による信号とγ線
による信号を並行処理する信号処理部と、この信号処理
部の出力を受けて前記放射線検出部へ入射した中性子線
の線量率を算出するデータ解析部とを備えたことを特徴
とする放射線測定装置。
2. A radiation detector comprising: an activation foil made of a substance activated by a neutron beam; and a detector provided behind the activation foil and sensitive to γ-rays and neutron rays; A signal processing unit that receives the output of the unit and processes the signal of the neutron beam and the signal of the gamma ray in parallel, and receives the output of the signal processing unit and calculates the dose rate of the neutron beam incident on the radiation detection unit And a radiation measuring device.
【請求項3】 信号処理部は、中性子線による信号とγ
線による信号を波高値によって弁別することを特徴とす
る請求項2記載の放射線測定装置。
3. A signal processing unit, comprising:
3. The radiation measuring apparatus according to claim 2, wherein a signal based on the line is discriminated by a peak value.
【請求項4】 データ解析部は、信号処理部から入力さ
れる中性子線による信号とγ線による信号の時間変化か
ら中性子の高線量率時における検出器の飽和の発生を判
断し検出器の不感期間における中性子線量の推定を行う
ことを特徴とする請求項2記載の放射線測定装置。
4. A data analysis unit judges the occurrence of saturation of a detector at a high dose rate of neutrons from a time change of a signal by a neutron beam and a signal by a γ-ray input from a signal processing unit, and makes the detector insensitive. 3. The radiation measuring apparatus according to claim 2, wherein a neutron dose in the period is estimated.
【請求項5】 データ解析部は、中性子の入射による波
形と、γ線の入射による波形との差異を検知することに
より、入射した放射線の線種の識別を行い、中性子の計
数から即時の中性子線量率を、γ線のエネルギー範囲毎
の計数から放射化物質の生成量を推定することを特徴と
する請求項2記載の放射線測定装置。
5. The data analysis unit detects a difference between a waveform due to neutron incidence and a waveform due to γ-ray incidence, identifies a line type of the incident radiation, and immediately calculates a neutron from a neutron count. 3. The radiation measuring apparatus according to claim 2, wherein the dose rate is estimated from the count of each energy range of γ-rays to estimate the amount of the activated substance generated.
【請求項6】 放射化箔は高速中性子のしきいエネルギ
ーをもつ核反応を生ずる物質からなり、データ解析部は
中性子のエネルギーごとの存在比の推定を行うことを特
徴とする請求項2記載の放射線測定装置。
6. The activation foil according to claim 2, wherein the activation foil is made of a substance that generates a nuclear reaction having a threshold energy of fast neutrons, and the data analysis unit estimates an abundance ratio for each energy of the neutrons. Radiation measurement device.
JP2000191199A 2000-06-26 2000-06-26 Radiation measurement equipment Expired - Fee Related JP4151935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191199A JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191199A JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2002006055A true JP2002006055A (en) 2002-01-09
JP4151935B2 JP4151935B2 (en) 2008-09-17

Family

ID=18690537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191199A Expired - Fee Related JP4151935B2 (en) 2000-06-26 2000-06-26 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4151935B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257524A (en) * 2004-03-12 2005-09-22 Japan Nuclear Cycle Development Inst States Of Projects Neutron measurement system
JP2008111677A (en) * 2006-10-27 2008-05-15 Japan Atomic Energy Agency NEUTRON/GAMMA RAY DISCRIMINATION METHOD OF SCINTILLATION NEUTRON DETECTOR USING ZnS PHOSPHOR
US7679064B2 (en) 2004-04-15 2010-03-16 Japan Atomic Energy Research Institute Particle detector and neutron detector that use zinc sulfide phosphors
JP2014527618A (en) * 2011-06-26 2014-10-16 シュルンベルジェ ホールディングス リミテッドSchlnmberger Holdings Limited Scintillator-based neutron detector for oilfield applications
JPWO2014136990A1 (en) * 2013-03-08 2017-02-16 国立大学法人九州大学 Highly sensitive neutron detection method using self-activation of scintillator
US10379227B2 (en) * 2016-06-01 2019-08-13 Neuboron Medtech Ltd. Radiation dose measuring method
JP2019536065A (en) * 2016-11-15 2019-12-12 サーモ フィッシャー サイエンティフィック メステクニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Neutron beam detection system and method
JP2020091241A (en) * 2018-12-07 2020-06-11 株式会社東芝 Neutron detection apparatus and neutron detection method
CN116736361A (en) * 2023-05-16 2023-09-12 中国工程物理研究院材料研究所 Method for correcting non-uniformity of space detection efficiency of radioactive waste measurement system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257524A (en) * 2004-03-12 2005-09-22 Japan Nuclear Cycle Development Inst States Of Projects Neutron measurement system
US7679064B2 (en) 2004-04-15 2010-03-16 Japan Atomic Energy Research Institute Particle detector and neutron detector that use zinc sulfide phosphors
JP2008111677A (en) * 2006-10-27 2008-05-15 Japan Atomic Energy Agency NEUTRON/GAMMA RAY DISCRIMINATION METHOD OF SCINTILLATION NEUTRON DETECTOR USING ZnS PHOSPHOR
JP2014527618A (en) * 2011-06-26 2014-10-16 シュルンベルジェ ホールディングス リミテッドSchlnmberger Holdings Limited Scintillator-based neutron detector for oilfield applications
JPWO2014136990A1 (en) * 2013-03-08 2017-02-16 国立大学法人九州大学 Highly sensitive neutron detection method using self-activation of scintillator
US10379227B2 (en) * 2016-06-01 2019-08-13 Neuboron Medtech Ltd. Radiation dose measuring method
JP2019536065A (en) * 2016-11-15 2019-12-12 サーモ フィッシャー サイエンティフィック メステクニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Neutron beam detection system and method
JP2020091241A (en) * 2018-12-07 2020-06-11 株式会社東芝 Neutron detection apparatus and neutron detection method
JP7039448B2 (en) 2018-12-07 2022-03-22 株式会社東芝 Neutron detector and neutron detection method
CN116736361A (en) * 2023-05-16 2023-09-12 中国工程物理研究院材料研究所 Method for correcting non-uniformity of space detection efficiency of radioactive waste measurement system
CN116736361B (en) * 2023-05-16 2024-01-26 中国工程物理研究院材料研究所 Method for correcting non-uniformity of space detection efficiency of radioactive waste measurement system

Also Published As

Publication number Publication date
JP4151935B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
EP2113791B1 (en) Sodium iodide sctinitllator with flat plastic scintillator for Compton suppression
JP5027124B2 (en) Method and apparatus for detection of co-generated radiation in a single transducer by pulse waveform analysis
JP4064009B2 (en) Line type discrimination type radiation detector
US7388206B2 (en) Pulse shape discrimination method and apparatus for high-sensitivity radioisotope identification with an integrated neutron-gamma radiation detector
JP4766407B2 (en) Radiation dosimeter and radiation dose calculation program
US6255657B1 (en) Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector
US8232530B2 (en) Solid state neutron detector
JP2001235546A (en) Radioactive gas measuring device and fuel failure detecting system
JP5487173B2 (en) Radionuclide analyzer and its coincidence coincidence suppression method
JP4151935B2 (en) Radiation measurement equipment
US11163076B2 (en) Method for the detection of neutrons with scintillation detectors used for gamma ray spectroscopy
JPH0820517B2 (en) γ-ray nuclide analysis method and device
JPH09230052A (en) Different kind ray discriminating radiation detector
CN111175804A (en) Pulse radiation detection circuit and device
CN114509801A (en) Neutron/gamma discrimination system and method for gadolinium-based material
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JP2001311780A (en) Neutron ray measuring device
JP2004279184A (en) Radiation detecting method and device
Palazzolo et al. A beta spectrometer for monitoring environmental matrices
Horn et al. Suppression of background radiation in BGO and NaI detectors used in nuclear reaction analysis
WO2024057514A1 (en) Radioactivity analysis device and radioactivity analysis method
JPH033198B2 (en)
JPH08285946A (en) Position detection apparatus
JP2735937B2 (en) Neutron detector for criticality accident monitoring
JPH0933660A (en) Beta-ray dose measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees