JP4151190B2 - Method for producing electrophotographic photosensitive member - Google Patents

Method for producing electrophotographic photosensitive member Download PDF

Info

Publication number
JP4151190B2
JP4151190B2 JP2000082002A JP2000082002A JP4151190B2 JP 4151190 B2 JP4151190 B2 JP 4151190B2 JP 2000082002 A JP2000082002 A JP 2000082002A JP 2000082002 A JP2000082002 A JP 2000082002A JP 4151190 B2 JP4151190 B2 JP 4151190B2
Authority
JP
Japan
Prior art keywords
layer
resin
general formula
group
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082002A
Other languages
Japanese (ja)
Other versions
JP2001265016A (en
Inventor
豊子 芝田
友子 ▲崎▼村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2000082002A priority Critical patent/JP4151190B2/en
Publication of JP2001265016A publication Critical patent/JP2001265016A/en
Application granted granted Critical
Publication of JP4151190B2 publication Critical patent/JP4151190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繰り返し使用ても電位安定性が良好で、低温低湿から高温高湿までの環境下で鮮明な複写画像を与え、耐傷性に優れ、紙粉及びトナー付着が少なく、下層と表面層の剥離が生じない耐久性に優れた電子写真感光体の製造方法に関するものである。
【0002】
【従来の技術】
従来、電子写真感光体(以下、単に感光体とも云う)としては、セレン、酸化亜鉛、硫化カドミウム、シリコン等の無機光導電性物質を主成分とする感光層を有する無機感光体が、広く用いられてきた。しかし、これらは感度、熱安定性、耐湿性、耐久性等に於いて必ずしも満足するものではなく、又一部の無機感光体は人体に有害な物質を含むため廃棄の際に問題があった。
【0003】
近年、無機感光体の欠点を克服する目的で様々な有機光導電性化合物を主成分とする感光層を有する有機感光体の研究、開発が盛んに行われている。特に電荷発生機能と電荷輸送機能とを異なる物質にそれぞれ分担させた機能分離型の感光体は、それぞれの材料を広い範囲から選択出来、比較的容易に作製しうることから多くの研究がなされており、一部実用に供されているものがある。
【0004】
しかし、このような有機感光体は、画像形成装置内でコロナ帯電、像露光、トナー現像、紙への転写及びクリーニング処理等の電気的、機械的外力が加えられるため、有機感光体の内部及び表面に於いて様々な性能の劣化現象が現れる。
【0005】
具体的には、コロナ帯電極で発生するオゾン及び窒素酸化物(NOx)等の放電生成物や像露光時の紫外線等により電位特性の劣化(帯電電位の低下、感度の低下、残留電位の上昇等)、トナー現像及びクリーニング時の摩擦により摩耗や傷の発生、転写紙からの紙粉の付着及びトナーの付着(トナーフィルミング)等により画像品質の低下が生じる。
【0006】
上述のような問題に対する技術的対策の1つとして、感光体の表面に表面層を設けて機械的耐久性を向上させ、感光体の摩耗を抑制し、かつ傷の発生や紙粉及びトナーの付着を抑えることが検討されている。
【0007】
例えば、感光体表面に硬化性シロキサン樹脂層を表面層として設けることが特開昭61−72256号公報、特開昭61−51155号公報、特開平1−217364号公報、特開平1−200366号公報、特開平3−129360号公報、特開平3−155558号公報、特開平3−139655号公報、特開平5−40359号公報等で提案されている。
【0008】
しかしながら、従来の製造方法ではせっかく高硬度の硬化性シロキサン樹脂を表面層として設けても、熱硬化後、感光体を通常の冷却速度で冷却すると、表面層と感光層との層間絡み合いが無くなるため、シロキサン樹脂の表面層と下層の感光層との接着力が弱くなり、現像、クリーニング時の摩擦等によるストレスで表面層が感光層から剥離してしまう問題が生じていた。
【0009】
【発明が解決しようとする課題】
本発明は上記問題点を鑑み提案されたものであり、その目的とするところは、繰り返し使用ても電位安定性が良好で、低温低湿から高温高湿までの環境下で鮮明な複写画像を与え、耐傷性に優れ、紙粉及びトナー付着が少なく、下層と表面層の剥離が生じない耐久性に優れた電子写真感光体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の課題は下記構成を採ることにより達成される。
【0012】
)導電性支持体上に、感光層及び記一般式(1)で表される有機ケイ素化合物を含有する有機ケイ素化合物液を加水分解させ、該加水分解した有機ケイ素含有液に下記一般式(2)で表される電荷輸送性を有する構造単位を含む化合物を含有させた塗布液を塗布、80〜160℃にて熱硬化反応させて得られる表面層を有する電子写真感光体であり、熱硬化後3分以内に硬化温度から感光層のガラス転移点(Tg)まで急速冷却することを特徴とする電子写真感光体の製造方法。
一般式(1) (R −Si(X (4−n)
〔式中、R はケイ素原子に炭素原子が直接結合した形の有機基を表し、X は水酸基又は加水分解性基を表し、nは0〜3の整数を表す。〕
一般式(2) A−(OH)
〔式中、Aは電荷輸送性を有する構造単位を含む1価又は多価の基を表し、mは1〜4の整数を表す。〕
【0013】
(3)20℃以下の冷風が送風されている冷却槽にて冷却を行うことを特徴とする前記1又は2に記載の電子写真感光体の製造方法。
【0014】
以下、本発明についてさらに詳細に説明する。
本発明のシロキサン樹脂は通常の炭化水素系樹脂と異なり相溶性が悪く、十分な表面層と感光層の層間接着力が得られにくい。さらに、本発明のシロキサン樹脂を含有する表面層のガラス転移点は150℃程度で下層の感光層のガラス転移点50〜70℃と大きく異なっている。
【0015】
一般的に熱収縮はガラス転移点以上では大きく、ガラス転移点以下では小さいことから、表面層の熱硬化後、通常の速度で感光体を冷却すると、感光層の収縮は大きく、表面層の収縮は小さいので、感光層と表面層で熱収縮に差が生じ、層間の絡み合いが無くなり、接着力が低下して感光層から表面層剥離が発生したものと推定した。
【0016】
本発明者らは、表面層の熱硬化後、急速に感光層のガラス転移点以下まで冷却すれば、感光層が熱収縮により安定状態へ移行するのを阻止出来、表面層と感光層との層間に熱収縮差が生じなくなるため、層間の接着力が良好に保たれる事を見いだし、本発明に至った。
【0017】
本発明の感光体は、感光層上にシロキサン樹脂を主成分とする表面層を塗布し、80〜160℃の恒温槽で10分〜6時間熱硬化反応を行い、その後恒温槽から取り出し、20℃以下の冷風が送風されている冷却槽で急速に、好ましくは30秒〜3分以内に、より好ましくは30秒〜1分以内に、感光層のガラス転移点以下まで冷却することで製造出来る。
【0018】
《有機ケイ素化合物》
前記一般式(1)で表される有機ケイ素化合物に於いて、R1で示されるケイ素原子に炭素原子が直接結合した形の有機基としては、メチル、エチル、プロピル及びブチル等のアルキル基、フェニル、トリル、ナフチル及びビフェニル等のアリール基、γ−グリシドキシプロピル及びβ−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル及びγ−メタアクリロキシプロピル等の含(メタ)アクリロイル基、γ−ヒドロキシプロピル及び2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル及びプロペニル等の含ビニル基、γ−メルカプトプロピル等のメルカプト基を置換した基、γ−アミノプロピル及びN−β−アミノエチル−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル及びパ−フルオロオクチルエチル等の含ハロゲン原子を置換した基、その他ニトロ及びシアノ置換アルキル基等を挙げることが出来る。
【0019】
1で示される加水分解性基としては、メトキシ及びエトキシ等のアルコキシ基、ハロゲン基及びアシルオキシ基等が挙げられる。好ましくは炭素数6以下のアルコキシ基である。
【0020】
又、前記一般式(1)で表される有機ケイ素化合物は、単独で用いても、2種類以上を組み合わせて用いても良い。
【0021】
具体的有機ケイ素化合物としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルフェニルジメトキシシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン及びγ−グリシドキシプロピルトリメトキシシラン等が挙げられるが、本発明はこれらに限定されるものではない。
【0022】
《シロキサン樹脂》
本発明の請求項1の発明のシロキサン樹脂は前記有機ケイ素化合物を酸性条件下から塩基性条件下で加水分解してオリゴマー化した加水分解縮合物である。
【0023】
前記有機ケイ素化合物又はその加水分解縮合物にはコロイダルシリカを加えてもよい。コロイダルシリカの添加は有機ケイ素化合物の加水分解縮合時でも良く、その後で加えても良い。添加量は樹脂層を形成する有機ケイ素化合物の固形分100部に対し1〜30部が好ましい。
【0024】
《電荷輸送性能を有する構造単位を含む化合物》
本発明の請求項1の発明のシロキサン樹脂層には、前記有機ケイ素化合物やコロイダルシリカと結合して樹脂層を形成することが出来る電荷輸送性能を有する構造単位を含む化合物を添加することが出来る。本発明の電荷輸送性能を有する構造単位を含む化合物の添加は本発明の有機ケイ素化合物の加水分解縮合時でも良く、その後で加えても良い。又、本発明で用いられる電荷輸送性能を有する構造単位を含む化合物の添加量は有機ケイ素化合物やコロイダルシリカと結合して形成される樹脂層の固形分100部に対して10〜200部が好ましい。
【0025】
前記有機ケイ素化合物と結合して樹脂層を形成することが出来る電荷輸送性能を有する構造単位を含む化合物は前記一般式(2)で表される水酸基を有する電荷輸送性化合物が好ましいがこれに限定されるものではない。
【0026】
本発明の請求項2の発明のシロキサン樹脂とは、前記一般式(1)で表される有機ケイ素化合物と結合して樹脂層を形成することができる前記一般式(2)で表される電荷輸送性を有する構造単位を含む化合物と反応して得られるシロキサン樹脂である。
【0027】
前記一般式(2)で表される電荷輸送性能を有する構造単位を含む化合物に於いて、Aで表される電荷輸送性能を有する構造単位とは単独で電子或いは正孔のドリフト移動度を有する性質を示す構造のものであって、一般的に電荷輸送物質として用いられている化合物を示す。
【0028】
例えば、電子輸送型の電荷輸送物質としては、無水コハク酸、無水マレイン酸、無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、ニトロベンゼン、ジニトロベンゼン、トリニトロベンゼン、テトラニトロベンゼン、ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、ナフトキノン、ジフェニルキノン、トロポキノン、アントラキノン、1−クロロアントラキノン、ジニトロアントラキノン、4−ニトロベンゾフェノン、4,4´−ジニトロベンゾフェノン、4−ニトロベンザルマロンジニトリル、α−シアノ−β−(p−シアノフェニル)−2−(p−クロロフェニル)エチレン、2,7−ジニトロフルオレノン、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロフルオレノン、9−フルオロニリデンジシアノメチレンマロニトリル、ポリニトロ−9−フルオロニリデンジシアノメチレンマロニトリル、ピクリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、3,5−ジニトロ安息香酸、ペンタフルオロ安息香酸、5−ニトロサリチル酸、3,5−ジニトロサリチル酸、フタル酸及びメリット酸等の構造単位を含む化合物及びこれらの誘導体が挙げられる。
【0029】
一方、正孔輸送型の電荷輸送物質としては、オキサゾール、オキサジアゾール、チアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾリン、ビスイミダゾリジン、スチリル、ヒドラゾン、ベンジジン、ピラゾリン、トリアリールアミン、オキサゾロン、ベンゾチアゾール、ベンゾイミダゾール、キナゾリン、ベンゾフラン、アクリジン及びフェナジン等の構造単位を含む化合物及びこれらの誘導体が挙げられるが、これらの構造に限定されるものではない。
【0030】
本発明の電荷輸送性能を有する構造単位の別の定義としては、通常のTime−Of−Flight法等の電荷輸送性能を検知できる公知の方法にて、電荷輸送に起因する検出電流が得られるものとして表現することもできる。
【0031】
つぎに、本発明の上記有機ケイ素化合物やコロイダルシリカと結合して樹脂層を形成することが出来る電荷輸送性能を有する構造単位を含む化合物(HCT)の具体例を挙げるが、本発明はこれらに限定されるものではない。
【0032】
【化1】

Figure 0004151190
【0033】
【化2】
Figure 0004151190
【0034】
【化3】
Figure 0004151190
【0035】
【化4】
Figure 0004151190
【0036】
【化5】
Figure 0004151190
【0037】
《酸化防止剤の添加》
又、本発明のシロキサン樹脂には、例えば、ヒンダートフェノール、ヒンダートアミン、チオエーテル又はホスファイト部分構造を持つ酸化防止剤を添加することが出来、電位及び画質の向上に効果的である。
【0038】
酸化防止剤としては、例えば、ヒンダートフェノール系の3,5−ジ−t−ブチル−4−ヒドロキシビフェニル、商品名「イルガノックス245」、「イルガノックス1010」、「イルガノックス1076」、「イルガノックス1098」、「イルガノックス1330」及び「イルガノックス3114」(チバガイギー株式会社製)、ヒンダートアミン系の商品名「サノールLS744」、「サノールLS765」、「サノールLS770」及び「サノールLS2626」(三共株式会社製)、「チヌビン144」及び「チヌビン622LD」(チバガイギー株式会社製)、「マークLA57」、「マークLA62」、「マークLA63」、「マークLA67」及び「マークLA68」(旭電化株式会社製)が、チオエーテル系の商品名「スミライザーTP−D」及び「スミライザーTPS」(住友化学株式会社製)、ホスファイト系の商品名「マーク2112」、「マーク329K」、「マークHP−10」、「マークPEP−8」、「マークPEP−24G」及び「マークPEP−36」(旭電化株式会社製)が挙げられる。好ましくはヒンダードフェノール系及びヒンダートアミン系の酸化防止剤である。
【0039】
酸化防止剤の添加量は、シロキサン樹脂層組成物100部に対して0.1〜10部が好ましい。
【0040】
《シリコンオイルの添加》
又、本発明は、反応性シリコンオイルを添加しても良い。この反応性シリコンオイルは、分子内に反応性を持つ有機基を含有したシリコンオイルを示し、その多くは反応性基を有するポリシロキサンである。
【0041】
ポリシロキサンは2官能のアルコキシシランの縮合反応により得られるが、ここで言う反応性基とはポリシロキサン主鎖形成に関与する2官能のアルコキシシランとは異なり、下記一般式(3)に示すようなシリコンオイルの側鎖或いは末端に位置する反応基である。
【0042】
【化6】
Figure 0004151190
【0043】
式中、R1〜R8は炭素数1〜10のアルキル基、アリール基又は−Ry−Bを表し、R1〜R8は各々同一であっても異なっても良い。但し、Ryは炭素数1〜4のアルキレン基を表し、Bは水酸基、カルビノール基、アミノ基及びエポキシ基等の反応性基を表す。nは10〜200の整数を表す。反応性シリコンオイルの添加量としては、樹脂層を形成する有機ケイ素化合物の固形分100部に対して0.1〜20部が好ましい。
【0044】
《触媒の使用》
又、本発明は架橋反応を促進するため触媒を添加しても良い。触媒としては、有機カルボン酸、亜硝酸、亜硫酸、アルミン酸、炭酸及びチオシアン酸の各アルカリ金属塩、有機アミン塩(水酸化テトラメチルアンモニウム、テトラメチルアンモニウムアセテート等)、スズ有機酸塩(スタンナスオクトエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンメルカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマリエート等)、アルミニウム、亜鉛のオクテン酸、ナフテン酸塩及びアセチルアセトン錯化合物等を用いることが出来る。
【0045】
《感光体の層構成》
本発明の感光体の層構成は、電荷発生物質と電荷輸送物質がバインダー樹脂中に分散された単層構成でも、電荷発生物質を含む電荷発生層と電荷輸送物質を含む電荷輸送層が積層された構成でもよい。又、電荷発生層や電荷輸送層の上に表面層を設けてもよい。又、必要に応じ導電性支持体と感光層との間に中間層を設けてもよい。
【0046】
本発明のシロキサン樹脂を含有する層は感光体中の何れの層にも用いることが出来るが、高温高湿下で実写しても画像の流れ、低温低湿下で実写しても画像ボケ等の画像欠陥が発生せず、クリーニング特性にも優れ、感光体を繰り返し使用しても摩耗が少ないので、感光体の表面層に用いることが望ましい。
【0047】
《表面層の形成》
本発明のシロキサン樹脂を含有する表面層は、少なくとも溶剤に溶解したシロキサン樹脂を塗布により形成される。前記の溶剤としては、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ及びエチルセルソルブ等のアルコール類及びこの誘導体、メチルエチルケトン及びアセトン等のケトン類、酢酸ブチル等のエステル類が用いられる。
【0048】
表面層の加熱乾燥、架橋硬化条件としては、塗布に用いる溶剤の種類、触媒の有無等によって異なるが、より好ましくは90℃〜120℃の範囲で30分〜2時間である。表面層の膜厚は0.1μm〜5μmが好ましい。
【0049】
《電荷発生層、電荷輸送層の形成》
本発明の感光層に用いられる電荷発生物質としては、公知のどのようなものでも使用出来るが、例えば種々のフタロシアニン化合物としてA型、B型及びY型のチタニルフタロシアニン、X型及びτ型の無金属フタロシアニン、銅フタロシアニンに代表される金属フタロシアニン類、ナフタロシアニン類、又これら2種類のフタロシアニン混晶が挙げられる。この他にアゾ化合物、ピリリウム化合物、ペリレン化合物、シアニン化合物、スクアリウム化合物及び多環キノン化合物等が挙げられる。これらの電荷発生物質は単独で、又はバインダー樹脂液中に分散し、電荷発生層の形成が行われる。
【0050】
又、本発明の感光層に用いられる電荷輸送物質としては、公知のどのようなものでも使用出来るが、例えばトリアリールアミン化合物、トリアリールアミンスチリル化合物、ヒドラゾン化合物及びピラゾリン化合物が挙げられる。これらの電荷輸送物質は単独で、又は適当なバインダー樹脂溶液中に溶解し、電荷輸送層の形成が行われる。
【0051】
電荷発生物質、電荷輸送物質の分散、溶解に使用される溶剤としては、トルエン、キシレン等の炭化水素類、メチレンクロライド、1,2−ジクロルエタン等のハロゲン化炭化水素類、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メタノール、エタノール、メチルセルソルブ、エチルセルソルブ等のアルコール類及びこれらの誘導体、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類、ピリジン、ジエチルアミン等のアミン類、N,N−ジメチルホルムアミド等のアミド類、その他の脂肪酸及びフェノール類、2硫化炭素や燐酸トリエチル等の硫黄、燐化合物等の1種又は2種以上を用いることが出来る。
【0052】
本発明の感光層のバインダー樹脂としては、下記のような公知のものを用いることが出来る。
【0053】
例えば、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコン樹脂、メラミン樹脂、ならびにこれらの樹脂の繰り返し単位のうち2つ以上を含む共重合体樹脂が挙げられる。又、上記の絶縁性樹脂の他に、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。
【0054】
感光体における感光層のバインダー樹脂と電荷発生物質との混合割合は、バインダー樹脂100部に対して電荷発生物質50〜600部が好ましい。又、バインダー樹脂と電荷輸送物質との混合割合は、バインダー樹脂100部に対して電荷輸送物質10〜100部が好ましい。
【0055】
本発明の感光層の膜厚は、電荷発生層と電荷輸送層の2層構成の場合は電荷発生層にて0.01μm〜10μmが好ましく、電荷輸送層にて1μm〜30μmが好ましく、感光層が単層構成の場合は1μm〜30μmが好ましい。
【0056】
《導電性支持体》
本発明に用いられる導電性支持体としては、アルミニウム又はニッケル等の金属板、金属ドラム又はアルミニウム、酸化錫又は酸化インジウム等を蒸着したプラスチックフィルム又はプラスチックドラム、導電性物質を塗布した紙、プラスチックフィルム又はびプラスチックドラム等を用いることが出来る。
【0057】
《中間層》
本発明は中間層を設けても良い。本発明の中間層に用いられる材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ならびにこれらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂、シランカップリング剤及びチタンカップリング剤等の有機金属化合物により熱硬化する樹脂化合物等が挙げられる。中間層の膜厚は、0.01μm〜2μmが好ましい。
【0058】
又、本発明の電子写真感光体には、その他、感色性補正の染料や感光層に酸化防止剤等の添加剤を添加しても良い。
【0059】
《塗布加工》
本発明の電子写真感光体のために調製された塗布液の塗布加工は、ディップ塗布、スプレー塗布及び円形量規制型塗布方法等が用いられる。特に感光層の表面層側の塗布加工は下層の膜を極力溶解させないため、又均一塗布を達成するためスプレー塗布及び円形量規制型塗布を用いるのが好ましい。
【0060】
尚、前記スプレー塗布については特開平3−90250号公報、特開平3−269238号公報にその記載があり、前記円形量規制型塗布(円形スライドホッパーがその代表例である)については特開昭58−189061号公報に詳細に記載されている。
【0061】
《本発明感光体の用途》
本発明の電子写真感光体は、複写機、レーザープリンター、LEDプリンター、液晶シャッター式プリンター等の電子写真画像形成装置に適用することが出来るが、さらには電子写真技術を応用したディスプレー、記録、軽印刷、製版、ファクシミリ等の装置にも広く適用することが出来る。
【0062】
【実施例】
以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。
【0063】
実施例1
下記の如くして感光体を作製し、評価を行った。
【0064】
〈有機ケイ素化合物液の調製〉
メチルトリメトキシシラン 30部
ジメチルジメトキシシラン 16部
2.5%酢酸水溶液 17部
tert−ブタノール 150部
を混合し、溶解した後、室温にて16時間加水分解させ「有機ケイ素化合物液」を調製した。
【0065】
〈表面層用塗布液の調製〉
有機ケイ素化合物液 全量
ブチラール樹脂「#3000K」(電気化学社製) 0.5部
酸化防止剤「サノールLS2626」(三共社製) 1部
電荷輸送性構造単位含有化合物(HCT−3) 20部
コロイダルシリカ(メタノール分散品、固形分30質量%) 40部
アルミニウムアセチルアセテート(硬化触媒) 1部
を混合し、溶解して「表面層用塗布液」を調製した。
【0066】
〈中間層の形成〉
チタンキレート化合物「TC−750」(松本製薬社製) 20部
シランカップリング剤「KBM−503」(信越化学社製) 13部
イソプロパノール:水=100:3の混合溶剤 100部
を混合し、溶解して中間層用塗布液を調製した。この塗布液を円筒形アルミニウムドラム上に塗布し、乾燥した後、150℃で30分熱硬化して膜厚1.0μmの「中間層」を形成した。
【0067】
〈電荷発生層の形成〉
X線回折におけるブラック角2θが9.5度、24.1度、
27.2度を有するチタニルフタロシアニン 6部
シリコン樹脂「KR−5240」(信越化学社製) 7部
酢酸t−ブチル 200部
を混合した後、サンドグラインダーを用いて10時間分散し、電荷発生層用塗布液を調製した。この塗布液を前記中間層上にディップ塗布し、乾燥して膜厚0.3μmの「電荷発生層」を形成した。
【0068】
〈電荷輸送層の形成〉
電荷輸送物質(CT−1) 200部
酸化防止剤「サノールLS2626」(三共社製) 5部
ビスフェノールZ型ポリカーボネート「パンライトTS−2050」
(帝人化成社製) 300部
1,2−ジクロロエタン 2,000部
を混合し、溶解して電荷輸送層用塗布液を調製した。この塗布液を前記電荷発生層上に円形スライドホッパーを用い塗布し、乾燥して膜厚20μmの「電荷輸送層」を形成した。
【0069】
【化7】
Figure 0004151190
【0070】
〈表面層の形成〉
次いで、前記「表面層用塗布液」を円形スライドホッパーにて前記電荷輸送層上に塗布し、110℃の恒温槽中で90分熱硬化して膜厚2.0μmの「表面層」を形成した。
【0071】
〈感光体の冷却〉
その後、前記表面層を形成した円筒形アルミニウムドラムを恒温槽から取り出し、15℃の冷風が送風されている冷却槽に投入し、ドラムを30℃まで1分間で急速冷却して「感光体1」を作製した。
【0072】
実施例2
実施例1における冷風を15℃から20℃に変え、ドラムを30℃まで1分30秒で急速冷却した他は、実施例1と同様にして「感光体2」を作製した。
【0073】
実施例3
実施例1における有機ケイ素化合物液中のメチルトリメトキシシラン/ジメシルジメトキシシラン=30部/16部からメチルトリメトキシシラン/ジメチルジメトキシシラン/フェニルトリメトキシシラン=15/16/11.4に変えた他は、実施例1と同様にして「感光体3」を作製した。
【0074】
実施例4
実施例1における有機ケイ素化合物液中のt−ブタノール150部に変えてt−ブタノール/エタノール=90部/60部を用いた他は、実施例1と同様にして「感光体4」を作製した。
【0075】
実施例5
実施例4における表面層用組成物中にカルビノール反応性シリコンオイルX−22−160AS(信越化学社製)0.1部を添加した他は、実施例4と同様にして「感光体5」を作製した。
【0076】
比較例1
実施例1において、送風が無い部屋で、ドラムを110℃から30℃まで20分かけて冷却した他は実施例1と同様にして「感光体6」を作製した。
【0077】
比較例2
実施例1において、送風の無い部屋で、ドラムを110℃から30℃まで2時間かけて冷却した他は実施例1と同様にして「感光体7」を作製した。
【0078】
〈評価1〉
各実施例、比較例で得られた感光体を用い、表面層の接着性評価を行った。接着性評価はJIS−K−5400第6,15項に準じ、感光層を鋭利なカッターナイフを用い被膜が貫通するように1cm四方を縦、横各1mmの幅で100マスの碁盤目に切り、商品名「セロテープ」(ニチバン株式会社製)を表面に貼り付けた後、一気にセロテープを剥離し、感光体に残った表面層マス目の残存数にて行った。評価結果を表1に示す。
【0079】
【表1】
Figure 0004151190
【0080】
〈評価2〉
各実施例、比較例で得られた感光体を、コニカ株式会社製デジタルコピー機「Konica7050」に搭載し、初期電位を−650Vに設定した。
【0081】
実写は高温高湿環境下(30℃、80%RH)にて3万回及び低温低湿環境下(15℃、30%RH)にて3万回行った。
【0082】
画像のカブリ、画像濃度及び画像の欠陥はコピー画像を目視で評価した。表面の傷の有無、表面の剥げは実写後の感光体表面を目視観察し評価した。感光体の膜厚減耗量は実写前と後の膜厚を測定し、その膜厚差から求めた。評価結果を表2に示す。
【0083】
【表2】
Figure 0004151190
【0084】
【発明の効果】
実施例で実証した如く、本発明による電子写真感光体の製造方法は、帯電性、感度、残留電位に問題が無く、繰り返し使用しても電位安定性が良好で、低温低湿から高温高湿までの環境下で鮮明な複写画像を与え、耐傷性に優れ、紙粉及びトナー付着が少なく、下層と表面層の剥離が生じない耐久性に優れた効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention has good potential stability even after repeated use, gives a clear copy image in an environment from low temperature and low humidity to high temperature and high humidity, has excellent scratch resistance, has little adhesion of paper dust and toner, and lower layer and surface layer The present invention relates to a method for producing an electrophotographic photoreceptor excellent in durability in which no peeling occurs.
[0002]
[Prior art]
Conventionally, as an electrophotographic photoreceptor (hereinafter also simply referred to as a photoreceptor), an inorganic photoreceptor having a photosensitive layer mainly composed of an inorganic photoconductive substance such as selenium, zinc oxide, cadmium sulfide, and silicon has been widely used. Has been. However, these are not always satisfactory in sensitivity, thermal stability, moisture resistance, durability, etc., and some inorganic photoreceptors have a problem in disposal because they contain substances harmful to the human body. .
[0003]
In recent years, research and development of organic photoreceptors having a photosensitive layer mainly composed of various organic photoconductive compounds have been actively conducted for the purpose of overcoming the drawbacks of inorganic photoreceptors. In particular, a function-separated type photoconductor in which the charge generation function and the charge transport function are assigned to different substances can be selected from a wide range and can be produced relatively easily. Some of them are in practical use.
[0004]
However, such an organic photoreceptor is subjected to electrical and mechanical external forces such as corona charging, image exposure, toner development, transfer to paper and cleaning processing in the image forming apparatus. Various performance deterioration phenomena appear on the surface.
[0005]
Specifically, potential characteristics deteriorate (decrease in charging potential, decrease in sensitivity, increase in residual potential) due to discharge products such as ozone and nitrogen oxide (NOx) generated at corona band electrodes and ultraviolet rays during image exposure. Etc.), the image quality deteriorates due to wear and scratches due to friction during toner development and cleaning, adhesion of paper dust from transfer paper, adhesion of toner (toner filming), and the like.
[0006]
As one of the technical measures against the above-mentioned problems, a surface layer is provided on the surface of the photoconductor to improve the mechanical durability, suppress the wear of the photoconductor, and generate scratches, paper dust and toner. It has been studied to suppress adhesion.
[0007]
For example, it is possible to provide a curable siloxane resin layer as a surface layer on the surface of a photoreceptor, as disclosed in JP-A-61-72256, JP-A-61-51155, JP-A-1-217364, and JP-A-1-200366. Japanese Patent Laid-Open No. 3-129360, Japanese Patent Laid-Open No. 3-155558, Japanese Patent Laid-Open No. 3-139655, Japanese Patent Laid-Open No. 5-40359, and the like.
[0008]
However, even if a high-hardness curable siloxane resin is provided as a surface layer in the conventional manufacturing method, if the photoreceptor is cooled at a normal cooling rate after thermosetting, the interlayer entanglement between the surface layer and the photosensitive layer is eliminated. However, the adhesive force between the surface layer of the siloxane resin and the underlying photosensitive layer is weakened, and there is a problem that the surface layer is peeled off from the photosensitive layer due to stress due to friction during development and cleaning.
[0009]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is that it has good potential stability even after repeated use, and provides a clear copy image in an environment from low temperature and low humidity to high temperature and high humidity. An object of the present invention is to provide a method for producing an electrophotographic photoreceptor excellent in scratch resistance, having little paper powder and toner adhesion, and having excellent durability in which peeling between the lower layer and the surface layer does not occur.
[0010]
[Means for Solving the Problems]
The object of the present invention is achieved by adopting the following configuration.
[0012]
  (1) On the conductive support, the photosensitive layer andunderA structure having a charge transporting property represented by the following general formula (2) in a hydrolyzed organosilicon compound liquid containing the organosilicon compound represented by the general formula (1) An electrophotographic photosensitive member having a surface layer obtained by applying a coating solution containing a compound containing a unit and heat-curing reaction at 80 to 160 ° C. A method for producing an electrophotographic photosensitive member, characterized by rapid cooling to a glass transition point (Tg).
General formula (1) (R 1 ) n -Si (X 1 ) (4-n)
[In the formula, R 1 Represents an organic group in which a carbon atom is directly bonded to a silicon atom, and X 1 Represents a hydroxyl group or a hydrolyzable group, and n represents an integer of 0 to 3. ]
  General formula (2) A- (OH)m
[Wherein, A represents a monovalent or polyvalent group containing a structural unit having charge transporting properties, and m represents an integer of 1 to 4. ]
[0013]
(3) The method for producing an electrophotographic photosensitive member according to (1) or (2), wherein the cooling is performed in a cooling tank in which cold air of 20 ° C. or less is blown.
[0014]
Hereinafter, the present invention will be described in more detail.
Unlike ordinary hydrocarbon resins, the siloxane resin of the present invention has poor compatibility, and it is difficult to obtain sufficient interlayer adhesion between the surface layer and the photosensitive layer. Furthermore, the glass transition point of the surface layer containing the siloxane resin of the present invention is about 150 ° C., which is greatly different from the glass transition point of the lower photosensitive layer of 50 to 70 ° C.
[0015]
In general, the thermal shrinkage is large above the glass transition point and small below the glass transition point. Therefore, when the photoreceptor is cooled at a normal speed after the surface layer is thermally cured, the photosensitive layer shrinks greatly and the surface layer shrinks. Therefore, it was estimated that there was a difference in thermal shrinkage between the photosensitive layer and the surface layer, the entanglement between the layers disappeared, the adhesive force decreased, and the surface layer peeled off from the photosensitive layer.
[0016]
The inventors of the present invention can prevent the photosensitive layer from transitioning to a stable state due to thermal shrinkage if the surface layer is rapidly cooled to below the glass transition point of the photosensitive layer after the surface layer is thermally cured. Since no heat shrinkage difference occurs between the layers, it has been found that the adhesive strength between the layers is kept good, leading to the present invention.
[0017]
In the photoreceptor of the present invention, a surface layer mainly composed of a siloxane resin is applied on the photosensitive layer, and a thermosetting reaction is performed in a thermostatic bath at 80 to 160 ° C. for 10 minutes to 6 hours. It can be manufactured by cooling to a glass transition point of the photosensitive layer or lower rapidly in a cooling bath in which cold air of less than or equal to ° C. is blown, preferably within 30 seconds to 3 minutes, more preferably within 30 seconds to 1 minute. .
[0018]
<Organic silicon compound>
In the organosilicon compound represented by the general formula (1), R1Examples of the organic group in which a carbon atom is directly bonded to the silicon atom represented by the following are alkyl groups such as methyl, ethyl, propyl and butyl, aryl groups such as phenyl, tolyl, naphthyl and biphenyl, γ-glycidoxypropyl and Epoxy-containing groups such as β- (3,4-epoxycyclohexyl) ethyl, (meth) acryloyl groups such as γ-acryloxypropyl and γ-methacryloxypropyl, γ-hydroxypropyl and 2,3-dihydroxypropyloxy A hydroxyl group such as propyl, a vinyl group such as vinyl and propenyl, a group substituted with a mercapto group such as γ-mercaptopropyl, an amino group such as γ-aminopropyl and N-β-aminoethyl-γ-aminopropyl, γ-chloropropyl, 1,1,1-trifluoropropyl, nonafluorohexyl and - substituted group-containing halogen atom such as perfluorooctyl ethyl, can be given other nitro and cyano-substituted alkyl group.
[0019]
X1Examples of the hydrolyzable group represented by the formula include alkoxy groups such as methoxy and ethoxy, halogen groups, and acyloxy groups. An alkoxy group having 6 or less carbon atoms is preferred.
[0020]
Moreover, the organosilicon compound represented by the general formula (1) may be used alone or in combination of two or more.
[0021]
Specific examples of the organosilicon compound include methyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methylphenyldimethoxysilane, trimethylmethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, γ-acryloxypropyltrimethoxysilane, and γ. -Glycidoxypropyltrimethoxysilane etc. are mentioned, However, this invention is not limited to these.
[0022]
<Siloxane resin>
The siloxane resin according to the first aspect of the present invention is a hydrolysis condensate obtained by hydrolyzing the organosilicon compound from an acidic condition to a basic condition to form an oligomer.
[0023]
Colloidal silica may be added to the organosilicon compound or its hydrolysis condensate. Colloidal silica may be added at the time of hydrolytic condensation of the organosilicon compound or may be added thereafter. The addition amount is preferably 1 to 30 parts with respect to 100 parts of the solid content of the organosilicon compound forming the resin layer.
[0024]
<< Compounds containing structural units with charge transport performance >>
In the siloxane resin layer according to the first aspect of the present invention, a compound containing a structural unit having a charge transporting ability capable of being bonded to the organosilicon compound or colloidal silica to form a resin layer can be added. . The compound containing a structural unit having charge transporting performance of the present invention may be added during the hydrolytic condensation of the organosilicon compound of the present invention, or may be added thereafter. The amount of the compound containing a structural unit having a charge transporting performance used in the present invention is preferably 10 to 200 parts with respect to 100 parts of the solid content of the resin layer formed by bonding with an organosilicon compound or colloidal silica. .
[0025]
The compound containing a structural unit having a charge transporting ability capable of being bonded to the organosilicon compound to form a resin layer is preferably a charge transporting compound having a hydroxyl group represented by the general formula (2). Is not to be done.
[0026]
The siloxane resin of the invention of claim 2 of the present invention is a charge represented by the general formula (2) that can be bonded to the organosilicon compound represented by the general formula (1) to form a resin layer. It is a siloxane resin obtained by reacting with a compound containing a structural unit having transportability.
[0027]
In the compound containing the structural unit having the charge transport performance represented by the general formula (2), the structural unit having the charge transport performance represented by A has an electron or hole drift mobility alone. A compound having a characteristic structure and generally used as a charge transport material is shown.
[0028]
For example, succinic anhydride, maleic anhydride, phthalic anhydride, pyromellitic anhydride, merit anhydride, tetracyanoethylene, tetracyanoquinodimethane, nitrobenzene, dinitrobenzene, trinitrobenzene , Tetranitrobenzene, nitrobenzonitrile, picryl chloride, quinone chlorimide, chloranil, bromanyl, benzoquinone, naphthoquinone, diphenylquinone, tropoquinone, anthraquinone, 1-chloroanthraquinone, dinitroanthraquinone, 4-nitrobenzophenone, 4,4'-dinitro Benzophenone, 4-nitrobenzalmalondinitrile, α-cyano-β- (p-cyanophenyl) -2- (p-chlorophenyl) ethylene, 2,7-dinitrofluorenone, 2,4, -Trinitrofluorenone, 2,4,5,7-tetranitrofluorenone, 9-fluoronylidenedicyanomethylenemalonitrile, polynitro-9-fluoronylidenedicyanomethylenemalonitrile, picric acid, o-nitrobenzoic acid, p- Examples thereof include compounds containing structural units such as nitrobenzoic acid, 3,5-dinitrobenzoic acid, pentafluorobenzoic acid, 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, phthalic acid and merit acid, and derivatives thereof.
[0029]
On the other hand, hole transport type charge transport materials include oxazole, oxadiazole, thiazole, triazole, imidazole, imidazolone, imidazoline, bisimidazolidine, styryl, hydrazone, benzidine, pyrazoline, triarylamine, oxazolone, benzothiazole, Examples include compounds containing structural units such as benzimidazole, quinazoline, benzofuran, acridine, and phenazine, and derivatives thereof, but are not limited to these structures.
[0030]
Another definition of the structural unit having charge transport performance according to the present invention is a method in which a detection current resulting from charge transport can be obtained by a known method capable of detecting charge transport performance such as a normal Time-Of-Flight method. It can also be expressed as
[0031]
Next, specific examples of the compound (HCT) containing a structural unit having a charge transporting ability capable of forming a resin layer by bonding with the organosilicon compound or colloidal silica of the present invention will be given. It is not limited.
[0032]
[Chemical 1]
Figure 0004151190
[0033]
[Chemical 2]
Figure 0004151190
[0034]
[Chemical 3]
Figure 0004151190
[0035]
[Formula 4]
Figure 0004151190
[0036]
[Chemical formula 5]
Figure 0004151190
[0037]
<Addition of antioxidant>
Further, for example, an antioxidant having a hindered phenol, hindered amine, thioether or phosphite partial structure can be added to the siloxane resin of the present invention, which is effective in improving the potential and image quality.
[0038]
Examples of the antioxidant include hindered phenol-based 3,5-di-t-butyl-4-hydroxybiphenyl, trade names “Irganox 245”, “Irganox 1010”, “Irganox 1076”, “Irgax”. “NOX 1098”, “IRGANOX 1330” and “IRGANOX 3114” (manufactured by Ciba Geigy Co., Ltd.), hindered amine-based trade names “SANOR LS744”, “SANOR LS765”, “SANOR LS770” and “SANOR LS2626” (Sankyo) Co., Ltd.), “Tinubin 144” and “Tinubin 622LD” (Ciba Geigy Co., Ltd.), “Mark LA57”, “Mark LA62”, “Mark LA63”, “Mark LA67” and “Mark LA68” (Asahi Denka Co., Ltd.) Made by thioether) “Millizer TP-D” and “Smilizer TPS” (manufactured by Sumitomo Chemical Co., Ltd.), phosphite product names “Mark 2112”, “Mark 329K”, “Mark HP-10”, “Mark PEP-8”, “Mark” PEP-24G "and" Mark PEP-36 "(manufactured by Asahi Denka Co., Ltd.). Preferred are hindered phenol and hindered amine antioxidants.
[0039]
The addition amount of the antioxidant is preferably 0.1 to 10 parts with respect to 100 parts of the siloxane resin layer composition.
[0040]
<Addition of silicone oil>
In the present invention, reactive silicone oil may be added. This reactive silicone oil indicates a silicone oil containing an organic group having reactivity in the molecule, and many of them are polysiloxanes having a reactive group.
[0041]
Polysiloxane can be obtained by condensation reaction of bifunctional alkoxysilane, but the reactive group mentioned here is different from bifunctional alkoxysilane involved in polysiloxane main chain formation as shown in the following general formula (3). It is a reactive group located at the side chain or the end of the silicone oil.
[0042]
[Chemical 6]
Figure 0004151190
[0043]
Where R1~ R8Represents an alkyl group having 1 to 10 carbon atoms, an aryl group, or -Ry-B;1~ R8May be the same or different. However, Ry represents a C1-C4 alkylene group, B represents reactive groups, such as a hydroxyl group, a carbinol group, an amino group, and an epoxy group. n represents an integer of 10 to 200. The addition amount of the reactive silicon oil is preferably 0.1 to 20 parts with respect to 100 parts of the solid content of the organosilicon compound forming the resin layer.
[0044]
<Use of catalyst>
In the present invention, a catalyst may be added to accelerate the crosslinking reaction. Catalysts include organic carboxylic acids, nitrous acid, sulfurous acid, aluminate, carbonic acid and thiocyanic acid alkali metal salts, organic amine salts (tetramethylammonium hydroxide, tetramethylammonium acetate, etc.), tin organic acid salts (stannas Octoate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin malate, etc.), aluminum, zinc octenoic acid, naphthenic acid salt, acetylacetone complex and the like can be used.
[0045]
<< Layer structure of photoconductor >>
Even if the layer structure of the photoreceptor of the present invention is a single layer structure in which a charge generation material and a charge transport material are dispersed in a binder resin, a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material are laminated. Other configurations may be used. A surface layer may be provided on the charge generation layer or the charge transport layer. If necessary, an intermediate layer may be provided between the conductive support and the photosensitive layer.
[0046]
The layer containing the siloxane resin of the present invention can be used for any layer in the photoreceptor. However, even if the image is taken under high temperature and high humidity, the image flows. Since image defects do not occur, the cleaning characteristics are excellent, and wear is small even when the photoreceptor is used repeatedly, it is desirable to use it for the surface layer of the photoreceptor.
[0047]
<< Formation of surface layer >>
The surface layer containing the siloxane resin of the present invention is formed by coating at least a siloxane resin dissolved in a solvent. Examples of the solvent include alcohols such as methanol, ethanol, propanol, butanol, methyl cellosolve and ethyl cellosolve and derivatives thereof, ketones such as methyl ethyl ketone and acetone, and esters such as butyl acetate.
[0048]
  The heat drying and crosslinking curing conditions for the surface layer vary depending on the type of solvent used for coating, the presence or absence of a catalyst, etc., YoMore preferably, it is in the range of 90 ° C. to 120 ° C. for 30 minutes to 2 hours. The film thickness of the surface layer is preferably 0.1 μm to 5 μm.
[0049]
<< Formation of charge generation layer and charge transport layer >>
Any known charge generating material can be used for the photosensitive layer of the present invention. For example, various types of phthalocyanine compounds such as A-type, B-type and Y-type titanyl phthalocyanines, X-type and τ-type compounds can be used. Examples thereof include metal phthalocyanines, metal phthalocyanines typified by copper phthalocyanine, naphthalocyanines, and these two kinds of phthalocyanine mixed crystals. Other examples include azo compounds, pyrylium compounds, perylene compounds, cyanine compounds, squalium compounds, and polycyclic quinone compounds. These charge generation materials are singly or dispersed in a binder resin solution to form a charge generation layer.
[0050]
As the charge transport material used in the photosensitive layer of the present invention, any known material can be used, and examples thereof include triarylamine compounds, triarylamine styryl compounds, hydrazone compounds and pyrazoline compounds. These charge transport materials are singly or dissolved in an appropriate binder resin solution to form a charge transport layer.
[0051]
Solvents used for dispersion and dissolution of charge generation materials and charge transport materials include hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and 1,2-dichloroethane, and ketones such as methyl ethyl ketone and cyclohexanone. , Esters such as ethyl acetate and butyl acetate, alcohols such as methanol, ethanol, methyl cellosolve, ethyl cellosolve and derivatives thereof, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, Use of one or more of amines such as pyridine and diethylamine, amides such as N, N-dimethylformamide, other fatty acids and phenols, sulfur such as carbon disulfide and triethyl phosphate, and phosphorus compounds. I can do it.
[0052]
As the binder resin of the photosensitive layer of the present invention, the following known resins can be used.
[0053]
For example, polystyrene resin, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, polycarbonate resin, silicon resin, melamine resin, and these Examples thereof include a copolymer resin containing two or more of the resin repeating units. In addition to the insulating resin, a high molecular organic semiconductor such as poly-N-vinylcarbazole can be given.
[0054]
The mixing ratio of the binder resin and the charge generation material in the photosensitive layer in the photoreceptor is preferably 50 to 600 parts of the charge generation material with respect to 100 parts of the binder resin. The mixing ratio of the binder resin and the charge transport material is preferably 10 to 100 parts of the charge transport material with respect to 100 parts of the binder resin.
[0055]
The film thickness of the photosensitive layer of the present invention is preferably 0.01 μm to 10 μm in the charge generation layer and preferably 1 μm to 30 μm in the charge transport layer in the case of a two-layer structure of a charge generation layer and a charge transport layer. Is a single layer structure, it is preferably 1 μm to 30 μm.
[0056]
<Conductive support>
Examples of the conductive support used in the present invention include a metal plate such as aluminum or nickel, a metal drum or a plastic film or plastic drum on which aluminum, tin oxide or indium oxide is deposited, paper coated with a conductive substance, or a plastic film Alternatively, a plastic drum or the like can be used.
[0057]
《Middle layer》
In the present invention, an intermediate layer may be provided. Materials used for the intermediate layer of the present invention include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more repeating units of these resins, silane coupling agents, and titanium cups. Examples thereof include resin compounds that are thermoset by an organometallic compound such as a ring agent. The thickness of the intermediate layer is preferably 0.01 μm to 2 μm.
[0058]
In addition, an additive such as an antioxidant may be added to the electrophotographic photosensitive member of the present invention in addition to a dye for color sensitivity correction and a photosensitive layer.
[0059]
《Coating process》
For the coating process of the coating solution prepared for the electrophotographic photoreceptor of the present invention, dip coating, spray coating, circular amount regulation type coating method and the like are used. In particular, the coating processing on the surface layer side of the photosensitive layer preferably uses spray coating and circular amount regulation type coating in order not to dissolve the lower layer film as much as possible and to achieve uniform coating.
[0060]
The spray coating is described in JP-A-3-90250 and JP-A-3-269238, and the circular amount regulating coating (a circular slide hopper is a typical example) is disclosed in JP-A-3-90250. This is described in detail in Japanese Patent No. 58-189061.
[0061]
<< Use of Photoconductor of Present Invention >>
The electrophotographic photosensitive member of the present invention can be applied to electrophotographic image forming apparatuses such as copying machines, laser printers, LED printers, and liquid crystal shutter printers. The present invention can be widely applied to apparatuses such as printing, plate making and facsimile.
[0062]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to these.
[0063]
Example 1
Photoconductors were prepared and evaluated as follows.
[0064]
<Preparation of organosilicon compound liquid>
30 parts of methyltrimethoxysilane
16 parts of dimethyldimethoxysilane
17 parts of 2.5% aqueous acetic acid solution
150 parts of tert-butanol
Were mixed and dissolved, and then hydrolyzed at room temperature for 16 hours to prepare an “organosilicon compound liquid”.
[0065]
<Preparation of coating solution for surface layer>
Total organosilicon compound solution
Butyral resin “# 3000K” (manufactured by Denki Kagaku) 0.5 parts
Antioxidant “Sanol LS2626” (manufactured by Sankyo) 1 part
Charge transporting structural unit-containing compound (HCT-3) 20 parts
Colloidal silica (methanol dispersion, solid content 30% by mass) 40 parts
Aluminum acetyl acetate (curing catalyst) 1 part
Were mixed and dissolved to prepare a “surface layer coating solution”.
[0066]
<Formation of intermediate layer>
Titanium chelate compound “TC-750” (Matsumoto Pharmaceutical Co., Ltd.) 20 parts
Silane coupling agent "KBM-503" (Shin-Etsu Chemical Co., Ltd.) 13 parts
100 parts of a mixed solvent of isopropanol: water = 100: 3
Were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum drum, dried, and then thermally cured at 150 ° C. for 30 minutes to form an “intermediate layer” having a thickness of 1.0 μm.
[0067]
<Formation of charge generation layer>
Black angle 2θ in X-ray diffraction is 9.5 degrees, 24.1 degrees,
6 parts titanyl phthalocyanine having 27.2 degrees
Silicone resin “KR-5240” (manufactured by Shin-Etsu Chemical) 7 parts
200 parts t-butyl acetate
Were mixed for 10 hours using a sand grinder to prepare a coating solution for charge generation layer. This coating solution was dip-coated on the intermediate layer and dried to form a “charge generation layer” having a thickness of 0.3 μm.
[0068]
<Formation of charge transport layer>
Charge transport material (CT-1) 200 parts
Antioxidant “Sanol LS2626” (manufactured by Sankyo) 5 parts
Bisphenol Z-type polycarbonate “Panlite TS-2050”
(Manufactured by Teijin Chemicals) 300 parts
2,000 parts of 1,2-dichloroethane
Were mixed and dissolved to prepare a coating solution for a charge transport layer. This coating solution was applied onto the charge generation layer using a circular slide hopper and dried to form a “charge transport layer” having a thickness of 20 μm.
[0069]
[Chemical 7]
Figure 0004151190
[0070]
<Formation of surface layer>
Next, the “surface layer coating solution” is applied onto the charge transport layer with a circular slide hopper, and cured in a thermostat at 110 ° C. for 90 minutes to form a “surface layer” with a thickness of 2.0 μm. did.
[0071]
<Cooling of photoconductor>
Thereafter, the cylindrical aluminum drum on which the surface layer is formed is taken out of the thermostatic bath, put into a cooling bath in which cool air of 15 ° C. is blown, and the drum is rapidly cooled to 30 ° C. in 1 minute to obtain “photosensitive member 1”. Was made.
[0072]
Example 2
“Photoreceptor 2” was produced in the same manner as in Example 1 except that the cold air in Example 1 was changed from 15 ° C. to 20 ° C. and the drum was rapidly cooled to 30 ° C. in 1 minute 30 seconds.
[0073]
Example 3
The methyltrimethoxysilane / dimesyldimethoxysilane = 30 parts / 16 parts in the organosilicon compound solution in Example 1 was changed to methyltrimethoxysilane / dimethyldimethoxysilane / phenyltrimethoxysilane = 15/16 / 11.4. Otherwise, “Photoreceptor 3” was produced in the same manner as in Example 1.
[0074]
Example 4
“Photoreceptor 4” was produced in the same manner as in Example 1 except that t-butanol / ethanol = 90 parts / 60 parts was used instead of 150 parts of t-butanol in the organosilicon compound solution in Example 1. .
[0075]
Example 5
“Photoreceptor 5” in the same manner as in Example 4, except that 0.1 part of carbinol-reactive silicone oil X-22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the composition for the surface layer in Example 4. Was made.
[0076]
Comparative Example 1
A “photoreceptor 6” was produced in the same manner as in Example 1 except that the drum was cooled from 110 ° C. to 30 ° C. over 20 minutes in a room without air blowing.
[0077]
Comparative Example 2
In Example 1, “Photoreceptor 7” was produced in the same manner as in Example 1 except that the drum was cooled from 110 ° C. to 30 ° C. over 2 hours in a room without air blowing.
[0078]
<Evaluation 1>
Using the photoconductors obtained in the respective examples and comparative examples, the adhesion of the surface layer was evaluated. Adhesion evaluation is in accordance with JIS-K-5400, paragraphs 6 and 15, and the photosensitive layer is cut into 100 square grids with a width of 1 mm in length and width of 1 mm each so that the coating penetrates with a sharp cutter knife. After the product name “Selotape” (manufactured by Nichiban Co., Ltd.) was pasted on the surface, the cellotape was peeled off at once and the remaining number of surface layer squares remaining on the photoreceptor was measured. The evaluation results are shown in Table 1.
[0079]
[Table 1]
Figure 0004151190
[0080]
<Evaluation 2>
The photoreceptors obtained in each Example and Comparative Example were mounted on a digital copier “Konica 7050” manufactured by Konica Corporation, and the initial potential was set to −650V.
[0081]
The photographs were taken 30,000 times in a high temperature and high humidity environment (30 ° C., 80% RH) and 30,000 times in a low temperature and low humidity environment (15 ° C., 30% RH).
[0082]
The copy image was visually evaluated for image fogging, image density and image defects. The presence or absence of scratches on the surface and the peeling of the surface were evaluated by visually observing the surface of the photoreceptor after actual shooting. The amount of film thickness loss of the photoconductor was determined from the difference in film thickness obtained by measuring the film thickness before and after actual shooting. The evaluation results are shown in Table 2.
[0083]
[Table 2]
Figure 0004151190
[0084]
【The invention's effect】
As demonstrated in the examples, the method for producing an electrophotographic photosensitive member according to the present invention has no problems in chargeability, sensitivity, and residual potential, and has good potential stability even after repeated use, from low temperature and low humidity to high temperature and high humidity. In this environment, a clear copy image can be obtained, scratch resistance is excellent, paper dust and toner are less attached, and the lower layer and the surface layer are not peeled off and have excellent durability.

Claims (2)

導電性支持体上に、感光層及び下記一般式(1)で表される有機ケイ素化合物を含有する有機ケイ素化合物液を加水分解させ、該加水分解した有機ケイ素含有液に下記一般式(2)で表される電荷輸送性を有する構造単位を含む化合物を含有させた塗布液を塗布、80〜160℃にて熱硬化反応させて得られる表面層を有する電子写真感光体であり、熱硬化後3分以内に硬化温度から感光層のガラス転移点(Tg)まで急速冷却することを特徴とする電子写真感光体の製造方法。On the conductive support, an organosilicon compound liquid containing the photosensitive layer and the organosilicon compound represented by the following general formula (1) is hydrolyzed, and the hydrolyzed organosilicon-containing liquid is converted into the following general formula (2). An electrophotographic photoreceptor having a surface layer obtained by applying a coating solution containing a compound containing a structural unit having a charge transporting property represented by the formula, and subjecting to a thermosetting reaction at 80 to 160 ° C. A method for producing an electrophotographic photosensitive member, comprising rapidly cooling from a curing temperature to a glass transition point (Tg) of a photosensitive layer within 3 minutes.
一般式(1) (R  General formula (1) (R 1 ) n −Si(X-Si (X 1 ) (4−n)(4-n)
〔式中、R[In the formula, R 1 はケイ素原子に炭素原子が直接結合した形の有機基を表し、XRepresents an organic group in which a carbon atom is directly bonded to a silicon atom, and X 1 は水酸基又は加水分解性基を表し、nは0〜3の整数を表す。〕Represents a hydroxyl group or a hydrolyzable group, and n represents an integer of 0 to 3. ]
一般式(2) A−(OH)  General formula (2) A- (OH) m
〔式中、Aは電荷輸送性を有する構造単位を含む1価又は多価の基を表し、mは1〜4の整数を表す。〕[Wherein, A represents a monovalent or polyvalent group containing a structural unit having charge transporting properties, and m represents an integer of 1 to 4. ]
20℃以下の冷風が送風されている冷却槽にて冷却を行うことを特徴とする請求項1に記載の電子写真感光体の製造方法。The method for producing an electrophotographic photosensitive member according to claim 1, wherein cooling is performed in a cooling tank in which cool air of 20 ° C. or less is blown.
JP2000082002A 2000-03-23 2000-03-23 Method for producing electrophotographic photosensitive member Expired - Fee Related JP4151190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082002A JP4151190B2 (en) 2000-03-23 2000-03-23 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082002A JP4151190B2 (en) 2000-03-23 2000-03-23 Method for producing electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2001265016A JP2001265016A (en) 2001-09-28
JP4151190B2 true JP4151190B2 (en) 2008-09-17

Family

ID=18598856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082002A Expired - Fee Related JP4151190B2 (en) 2000-03-23 2000-03-23 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP4151190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453046B1 (en) 2002-04-16 2004-10-15 삼성전자주식회사 Composition for overcoat layer of organic electrophotographic photoreceptor and organic photoreceptor employing the overcoat layer formed thereform

Also Published As

Publication number Publication date
JP2001265016A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP2004086066A (en) Electrophotographic sensitive body, process cartridge and image forming device
JP4322468B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2001194813A (en) Coating liquid for electrophotographic sensitive body, electrophotographic sensitive body, image forming device and process cartridge
US7309551B2 (en) Electron conductive overcoat layer for photoreceptors
JP3267526B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and process cartridge using the electrophotographic photoreceptor
US5670291A (en) Process for fabricating an electrophotographic imaging member
JP4151190B2 (en) Method for producing electrophotographic photosensitive member
JP2002182536A (en) Image forming method and image forming device of electrophotographic system
JP4427867B2 (en) Electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge used in the apparatus
JP2001034001A (en) Electrophotographic photoreceptor, image forming method, image forming device and process cartridge
JP4356228B2 (en) Electrophotographic photosensitive member, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge using the photosensitive member
JP2004020649A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2001013707A (en) Electrophotographic photoreceptor and electrophotographic image forming device using the photoreceptor and process cartridge
JP4251420B2 (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus using the same
JP4131596B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP3770021B2 (en) Electrophotographic photosensitive member, image forming apparatus using the same, and process cartridge
JPH0895264A (en) Electrophotographic photoreceptor
JP2001100441A (en) Electrophotographic photoreceptor and method and device for forming electrophotographic image and process cartridge using the same
JP4640070B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP3757717B2 (en) Manufacturing method of electrophotographic photosensitive member, electrophotographic photosensitive member using the manufacturing method, image forming method using the electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2001272807A (en) Electrophotographic photoreceptor, process cartridge with the same and electrophotographic image forming device
JP4148433B2 (en) Electrophotographic photosensitive member, image forming apparatus using the same, image forming method, and process cartridge
JP3559663B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2001051440A (en) Electrophotographic photoreceptor and its coating method and image forming device and process cartridge
JP2000284515A (en) Electrophotographic photoreceptor and process cartridge and image forming device using that photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees