JP4150916B2 - Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same - Google Patents

Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same Download PDF

Info

Publication number
JP4150916B2
JP4150916B2 JP2003142068A JP2003142068A JP4150916B2 JP 4150916 B2 JP4150916 B2 JP 4150916B2 JP 2003142068 A JP2003142068 A JP 2003142068A JP 2003142068 A JP2003142068 A JP 2003142068A JP 4150916 B2 JP4150916 B2 JP 4150916B2
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen
alloy
content point
highest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142068A
Other languages
Japanese (ja)
Other versions
JP2004345000A (en
Inventor
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003142068A priority Critical patent/JP4150916B2/en
Publication of JP2004345000A publication Critical patent/JP2004345000A/en
Application granted granted Critical
Publication of JP4150916B2 publication Critical patent/JP4150916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が一段とすぐれた高温硬さと耐熱性を有し、かつ高温強度にもすぐれ、したがって各種の鋼や鋳鉄などの切削加工を、特に高い発熱を伴う高速加工条件で行なった場合に、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金の超硬基体または炭窒化チタン(以下、TiCNで示す)基サーメットの超硬基体(以下、これらの超硬基体を総称して「超硬基体」という)の表面に、
組成式:(Ti1- )N(ただし、原子比で、Bは0.40〜0.65を示す)を満足するTiとYの複合窒化物[以下、(Ti,Y)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、かかる被覆超硬工具が、硬質被覆層を構成する前記(Ti,Y)N層が、Ti成分による高温強度と、Y成分による高温硬さおよび耐熱性を有し、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Y合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Y)N層からなる硬質被覆層を蒸着することにより製造されることも良く知られるところである。(例えば、特許文献1参照)。
【0005】
【特許文献1】
特許第3205943号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、一段と高速化した条件での切削加工を強いられる傾向にあるが、上記の従来被覆超硬工具においては、これの切削加工を、特に高い発熱を伴う高速条件で行なうのに用いた場合、硬質被覆層である(Ti,Y)N層が、すぐれた高温強度を有するものの、十分な高温硬さおよび耐熱性を具備するものでないために、前記硬質被覆層の摩耗進行が一段と促進するようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に上記の従来被覆超硬工具の硬質被覆層に着目し、特に高速切削加工で、すぐれた耐摩耗性を発揮する硬質被覆層を開発すべく、研究を行った結果、
(a)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の物理蒸着装置に属するアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にY含有割合の高いY−Ti合金、他方側に相対的にTi含有割合の高いTi−Y合金をいずれもカソード電極(蒸発源)として対向配置し、さらにいずれも前記Y−Ti合金に比してY含有割合が低く、かつ前記Ti−Y合金に比してTi含有割合が低い中間Y/Ti合金と中間Ti/Y合金を同じくカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、
この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して前記超硬基体を装着し、
この状態で装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記酸素と窒素の装置内への相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にY含有割合の高いY−Ti合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い、望ましくは酸素の相対導入割合が90〜97容量%で、残りが窒素からなる反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Y合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い、望ましくは窒素の相対導入割合が90〜97容量%で、残りが酸素からなる反応雰囲気とすると共に、前記超硬基体が前記Y−Ti合金のカソード電極最接近位置から上記中間Y/Ti合金のカソード電極最接近位置を経て前記Ti−Y合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素の導入割合を連続的に減少させ、これに対応して窒素の導入割合を連続的に増加させる連続変化雰囲気とし、一方前記超硬基体が前記Ti−Y合金のカソード電極最接近位置から上記中間Ti/Y合金のカソード電極最接近位置を経て前記Y−Ti合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素の導入割合を連続的に減少させ、これに対応して酸素の導入割合を連続的に増加させる連続変化雰囲気とし、
上記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で前記超硬基体自体も自転させながら、前記のそれぞれのカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させる条件で、
YとTiの複合酸窒化物(以下、Y−Ti酸窒化物という)層を形成すると、上記超硬基体の表面には、回転テーブル上の中心軸から半径方向に離れた位置に偏心して配置された前記超硬基体が上記の一方側の相対的にY含有量の高いY−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にYおよび酸素の最高含有点が形成され、また前記前記超硬基体が上記の他方側の相対的にTi含有量の高いTi−Y合金のカソード電極に最も接近した時点で層中にTiおよび窒素の最高含有点が形成されることから、上記回転テーブルの回転によって層中には厚さ方向にそって前記Yおよび酸素の最高含有点とTiおよび窒素の最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造をもったY−Ti酸窒化物層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のY−Ti酸窒化物層の形成に際して、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成、並びに装置内で連続変化する反応雰囲気の組成、すなわち酸素と窒素の相互導入割合を調製すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Yおよび酸素の最高含有点が、
組成式:(Y1- Ti)O1-DD(ただし、原子比で、Aは0.05〜0.30、Dは0.02〜0.10を示す)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1- )N1-EE(ただし、原子比で、Bは0.40〜0.65、Eは0.02〜0.10を示す)、
を満足し、かつ隣り合う上記Yおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔を、0.01〜0.1μmとすると、
上記Yおよび酸素の最高含有点部分では、高含有のYと酸素の作用で、一段とすぐれた高温硬さと耐熱性を示し、一方上記Tiおよび窒素の最高含有点部分では、上記の従来(Ti,Y)N層におけるTiおよび窒素の含有割合と同等の相対的に高含有のTiおよび窒素含有となることから、前記従来(Ti,Y)N層の具備する高温強度と同等の相対的にすぐれた高温強度が確保され、かつこれらYおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔をきわめて小さくしたので、層全体の特性として一段とすぐれた高温硬さと耐熱性、さらにすぐれた高温強度も具備するようになり、また前記両点間でYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化(成分濃度分布構造)することにより、硬質被覆層内には層界面が存在しないことになり、したがって、かかる構成のY−Ti酸窒化物層を硬質被覆層として形成してなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を高い発熱を伴なう高速切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、
(1)超硬基体の表面に、アークイオンプレーティング装置を用い、Y−Ti酸窒化物層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具にして、前記硬質被覆層を、層厚方向にそって、Yおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Yおよび酸素の最高含有点が、
組成式:(Y1- Ti)O1-DD(ただし、原子比で、Aは0.05〜0.30、Dは0.02〜0.10を示す)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1 - )N1-EE(ただし、原子比で、Bは0.40〜0.65、Eは0.02〜0.10を示す)、
を満足し、かつ隣り合う上記Yおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmである、
硬質被覆層で構成してなる、高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具。
(2)(a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して超硬基体を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、いずれもカソード電極(蒸発源)として、相対的にY含有割合の高いY−Ti合金と、相対的にTi含有割合の高いTi−Y合金を対向配置すると共に、それぞれ前記Y−Ti合金に比してY含有割合が低く、かつ前記Ti−Y合金に比してTi含有割合が低い中間Y/Ti合金と中間Ti/Y合金を同じく対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記のカソード電極と、前記カソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)上記アークイオンプレーティング装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記装置内への酸素と窒素の相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にY含有割合の高いY−Ti合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Y合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Y−Ti合金のカソード電極最接近位置から上記中間Y/Ti合金のカソード電極最接近位置を経て前記Ti−Y合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Y合金のカソード電極最接近位置から上記中間Ti/Y合金のカソード電極最接近位置を経て前記Y−Ti合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とし、
(e)もって、上記回転テーブル上で自転しながら偏心回転する上記超硬基体の表面に、層厚方向にそって、Yおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し
さらに、上記Yおよび酸素の最高含有点が、
組成式:(Y 1- Ti )O 1-D D (ただし、原子比で、Aは0.05〜0.30、D は0.02〜0.10を示す)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti 1- )N 1-E E (ただし、原子比で、Bは0.40〜0.65、Eは0.02〜0.10を示す)、
を満足し、かつ隣り合う上記Yおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μ m である、Y−Ti酸窒化物層からなる硬質被覆層を物理蒸着すること、
以上(a)〜(e)の工程により高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を製造する方法。
以上(1)および(2)に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、硬質被覆層であるY−Ti酸窒化物層の構成を上記の通りに限定した理由を説明する。
(a)Yおよび酸素の最高含有点
上記Y−Ti酸窒化物層において、Yおよび酸素の最高含有点部分では高含有のYと酸素の作用で一段とすぐれた高温硬さと耐熱性を示し、一方Tiおよび窒素の最高含有点部分では、相対的に高い含有割合のTiと窒素の作用ですぐれた高温強度を示し、したがってYおよび酸素の最高含有点では、TiのYとの合量に占める含有割合を示すA値が、原子比で0.05未満になったり、窒素の酸素との合量に占める含有割合を示すD値が、同じく原子比で(以下、同じ)0.02未満になったりすると、Yおよび酸素の相対割合が多くなり過ぎて、すぐれた高温強度を有するTiと窒素の最高含有点が隣接して存在しても層自体の高温強度はきわめて低いものとなり、この結果チッピングなどが発生し易くなり、一方同A値が0.30を越えたり、同D値が0.10を越えたりすると、高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Tiの含有割合を示すA値を0.05〜0.30、および窒素の含有割合を示すD値を0.02〜0.10とそれぞれ定めた。
【0011】
(b)Tiおよび窒素の最高含有点
上記の通りYおよび酸素の最高含有点は一段とすぐれた高温硬さと耐熱性を有するが、反面高温強度の低いものであるため、このYおよび酸素の最高含有点の高温強度不足を補う目的で、相対的にすぐれた高温強度を有するTiおよび窒素の最高含有点を厚さ方向に交互に介在させるものである。しかし、YのTiとの合量に占める含有割合を示すB値が0.40未満では、所望の高温硬さおよび耐熱性を確保することができず、この結果硬質被覆層の摩耗進行が一段と促進するようになり、また同B値が0.65を越えると、高温強度が急激に低下し、硬質被覆層にチッピングが発生し易くなり、一方酸素の窒素との合量に占める含有割合を示すE値が0.02未満になると、Tiおよび窒素の最高含有点の高温硬さおよび耐熱性が急激に低下し、これが摩耗促進の原因となり、また同E値が0.10を越えると、高温強度が急激に低下し、これがチッピング発生の原因となることから、Yの含有割合を示すB値を0.40〜0.65、酸素の含有割合を示すE値を0.02〜0.10と定めた。
【0012】
(c)Yおよび酸素の最高含有点とTiおよび窒素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちYおよび酸素の最高含有点であれば高温強度不足、Tiおよび窒素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃部にチッピングが発生し易くなったり、摩耗進行が一段と促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具およびその製造方法を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1420℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、ISO規格・CNMG120412のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1520℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、ISO規格・CNMG120412のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。
【0016】
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して自転自在に装着し、いずれもカソード電極(蒸発源)として、種々の成分組成をもったYおよび酸素最高含有点形成用Y−Ti合金と、同じく種々の成分組成をもったTiおよび窒素最高含有点形成用Ti−Y合金を前記回転テーブルを挟んで対向配置し、さらにそれぞれ前記Y−Ti合金に比してY含有割合が低く、かつ前記Ti−Y合金に比してTi含有割合が低い中間Y/Ti合金と中間Ti/Y合金を同じく対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで、前記回転テーブル上で自転しながら回転する超硬基体に−30Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Yおよび酸素最高含有点形成用Y−Ti合金、前記Tiおよび窒素最高含有点形成用Ti−Y合金、さらに前記中間Y/Ti合金および中間Ti/Y合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、かつ装置内の反応雰囲気の圧力を3Paに保持しながら、前記超硬基体が上記の相対的にY含有割合の高いY−Ti合金のカソード電極(蒸発源)に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有割合の高いTi−Y合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Y−Ti合金のカソード電極最接近位置から上記中間Y/Ti合金のカソード電極最接近位置を経て前記Ti−Y合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Y合金のカソード電極最接近位置から上記中間Ti/Y合金のカソード電極最接近位置を経て前記Y−Ti合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とした条件で本発明法を実施し、もって前記超硬基体の表面に、厚さ方向に沿って表3,4に示される目標組成のYおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Yおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Yおよび酸素最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Y合金を装着し、さらにボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極のTi−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させる条件で従来法を実施し、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Y)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の丸棒、
切削速度:380m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続高速切削加工試験、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式断続高速切削加工試験、さらに、
被削材:JIS・S50Cの丸棒、
切削速度:350m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式連続高速切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0019】
【表1】

Figure 0004150916
【0020】
【表2】
Figure 0004150916
【0021】
【表3】
Figure 0004150916
【0022】
【表4】
Figure 0004150916
【0023】
【表5】
Figure 0004150916
【0024】
【表6】
Figure 0004150916
【0025】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で60時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0026】
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法を実施し、もって前記超硬基体(エンドミル)の表面に、厚さ方向に沿って表8に示される目標組成のYおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表8に示される目標間隔で繰り返し存在し、かつ前記Yおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Yおよび酸素最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明被覆超硬エンドミル1〜8を製造した。
【0027】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で従来法を実施し、もって、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Y)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0028】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度:160m/min.、
軸方向切り込み:8mm、
径方向切り込み:1.2mm、
テーブル送り:650mm/分、
の条件での炭素鋼の湿式高速側面切削加工試験、上記の本発明法および従来法により得られた本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(硬さ:HC52)の板材、
切削速度:45m/min.、
軸方向切り込み:8mm、
径方向切り込み:0.5mm、
テーブル送り:150mm/分、
の条件での工具鋼の湿式高速側面切削加工試験、本発明法および従来法により得られた本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:60m/min.、
軸方向切り込み:24mm、
径方向切り込み:4mm、
テーブル送り:350mm/分、
の条件での合金鋼の湿式高速側面切削加工試験をそれぞれ行い、いずれの湿式側面切削加工試験(水溶性切削油使用)でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8、9にそれぞれ示した。
【0029】
【表7】
Figure 0004150916
【0030】
【表8】
Figure 0004150916
【0031】
【表9】
Figure 0004150916
【0032】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0033】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法を実施し、もって前記超硬基体(ドリル)の表面に、厚さ方向に沿って表10に示される目標組成のYおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Yおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Yおよび酸素最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の硬質被覆層を蒸着形成してなる本発明被覆超硬工具としての本発明被覆超硬ドリル1〜8それぞれを製造した。
【0034】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で従来法を実施し、もって、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Y)N層からなる硬質被覆層を蒸着形成してなる従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0035】
つぎに、上記本発明法および従来法により得られた上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250、厚さ:50mmのJIS・SNCM439の板材、
切削速度:200m/min.、
送り:0.15mm/rev、
穴深さ:8mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験、上記の本発明法および従来法により得られた本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:120m/min.、
送り:0.25mm/rev、
穴深さ:16mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発明法および従来法により得られた本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(硬さ:HC52)の板材、
切削速度:20m/min.、
送り:0.18mm/rev、
穴深さ:24mm、
の条件での工具鋼の湿式高速穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0036】
【表10】
Figure 0004150916
【0037】
【表11】
Figure 0004150916
【0038】
上記の本発明法で得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来法で得られた従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8を構成する硬質被覆層について、厚さ方向に沿ってY、Ti、酸素、および窒素の含有割合をオージェ分光分析装置を用いて測定したところ、前記本発明被覆超硬工具の硬質被覆層では、Yおよび酸素の最高含有点とTiおよび窒素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、さらに硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。一方、前記従来被覆超硬工具の硬質被覆層では、目標組成と実質的に同じ組成および目標層厚と実質的に同じ全体平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に亘って均質な組成を示すものであった。
【0039】
【発明の効果】
表3〜11に示される結果から、上記本発明法で得られた、硬質被覆層が層厚方向に、相対的に一段とすぐれた高温硬さと耐熱性を有するYおよび酸素の最高含有点と相対的にすぐれた高温強度を有するTiおよび窒素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有するY−Ti酸窒化物層からなる被覆超硬工具は、いずれも切削加工を、特に高い発熱を伴う高速条件で行なった場合にも、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、上記従来法で得られた、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Y)N層からなる従来被覆超硬工具においては、前記の高速切削条件では、前記硬質被覆層の高温硬さおよび耐熱性不足が原因で、硬質被覆層の摩耗進行が一段と促進されるようになることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の方法によれば、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い発熱を伴う高速切削条件で行なった場合にも、長期に亘ってすぐれた耐摩耗性を示す被覆超硬工具を製造することができ、したがって、この結果の被覆超硬工具は切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応することができるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength. Therefore, various steels and cast irons were cut under high-speed machining conditions with particularly high heat generation. In particular, the present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent wear resistance in a hard coating layer, and a method for manufacturing the same.
[0002]
[Prior art]
In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
[0003]
Further, as a coated carbide tool, a tungsten carbide (hereinafter referred to as WC) based cemented carbide substrate or a titanium carbonitride (hereinafter referred to as TiCN) based cermet substrate (hereinafter referred to as these carbide substrates). Are collectively referred to as the “carbide substrate”)
Composition formula: (Ti1- BYB) A hard coating layer composed of a composite nitride of Ti and Y (hereinafter referred to as (Ti, Y) N) satisfying N (where B is 0.40 to 0.65 in atomic ratio) A coated carbide tool formed by physical vapor deposition with an average layer thickness of 1 to 15 μm is proposed, and the (Ti, Y) N layer constituting the hard coated layer has a high-temperature strength due to a Ti component. It is also known that it has high-temperature hardness and heat resistance due to the Y component, and is used for continuous cutting and intermittent cutting of various steels and cast iron (see, for example, Patent Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which a Ti—Y alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, −100 V on the surface of the carbide substrate. It is also well known that it is produced by vapor-depositing a hard coating layer composed of a (Ti, Y) N layer. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 3205943
[0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been dramatically improved, while on the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work, and this has led to a tendency to cut at higher speeds. However, in the above-described conventional coated carbide tool, the (Ti, Y) N layer, which is a hard coating layer, is excellent when the cutting process is performed under high-speed conditions with particularly high heat generation. Although it has high-temperature strength, it does not have sufficient high-temperature hardness and heat resistance, so that the progress of wear of the hard coating layer is further promoted, so that the service life can be reached in a relatively short time. Currently.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have focused on the hard coating layer of the above-mentioned conventional coated carbide tool, and developed a hard coating layer that exhibits excellent wear resistance, particularly in high-speed cutting. As a result of research,
(A) For example, an arc ion plating apparatus belonging to a physical vapor deposition apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. A table is provided, and a Y-Ti alloy having a relatively high Y content ratio on one side and a Ti-Y alloy having a relatively high Ti content ratio on the other side are both cathode electrodes (evaporation source) with the rotary table interposed therebetween. The intermediate Y / Ti alloy and the intermediate Ti / Y alloy are low in Y content as compared with the Y-Ti alloy and low in Ti content as compared with the Ti-Y alloy. Is also used as the cathode electrode (evaporation source) arc ion plating device
On the rotary table of this apparatus, the carbide substrate is mounted eccentrically at a position radially away from the central axis of the rotary table,
In this state, the reaction atmosphere in the apparatus is a mixed atmosphere of oxygen and nitrogen. The relative introduction ratio of oxygen and nitrogen into the apparatus is adjusted in accordance with the rotational movement position of the carbide substrate, and the super The reaction atmosphere when the hard substrate is closest to the cathode electrode of the Y-Ti alloy having a relatively high Y content is the highest oxygen introduction rate and the lowest nitrogen introduction rate, preferably the relative introduction of oxygen. While the ratio is 90 to 97% by volume and the remainder is a reaction atmosphere consisting of nitrogen, the reaction at the time when the cemented carbide substrate is closest to the cathode electrode of the Ti-Y alloy having a relatively high Ti content. The atmosphere has the highest nitrogen introduction ratio and the lowest oxygen introduction ratio, preferably a nitrogen-based reaction atmosphere with a relative introduction ratio of 90 to 97% by volume and the remainder consisting of oxygen. Ti alloy The reaction rate during the rotational movement from the cathode electrode closest position to the Ti-Y alloy cathode electrode closest position via the intermediate Y / Ti alloy cathode electrode closest position is continuously reduced. Correspondingly, a continuously changing atmosphere in which the introduction ratio of nitrogen is continuously increased, while the cemented carbide substrate is the closest to the cathode electrode of the intermediate Ti / Y alloy from the position closest to the cathode electrode of the Ti-Y alloy. During the rotational movement of the Y-Ti alloy cathode electrode through the approach position, the reaction atmosphere is continuously reduced by decreasing the nitrogen introduction rate and correspondingly increasing the oxygen introduction rate. A continuously changing atmosphere,
While rotating the rotary table and rotating the hard substrate itself for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition, between the cathode electrode (evaporation source) and the anode electrode, Under conditions that cause arc discharge in
When a composite oxynitride layer (hereinafter referred to as Y-Ti oxynitride) of Y and Ti is formed, the surface of the cemented carbide substrate is eccentrically arranged at a position radially away from the central axis on the rotary table. When the cemented carbide substrate is closest to the cathode electrode (evaporation source) of the Y-Ti alloy having a relatively high Y content on one side, the highest content point of Y and oxygen is formed in the layer. In addition, when the carbide substrate is closest to the cathode electrode of the Ti-Y alloy having a relatively high Ti content on the other side, the highest content point of Ti and nitrogen is formed in the layer. The maximum content point of Y and oxygen and the maximum content point of Ti and nitrogen appear alternately and repeatedly in the thickness direction in the layer by rotation of the rotary table, and the maximum content of Y and oxygen In terms of Ti Y having a component concentration distribution structure in which the content ratios of Y, oxygen, and Ti and nitrogen continuously change from the highest content point of nitrogen and nitrogen to the highest content point of Y and oxygen from the highest content point of Ti and nitrogen, respectively. -The hard coating layer which consists of Ti oxynitride layers comes to be formed.
[0008]
(B) When forming the Y-Ti oxynitride layer having the repeated continuous change component concentration distribution structure of (a) above, for example, the composition of each of the cathode electrodes (evaporation sources) arranged opposite to each other, and the reaction continuously changing in the apparatus While adjusting the composition of the atmosphere, that is, the mutual introduction ratio of oxygen and nitrogen, and controlling the rotation speed of the rotary table on which the carbide substrate is mounted,
The maximum content point of Y and oxygen is
Composition formula: (Y1- ATiA) O1-DND(However, in atomic ratio, A shows 0.05-0.30, D shows 0.02-0.10),
The highest content point of Ti and nitrogen is
Composition formula: (Ti1- BYB) N1-EOE(However, in atomic ratio, B is 0.40 to 0.65, E is 0.02 to 0.10),
When the distance between the highest content point of Y and oxygen adjacent to each other and the highest content point of Ti and nitrogen is 0.01 to 0.1 μm,
The highest content point portion of Y and oxygen exhibits a higher temperature hardness and heat resistance due to the action of the high content of Y and oxygen, while the highest content point portion of Ti and nitrogen has the above-described conventional (Ti, Y) Since relatively high content of Ti and nitrogen is equivalent to the content ratio of Ti and nitrogen in the N layer, it is relatively excellent equivalent to the high temperature strength of the conventional (Ti, Y) N layer. High temperature strength is ensured, and the distance between the highest content point of Y and oxygen and the highest content point of Ti and nitrogen is made extremely small, so that the characteristics of the entire layer are further improved in high temperature hardness and heat resistance, and further improved. It also has high-temperature strength, and the content ratios of Y and oxygen and Ti and nitrogen continuously change (component concentration distribution structure) between the two points, so that there is a layer in the hard coating layer. Therefore, a coated carbide tool formed by forming a Y-Ti oxynitride layer having such a structure as a hard coating layer is accompanied by high heat generation in cutting of various types of steel and cast iron. Even when performed under high-speed cutting conditions, the hard coating layer should exhibit excellent wear resistance.
The research results shown in (a) and (b) above were obtained.
[0009]
  This invention was made based on the above research results,
(1) On the surface of the carbide substrate,Using arc ion plating equipmentThen, a hard coating layer comprising a Y-Ti oxynitride layer is physically deposited by physical vapor deposition with an average layer thickness of 1 to 15 μm, and the hard coating layer is formed along the layer thickness direction with Y and oxygen. The highest content point of Ti and the highest content point of Ti and nitrogen are alternately present at predetermined intervals, and from the highest content point of Y and oxygen, the highest content point of Ti and nitrogen, the highest content of Ti and nitrogen A component concentration distribution structure in which the content ratios of Y, oxygen, Ti, and nitrogen continuously change from the content point to the highest content point of Y and oxygen, respectively,
  Furthermore, the highest content point of Y and oxygen is
  Composition formula: (Y1- ATiA) O1-DND(However, in atomic ratio, A shows 0.05-0.30, D shows 0.02-0.10),
  The highest content point of Ti and nitrogen is
  Composition formula: (Ti1- BYB) N1-EOE(However, in atomic ratio, B is 0.40 to 0.65, E is 0.02 to 0.10),
And the distance between the highest content point of Y and oxygen adjacent to each other and the highest content point of Ti and nitrogen is 0.01 to 0.1 μm.
A coated carbide tool composed of a hard coating layer that exhibits excellent wear resistance under high-speed cutting conditions.
(2) (a) On the rotary table in the arc ion plating apparatus, a carbide base is eccentrically mounted at a position away from the central axis of the rotary table in a radial direction, and the carbide substrate is rotatably mounted.
  (B) In addition, the Y-Ti alloy having a relatively high Y content and the Ti-Y alloy having a relatively high Ti content are opposed to each other as a cathode electrode (evaporation source) across the rotary table. In addition, the intermediate Y / Ti alloy and the intermediate Ti / Y alloy are arranged opposite each other with a lower Y content compared to the Y-Ti alloy and a lower Ti content than the Ti-Y alloy. And
  (C) generating an arc discharge between the cathode electrode disposed opposite to the rotary table and the anode electrode arranged in parallel with each of the cathode electrodes;
  (D) The reaction atmosphere in the arc ion plating apparatus is a mixed atmosphere of oxygen and nitrogen, and the relative introduction ratio of oxygen and nitrogen into the apparatus is adjusted according to the rotational movement position of the carbide substrate. The reaction atmosphere at the time when the cemented carbide substrate is closest to the cathode electrode of the Y-Ti alloy having a relatively high Y content is the reaction atmosphere having the highest oxygen introduction ratio and the lowest nitrogen introduction ratio. On the other hand, the reaction atmosphere when the cemented carbide substrate is closest to the cathode electrode of the Ti-Y alloy having a relatively high Ti content is the reaction with the highest nitrogen introduction rate and the lowest oxygen introduction rate. In addition to the atmosphere, the cemented carbide substrate approaches the cathode electrode of the Ti-Y alloy through the cathode electrode closest position of the intermediate Y / Ti alloy from the cathode electrode closest position of the Y-Ti alloy. The reaction atmosphere during the rotational movement is set to a continuously changing atmosphere in which the oxygen introduction ratio continuously decreases and the nitrogen introduction ratio continuously increases correspondingly, while the carbide substrate is the Ti-Y The reaction atmosphere during the rotational movement from the closest cathode electrode of the alloy to the closest cathode electrode of the Y-Ti alloy through the closest cathode electrode of the intermediate Ti / Y alloy is continuously introduced by nitrogen. In response to this, a continuously changing atmosphere in which the oxygen introduction rate continuously increases correspondingly,
(E) Therefore, on the surface of the cemented carbide substrate that rotates eccentrically while rotating on the rotary table,Along with the layer thickness direction, the highest content point of Y and oxygen and the highest content point of Ti and nitrogen are alternately present at predetermined intervals, and from the highest content point of Y and oxygen, It has a component concentration distribution structure in which the content ratios of Y, oxygen and Ti and nitrogen continuously change from the highest content point, the highest content point of Ti and nitrogen to the highest content point of Y and oxygen, respectively.,
  Furthermore, the highest content point of Y and oxygen is
Composition formula: (Y 1- A Ti A ) O 1-D N D (However, in terms of atomic ratio, A is 0.05 to 0.30, D Represents 0.02 to 0.10),
The highest content point of Ti and nitrogen is
Composition formula: (Ti 1- B Y B ) N 1-E O E (However, in atomic ratio, B is 0.40 to 0.65, E is 0.02 to 0.10),
The distance between the highest content point of Y and oxygen adjacent to each other and the highest content point of Ti and nitrogen is 0.01 to 0.1 μm. m IsPhysical vapor deposition of a hard coating layer comprising a Y-Ti oxynitride layer,
A method for producing a coated carbide tool exhibiting excellent wear resistance with a hard coating layer under high-speed cutting conditions by the steps (a) to (e).
The above (1) and (2) are characteristic.
[0010]
Next, in the coated carbide tool of the present invention, the reason why the configuration of the Y-Ti oxynitride layer which is a hard coating layer is limited as described above will be described.
(A) Maximum content point of Y and oxygen
In the Y-Ti oxynitride layer, the highest content point of Y and oxygen shows a higher temperature hardness and heat resistance due to the action of the high content of Y and oxygen, while the highest content point of Ti and nitrogen, It shows excellent high-temperature strength due to the action of relatively high contents of Ti and nitrogen. Therefore, at the highest content point of Y and oxygen, the A value indicating the content ratio of the total amount of Ti with Y is expressed as an atomic ratio. When the D value indicating the content ratio of the total amount of nitrogen and oxygen is less than 0.05, or the atomic ratio (hereinafter the same) is less than 0.02, the relative ratio of Y and oxygen is Even if the highest content points of Ti and nitrogen having excellent high-temperature strength are adjacent to each other, the high-temperature strength of the layer itself is extremely low, and as a result, chipping is likely to occur. The value exceeds 0.30 If the D value exceeds 0.10, the high-temperature hardness and heat resistance are drastically reduced and cause wear acceleration. Therefore, the A value indicating the Ti content is 0.05 to 0.00. 30 and the D value indicating the nitrogen content were determined to be 0.02 to 0.10, respectively.
[0011]
(B) Maximum content point of Ti and nitrogen
As described above, the highest content point of Y and oxygen has excellent high-temperature hardness and heat resistance, but on the other hand, since it has a low high-temperature strength, in order to compensate for the lack of high-temperature strength at the highest content point of Y and oxygen, The highest content points of Ti and nitrogen having relatively high temperature strength are alternately interposed in the thickness direction. However, if the B value indicating the content ratio of the total amount of Y with Ti is less than 0.40, the desired high-temperature hardness and heat resistance cannot be ensured, and as a result, the progress of wear of the hard coating layer is further increased. When the B value exceeds 0.65, the high-temperature strength rapidly decreases and chipping is likely to occur in the hard coating layer. On the other hand, the content ratio of the total amount of oxygen with nitrogen is reduced. When the E value shown is less than 0.02, the high temperature hardness and heat resistance of the highest content point of Ti and nitrogen are drastically reduced, which causes wear promotion, and when the E value exceeds 0.10, Since the high-temperature strength is abruptly reduced, which causes chipping, the B value indicating the Y content is 0.40 to 0.65, and the E value indicating the oxygen content is 0.02 to 0.00. 10 was determined.
[0012]
(C) The distance between the highest content point of Y and oxygen and the highest content point of Ti and nitrogen
If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the desired excellent high-temperature hardness and heat resistance, as well as high-temperature strength can be ensured. Also, if the distance exceeds 0.1 μm, the disadvantages of each point, that is, if the highest content point of Y and oxygen is insufficient, the high temperature strength is insufficient, and if the highest content point of Ti and nitrogen, the high temperature hardness and heat resistance The shortage appears locally in the layer, which makes it easier for chipping to occur at the cutting edge and further promotes the progress of wear, so the interval is set to 0.01 to 0.1 μm. It was.
[0013]
(D) Average thickness of hard coating layer
If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur at the cutting edge. It was determined as 1 to 15 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.
Example 1
WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr having an average particle diameter of 1 to 3 μm as raw material powdersThreeC2Powder and Co powder are prepared, and these raw material powders are blended in the blending composition shown in Table 1, wet mixed by a ball mill for 60 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a vacuum of 6 Pa at a temperature of 1420 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, whereby ISO standard / CNMG120212 Cemented carbide substrates A-1 to A-10 made of WC-based cemented carbide having a chip shape were formed.
[0015]
In addition, as raw material powder, TiCN (mass ratio of TiC / TiN = 50/50) powder having an average particle diameter of 0.5 to 2 μm, Mo2C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended into the blending composition shown in Table 2 and wet mixed in a ball mill for 60 hours and dried. After that, the green compact was press-molded into a green compact at a pressure of 100 MPa, and this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1520 ° C. for 1 hour. : By performing a honing process of 0.03, cemented carbide substrates B-1 to B-6 made of TiCN-based cermets having a chip shape of ISO standard / CNMG120412 were formed.
[0016]
Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. The rotary table is eccentrically mounted at a position away from the central axis of the rotary table in a radial direction so that it can rotate freely, and both of them have the highest content of Y and oxygen with various component compositions as cathode electrodes (evaporation sources). Point-forming Y-Ti alloy, Ti having various component compositions, and Ti-Y alloy having the highest nitrogen content are arranged opposite to each other across the rotary table, and each is compared with the Y-Ti alloy. First, an intermediate Y / Ti alloy and an intermediate Ti / Y alloy having a low Y content and a Ti content lower than that of the Ti-Y alloy are arranged opposite to each other, and a bombard cleaning metal Ti is also mounted. The interior of the apparatus is evacuated and maintained at a vacuum of 0.5 Pa or less, and the interior of the apparatus is heated to 500 ° C. with a heater, and a DC bias voltage of −1000 V is applied to the carbide substrate that rotates while rotating on the rotary table. And applying an electric current of 100 A between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate by Ti bombardment, and then rotating on the rotary table. A DC bias voltage of −30 V was applied to the rotating carbide substrate, and each cathode electrode (Y-Ti alloy for forming Y and the highest oxygen content point, Ti-Y alloy for forming the highest Ti and nitrogen content point, Further, a current of 150 A is passed between the intermediate Y / Ti alloy and the intermediate Ti / Y alloy) and the anode electrode to generate an arc discharge, and the reaction atmosphere in the apparatus. While maintaining the atmospheric pressure at 3 Pa, the reaction atmosphere at the time when the cemented carbide substrate is closest to the cathode electrode (evaporation source) of the Y-Ti alloy having a relatively high Y content is the oxygen introduction ratio. While the reaction atmosphere is the highest and the nitrogen introduction ratio is the lowest, the reaction atmosphere at the time when the cemented carbide substrate is closest to the cathode electrode of the Ti-Y alloy having the relatively high Ti content is the nitrogen introduction ratio. Is the reaction atmosphere having the lowest oxygen introduction ratio and the cemented carbide substrate from the closest Y-Ti alloy cathode electrode position to the intermediate Y / Ti alloy cathode electrode closest position to the Ti- The reaction atmosphere during the rotational movement to the closest position of the cathode electrode of the Y alloy is a continuously changing atmosphere in which the oxygen introduction ratio continuously decreases and the nitrogen introduction ratio increases correspondingly, On the other hand, the reaction during the rotational movement of the cemented carbide substrate from the closest position of the cathode electrode of the Ti-Y alloy to the closest position of the cathode electrode of the Y-Ti alloy through the closest position of the cathode electrode of the intermediate Ti / Y alloy. The method of the present invention was carried out under conditions where the atmosphere was a continuously changing atmosphere in which the nitrogen introduction rate was continuously decreased and the oxygen introduction rate was continuously increased correspondingly. Along the thickness direction, the Y and oxygen highest content points and the Ti and nitrogen highest content points of the target composition shown in Tables 3 and 4 are alternately present at the target intervals shown in Tables 3 and 4 alternately, and The Y and oxygen and Ti and nitrogen content ratios continuously change from the Y and oxygen maximum content point to the Ti and nitrogen maximum content point and from the Ti and nitrogen maximum content point to the Y and oxygen maximum content point, respectively. A throwaway tip made of the surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a component concentration distribution structure and formed by vapor deposition of a hard coating layer having the target layer thickness shown in Tables 3 and 4 Hereinafter, the coated carbide chips of the present invention were produced.
[0017]
For comparison purposes, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and each of the ordinary arcs shown in FIG. Inserted into an ion plating apparatus, mounted with a Ti-Y alloy having various component compositions as a cathode electrode (evaporation source), and further mounted with a metal Ti for bombard cleaning. The inside of the apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less, and then a −1000 V DC bias voltage was applied to the cemented carbide substrate, and between the metal Ti of the cathode electrode and the anode electrode A current of 100 A is applied to the electrode to generate arc discharge to clean the surface of the carbide substrate with Ti bombard, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa. A conventional method was carried out under the condition that a DC bias voltage of −100 V was applied and a current of 100 A was passed between the Ti—Y alloy of the cathode electrode and the anode electrode to generate an arc discharge. Each of -1 to A-10 and B-1 to B-6 has the target composition and target layer thickness shown in Table 5 and substantially no composition change along the layer thickness direction ( Conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools formed by vapor-depositing a hard coating layer comprising Ti, Y) N layers, respectively. Manufactured.
[0018]
Next, the coated carbide chips 1 to 16 and the coated carbide chips 1 to 16 of the present invention obtained by the method of the present invention and the conventional method are screwed to the tip of the tool steel tool with a fixing jig. In state,
Work material: JIS / SNCM439 round bar,
Cutting speed: 380 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of alloy steel under the conditions of
Work material: JIS / FC250 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Cast iron dry intermittent high speed cutting test under the conditions of
Work material: JIS / S50C round bar,
Cutting speed: 350 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
The dry continuous high-speed cutting test of carbon steel under the above conditions was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
[0019]
[Table 1]
Figure 0004150916
[0020]
[Table 2]
Figure 0004150916
[0021]
[Table 3]
Figure 0004150916
[0022]
[Table 4]
Figure 0004150916
[0023]
[Table 5]
Figure 0004150916
[0024]
[Table 6]
Figure 0004150916
[0025]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm CrThreeC2Prepared powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [mass ratio, TiC / WC = 50/50] powder, and 1.8 μm Co powder. Each powder was blended in the blending composition shown in Table 7, added with wax, ball mill mixed in acetone for 60 hours, dried under reduced pressure, and then pressed into various compacts of a predetermined shape at a pressure of 100 MPa, These green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a vacuum atmosphere of 6 Pa, kept at this temperature for 1 hour, and then subjected to furnace cooling conditions. In order to form three types of cemented carbide substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm, and further grinding from the above three types of round bar sintered bodies, In the combinations shown in Table 7, the diameter x length of the cutting edge is 6 respectively. m × 13mm, 10mm × 22mm, and dimensions of 20 mm × 45 mm, as well as any twist angle: 30 degrees carbide substrate having a 4 flute square shape (end mills) C-1 through C-8 were prepared, respectively.
[0026]
Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. The method of the present invention was carried out under the same conditions as in Example 1 above, so that Y and the highest oxygen content point and Ti of the target composition shown in Table 8 along the thickness direction were formed on the surface of the cemented carbide substrate (end mill). And the highest nitrogen content point alternately and repeatedly at the target intervals shown in Table 8, and from the highest Y and oxygen content point to the highest Ti and nitrogen content point, from the highest Ti and nitrogen content point to the Y And having a component concentration distribution structure in which the content ratios of Y, oxygen, and Ti and nitrogen continuously change to the highest oxygen content point, and forming a hard coating layer having the target layer thickness shown in Table 8 by vapor deposition. Become The present invention coated cemented carbide end mills 1 to 8 as an invention coated cemented carbide tools were produced.
[0027]
For the purpose of comparison, the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. 2 is also used. The conventional method was carried out under the same conditions as in Example 1 above, so that the target composition and target layer thickness shown in Table 9 were obtained, and the composition change substantially along the layer thickness direction. Conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated carbide tools formed by vapor-depositing a hard coating layer comprising no (Ti, Y) N layer, respectively. Manufactured.
[0028]
Next, among the coated carbide end mills 1 to 8 and the conventional coated carbide end mills 1 to 8 obtained by the method of the present invention and the conventional method, the coated carbide end mills 1 to 3 and the conventional coated carbide of the present coated carbide. For end mills 1 to 3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 160 m / min. ,
Axial cut: 8mm,
Radial notch: 1.2mm,
Table feed: 650 mm / min,
About the wet high-speed side cutting test of carbon steel under the conditions of the present invention, the present invention coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 obtained by the above-described method of the present invention and the conventional method,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS SKD61 (Hardness: HRC52) plate material,
Cutting speed: 45 m / min. ,
Axial cut: 8mm,
Radial notch: 0.5mm,
Table feed: 150 mm / min,
With respect to the tool steel wet high-speed side cutting test under the following conditions, the present invention and the conventional coated carbide end mills 7 and 8 and the conventional coated carbide end mills 7 and 8 obtained by the present method and the conventional method,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 60 m / min. ,
Axial cut: 24mm,
Radial notch: 4mm,
Table feed: 350 mm / min,
Wet high-speed side cutting test of alloy steel under the above conditions, and the flank wear width of the outer peripheral edge of the cutting edge is used as a guide for the service life in any wet side cutting test (using water-soluble cutting oil). The cutting length up to 0.1 mm was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0029]
[Table 7]
Figure 0004150916
[0030]
[Table 8]
Figure 0004150916
[0031]
[Table 9]
Figure 0004150916
[0032]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were produced.
[0033]
Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. And the method of the present invention was carried out under the same conditions as in Example 1 above, so that Y and oxygen having the target composition shown in Table 10 along the thickness direction were formed on the surface of the carbide substrate (drill). The highest content point and the highest Ti and nitrogen content point are alternately repeated at the target intervals shown in Table 10, and from the highest Y and oxygen content point, the highest Ti and nitrogen content point, and the highest Ti and nitrogen content A hard coating layer having a component concentration distribution structure in which the content ratios of Y, oxygen, Ti, and nitrogen continuously change from the point to the Y and oxygen maximum content point, and having the target layer thickness also shown in Table 10 Steam Forming the present invention coated cemented carbide drills 1-8 respectively as the present invention coated cemented carbide comprising manufactured.
[0034]
For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. A conventional arc ion plating apparatus was charged and the conventional method was carried out under the same conditions as in Example 1. Thus, the target composition and the target layer thickness shown in Table 11 were obtained, and along the layer thickness direction. Conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) as conventional coated carbide tools formed by vapor-depositing a hard coating layer consisting of a (Ti, Y) N layer having substantially no composition change. 1) -8 were produced respectively.
[0035]
Next, among the coated carbide drills 1 to 8 and the conventional coated carbide drills 1 to 8 obtained by the method of the present invention and the conventional method, the coated carbide drills 1 to 3 and the conventional coated carbide of the present invention. For drills 1-3,
Work material: Plane size: 100 mm × 250, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 200 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 8mm,
About the wet high speed drilling cutting test of alloy steel under the conditions of the present invention, the present invention coated carbide drills 4 to 6 and the conventional coated carbide drills 4 to 6 obtained by the method of the present invention and the conventional method,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 120 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 16mm,
With respect to the carbon steel wet high-speed drilling test, the present invention method and the conventional coated carbide drills 7 and 8 and the conventional coated carbide drills 7 and 8 obtained by the conventional method,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS SKD61 (Hardness: HRC52) plate material,
Cutting speed: 20 m / min. ,
Feed: 0.18mm / rev,
Hole depth: 24mm
Wet high-speed drilling test of tool steel under the above conditions, and the flank wear width of the tip cutting edge surface is 0.3 mm in any wet high-speed high-feed drilling test (using water-soluble cutting oil) The number of drilling processes was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0036]
[Table 10]
Figure 0004150916
[0037]
[Table 11]
Figure 0004150916
[0038]
The present coated carbide tips 1-16, the present coated carbide end mills 1-8, the present coated carbide drills 1-8, and the present coated carbide drills 1-8 as the present coated carbide tools obtained by the above method of the present invention, and the conventional About the hard coating layer which comprises the conventional coated carbide tips 1-16, the conventional coated carbide end mills 1-8, and the conventional coated carbide drills 1-8 as the conventional coated carbide tool obtained by the above method The content ratios of Y, Ti, oxygen, and nitrogen were measured using an Auger spectroscopic analyzer along the line, and in the hard coating layer of the coated carbide tool of the present invention, the highest content point of Y and oxygen and Ti and nitrogen were measured. And the highest content point of Ti and nitrogen from the highest content point of Y and oxygen to the highest content point of Ti and nitrogen, respectively. To the highest content point of Y and oxygen to be confirmed to have a component concentration distribution structure in which the content ratios of Y, oxygen and Ti and nitrogen change continuously, respectively, and the average layer thickness of the hard coating layer is also the target layer thickness And substantially the same value. On the other hand, the hard coating layer of the conventional coated carbide tool shows a composition that is substantially the same as the target composition and an overall average layer thickness that is substantially the same as the target layer thickness, but there is a change in the composition along the thickness direction. In other words, it showed a homogeneous composition throughout the layer.
[0039]
【The invention's effect】
From the results shown in Tables 3 to 11, the hard coating layer obtained by the above-mentioned method of the present invention has a relatively high temperature hardness and heat resistance relatively higher in the layer thickness direction, relative to the highest content point of Y and oxygen. Ti and nitrogen highest content points having excellent high temperature strength are alternately present at predetermined intervals, and from the highest Y and oxygen content points, the highest Ti and nitrogen content points, Ti and Coated carbide comprising a Y-Ti oxynitride layer having a component concentration distribution structure in which the content ratios of Y, oxygen, and Ti and nitrogen continuously change from the highest nitrogen content point to the highest Y and oxygen content points, respectively. All of the tools show excellent wear resistance and excellent cutting performance over a long period of time even when cutting is performed under high-speed conditions with particularly high heat generation. Obtained in In the conventional coated carbide tool in which the hard coating layer is a (Ti, Y) N layer substantially unchanged in composition along the layer thickness direction, the high-temperature hardness of the hard coating layer under the high-speed cutting conditions described above. It is clear that the wear life of the hard coating layer is further promoted due to the lack of heat resistance, so that the service life is reached in a relatively short time.
As described above, according to the method of the present invention, not only cutting under normal conditions such as various types of steel and cast iron, but also when performed under high-speed cutting conditions with high heat generation over a long period of time. Coated cemented carbide tools with excellent wear resistance can be produced, and the resulting coated carbide tools can be used satisfactorily to save labor and energy in cutting, and to reduce costs. It can be done.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated carbide tool.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、アークイオンプレーティング装置を用い、Y(イットリウム)とTiの複合酸窒化物層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、前記硬質被覆層を層厚方向にそって、Yおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Yおよび酸素の最高含有点が、
組成式:(Y1- Ti)O1-DD(ただし、原子比で、Aは0.05〜0.30、Dは0.02〜0.10を示す)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti1- )N1-EE(ただし、原子比で、Bは0.40〜0.65、Eは0.02〜0.10を示す)、
を満足し、かつ隣り合う上記Yおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmである、
硬質被覆層で構成したことを特徴とする高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
A hard coating layer made of a composite oxynitride layer of Y (yttrium) and Ti is formed on the surface of a cemented carbide substrate made of tungsten carbide base cemented carbide or titanium carbonitride cermet using an arc ion plating apparatus. The surface-coated cemented carbide cutting tool is formed by physical vapor deposition with an average layer thickness of the following, and the hard coating layer has a maximum content point of Y and oxygen and a maximum content point of Ti and nitrogen along the layer thickness direction. Repeatedly exist at predetermined intervals, and from the highest content point of Y and oxygen to the highest content point of Ti and nitrogen, from the highest content point of Ti and nitrogen to the highest content point of Y and oxygen, and Y It has a component concentration distribution structure in which the contents of oxygen and Ti and nitrogen change continuously,
Furthermore, the highest content point of Y and oxygen is
Formula: (Y 1- A Ti A) O 1-D N D ( However, in atomic ratio, A is 0.05 to 0.30, D denotes the 0.02 to 0.10),
The highest content point of Ti and nitrogen is
Composition formula: (Ti 1- B Y B ) N 1-E O E (however, in atomic ratio, B is 0.40 to 0.65, E is 0.02 to 0.10),
And the distance between the highest content point of Y and oxygen adjacent to each other and the highest content point of Ti and nitrogen is 0.01 to 0.1 μm.
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance under high-speed cutting conditions characterized by comprising a hard coating layer.
(a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して炭化タングステン基超硬合金の超硬基体および/または炭窒化チタン系サーメットの超硬基体を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、いずれもカソード電極(蒸発源)として、相対的にY含有割合の高いY−Ti合金と、相対的にTi含有割合の高いTi−Y合金を対向配置すると共に、それぞれ前記Y−Ti合金に比してY含有割合が低く、かつ前記Ti−Y合金に比してTi含有割合が低い中間Y/Ti合金および中間Ti/Y合金を同じく対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記のカソード電極と、前記カソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)上記アークイオンプレーティング装置内の反応雰囲気を酸素と窒素の混合雰囲気とするが、前記装置内への酸素と窒素の相対導入割合を上記超硬基体の回転移動位置に対応して調整して、前記超硬基体が上記の相対的にY含有量の高いY−Ti合金のカソード電極に最も接近した時点での反応雰囲気を酸素導入割合が最も高く、窒素導入割合が最も低い反応雰囲気とする一方、前記超硬基体が上記の相対的にTi含有量の高いTi−Y合金のカソード電極に最も接近した時点での反応雰囲気を窒素導入割合が最も高く、酸素導入割合が最も低い反応雰囲気とすると共に、前記超硬基体が前記Y−Ti合金のカソード電極最接近位置から上記中間Y/Ti合金のカソード電極最接近位置を経て前記Ti−Y合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、酸素導入割合が連続的に減少し、これに対応して窒素導入割合が連続的に増加する連続変化雰囲気とし、一方前記超硬基体が前記Ti−Y合金のカソード電極最接近位置から上記中間Ti/Y合金のカソード電極最接近位置を経て前記Y−Ti合金のカソード電極最接近位置に回転移動する間の反応雰囲気を、窒素導入割合が連続的に減少し、これに対応して酸素導入割合が連続的に増加する連続変化雰囲気とし、
(e)もって、上記回転テーブル上で自転しながら偏心回転する上記超硬基体の表面に、層厚方向にそって、Yおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Yおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Yおよび酸素の最高含有点へYと酸素およびTiと窒素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Yおよび酸素の最高含有点が、
組成式:(Y 1- Ti )O 1-D D (ただし、原子比で、Aは0.05〜0.30、Dは0.02〜0.10を示す)、
上記Tiおよび窒素の最高含有点が、
組成式:(Ti 1- )N 1-E E (ただし、原子比で、Bは0.40〜0.65、Eは0.02〜0.10を示す)、
を満足し、かつ隣り合う上記Yおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μ m である、YとTiの複合酸窒化物層からなる硬質被覆層を物理蒸着すること
以上(a)〜(e)からなることを特徴とする高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法。
(A) A tungsten carbide-based cemented carbide substrate and / or a titanium carbonitride-based cermet eccentrically placed on a rotating table in an arc ion plating apparatus at a position radially away from the center axis of the rotating table. A carbide substrate is mounted to rotate freely,
(B) In addition, the Y-Ti alloy having a relatively high Y content and the Ti-Y alloy having a relatively high Ti content are opposed to each other as a cathode electrode (evaporation source) across the rotary table. In addition, an intermediate Y / Ti alloy and an intermediate Ti / Y alloy that are lower in the Y content than the Y-Ti alloy and lower in the Ti content than the Ti-Y alloy are also arranged opposite to each other. And
(C) generating an arc discharge between the cathode electrode disposed opposite to the rotary table and the anode electrode arranged in parallel with each of the cathode electrodes;
(D) The reaction atmosphere in the arc ion plating apparatus is a mixed atmosphere of oxygen and nitrogen, and the relative introduction ratio of oxygen and nitrogen into the apparatus is adjusted according to the rotational movement position of the carbide substrate. The reaction atmosphere when the cemented carbide substrate is closest to the cathode electrode of the Y-Ti alloy having a relatively high Y content has the highest oxygen introduction ratio and the lowest nitrogen introduction ratio. On the other hand, the reaction atmosphere when the cemented carbide substrate is closest to the cathode electrode of the Ti-Y alloy having the relatively high Ti content is the reaction with the highest nitrogen introduction rate and the lowest oxygen introduction rate. In addition to the atmosphere, the cemented carbide substrate approaches the cathode electrode closest to the Ti-Y alloy from the cathode electrode closest approach position of the Y-Ti alloy to the cathode electrode closest proximity position of the intermediate Y / Ti alloy. The reaction atmosphere during the rotational movement is a continuously changing atmosphere in which the oxygen introduction ratio decreases continuously and the nitrogen introduction ratio increases correspondingly, while the carbide substrate is made of the Ti-Y alloy. The nitrogen introduction ratio continuously decreases in the reaction atmosphere during the rotational movement from the cathode electrode closest position to the Y-Ti alloy cathode electrode closest position through the intermediate Ti / Y alloy cathode electrode closest position. Correspondingly, a continuously changing atmosphere in which the oxygen introduction rate continuously increases,
(E) Accordingly, the highest content point of Y and oxygen and the highest content point of Ti and nitrogen are arranged at predetermined intervals along the layer thickness direction on the surface of the cemented carbide substrate rotating eccentrically while rotating on the rotary table. And Y and oxygen from the highest content point of Y and oxygen to the highest content point of Ti and nitrogen, from the highest content point of Ti and nitrogen to the highest content point of Y and oxygen, and It has a component concentration distribution structure in which the content ratios of Ti and nitrogen change continuously,
Furthermore, the highest content point of Y and oxygen is
Composition formula: (Y 1- A Ti A ) O 1-D N D (where A is 0.05 to 0.30, D is 0.02 to 0.10 in atomic ratio),
The highest content point of Ti and nitrogen is
Composition formula: (Ti 1- B Y B ) N 1-E O E (however, in atomic ratio, B is 0.40 to 0.65, E is 0.02 to 0.10),
Satisfied, and the Y and spacing of oxygen up containing point and the highest content point of the Ti and nitrogen adjacent consists 0.01~0.1μ is m, complex oxynitride of Y and Ti layer Physical vapor deposition of hard coating layer ,
A method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance under a high-speed cutting condition characterized by comprising the above (a) to (e).
JP2003142068A 2003-05-20 2003-05-20 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same Expired - Fee Related JP4150916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142068A JP4150916B2 (en) 2003-05-20 2003-05-20 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142068A JP4150916B2 (en) 2003-05-20 2003-05-20 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004345000A JP2004345000A (en) 2004-12-09
JP4150916B2 true JP4150916B2 (en) 2008-09-17

Family

ID=33530260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142068A Expired - Fee Related JP4150916B2 (en) 2003-05-20 2003-05-20 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4150916B2 (en)

Also Published As

Publication number Publication date
JP2004345000A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3669334B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4150913B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4120467B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4150914B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4120442B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4150916B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4150915B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4120456B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3962913B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP4320714B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4320707B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3928459B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4320706B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees