JP4150846B2 - Retinal choroidal disease treatment containing steroid as active ingredient - Google Patents

Retinal choroidal disease treatment containing steroid as active ingredient Download PDF

Info

Publication number
JP4150846B2
JP4150846B2 JP2002089137A JP2002089137A JP4150846B2 JP 4150846 B2 JP4150846 B2 JP 4150846B2 JP 2002089137 A JP2002089137 A JP 2002089137A JP 2002089137 A JP2002089137 A JP 2002089137A JP 4150846 B2 JP4150846 B2 JP 4150846B2
Authority
JP
Japan
Prior art keywords
injection
retinal
administration
retina
choroidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002089137A
Other languages
Japanese (ja)
Other versions
JP2002356431A (en
Inventor
保雄 田野
達治 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santen Pharmaceutical Co Ltd
Original Assignee
Santen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santen Pharmaceutical Co Ltd filed Critical Santen Pharmaceutical Co Ltd
Priority to JP2002089137A priority Critical patent/JP4150846B2/en
Publication of JP2002356431A publication Critical patent/JP2002356431A/en
Application granted granted Critical
Publication of JP4150846B2 publication Critical patent/JP4150846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定のステロイド、即ちベタメサゾンを有効成分とする網脈絡膜疾患治療剤に関するものである。
【0002】
【従来の技術】
網脈絡膜疾患は失明にもつながる難治性の疾患であり、中でも加齢黄斑変性、糖尿病網膜症および増殖性硝子体網膜症は主要な網脈絡膜疾患である。
【0003】
加齢黄斑変性(age-related macular degeneration;以下「AMD」とする)は原因不明の、加齢に伴って黄斑部に生じる疾患である。これは50歳以上の高齢者に多く、近年高齢者の視力低下および失明の主要原因疾患として注目されている。AMDには黄斑部に脈絡膜由来の新生血管が伸展し、出血や滲出を生じる滲出型と、脈絡膜血管新生が関与せず、網膜色素上皮細胞や脈絡膜毛細管板の萎縮をきたす萎縮型がある。滲出型は、高齢者の黄斑に脈絡膜から網膜色素上皮細胞あるいは網膜下に新生血管が伸展し、出血や滲出型病変を生じる。
【0004】
糖尿病網膜症(diabetic retinopathy;以下「DR」とする)は糖尿病の眼合併症で、近年成人の失明の第1位を占める疾患である。人口の高齢化が進み、糖尿病罹患患者の長命化もあり、DRの発症頻度は増加している。DRは網膜血管病で、毛細管レベルの細小血管症として始まる。血管症の初期病変であるものは単純網膜症、病変が進行し毛細血管の閉塞が進行している状態が前増殖網膜症、血管症の閉塞が拡大し網膜虚血が進行し、網膜硝子体に血管新生を発症したものが増殖網膜症と呼ばれる。
【0005】
増殖性硝子体網膜症(proliferative vitreoretinopathy;以下「PVR」とする)は、裂孔原性網膜剥離に続発する重篤な合併症である。増殖性硝子体網膜症の頻度は網膜剥離の5〜10%とされているが、近年硝子体手術の普及に伴い増加傾向にある。この病態の本質は網膜色素上皮細胞、網膜グリア細胞、繊維芽細胞などの非血管由来細胞が増殖することにあり、剥離網膜の前面・後面あるいはその硝子体中に膜様の増殖物が形成され、網膜に対する強い牽引が起こり全剥離の状態に陥る。
【0006】
網脈絡膜疾患の治療は主として外科手術によって行われている。外眼部疾患の治療は点眼等による薬物療法が主であるが、網膜には薬物が極めて移行しにくく、それが網脈絡膜疾患の薬物療法を困難にしている。静脈注射や経口投与による網脈絡膜疾患の治療も試みられているが、薬物の全身作用が強く現れることもあって、硝子体内に直接薬物を注入する方法等が研究されている。
【0007】
網脈絡膜疾患の治療に用いられる薬物としてステロイドが有用であることがすでに知られており、特にトリアムシノロンについては種々の報告がある。例えば、アメリカ特許第5770589号には、トリアムシノロンを硝子体内に注入することによる黄斑変性の治療方法が開示されている。Am.J.Ophthal. 89:131-136, 1980には、トリアムシノロンアセトニドを硝子体内に注入することによって、硝子体に移植した繊維芽細胞の増殖を抑制し、PVRの治療に有用であることが報告されている。J.Ocul.Pharmacol.Ther. 15(5),425-428, 1999には、トリアムシノロンのテノン嚢下注射により脈絡膜の血管新生の抑制に効果があることが報告されている。
【0008】
しかしながら、ステロイドの中で、ベタメサゾンが網脈絡膜疾患の治療に用られた例は知られていない。また、ステロイドの投与法として硝子体内注射、テノン嚢下注射が知られているが、網脈絡膜疾患治療の投与方法における結膜下注射の有用性は報告されていない。
【0009】
【発明が解決しようとする課題】
上記のようにトリアムシノロンが網脈絡膜疾患の治療に有用であることが知られているが、まだまだ効果の面から満足できるものではなく、より優れた効果を示すステロイドを見出すことは非常に興味ある課題であった。
【0010】
また、ステロイドが網脈絡膜疾患に有用であることが分かっても、ステロイドを如何にして効率よくに網脈絡膜へ移行させるかが大きな課題であり、その手段として硝子体内注射やテノン嚢下注射が提唱されているが、これらの手段は医師の技量に負うところが多く、さらに、眼組織の障害も大きいので患者にとっても相当の苦痛等を伴う。従って、網膜への移行性、投与の簡便性、眼組織の障害性等のバランスがとれた投与剤の開発が望まれている。
【0011】
【課題を解決するための手段】
そこで本発明者らは鋭意研究を行った結果、ベタメサゾンが優れた脈絡膜血管新生阻害作用、血管透過性亢進抑制作用および網膜剥離抑制作用を示すことを見出し、これらの化合物が網脈絡膜疾患、特に加齢黄斑変性および糖尿病網膜症の治療剤として有用であることを見出した。また、ステロイドを結膜下注射すれば、より簡便に投与でき、かつ効率よくステロイドを網脈絡膜へ送達できることを併せて見出した。従来から知られている硝子体内注射は、薬物を網膜組織に接する硝子体内に直接注入する方法であり、テノン嚢下注射は、微細組織であるテノン嚢内に注入する方法である。いずれの投与方法も直接目視できない部位への投与であるため、高度な技術を必要とし、患者への負担も大きく、投与回数にはおのずと制約がある。また、注射針が内眼部まで達するため眼内感染症を誘発する可能性もある。一方、結膜下注射は、目視できる部分へ注射するため、比較的手技は簡便で、且つ患者への負担も少なく、投与回数にそれほど制約はない。
【0012】
【発明の実施の形態】
本発明は、エステル若しくは塩の形態となっていても良いベタメサゾン(以下これらのステロイド化合物を「本化合物」という)を有効成分とする網脈絡膜疾患治療剤に関するものであって、治療剤の投与剤型が注射剤であり、投与部位が結膜下またはテノン嚢下である網脈絡膜疾患治療剤である。本化合物におけるエステルとは医薬として許容されるエステルであれば特に制限は無く、リン酸エステル、マレイン酸エステル、酢酸エステル、蟻酸エステル等が挙げられる。
【0013】
本化合物における塩は医薬として許容される塩類であれば特に制限は無く、ナトリウム塩、カリウム塩等が挙げられる。本化合物のうち特に好ましい例は、リン酸ベタメサゾンナトリウムおよびハイドロコルチゾンである。
【0014】
本化合物の網脈絡膜疾患治療に対する有用性を調べるべく、脈絡膜血管新生阻害作用、血管透過性亢進抑制作用および網膜剥離抑制作用について検討した。詳細については後述の実施例の項で述べる。
【0015】
本化合物の投与形態としては結膜下注射が好ましいが、医師の技量や患者の症状等に応じて通常のステロイドの投与形態を用いることもできる。発明においては、ベタメサゾンの投与剤型は注射剤である。注射剤は、例えば、塩化ナトリウム等の浸透圧調整剤、リン酸ナトリウム等のpH調整剤、ポリソルベート80等の界面活性剤、メチルセルロース等の増粘剤等の通常用いられる添加剤を本化合物に加え、これらを注射用の蒸留水に溶解して、調製される。本発明ではこの注射剤は結膜下注射およびテノン嚢下注射に用いられる
【0016】
本化合物の投与量は症状、年齢等によって適宜選択できるが、注射剤であれば、通常1回当たり1μg〜10mg、好ましくは10μg〜1mgを投与すれば良い。
【0018】
以下に製剤例および薬理試験の結果を示す。なお、ベタメサゾンに関する記載は本発明に相当する実施例であるが、ハイドロコルチゾンに関する記載は本発明に相当しない参考例である。
【0019】
【実施例】
[製剤例]
本化合物の注射剤の一般的な製剤例を以下に示す。
【0020】
1)注射剤
処方100mL中
リン酸ベタメサゾン 20mg
塩化ナトリウム 900mg
注射用蒸留水 適量
【0021】
[薬理試験]
本化合物のAMDおよびDRに対する効果を調べるため、脈絡膜血管新生阻害試験および網膜血管透過性抑制試験を行った。また、PVRに対する効果を調べるため網膜剥離抑制試験を行った。
【0022】
1.リン酸ベタメサゾンナトリウムの脈絡膜血管新生阻害試験
(レーザー誘発ラット脈絡膜血管新生モデルの作製)
ラットに5%塩酸ケタミン注射液および2%塩酸キシラジン注射液の混合液(7:1) 1mL/kgを筋肉内投与することによりラットを全身麻酔し、0.5%トロピカミド−0.5%塩酸フェニレフリン点眼液を点眼して散瞳させた後、クリプトンレーザー光凝固装置により光凝固を行った。光凝固は、眼底後局部において、太い網膜血管を避け、焦点を網膜深層に合わせて1眼につき8ヶ所散在状に実施した(凝固条件:スポットサイズ100μm、出力100mW、凝固時間0.1秒)。光凝固後、眼底撮影を行い、レーザー照射部位を確認した。
【0023】
(薬物の投与方法)
リン酸ベタメサゾンナトリウムをリン酸緩衝液に0.2および2mg/mLになるよう溶解し、レーザー照射日より7日間結膜下へ50μL投与した。比較群としてトリアムシノロンを0.2および2mg/mLになるようリン酸緩衝液に懸濁し、同様に投与した。基剤投与群として、リン酸緩衝液を同様に投与した。
【0024】
(評価方法)
光凝固後7日目に10%フルオレセイン 0.1mLを頚静脈から注入して、蛍光眼底造影を行った。蛍光眼底造影で、蛍光漏出が認められなかったスポットを陰性、蛍光漏出が認められたスポットを陽性として判定した。レーザー照射8ヶ所のスポットに対する陽性スポット数から新生血管発現率を算定し、下記式に従い、脈絡膜血管新生阻害率を算出した。
【0025】
【式1】
脈絡膜血管新生阻害率(%)=(A−A)/A×100
:基剤投与群の新生血管発現率
:薬物投与群の新生血管発現率
【0026】
(結果)
上記試験の結果を表1に示す。投与量10μg/eye(1眼)/day(1日)および100μg/eye/dayともにリン酸べタメサゾンナトリウムはトリアムシノロンより高い脈絡膜血管新生阻害率を示し、10μg/eye/dayではトリアムシノロンの約3倍もの強い阻害効果を有することが判明した。
【表1】

Figure 0004150846
【0027】
2.ハイドロコルチゾンの脈絡膜血管新生阻害試験
(レーザー誘発ラット脈絡膜血管新生モデルの作製)
上述のリン酸ベタメサゾンナトリウムの試験と同様にレーザー誘発ラット脈絡膜血管新生モデルを作製した。
【0028】
(薬物の投与方法)
ハイドロコルチゾンをリン酸緩衝液に2および20mg/mLになるよう溶解し、レーザー照射直後に1回結膜下へ50μL投与した。基剤投与群として、リン酸緩衝液を同様に投与した。
【0029】
(評価方法)
上述のリン酸ベタメサゾンナトリウムの試験と同様にして評価した。
【0030】
(結果)
上記試験の結果を表2に示す。投与量100および1000μg/eye/dayともにハイドロコルチゾンは脈絡膜血管新生阻害効果を有することが判明した。
【0031】
【表2】
Figure 0004150846
【0032】
3.リン酸ベタメサゾンの網膜血管透過性抑制試験
(トロンビン誘発ラット網膜血管透過性亢進モデルの作製)
ラットに5%塩酸ケタミン注射液および2%塩酸キシラジン注射液の混合液(7:1)を1 mL/kg筋肉内投与することにより全身麻酔した後、0.5%トロピカミド−0.5%塩酸フェニレフリン点眼液を点眼して左眼を散瞳させた。薬物投与群および対照群のラットには、手術用顕微鏡にて観察しながら水晶体ならびに網膜を傷つけないよう33G針を用いて、硝子体内(左眼)にトロンビン(500U/mL)を2.5 μL注入した。正常群のラットにはトロンビンの代わりに基剤 (ダルベッコ改変リン酸緩衝生理食塩液)を投与した。
【0033】
(薬物の投与方法)
リン酸ベタメサゾンナトリウムを2mg/mLまたは20mg/mLになるように生理食塩液に溶解した。トロンビンまたは基剤 (ダルベッコ改変リン酸緩衝生理食塩液)の投与1時間前および23時間後に、ラット左眼に0.4%オキシブプロカイン点眼液を点眼した後、薬物投与群のラットには2mg/mLまたは20mg/mLリン酸ベタメサゾンを結膜下注射した。正常群および対照群のラットには生理食塩液を結膜下注射した。
【0034】
(評価方法)
トロンビン硝子体内投与の48時間後に、ラットに0.5%トロピカミド−0.5%塩酸フェニレフリン点眼液を点眼して散瞳させ、5%塩酸ケタミン注射液および2%塩酸キシラジン注射液の混合液(7:1)を1mL/kg筋肉内投与してラットを全身麻酔した後、1%フルオレセイン溶液 (1mL/kg) を陰茎静脈内投与した。フルオレセイン投与約40分後に血液を心臓より採取した後直ちに、フルオロトロンマスターにて眼内蛍光色素濃度を測定した。採血した血液は15,000rpm × 5分で遠心分離後、その上清(血漿)をリン酸緩衝生理食塩液で51倍希釈し、フルオロトロンマスターにて血漿中蛍光色素濃度を測定した。フルオロトロンマスターにより得られたフルオレセイン投与約45分後の眼内蛍光色素濃度を血漿中蛍光色素濃度で除して網膜血管透過性を算出した。
【0035】
(結果)
結果を表3に示す。正常群と対照群を比較すると分かるように、対照群ではトロンビンにより網膜の血管透過性亢進が認められた。しかし、トロンビンとともにリン酸ベタメサゾンナトリウムを投与すると、トロンビンによる網膜の血管透過性亢進が抑制されることが示された。
【0036】
【表3】
Figure 0004150846
【0037】
4.ベタメサゾンの網膜剥離抑制試験
(ディスパーゼ誘発ウサギPVRモデルの作製)
ウサギに0.5%トロピカミド−0.5%塩酸フェニレフリン点眼液を点眼し散瞳させ、5%塩酸ケタミン注射液および2%塩酸キシラジン注射液の混合液(7:1) 1mL/kgを筋肉内投与することによりウサギを全身麻酔した。0.4%オキシブプロカインを点眼し前眼部を麻酔した後、生理食塩液で0.05U/100μLに調製したディスパーゼ溶液100μLを硝子体内に注入した。ディスパーゼ溶液注入後6週目および10週目にディスパーゼにより誘発されたPVRを眼底観察により確認した。
【0038】
(薬物の投与)
ベタメサゾンを0.1g/mLになるようにリン酸緩衝液に溶解し、ディスパーゼ注入直後に結膜下へ100μL投与した。基剤投与群として、リン酸緩衝液を同様に投与した。
【0039】
(評価方法)
ディスパーゼ誘発後56日目に眼底観察を行いPVRをスコアにより判定した。判定基準を以下に示す。スコア3以上をPVRの発現と定義し、各群におけるPVRの発症率(網膜剥離の発症率)を式2に従って算出した。
【0040】
0:正常網膜
1:硝子体膜が認められる
2:網膜の牽引・血管異常・充血が認められる
3:局所的な剥離が認められる
4:広範囲な剥離が認められる
5:全剥離が認められる
【0041】
【式2】
PVRの発症率(%)=PVR発現眼数/試験眼数×100
【0042】
(結果)
結果を表4に示す。表に示したように、基剤投与群およびベタメサゾン投与群におけるPVRの発症率は、それぞれ66.7%および37.5%であり、ベタメサゾンがPVRを抑制することがわかった。
【0043】
【発明の効果】
化合物は、優れた脈絡膜血管新生阻害作用、血管透過性亢進抑制作用およびPVR抑制作用を有するので、加齢黄斑変性治療剤および糖尿病網膜症治療剤として有用である。また本化合物を含有する注射剤を結膜下またはテノン嚢下に注射して使用すれば、網脈絡膜疾患を簡便に治療できる。
【0044】
【発明の効果】
本発明のベタメサゾンまたはハイドロコルチゾンは、優れた脈絡膜血管新生阻害作用、血管透過性亢進抑制作用およびPVR抑制作用を有するので、加齢黄斑変性治療剤および増殖性硝子体網膜症治療剤などの網脈絡膜疾患治療剤として有用である。また本発明のステロイドを含有する注射剤を結膜下に注射して使用すれば、網脈絡膜疾患を簡便に治療できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particular steroid, namely chorioretinal disease therapeutic agent as an active ingredient Betamesazo down.
[0002]
[Prior art]
Retinal choroidal disease is an intractable disease that can lead to blindness, among which age-related macular degeneration, diabetic retinopathy and proliferative vitreoretinopathy are the major retina choroidal diseases.
[0003]
Age-related macular degeneration (hereinafter referred to as “AMD”) is a disease of unknown origin and occurring in the macular region with aging. This is common among elderly people over the age of 50, and has recently been attracting attention as a major cause of vision loss and blindness in the elderly. There are two types of AMD: an exudative type in which choroidal neovascularization extends in the macular region and causes bleeding and exudation, and an atrophic type that does not involve choroidal neovascularization and causes atrophy of retinal pigment epithelial cells and choroidal capillary plates. In the wet type, neovascularization extends from the choroid to the retinal pigment epithelial cells or below the retina in the macular of the elderly, resulting in bleeding and wet lesions.
[0004]
Diabetic retinopathy (hereinafter referred to as “DR”) is a diabetic ocular complication and has recently become the leading cause of blindness in adults. With the aging of the population and the increasing life expectancy of patients with diabetes, the incidence of DR is increasing. DR is a retinal vascular disease that begins as microangiopathy at the capillary level. The initial lesions of angiopathy are simple retinopathy, the state of progression of the lesion and progression of capillary occlusion is preproliferative retinopathy, the enlargement of angiopathy and retinal ischemia, and the retinal vitreous Those who have developed angiogenesis are called proliferative retinopathy.
[0005]
Proliferative vitreoretinopathy (hereinafter "PVR") is a serious complication secondary to hiatogenic retinal detachment. The frequency of proliferative vitreoretinopathy is considered to be 5 to 10% of retinal detachment, but has recently been increasing with the spread of vitrectomy. The essence of this condition is that non-blood vessel-derived cells such as retinal pigment epithelial cells, retinal glial cells, and fibroblasts proliferate, and membrane-like growths are formed on the front and rear surfaces of the detached retina or in the vitreous body. As a result, a strong traction on the retina occurs, resulting in a complete detachment.
[0006]
Treatment of retina choroidal disease is mainly performed by surgery. Treatment of external eye diseases is mainly pharmacotherapy by eye drops or the like, but the drug hardly transfers to the retina, which makes the pharmacotherapy of retina choroidal disease difficult. Attempts have also been made to treat retina choroidal diseases by intravenous injection or oral administration. However, since the systemic action of the drug appears strongly, methods for directly injecting the drug into the vitreous have been studied.
[0007]
It is already known that steroids are useful as drugs used for the treatment of retina choroidal diseases, and there are various reports on triamcinolone in particular. For example, US Pat. No. 5,770,589 discloses a method for treating macular degeneration by injecting triamcinolone into the vitreous. In Am.J.Ophthal. 89: 131-136, 1980, by injecting triamcinolone acetonide into the vitreous, it suppresses the proliferation of fibroblasts transplanted into the vitreous and is useful for the treatment of PVR Has been reported. In J. Ocul. Pharmacol. Ther. 15 (5), 425-428, 1999, it is reported that subtenon injection of triamcinolone is effective in suppressing choroidal neovascularization.
[0008]
However, in the steroid, examples Betamesazo emissions were use in the treatment of chorioretinal disease is not known. In addition, intravitreal injection and subtenon injection are known as steroid administration methods, but the usefulness of subconjunctival injection in the administration method for treating choroidal disease has not been reported.
[0009]
[Problems to be solved by the invention]
As mentioned above, triamcinolone is known to be useful in the treatment of retina choroidal disease, but it is still not satisfactory from the aspect of the effect, and finding a steroid showing a better effect is a very interesting issue Met.
[0010]
In addition, even if steroids are found to be useful for retina choroidal diseases, how to transfer steroids efficiently to the retina choroid is a major issue. Intravitreal injection and subtenon injection are proposed as the means. However, these means often depend on the skill of the doctor, and further, the eye tissue is seriously damaged, which causes considerable pain for the patient. Therefore, it is desired to develop an administration agent that balances the transferability to the retina, the ease of administration, the ocular tissue damage, and the like.
[0011]
[Means for Solving the Problems]
The present inventors have as a result of intense research, choroidal neovascularization inhibitory effect was excellent Betamesazo down, found to exhibit vascular hyperpermeability inhibitory effect and retinal detachment inhibition, these compounds chorioretinal disease, especially It was found useful as a therapeutic agent for age-related macular degeneration and diabetic retinopathy. The present inventors have also found that steroids can be administered more easily and efficiently when steroids are injected subconjunctivally, and steroids can be efficiently delivered to the choroid. Conventionally known intravitreal injection is a method in which a drug is directly injected into the vitreous in contact with retinal tissue, and subtenon injection is a method in which the drug is injected into a Tenon sac, which is a fine tissue. Since any of the administration methods is administration to a site that cannot be directly observed, a high level of skill is required, the burden on the patient is large, and the number of administrations is naturally limited. Moreover, since the injection needle reaches the inner eye part, there is a possibility of inducing an intraocular infection. On the other hand, since subconjunctival injection is injected into a visible portion, the procedure is relatively simple, the burden on the patient is small, and the number of administrations is not so limited.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention, I der relates chorioretinal disease treating agent may Betamesazo emissions be made in the form of esters or salts (hereinafter these steroid compounds referred to as "the compound") as an active ingredient, the therapeutic agent The dosage form is an injection, and the administration site is a therapeutic agent for a retina choroid disease in which the administration site is subconjunctival or subtenon . The ester in the present compound is not particularly limited as long as it is a pharmaceutically acceptable ester, and examples thereof include phosphate ester, maleate ester, acetate ester and formate ester.
[0013]
The salt in the present compound is not particularly limited as long as it is a pharmaceutically acceptable salt, and examples thereof include sodium salt and potassium salt. Particularly preferred examples of this compound are betamethasone sodium phosphate and hydrocortisone.
[0014]
In order to examine the usefulness of this compound for the treatment of retina choroidal diseases, the effects of inhibiting choroidal neovascularization, suppressing vascular permeability enhancement and inhibiting retinal detachment were examined. Details will be described in the section of the embodiment described later.
[0015]
Subconjunctival injection is preferable as the administration form of the present compound, but usual steroid administration forms can also be used depending on the skill of the doctor and the symptoms of the patient. In the present invention, dosage forms of betamethasone is Ru injection der. Note Ysaye, for example, osmotic pressure adjusting agents such as sodium chloride, pH adjusting agents such as sodium phosphate, surfactant polysorbate 80 and, in the normal additives present compound for use of thickeners such as methylcellulose In addition, they are prepared by dissolving in distilled water for injection . In the present invention, this injection is used for subconjunctival injection and subtenon injection .
[0016]
The dose of the present compound can be appropriately selected depending on symptoms, age, etc. In the case of an injection, it is usually administered in an amount of 1 μg to 10 mg, preferably 10 μg to 1 mg per dose.
[0018]
Formulation examples and pharmacological test results are shown below. The description regarding betamethasone is an example corresponding to the present invention, but the description regarding hydrocortisone is a reference example not corresponding to the present invention.
[0019]
【Example】
[Formulation example]
A typical formulation example of the injection of this compound is shown below.
[0020]
1) 20 mg of betamethasone phosphate in 100 mL of injection formulation
Sodium chloride 900mg
Suitable amount of distilled water for injection [0021]
[Pharmacological test]
In order to examine the effect of this compound on AMD and DR, a choroidal neovascularization inhibition test and a retinal vascular permeability inhibition test were performed. In addition, a retinal detachment inhibition test was conducted to examine the effect on PVR.
[0022]
1. Inhibition of choroidal neovascularization of betamethasone sodium phosphate (preparation of laser-induced rat choroidal neovascularization model)
Rats were anesthetized by intramuscular administration of 1 mL / kg of a mixture of 5% ketamine hydrochloride injection and 2% xylazine hydrochloride injection (7: 1) to give 0.5% tropicamide-0.5% hydrochloric acid. After phenylephrine ophthalmic solution was instilled to make mydriatic, photocoagulation was performed using a krypton laser photocoagulation apparatus. Photocoagulation was carried out at 8 sites per eye, avoiding thick retinal blood vessels, focusing on the deep retina (coagulation conditions: spot size 100 μm, output 100 mW, coagulation time 0.1 seconds). . After photocoagulation, fundus photography was performed to confirm the laser irradiation site.
[0023]
(Drug administration method)
Betamethasone sodium phosphate was dissolved in phosphate buffer so as to have a concentration of 0.2 and 2 mg / mL, and 50 μL was administered under the conjunctiva for 7 days from the date of laser irradiation. As a comparison group, triamcinolone was suspended in a phosphate buffer so as to be 0.2 and 2 mg / mL and administered in the same manner. As a base administration group, a phosphate buffer was administered in the same manner.
[0024]
(Evaluation methods)
On the 7th day after photocoagulation, 0.1 mL of 10% fluorescein was injected from the jugular vein and fluorescence fundus imaging was performed. In the fluorescence fundus angiography, a spot where no fluorescence leakage was observed was determined as negative, and a spot where fluorescence leakage was observed was determined as positive. The neovascularization rate was calculated from the number of positive spots with respect to 8 spots irradiated with laser, and the choroidal neovascularization inhibition rate was calculated according to the following formula.
[0025]
[Formula 1]
Choroidal neovascularization inhibition rate (%) = (A 0 −A X ) / A 0 × 100
A 0 : Neovascular expression rate in the base administration group A X : Neovascular expression rate in the drug administration group
(result)
The results of the above test are shown in Table 1. For both doses of 10 μg / eye (one eye) / day (day) and 100 μg / eye / day, betamethasone sodium phosphate showed a higher inhibition rate of choroidal neovascularization than triamcinolone, and at 10 μg / eye / day, about the amount of triamcinolone It was found to have a three times as strong inhibitory effect.
[Table 1]
Figure 0004150846
[0027]
2. Hydrocortisone choroidal neovascularization inhibition test (production of laser-induced rat choroidal neovascularization model)
A laser-induced rat choroidal neovascularization model was prepared in the same manner as the betamethasone sodium phosphate test described above.
[0028]
(Drug administration method)
Hydrocortisone was dissolved in phosphate buffer to 2 and 20 mg / mL, and 50 μL was administered once under the conjunctiva immediately after laser irradiation. As a base administration group, a phosphate buffer was administered in the same manner.
[0029]
(Evaluation methods)
Evaluation was performed in the same manner as in the above-described betamethasone sodium phosphate test.
[0030]
(result)
The results of the above test are shown in Table 2. Hydrocortisone was found to have a choroidal neovascularization inhibitory effect at both doses of 100 and 1000 μg / eye / day.
[0031]
[Table 2]
Figure 0004150846
[0032]
3. Retinal vascular permeability inhibition test of betamethasone phosphate (preparation of thrombin-induced rat retinal vascular permeability enhancement model)
Rats were anesthetized by intramuscular administration of a mixture of 5% ketamine hydrochloride injection and 2% xylazine hydrochloride injection (7: 1) intramuscularly and then 0.5% tropicamide-0.5% hydrochloric acid. Phenylephrine ophthalmic solution was instilled and my left eye was mydriatic. For rats in the drug administration group and the control group, thrombin (500 U / mL) was added to 2.5 μL in the vitreous body (left eye) using a 33G needle so as not to damage the lens and retina while observing with a surgical microscope. Injected. In the normal group, a base (Dulbecco's modified phosphate buffered saline) was administered instead of thrombin.
[0033]
(Drug administration method)
Betamethasone sodium phosphate was dissolved in physiological saline so as to be 2 mg / mL or 20 mg / mL. One hour before and 23 hours after administration of thrombin or base (Dulbecco's modified phosphate buffered saline), 0.4% oxybuprocaine ophthalmic solution was instilled into the left eye of the rat, and then 2 mg was administered to the rats in the drug administration group. / ML or 20 mg / mL betamethasone phosphate was injected subconjunctivally. Normal group and control group rats were injected with physiological saline subconjunctivally.
[0034]
(Evaluation methods)
Forty-eight hours after intravitreal thrombin administration, rats were instilled with 0.5% tropicamide-0.5% phenylephrine hydrochloride ophthalmic solution to make mydriatics, a mixture of 5% ketamine hydrochloride injection and 2% xylazine hydrochloride injection ( After 7: 1) was administered intramuscularly at 1 mL / kg, the rats were general anesthetized and then a 1% fluorescein solution (1 mL / kg) was administered intravenously to the penis. Immediately after blood was collected from the heart about 40 minutes after administration of fluorescein, the concentration of the intraocular fluorescent dye was measured with a fluorotron master. The collected blood was centrifuged at 15,000 rpm × 5 minutes, and the supernatant (plasma) was diluted 51-fold with phosphate buffered saline, and the fluorescent dye concentration in plasma was measured with a fluorotron master. Retinal vascular permeability was calculated by dividing the intraocular fluorescent dye concentration obtained about 45 minutes after administration of fluorescein obtained by the fluorotron master by the fluorescent dye concentration in plasma.
[0035]
(result)
The results are shown in Table 3. As can be seen by comparing the normal group and the control group, thrombin increased vascular permeability in the retina in the control group. However, when betamethasone sodium phosphate was administered together with thrombin, it was shown that the increase in vascular permeability of the retina by thrombin was suppressed.
[0036]
[Table 3]
Figure 0004150846
[0037]
4). Betamethasone retinal detachment inhibition test (preparation of dispase-induced rabbit PVR model)
Rabbits were instilled with 0.5% tropicamide-0.5% phenylephrine hydrochloride ophthalmic solution, mydriatic, and mixed with 5% ketamine hydrochloride injection solution and 2% xylazine hydrochloride injection solution (7: 1) 1 mL / kg intramuscularly. The rabbit was anesthetized by administration. After instilling 0.4% oxybuprocaine and anesthetizing the anterior ocular segment, 100 μL of a dispase solution prepared with physiological saline to 0.05 U / 100 μL was injected into the vitreous. PVR induced by dispase was confirmed by fundus observation at 6 and 10 weeks after dispase solution injection.
[0038]
(Drug administration)
Betamethasone was dissolved in a phosphate buffer solution to a concentration of 0.1 g / mL, and 100 μL was administered subconjunctivally immediately after dispase injection. As a base administration group, a phosphate buffer was administered in the same manner.
[0039]
(Evaluation methods)
On the 56th day after induction of dispase, the fundus was observed and PVR was determined by the score. Judgment criteria are shown below. A score of 3 or more was defined as the expression of PVR, and the incidence of PVR in each group (the incidence of retinal detachment) was calculated according to Equation 2.
[0040]
0: Normal retina 1: Vitreous membrane is observed 2: Retinal traction, vascular abnormality, and hyperemia are observed 3: Local detachment is observed 4: Extensive detachment is observed 5: Total detachment is observed [ 0041
[Formula 2]
PVR incidence (%) = number of PVR expressing eyes / number of test eyes × 100
[0042]
(result)
The results are shown in Table 4. As shown in the table, the incidence of PVR in the base administration group and the betamethasone administration group was 66.7% and 37.5%, respectively, and it was found that betamethasone suppresses PVR.
[0043]
【The invention's effect】
Since this compound has an excellent choroidal neovascularization inhibitory action, vascular permeability enhancement inhibitory action and PVR inhibitory action, it is useful as a therapeutic agent for age-related macular degeneration and a therapeutic agent for diabetic retinopathy . In addition, when an injection containing the present compound is injected into the subconjunctiva or under the Tenon's capsule , it can be used to easily treat the choroidal disease.
[0044]
【The invention's effect】
The betamethasone or hydrocortisone of the present invention has an excellent choroidal neovascularization inhibitory action, vascular permeability enhancement inhibitory action and PVR inhibitory action, so that the choroidal choroid such as age-related macular degeneration therapeutic agent and proliferative vitreoretinopathy therapeutic agent It is useful as a disease therapeutic agent. Moreover, if the injection containing the steroid of the present invention is used by injecting it subconjunctivally, the choroidal disease can be easily treated.

Claims (2)

エステル若しくは塩の形態となっていてもよいベタメサゾンを有効成分とする網脈絡膜疾患治療剤であって、網脈絡膜疾患が加齢黄斑変性または糖尿病網膜症であり、治療剤の投与剤型が注射剤であり、投与部位が結膜下またはテノン嚢下である網脈絡膜疾患治療剤Retinal choroidal disease therapeutic agent comprising betamethasone, which may be in the form of an ester or a salt, wherein the choroidal disease is age-related macular degeneration or diabetic retinopathy, and the dosage form of the therapeutic agent is an injection A retina choroidal disease therapeutic agent, wherein the administration site is subconjunctival or subtenon . ベタメサゾンの投与量が1μg〜10mgである請求項1記載の網脈絡膜疾患治療剤 The agent for treating choroidal disease according to claim 1, wherein the dose of betamethasone is 1 µg to 10 mg .
JP2002089137A 2001-03-28 2002-03-27 Retinal choroidal disease treatment containing steroid as active ingredient Expired - Fee Related JP4150846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089137A JP4150846B2 (en) 2001-03-28 2002-03-27 Retinal choroidal disease treatment containing steroid as active ingredient

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-92329 2001-03-28
JP2001092329 2001-03-28
JP2002089137A JP4150846B2 (en) 2001-03-28 2002-03-27 Retinal choroidal disease treatment containing steroid as active ingredient

Publications (2)

Publication Number Publication Date
JP2002356431A JP2002356431A (en) 2002-12-13
JP4150846B2 true JP4150846B2 (en) 2008-09-17

Family

ID=26612329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089137A Expired - Fee Related JP4150846B2 (en) 2001-03-28 2002-03-27 Retinal choroidal disease treatment containing steroid as active ingredient

Country Status (1)

Country Link
JP (1) JP4150846B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104862A (en) * 2003-09-29 2005-04-21 Meiji Milk Prod Co Ltd Aged macular degeneration therapeutic agent
FR2882930B1 (en) * 2005-03-09 2009-03-27 Walid Katib NOVEL OPHTHALMOLOGICAL COMPOSITIONS AND THEIR USE
SG11201809490YA (en) * 2016-04-29 2018-11-29 Enceladus Pharmaceuticals B V Liposomal corticosteroids for topical injection in inflamed lesions or areas

Also Published As

Publication number Publication date
JP2002356431A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
WO2010125416A1 (en) Drug delivery to the anterior and posterior segments of the eye
Giangiacomo et al. The effect of preoperative subconjunctival triamcinolone administration on glaucoma filtration: I. Trabeculectomy following subconjunctival triamcinolone
JP2008308489A (en) Prophylactic or therapeutic agent for posterior ocular disease comprising ropinirole or salt thereof as active ingredient
AU2017301410B2 (en) Multikinase inhibitors and uses in ocular fibrosis
WO1993024121A1 (en) Remedy for glaucoma
JP2005104862A (en) Aged macular degeneration therapeutic agent
Fox et al. Causes of reduced visual acuity on long-term follow-up after cataract extraction in patients with uveitis and juvenile rheumatoid arthritis
JPH0723325B2 (en) Ophthalmic formulation
US20130156841A1 (en) Method of reducing incidence of intraocular pressure associated with intraocular use of corticosteroids
KR20170088875A (en) Anti-inflammatory and mydriatic intracameral solutions for inhibition of postoperative ocular inflammatory conditions
JPH06172158A (en) Ophthalmic liquid agent for decreasing elevated intraocular tension of water in aqueous chamber
US5506241A (en) Argatroban preparations for ophthalmic use
JP4150846B2 (en) Retinal choroidal disease treatment containing steroid as active ingredient
RU2485939C1 (en) Disulfiram and taurine-containing ophthalmological medication in form of eye drops
EP0565897B1 (en) Argatroban preparations for ophthalmic use
KR100854058B1 (en) Remedies for retina and choroid diseases containing steroids as the active ingredient
US20040259765A1 (en) Formulations of non-steroidal anti-inflammatory agents to treat pathologic ocular angiogenesis
TWI766565B (en) Compositions for treating ocular diseases and use thereof
JP2007500250A5 (en)
JP3530542B2 (en) Argatroban formulation for ophthalmology
Mackert Cataract and Glaucoma
WO2002038149A1 (en) Remedies for keratoconjunctival diseases containing farnesyl acetate as the active ingredient
Peraka et al. Complications of Uveitis
Lew et al. Cyclodialysis in the treatment of nonhealing secondary glaucoma
Alm et al. A Review of its Pharmacological Properties, Clinical Efficacy and Tolerability in the Management of Primary Open-Angle Glaucoma and Ocular Hypertension

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees